1
|
Karavaeva V, Sousa FL. Modular structure of complex II: An evolutionary perspective. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148916. [PMID: 36084748 DOI: 10.1016/j.bbabio.2022.148916] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
Succinate dehydrogenases (SDHs) and fumarate reductases (FRDs) catalyse the interconversion of succinate and fumarate, a reaction highly conserved in all domains of life. The current classification of SDH/FRDs is based on the structure of the membrane anchor subunits and their cofactors. It is, however, unknown whether this classification would hold in the context of evolution. In this work, a large-scale comparative genomic analysis of complex II addresses the questions of its taxonomic distribution and phylogeny. Our findings report that for types C, D, and F, structural classification and phylogeny go hand in hand, while for types A, B and E the situation is more complex, highlighting the possibility for their classification into subgroups. Based on these findings, we proposed a revised version of the evolutionary scenario for these enzymes in which a primordial soluble module, corresponding to the cytoplasmatic subunits, would give rise to the current diversity via several independent membrane anchor attachment events.
Collapse
Affiliation(s)
- Val Karavaeva
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Filipa L Sousa
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria.
| |
Collapse
|
2
|
Paital B, Chainy GBN. Effects of salinity on O₂ consumption, ROS generation and oxidative stress status of gill mitochondria of the mud crab Scylla serrata. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:228-37. [PMID: 21930243 DOI: 10.1016/j.cbpc.2011.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 01/11/2023]
Abstract
Mitochondrial respiration, activities of electron transport chain enzymes and formation of oxidative stress parameters were investigated in mitochondria isolated from gill tissue of mud crabs (Scylla serrata) as a function of salinity (10 ppt, 17 ppt and 35 ppt). Mitochondrial oxygen consumption rate was higher for succinate as substrate compared with those of glutamate, malate and pyruvate. Complex I and complex II mediated respirations were higher at low salinity (10 ppt) than high salinity (17 ppt and 35 ppt). Although activities of electron transport chain enzymes particularly complexes I (EC 1.6.5.3), II (EC 1.3.99.1) and II-III (EC 1.3.2.1) were elevated linearly in response to salinity treatment, activity of complex V (ATPase, EC 3.6.1.34) was decreased at 35 ppt salinity. However, ATPase activity was higher at 17 ppt salinity in comparison to 10 ppt and 17 ppt salinity. Results of the experiment suggest that high salinity (35 ppt) causes hypoxic state in mitochondria of mud crabs. Hypoxic condition induced by high salinity was accompanied with increased hydrogen peroxide production resulting oxidative stress in mitochondria of crabs. A possible mechanism of hypoxia-induced reactive oxygen species generation and OS due to salinity stress in the crabs is discussed.
Collapse
|
3
|
Lemire BD, Oyedotun KS. The Saccharomyces cerevisiae mitochondrial succinate:ubiquinone oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:102-16. [PMID: 11803020 DOI: 10.1016/s0005-2728(01)00229-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Saccharomyces cerevisiae succinate dehydrogenase (SDH) provides an excellent model system for studying the assembly, structure, and function of a mitochondrial succinate:quinone oxidoreductase. The powerful combination of genetic and biochemical approaches is better developed in yeast than in other eukaryotes. The yeast protein is strikingly similar to other family members in the structural and catalytic properties of its subunits. However, the membrane domain and particularly the role of the single heme in combination with two ubiquinone-binding sites need further investigation. The assembly of subunits and cofactors that occurs to produce new holoenzyme molecules is a complex process that relies on molecular chaperones. The yeast SDH provides the best opportunity for understanding the biogenesis of this family of iron-sulfur flavoproteins.
