1
|
Epithelial cell retention of transcriptionally active, P3HR-1-derived heterogeneous Epstein-Barr virus DNA with concurrent loss of parental virus. J Virol 2011; 85:7634-43. [PMID: 21593154 DOI: 10.1128/jvi.00045-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deleted, rearranged, heterogeneous (het) Epstein-Barr virus (EBV) DNA with the distinctive capability of disrupting EBV latency has been reported in biopsy samples of EBV-associated tumors whose onset in immunocompetent hosts is characteristically preceded by an antibody response indicative of EBV reactivation. Using the EBV P3HR-1 strain, we have reproduced in long-term culture of SVK epithelial cells an unusual pattern of infection previously observed in a subset of tumor biopsy samples: the persistence of het DNA in the absence of the parental helper virus. Fluorescence in situ hybridization (FISH) of infected cell subclones indicated the retention of het DNA in an integrated form. Incorporation of an intact het DNA molecule was confirmed by PCR, using primers that framed junctions of the four rearranged EBV DNA segments comprising P3HR-1-derived het DNA. Structural analysis of EBV terminal repeats revealed a banding pattern consistent with the integration of het DNA as a concatemer. Linkage of concatemeric monomers was defined at a nucleotide level, and that junctional sequence was detected in cell-free P3HR-1 virion DNA, confirming that subgenomic het DNA was packaged into infectious particles in a concatemeric configuration. Stable integration into cells having lost the standard viral genome allowed the unambiguous designation of het DNA as the source for viral gene products potentially encoded by both. Continuous expression of the latency-to-lytic switch protein Zta and detection of the BALF4 gene product gB, known to expand the target cell range of standard virus when incorporated at augmented levels into infectious progeny, add to a presumption of het DNA-enhanced pathogenesis in diseases of EBV reactivation.
Collapse
|
2
|
Niller HH, Wolf H, Minarovits J. Viral hit and run-oncogenesis: genetic and epigenetic scenarios. Cancer Lett 2010; 305:200-17. [PMID: 20813452 DOI: 10.1016/j.canlet.2010.08.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 07/29/2010] [Accepted: 08/09/2010] [Indexed: 12/31/2022]
Abstract
It is well documented that viral genomes either inserted into the cellular DNA or co-replicating with it in episomal form can be lost from neoplastic cells. Therefore, "hit and run"-mechanisms have been a topic of longstanding interest in tumor virology. The basic idea is that the transient acquisition of a complete or incomplete viral genome may be sufficient to induce malignant conversion of host cells in vivo, resulting in neoplastic development. After eliciting a heritable change in the gene expression pattern of the host cell (initiation), the genomes of tumor viruses may be completely lost, i.e. in a hit and run-scenario they are not necessary for the maintenance of the malignant state. The expression of viral oncoproteins and RNAs may interfere not only with regulators of cell proliferation, but also with DNA repair mechanisms. DNA recombinogenic activities induced by tumor viruses or activated by other mechanisms may contribute to the secondary loss of viral genomes from neoplastic cells. Viral oncoproteins can also cause epigenetic dysregulation, thereby reprogramming cellular gene expression in a heritable manner. Thus, we expect that epigenetic scenarios of viral hit and run-tumorigenesis may facilitate new, innovative experiments and clinical studies in spite of the fact that the regular presence of a suspected human tumor virus in an early phase of neoplastic development and its subsequent regular loss have not been demonstrated yet. We propose that virus-specific "epigenetic signatures", i.e. alterations of the host cell epigenome, especially altered DNA methylation patterns, may help to identify viral hit and run-oncogenic events, even after the complete loss of tumor viruses from neoplastic cells.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology and Hygiene of the University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, Germany.