Collapse
Affiliation(s)
- Bernard D Lemire
- Canadian Institutes of Health Research Group in the Molecular Biology of Membrane Proteins, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | | |
Collapse
|
4
|
Oyedotun KS, Lemire BD. The Quinone-binding sites of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase. J Biol Chem 2001; 276:16936-43. [PMID: 11279023 DOI: 10.1074/jbc.m100184200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae succinate dehydrogenase (SDH) of the mitochondrial electron transport chain oxidizes succinate and reduces ubiquinone. Using a random mutagenesis approach, we identified functionally important amino acid residues in one of the anchor subunits, Sdh4p. We analyzed three point mutations (F69V, S71A, and H99L) and one nonsense mutation (Y89OCH) that truncates the Sdh4p subunit at the third predicted transmembrane segment. The F69V and the S71A mutations result in greatly impaired respiratory growth in vivo and quinone reductase activities in vitro, with negligible effects on enzyme stability. In contrast, the Y89OCH and the H99L mutations elicit large structural perturbations that impair assembly as evidenced by reduced covalent FAD levels, membrane-associated succinate-phenazine methosulfate reductase activities, and thermal stability. We propose that the Phe-69 and the Ser-71 residues are involved in the formation of a quinone-binding site, whereas the His-99 residue is at the interface of the peripheral and the membrane domains. In addition, the properties of the Y89OCH mutation are consistent with the interpretation that the third transmembrane segment is not involved in catalysis but rather plays an important structural role. The mutant enzymes are differentially sensitive to a quinone analog inhibitor, providing further evidence for a two-quinone binding model in the yeast SDH.
Collapse
Affiliation(s)
- K S Oyedotun
- Canadian Institutes of Health Research Group in the Molecular Biology of Membrane Proteins, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
5
|
Oyedotun KS, Lemire BD. The Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase. Identification of Sdh3p amino acid residues involved in ubiquinone binding. J Biol Chem 1999; 274:23956-62. [PMID: 10446163 DOI: 10.1074/jbc.274.34.23956] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Succinate dehydrogenase (SDH) participates in the mitochondrial electron transport chain by oxidizing succinate to fumarate and transferring the electrons to ubiquinone. In yeast, it is composed of a catalytic dimer, comprising the Sdh1p and Sdh2p subunits, and a membrane domain, comprising two smaller hydrophobic subunits, Sdh3p and Sdh4p, which anchor the enzyme to the mitochondrial inner membrane. To investigate the role of the Sdh3p anchor polypeptide in enzyme assembly and catalysis, we isolated and characterized seven mutations in the SDH3 gene. Two mutations are premature truncations of Sdh3p with losses of one or three transmembrane segments. The remaining five are missense mutations that are clustered between amino acids 103 and 117, which are proposed to be located in transmembrane segment II or the matrix-localized loop connecting segments II and III. Three mutations, F103V, H113Q, and W116R, strongly but specifically impair quinone reductase activities but have only minor effects on enzyme assembly. The clustering of the mutations strongly suggests that a ubiquinone-binding site is associated with this region of Sdh3p. In addition, the biphasic inhibition of quinone reductase activity by a dinitrophenol inhibitor supports the hypothesis that two distinct quinone-binding sites are present in the yeast SDH.
Collapse
Affiliation(s)
- K S Oyedotun
- Medical Research Council of Canada Group in the Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
6
|
Oyedotun KS, Lemire BD. The Saccharomyces cerevisiae succinate dehydrogenase anchor subunit, Sdh4p: mutations at the C-terminal lys-132 perturb the hydrophobic domain. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:170-9. [PMID: 10216163 DOI: 10.1016/s0005-2728(99)00040-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The yeast succinate dehydrogenase (SDH) is a tetramer of non-equivalent subunits, Sdh1p-Sdh4p, that couples the oxidation of succinate to the transfer of electrons to ubiquinone. One of the membrane anchor subunits, Sdh4p, has an unusual 30 amino acid extension at the C-terminus that is not present in SDH anchor subunits of other organisms. We identify Lys-132 in the Sdh4p C-terminal region as necessary for enzyme stability, ubiquinone reduction, and cytochrome b562 assembly in SDH. Five Lys-132 substituted SDH4 genes were constructed by site-directed mutagenesis and introduced into an SDH4 knockout strain. The mutants, K132E, K132G, K132Q, K132R, and K132V were characterized in vivo for respiratory growth and in vitro for ubiquinone reduction, enzyme stability, and cytochrome b562 assembly. Only the K132R substitution, which conserves the positive charge of Lys-132, produces a wild-type enzyme. The remaining four mutants do not affect the ability of SDH to oxidize succinate in the presence of the artificial electron acceptor, phenazine methosulfate, but impair quinone reductase activity, enzyme stability, and heme insertion. Our results suggest that the presence of a positive charge on residue 132 in the C-terminus of Sdh4p is critical for establishing a stable conformation in the SDH hydrophobic domain that is compatible with ubiquinone reduction and cytochrome b562 assembly. In addition, our data suggest that heme does not play an essential role in quinone reduction.