| | | | | |
Collapse
|
3
|
Paleo-immunology: evidence consistent with insertion of a primordial herpes virus-like element in the origins of acquired immunity. PLoS One 2009; 4:e5778. [PMID: 19492059 PMCID: PMC2686171 DOI: 10.1371/journal.pone.0005778] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 04/22/2009] [Indexed: 11/29/2022] Open
Abstract
Background The RAG encoded proteins, RAG-1 and RAG-2 regulate site-specific recombination events in somatic immune B- and T-lymphocytes to generate the acquired immune repertoire. Catalytic activities of the RAG proteins are related to the recombinase functions of a pre-existing mobile DNA element in the DDE recombinase/RNAse H family, sometimes termed the “RAG transposon”. Methodology/Principal Findings Novel to this work is the suggestion that the DDE recombinase responsible for the origins of acquired immunity was encoded by a primordial herpes virus, rather than a “RAG transposon.” A subsequent “arms race” between immunity to herpes infection and the immune system obscured primary amino acid similarities between herpes and immune system proteins but preserved regulatory, structural and functional similarities between the respective recombinase proteins. In support of this hypothesis, evidence is reviewed from previous published data that a modern herpes virus protein family with properties of a viral recombinase is co-regulated with both RAG-1 and RAG-2 by closely linked cis-acting co-regulatory sequences. Structural and functional similarity is also reviewed between the putative herpes recombinase and both DDE site of the RAG-1 protein and another DDE/RNAse H family nuclease, the Argonaute protein component of RISC (RNA induced silencing complex). Conclusions/Significance A “co-regulatory” model of the origins of V(D)J recombination and the acquired immune system can account for the observed linked genomic structure of RAG-1 and RAG-2 in non-vertebrate organisms such as the sea urchin that lack an acquired immune system and V(D)J recombination. Initially the regulated expression of a viral recombinase in immune cells may have been positively selected by its ability to stimulate innate immunity to herpes virus infection rather than V(D)J recombination Unlike the “RAG-transposon” hypothesis, the proposed model can be readily tested by comparative functional analysis of herpes virus replication and V(D)J recombination.
Collapse
|
4
|
Points of recombination in Epstein-Barr virus (EBV) strain P3HR-1-derived heterogeneous DNA as indexes to EBV DNA recombinogenic events in vivo. J Virol 2008; 82:11516-25. [PMID: 18818321 DOI: 10.1128/jvi.01036-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Deletions and rearrangements in the genome of Epstein-Barr virus (EBV) strain P3HR-1 generate subgenomic infectious particles that, unlike defective interfering particles in other viral systems, enhance rather than restrict EBV replication in vitro. Reports of comparable heterogeneous (het) DNA in EBV-linked human diseases, based on detection of an abnormal juxtaposition of EBV DNA fragments BamHI W and BamHI Z that disrupts viral latency, prompted us to determine at the nucleotide level all remaining recombination joints formed by the four constituent segments of P3HR-1-derived het DNA. Guided by endonuclease restriction maps, we chose PCR primer pairs that approximated and framed junctions creating the unique BamHI M/B1 and E/S fusion fragments. Sequencing of PCR products revealed points of recombination that lacked regions of extensive homology between constituent fragments. Identical recombination junctions were detected by PCR in EBV-positive salivary samples from human immunodeficiency virus-infected donors, although the W/Z rearrangement that induces EBV reactivation was frequently found in the absence of the other two. In vitro infection of lymphoid cells similarly indicated that not all three het DNA rearrangements need to reside on a composite molecule. These results connote a precision in the recombination process that dictates both composition and regulation of gene segments altered by genomic rearrangement. Moreover, the apparent frequency of het DNA at sites of EBV replication in vivo is consistent with a likely contribution to the pathogenesis of EBV reactivation.
Collapse
|
5
|
Dittmer DP, Hilscher CJ, Gulley ML, Yang EV, Chen M, Glaser R. Multiple pathways for Epstein-Barr virus episome loss from nasopharyngeal carcinoma. Int J Cancer 2008; 123:2105-12. [PMID: 18688856 DOI: 10.1002/ijc.23685] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus (EBV) is the prototypical example for episomal persistence of genetic information. Yet, little is known about how this viral episome is lost. Episome loss occurs naturally in nasopharyngeal carcinoma (NPC) upon explantation into culture. Using whole-genome profiling, we found evidence for 2 different pathways of episome loss: (i) rapid loss of the entire episome or (ii) successive mutation/deletion of the episome until at least 1 essential cis-element is destroyed. This second phenotype was seen in a clone of HONE-1 NPC cells that maintains the EBV episome for prolonged time in culture. The conceptual insights provided by our quantitative analysis should aid our understanding of mammalian episomes, as well as lead to designs to cure latent viral infection.