Collapse
Affiliation(s)
- K S Oyedotun
- The Medical Research Council of Canada Group in the Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, Edmonton, Alta. T6G 2H7, Canada
| | | |
Collapse
|
7
|
Oyedotun KS, Lemire BD. The Saccharomyces cerevisiae succinate-ubiquinone reductase contains a stoichiometric amount of cytochrome b562. FEBS Lett 1999; 442:203-7. [PMID: 9929002 DOI: 10.1016/s0014-5793(98)01657-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The Saccharomyces cerevisiae succinate-ubiquinone reductase or succinate dehydrogenase (SDH) is a tetramer of non-equivalent subunits encoded by the SDH1, SDH2, SDH3, and SDH4 genes. In most organisms, SDH contains one or two endogenous b-type hemes. However, it is widely believed that the yeast SDH does not contain heme. In this report, we demonstrate the presence of a stoichiometric amount of cytochrome b562 in the yeast SDH. The cytochrome is detected as a peak present in fumarate-oxidized, dithionite-reduced mitochondria. The peak is centered at 562 nm and is present at a heme:covalent FAD molar ratio of 0.92+/-0.11. The cytochrome is not detectable in mitochondria isolated from SDH3 and SDH4 deletion strains. These observations strongly support our conclusion that cytochrome b562 is a component of the yeast SDH.
Collapse
Affiliation(s)
- K S Oyedotun
- The Medical Research Council of Canada Group in the Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, Edmonton
| | | |
Collapse
|
8
|
Sepuri NB, Gordon DM, Pain D. A GTP-dependent "push" is generally required for efficient protein translocation across the mitochondrial inner membrane into the matrix. J Biol Chem 1998; 273:20941-50. [PMID: 9694843 DOI: 10.1074/jbc.273.33.20941] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial biogenesis requires translocation of numerous preproteins across both outer and inner membranes into the matrix of the organelle. This translocation process requires a membrane potential (DeltaPsi) and ATP. We have recently demonstrated that the efficient import of a urea-denatured preprotein into the matrix requires GTP hydrolysis (Sepuri, N. B. V., Schülke, N., and Pain, D. (1998) J. Biol. Chem. 273, 1420-1424). We now demonstrate that GTP is generally required for efficient import of various preproteins, both native and urea-denatured. The GTP participation is localized to a particular stage in the protein import process. In the presence of DeltaPsi but no added nucleoside triphosphates, the transmembrane movement of preproteins proceeds only to a point early in their translocation across the inner membrane. The completion of translocation into the matrix is independent of DeltaPsi but is dependent on a GTP-mediated "push." This push is likely mediated by a membrane-bound GTPase on the cis side of the inner membrane. This conclusion is based on two observations: (i) GTP does not readily cross the inner membrane barrier and hence, primarily acts outside the inner membrane to stimulate import, and (ii) the GTP-dependent stage of import does not require soluble constituents of the intermembrane space and can be observed in isolated mitoplasts. Efficient import into the matrix, however, is achieved only through the coordinated action of a cis GTP-dependent push and a trans ATP-dependent "pull."
Collapse
Affiliation(s)
- N B Sepuri
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
9
|
Oyedotun KS, Lemire BD. The carboxyl terminus of the Saccharomyces cerevisiae succinate dehydrogenase membrane subunit, SDH4p, is necessary for ubiquinone reduction and enzyme stability. J Biol Chem 1997; 272:31382-8. [PMID: 9395469 DOI: 10.1074/jbc.272.50.31382] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The succinate dehydrogenase (SDH) of Saccharomyces cerevisiae is composed of four nonidentical subunits encoded by the nuclear genes SDH1, SDH2, SDH3, and SDH4. The hydrophilic subunits, SDH1p and SDH2p, comprise the catalytic domain involved in succinate oxidation. They are anchored to the inner mitochondrial membrane by two small, hydrophobic subunits, SDH3p and SDH4p, which are required for electron transfer and ubiquinone reduction. Comparison of the deduced primary sequence of the yeast SDH4p subunit to SDH4p subunits from other species reveals the presence of an unusual 25-30 amino acid carboxyl-terminal extension following the last predicted transmembrane domain. The extension is predicted to be on the cytoplasmic side of the inner mitochondrial membrane. To investigate the extension's function, three truncations were created and characterized. The results reveal that the carboxyl-terminal extension is necessary for respiration and growth on nonfermentable carbon sources, for ubiquinone reduction, and for enzyme stability. Combined with inhibitor studies using a ubiquinone analog, our results suggest that the extension and more specifically, residues 128-135 are involved in the formation of a ubiquinone binding site. Our findings support a two-ubiquinone binding site model for the S. cerevisiae SDH.
Collapse
Affiliation(s)
- K S Oyedotun
- Medical Research Council of Canada Group in the Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
10
|
Hägerhäll C. Succinate: quinone oxidoreductases. Variations on a conserved theme. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1320:107-41. [PMID: 9210286 DOI: 10.1016/s0005-2728(97)00019-4] [Citation(s) in RCA: 304] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- C Hägerhäll
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104, USA.
| |
Collapse
|
11
|
Keller BA, Patel S, Fisher LM. Molecular cloning and expression of the Candida albicans TOP2 gene allows study of fungal DNA topoisomerase II inhibitors in yeast. Biochem J 1997; 324 ( Pt 1):329-39. [PMID: 9164874 PMCID: PMC1218434 DOI: 10.1042/bj3240329] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Candida albicans topoisomerase II, encoded by the TOP2 gene, mediates chromosome segregation by a double-strand DNA break mechanism and is a potential target for anti-fungal therapy. In this paper, we report the characterization of the C. albicans TOP2 gene and its use to develop a yeast system that allows the identification and study of anti-fungal topoisomerase II inhibitors in vivo. The gene, specifying a 1461-residue polypeptide with only 40% identity with human topoisomerase IIalpha and beta isoforms, was isolated from C. albicans on a 6.3 kb EcoRI fragment that mapped to chromosome 4. It was used to construct a plasmid in which TOP2 expresses a recombinant enzyme (residues 57-1461 of C. albicans topoisomerase II fused to the first five residues of Saccharomyces cerevisiae topoisomerase II) under the control of a galactose-inducible promoter. The plasmid rescued the lethal phenotype of a temperature-sensitive S. cerevisiae DNA topoisomerase II mutant allowing growth at 35 degrees C. Yeast cells, bearing ISE2 permeability and rad52 double-strand-break-repair mutations the growth of which at 35 degrees C was dependent on C. albicans topoisomerase II, were killed by the known topoisomerase II inhibitors amsacrine and doxorubicin. Parallel experiments in yeast expressing human topoisomerase IIalpha allowed the relative sensitivities of the fungal and host topoisomerases to be examined in the same genetic background. To compare the killing in vivo with drug inhibition in vitro, the recombinant C. albicans topoisomerase II protein was expressed and purified to near-homogeneity from S. cerevisiae yielding a 160 kDa polypeptide that displayed the expected ATP-dependent DNA-relaxation and DNA-decatenation activities. The enzyme, whether examined in vitro or complementing in S. cerevisiae, was comparably sensitive to amsacrine and doxorubicin. Our results suggest that potential topoisomerase II-targeting anti-fungal inhibitors can be identified and studied in S. cerevisiae.