Collapse
Affiliation(s)
- Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, Center for AIDS Research and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Li MJ, Maizels N. Activation and Targeting of Immunoglobulin Switch Recombination by Activities Induced by EBV Infection. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.12.6659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
EBV is strongly associated with Burkitt’s lymphoma, a B cell malignancy. In certain types of Burkitt’s lymphoma, the c-myc gene has undergone translocation to the S regions associated with heavy chain switch recombination. It has not been established whether EBV infection induces recombination activities, which in turn promote translocation of c-myc, or whether translocation precedes viral infection and provides a growth advantage that is further enhanced by factors encoded or induced by the virus. To distinguish between these possibilities, we have compared the level of switch recombination activities in the EBV-negative lymphoma, BJAB, and in its EBV-infected derivative, BJAB-B1, in experiments that assayed recombination of an extrachromosomal switch substrate during transient transfection. We have found that BJAB-B1 and other EBV-positive B cell lines supported high levels of recombination of switch substrates, to produce junctions like those found in products of chromosomal switch recombination. In contrast, BJAB did not support comparable levels of switch substrate recombination. In EBV-positive B cell lines, the ability to support switch substrate recombination correlated with levels of LR1, a B cell-specific factor which is a transcriptional regulator of c-myc and which also appears to function in switch recombination. Our observations support the hypothesis that EBV infection can induce activities that affect switch recombination and thus contribute to the translocations of c-myc to the S regions that characterize certain classes of lymphomas.
Collapse
Affiliation(s)
| | - Nancy Maizels
- *Molecular Biophysics and Biochemistry and
- †Genetics, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
7
|
Randhawa P, Whiteside T, Zeevi A, Nalesnik M, Alvares C, Gollin SM, Demetris J, Locker J. In vitro culture of B-lymphocytes derived from Epstein-Barr-virus-associated posttransplant lymphoproliferative disease: cytokine production and effect of interferon-alpha. In Vitro Cell Dev Biol Anim 1997; 33:803-8. [PMID: 9466686 DOI: 10.1007/s11626-997-0160-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epstein-Barr-virus-associated posttransplant lymphoproliferative disease ranges from transient lymphadenitis to aggressive lymphoma. This study characterizes an in vitro model to study the pathogenesis of this disease with a cell culture system. Five B-cell lines derived from posttransplant lymphoproliferative disease tissue were characterized with regard to immunophenotype, karyotype, molecular genetics, cytokine production, and growth regulation. All cell lines expressed CD19, CD21, CD22, CD43, and CD77, but not CD10 antigens. Immunoglobulin light chain restriction was seen in four of five cell lines, and cytogenetic abnormalities were demonstrable in three of the five. Cells proliferating in culture contained multiple Epstein-Barr virus episomes and showed lytic viral replication. All cell lines produced tumor necrosis factor-beta and interleukin-10 without evidence of autocrine growth regulatory loops involving these cytokines. No evidence of IL-1 alpha, IL-2, IL-4, IL-5 or IL-6 production was found by reverse transcriptase polymerase chain reaction. Adding 500 U IFN-alpha/ml to the culture medium resulted in 30% inhibition of [3H]thymidine incorporation.