Collapse
Affiliation(s)
- B A Keller
- Molecular Genetics Group, Department of Cellular and Molecular Sciences, St. George's Hospital Medical School, University of London, Cranmer Terrace, London SW17 0RE, U.K
| | | | | |
Collapse
|
12
|
Chu CC, Paul WE. Fig1, an interleukin 4-induced mouse B cell gene isolated by cDNA representational difference analysis. Proc Natl Acad Sci U S A 1997; 94:2507-12. [PMID: 9122225 PMCID: PMC20118 DOI: 10.1073/pnas.94.6.2507] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Interleukin 4 (IL-4) is a cytokine that regulates growth and differentiation of lymphoid and nonlymphoid cells. To study the molecular basis of IL-4 function, we used a cDNA subtraction approach based on the representational difference analysis method. This subtractive amplification technique allowed us to use small amounts of RNA from lipopolysaccharide +/- IL-4-stimulated normal B cells to obtain IL-4-induced genes from these cells. We report here on one such gene, Fig1 (interleukin-four induced gene 1), the first characterized immediate-early IL-4 inducible gene from B cells. Fig1 expression is strikingly limited to the lymphoid compartment. B cells, but not T cells or mast cells, express Fig1 in response to IL-4 within 2 hr in a cycloheximide resistant manner. IL-2, IL-5, and I1-6 do not induce Fig1 in culture. Fig1 maps between Klk1 and Ldh3 on mouse chromosome 7, near two loci involved with murine lupus, Sle3 and Lbw5. The Fig1 cDNA sequence encodes a predicted 70-kDa flavoprotein with best homology to the monoamine oxidases, particularly in domains responsible for FAD binding.
Collapse
Affiliation(s)
- C C Chu
- North Shore University Hospital, Department of Medicine, Manhasset, NY 11030, USA
| | | |
Collapse
|
13
|
McAlister-Henn L, Small WC. Molecular genetics of yeast TCA cycle isozymes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:317-39. [PMID: 9175438 DOI: 10.1016/s0079-6603(08)60285-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- L McAlister-Henn
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284, USA
| | | |
Collapse
|
14
|
Mortarino M, Negri A, Tedeschi G, Simonic T, Duga S, Gassen HG, Ronchi S. L-aspartate oxidase from Escherichia coli. I. Characterization of coenzyme binding and product inhibition. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:418-26. [PMID: 8706749 DOI: 10.1111/j.1432-1033.1996.0418u.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This paper reports the biochemical characterization of the flavoprotein L-aspartate oxidase from Escherichia coli. Modification of a previously published procedure allowed overexpression of the holoenzyme in an unproteolysed form. L-Aspartate oxidase is a monomer of 60 kDa containing 1 mol of noncovalently bound FAD/mol protein. A polarographic and two spectrophotometric coupled assays have been set up to monitor the enzymatic activity continuously. L-Aspartate oxidase was subjected to product inhibition since iminoaspartate, which results from the oxidation of L-aspartate, binds to the enzyme with a dissociation constant (Kd) equal to 1.4 microM. The enzyme binds FAD by a simple second-order process with Kd 0.67 microM. Site-directed mutagenesis of the residues E43, G44, S45, F47 and Y48 located in the putative binding site of the isoallossazinic portion of FAD reduces the affinity for the coenzyme.
Collapse
Affiliation(s)
- M Mortarino
- Istituto di Fisiologia Veterinaria e Biochimica, Università di Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Burger G, Lang BF, Reith M, Gray MW. Genes encoding the same three subunits of respiratory complex II are present in the mitochondrial DNA of two phylogenetically distant eukaryotes. Proc Natl Acad Sci U S A 1996; 93:2328-32. [PMID: 8637872 PMCID: PMC39795 DOI: 10.1073/pnas.93.6.2328] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although mitochondrial DNA is known to encode a limited number (<20) of the polypeptide components of respiratory complexes I, III, IV, and V, genes for components of complex II [succinate dehydrogenase (ubiquinone); succinate:ubiquinone oxidoreductase, EC 1.3.5.1] are conspicuously lacking in mitochondrial genomes so far characterized. Here we show that the same three subunits of complex II are encoded in the mitochondrial DNA of two phylogenetically distant eukaryotes, Porphyra purpurea (a photosynthetic red alga) and Reclinomonas americana (a heterotrophic zooflagellate). These complex II genes, sdh2, sdh3, and sdh4, are homologs, respectively, of Escherichia coli sdhB, sdhC, and sdhD. In E. coli, sdhB encodes the iron-sulfur subunit of succinate dehydrogenase (SDH), whereas sdhC and sdhD specify, respectively, apocytochrome b558 and a hydrophobic 13-kDa polypeptide, which together anchor SDH to the inner mitochondrial membrane. Amino acid sequence similarities indicate that sdh2, sdh3, and sdh4 were originally encoded in the protomitochondrial genome and have subsequently been transferred to the nuclear genome in most eukaryotes. The data presented here are consistent with the view that mitochondria constitute a monophyletic lineage.
Collapse
Affiliation(s)
- G Burger
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
16
|
Robinson KM, Lemire BD. Covalent attachment of FAD to the yeast succinate dehydrogenase flavoprotein requires import into mitochondria, presequence removal, and folding. J Biol Chem 1996; 271:4055-60. [PMID: 8626739 DOI: 10.1074/jbc.271.8.4055] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Succinate dehydrogenase (EC 1.3.99.1) in the yeast Saccharomyces cerevisiae is a mitochondrial respiratory chain enzyme that utilizes the cofactor, FAD, to catalyze the oxidation of succinate and the reduction of ubiqinone. The succinate dehydrogenase enzyme is a heterotetramer composed of a flavoprotein, an iron-sulfur protein, and two hydrophobic subunits. The FAD is covalently attached to a histidine residue near the amino terminus of the flavoprotein. In this study, we have investigated the attachment of the FAD cofactor with the use of an antiserum that specifically recognizes FAD and hence, can discriminate between apo- and holoflavoproteins. Cofactor attachment, both in vivo and in vitro, occurs within the mitochondrial matrix once the presequence has been cleaved. FAD attachment is stimulated by, but not dependent upon, the presence of the iron-sulfur subunit and citric acid cycle intermediates such as succinate, malate, or fumarate. Furthermore, this modification does not occur with C-terminally truncated flavoprotein subunits that are fully competent for import. Taken together, these data suggest that cofactor addition occurs to an imported protein that has folded sufficiently to recognize both FAD and its substrate.
Collapse
Affiliation(s)
- K M Robinson
- Medical Research Council of Canada Group in the Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
17
|
Proteolytic Processing of Mitochondrial Precursor Proteins. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1569-2558(09)60014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Van Hellemond JJ, Tielens AG. Expression and functional properties of fumarate reductase. Biochem J 1994; 304 ( Pt 2):321-31. [PMID: 7998964 PMCID: PMC1137495 DOI: 10.1042/bj3040321] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J J Van Hellemond
- Laboratory of Veterinary Biochemistry, Utrecht University, The Netherlands
| | | |
Collapse
|
19
|
Dang VD, Valens M, Bolotin-Fukuhara M, Daignan-Fornier B. A genetic screen to isolate genes regulated by the yeast CCAAT-box binding protein Hap2p. Yeast 1994; 10:1273-83. [PMID: 7900416 DOI: 10.1002/yea.320101004] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have developed a screening method to isolate yeast genes regulated by a specific transcription activator. The screen is based on the use of expression libraries in which the lacZ reporter gene is placed under control of yeast regulatory elements. Two partially representative libraries, constructed by different methods, were used to isolate genes regulated by the yeast CCAAT-box binding protein Hap2p. Among 26 fusions shown to be regulated by Hap2p only CYT1 was known to be regulated by this activator. Sequence analysis revealed that most of the remaining regulated fusions are in new yeast genes, while some are in previously characterized yeast genes (PTP1, RPM2, SDH1). Optimal expression of these three genes also requires Hap3p and Hap4p and is regulated by carbon source. Hap2p was known to regulate expression of genes involved in Krebs cycle, electron transport and heme biosynthesis. Our results suggest that Hap2p could play a more general role by regulating other mitochondrial processes such as protein import and phosphate transport (PTP1) or maturation of mitochondrial tRNAs (RPM2). Among the remaining regulated fusions, two of them correspond to open reading frames (ORFs) on chromosomes III and XI whose nucleotide sequences have been entirely determined. The use of this approach to functionally analyse ORFs of unknown function is discussed.