Collapse
Affiliation(s)
- P Randhawa
- Division of Transplantation Pathology, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Miller G, Heston L, Grogan E, Gradoville L, Rigsby M, Sun R, Shedd D, Kushnaryov VM, Grossberg S, Chang Y. Selective switch between latency and lytic replication of Kaposi's sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. J Virol 1997; 71:314-24. [PMID: 8985352 PMCID: PMC191053 DOI: 10.1128/jvi.71.1.314-324.1997] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The BC-1 cell line, derived from a body cavity-based, B-cell lymphoma, is dually infected with Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV). In these studies, the relationships between these two gammaherpesviruses and BC-1 cells were characterized and compared. Single-cell cloning experiments suggested that all BC-1 cells contain both genomes. In more than 98% of cells, both viruses were latent. The two viruses could be differentially induced into their lytic cycles by chemicals. EBV was activated into DNA replication and late-gene expression by the phorbol ester tetradecanoyl phorbol acetate (TPA). KSHV was induced into DNA replication and late-gene expression by n-butyrate. Amplification of both EBV and KSHV DNAs was inhibited by phosphonoacetic acid. Induction of the KSHV lytic cycle by n-butyrate was accompanied by the disappearance of host-cell beta-actin mRNA. Induction of EBV by TPA was not accompanied by such an effect on host-cell gene expression. Induction of the KSHV lytic cycle by n-butyrate was associated with the expression of several novel polypeptides. Recognition of one of these, p40, served as the basis of development of an assay for antibodies to KSHV in the sera of infected patients. BC-1 cells released infectious EBV; however, there was no evidence for the release of encapsidated KSHV genomes by BC-1 cells, even though n-butyrate-treated cells contained numerous intranuclear nucleocapsids. The differential inducibility of these two herpesviruses in the same cell line points to the importance of viral factors in the switch from latency to lytic cycle.
Collapse
MESH Headings
- Animals
- Antigens, Viral
- Butyrates/pharmacology
- Butyric Acid
- DNA Replication
- DNA, Viral/analysis
- Genome, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Herpesvirus 4, Human/physiology
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/isolation & purification
- Herpesvirus 8, Human/physiology
- Humans
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/virology
- Microscopy, Electron
- Peptide Biosynthesis
- Phosphonoacetic Acid/pharmacology
- Polymerase Chain Reaction
- RNA, Messenger
- RNA, Viral/analysis
- Rabbits
- Sarcoma, Kaposi/virology
- Tetradecanoylphorbol Acetate/pharmacology
- Tumor Cells, Cultured
- Virion
- Virus Latency
- Virus Replication
Collapse
Affiliation(s)
- G Miller
- Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Moore PS, Gao SJ, Dominguez G, Cesarman E, Lungu O, Knowles DM, Garber R, Pellett PE, McGeoch DJ, Chang Y. Primary characterization of a herpesvirus agent associated with Kaposi's sarcomae. J Virol 1996; 70:549-58. [PMID: 8523568 PMCID: PMC189843 DOI: 10.1128/jvi.70.1.549-558.1996] [Citation(s) in RCA: 450] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Detection of novel DNA sequences in Kaposi's sarcoma (KS) and AIDS-related body cavity-based, non-Hodgkin's lymphomas suggests that these neoplasms are caused by a previously unidentified human herpesvirus. We have characterized this agent using a continuously infected B-lymphocyte cell line derived from an AIDS-related lymphoma and a genomic library made from a KS lesion. In this cell line, the agent has a large episomal genome with an electrophoretic mobility similar to that of 270-kb linear DNA markers during clamped homogeneous electric field gel electrophoresis. A 20.7-kb region of the genome has been completely sequenced, and within this region, 17 partial and complete open reading frames are present; all except one have sequence and positional homology to known gammaherpesvirus genes, including the major capsid protein and thymidine kinase genes. Phylogenetic analyses using both single genes and combined gene sets demonstrated that the agent is a gamma-2 herpesvirus (genus Rhadinovirus) and is the first member of this genus known to infect humans. Evidence for transient viral transmission from infected to uninfected cells is presented, but replication-competent virions have not been identified in infected cell lines. Sera from patients with KS have specific antibodies directed against antigens of infected cell lines, and these antibodies are generally absent in sera from patients with AIDS without KS. These studies define the agent as a new human herpesvirus provisionally assigned the descriptive name KS-associated herpesvirus; its formal designation is likely to be human herpesvirus 8.
Collapse
Affiliation(s)
- P S Moore
- Division of Epidemiology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|