Collapse
Affiliation(s)
- V D Dang
- Laboratoire de Génétique Moléculaire, Université de Paris Sud, Orsay, France
| | | | | | | |
Collapse
|
20
|
Robinson KM, Rothery RA, Weiner JH, Lemire BD. The covalent attachment of FAD to the flavoprotein of Saccharomyces cerevisiae succinate dehydrogenase is not necessary for import and assembly into mitochondria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:983-90. [PMID: 8026509 DOI: 10.1111/j.1432-1033.1994.tb18949.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Succinate dehydrogenase of the bacterial or inner mitochondrial membrane catalyses the oxidation of succinate to fumarate and directs reducing equivalents into the electron-transport chain. The enzyme is also able to catalyse the reverse reaction, the reduction of fumarate to succinate. The enzyme is composed of four subunits. These subunits include a catalytic dimer composed of a flavoprotein subunit with a covalently bound FAD, and an iron-sulfur protein subunit with three different iron-sulfur centres, which is anchored to the membrane by two smaller integral membrane proteins. The FAD moiety is attached to the flavoprotein subunit by an 8 alpha-[N(3)-histidyl]FAD linkage at a conserved histidine residue, His90 of the Saccharomyces cerevisiae succinate dehydrogenase. By mutating His90 to a serine residue, we have constructed a flavoprotein subunit that is unable to covalently bind FAD. The mutant flavoprotein is targeted to mitochondria, translocated across the mitochondrial membranes, and is assembled with the other subunits where it binds FAD non-covalently. The resulting holoenzyme has no succinate-dehydrogenase activity but retains fumarate reductase activity. The covalent attachment of FAD is therefore necessary for succinate oxidation but is dispensable for both fumarate reduction and for the import and assembly of the flavoprotein subunit.
Collapse
Affiliation(s)
- K M Robinson
- Department of Biochemistry, University of Alberta, Canada
| | | | | | | |
Collapse
|
21
|
Daignan-Fornier B, Valens M, Lemire B, Bolotin-Fukuhara M. Structure and regulation of SDH3, the yeast gene encoding the cytochrome b560 subunit of respiratory complex II. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40702-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Isolation and characterization of the Saccharomyces cerevisiae SDH4 gene encoding a membrane anchor subunit of succinate dehydrogenase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37406-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Abraham PR, Mulder A, van 't Riet J, Raué HA. Characterization of the Saccharomyces cerevisiae nuclear gene CYB3 encoding a cytochrome b polypeptide of respiratory complex II. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:708-16. [PMID: 8152421 DOI: 10.1007/bf00283426] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Computer-assisted structural analysis of the predicted product of the previously described open reading frame (ORF) YKL4 located on the left arm of chromosome XI of Saccharomyces cerevisiae revealed a high degree of similarity (> 50%) to bovine cytochrome b560, the sdhC polypeptide of the Escherichia coli succinate dehydrogenase (SDH) complex and the protein specified by ORF137 located on the chloroplast DNA of Marchantia polymorpha. Disruption of the yeast gene severely impaired mitochondrial function, while Northern analysis showed it to be subject to catabolite repression. Deletion analysis of the CYB3 promoter identified a single HAP2/3/4-binding element that is necessary and sufficient for carbon source-dependent transcriptional regulation. These experiments also suggested the presence of additional, as yet unidentified, transcriptional control elements, both negative and positive. Taken together, these data lead us to conclude that the CYB3 gene encodes the yeast homolog of the bovine cytochrome b560 component of complex II of the mitochondrial electron transport chain.
Collapse
Affiliation(s)
- P R Abraham
- Department of Biochemistry and Molecular Biology, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | | | | | |
Collapse
|