1
|
Shah S, Ghosh D, Otsuka T, Laurencin CT. Classes of Stem Cells: From Biology to Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024; 10:309-322. [PMID: 39387056 PMCID: PMC11463971 DOI: 10.1007/s40883-023-00317-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 10/12/2024]
Abstract
Purpose The majority of adult tissues are limited in self-repair and regeneration due to their poor intrinsic regenerative capacity. It is widely recognized that stem cells are present in almost all adult tissues, but the natural regeneration in adult mammals is not sufficient to recover function after injury or disease. Historically, 3 classes of stem cells have been defined: embryonic stem cells (ESCs), adult mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs). Here, we have defined a fourth fully engineered class: the synthetic artificial stem cell (SASC). This review aims to discuss the applications of these stem cell classes in musculoskeletal regenerative engineering. Method We screened articles in PubMed and bibliographic search using a combination of keywords. Relevant and high-cited articles were chosen for inclusion in this narrative review. Results In this review, we discuss the different classes of stem cells that are biologically derived (ESCs and MSCs) or semi-engineered/engineered (iPSCs, SASC). We also discuss the applications of these stem cell classes in musculoskeletal regenerative engineering. We further summarize the advantages and disadvantages of using each of the classes and how they impact the clinical translation of these therapies. Conclusion Each class of stem cells has advantages and disadvantages in preclinical and clinical settings. We also propose the engineered SASC class as a potentially disease-modifying therapy that harnesses the paracrine action of biologically derived stem cells to mimic regenerative potential. Lay Summary The majority of adult tissues are limited in self-repair and regeneration, even though stem cells are present in almost all adult tissues. Historically, 3 classes of stem cells have been defined: embryonic stem cells (ESCs), adult mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs). Here, we have defined a fourth, fully engineered class: the synthetic artificial stem cell (SASC). In this review, we discuss the applications of each of these stem cell classes in musculoskeletal regenerative engineering. We further summarize the advantages and disadvantages of using each of these classes and how they impact the clinical translation of these therapies.
Collapse
Affiliation(s)
- Shiv Shah
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
| | - Debolina Ghosh
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
| | - Takayoshi Otsuka
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
2
|
Granger K, Fitch S, Shen M, Lloyd J, Bhurke A, Hancock J, Ye X, Arora R. Murine uterine gland branching is necessary for gland function in implantation. Mol Hum Reprod 2024; 30:gaae020. [PMID: 38788747 PMCID: PMC11176042 DOI: 10.1093/molehr/gaae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Uterine glands are branched, tubular structures whose secretions are essential for pregnancy success. It is known that pre-implantation glandular expression of leukemia inhibitory factor (LIF) is crucial for embryo implantation; however, the contribution of uterine gland structure to gland secretions, such as LIF, is not known. Here, we use mice deficient in estrogen receptor 1 (ESR1) signaling to uncover the role of ESR1 signaling in gland branching and the role of a branched structure in LIF secretion and embryo implantation. We observed that deletion of ESR1 in neonatal uterine epithelium, stroma, and muscle using the progesterone receptor PgrCre causes a block in uterine gland development at the gland bud stage. Embryonic epithelial deletion of ESR1 using a Müllerian duct Cre line, Pax2Cre, displays gland bud elongation but a failure in gland branching. Reduction of ESR1 in adult uterine epithelium using the lactoferrin-Cre (LtfCre) displays normally branched uterine glands. Unbranched glands from Pax2Cre Esr1flox/flox uteri fail to express glandular pre-implantation Lif, preventing implantation chamber formation and embryo alignment along the uterine mesometrial-antimesometrial axis. In contrast, branched glands from LtfCre Esr1flox/flox uteri display reduced expression of ESR1 and glandular Lif resulting in delayed implantation chamber formation and embryo-uterine axes alignment but mice deliver a normal number of pups. Finally, pre-pubertal unbranched glands in control mice express Lif in the luminal epithelium but fail to express Lif in the glandular epithelium, even in the presence of estrogen. These data strongly suggest that branched glands are necessary for pre-implantation glandular Lif expression for implantation success. Our study is the first to identify a relationship between the branched structure and secretory function of uterine glands and provides a framework for understanding how uterine gland structure-function contributes to pregnancy success.
Collapse
Affiliation(s)
- Katrina Granger
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Sarah Fitch
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - May Shen
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jarrett Lloyd
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Aishwarya Bhurke
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jonathan Hancock
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Granger K, Fitch S, Shen M, Lloyd J, Bhurke A, Hancock J, Ye X, Arora R. Murine uterine gland branching is necessary for gland function in implantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565233. [PMID: 37961508 PMCID: PMC10635073 DOI: 10.1101/2023.11.01.565233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Uterine glands are branched, tubular structures whose secretions are essential for pregnancy success. It is known that pre-implantation glandular expression of leukemia inhibitory factor (LIF) is crucial for embryo implantation, however contribution of uterine gland structure to gland secretions such as LIF is not known. Here we use mice deficient in estrogen receptor 1 (ESR1) signaling to uncover the role of ESR1 signaling in gland branching and the role of a branched structure in LIF secretion and embryo implantation. We observed that deletion of ESR1 in neonatal uterine epithelium, stroma and muscle using the progesterone receptor PgrCre causes a block in uterine gland development at the gland bud stage. Embryonic epithelial deletion of ESR1 using a mullerian duct Cre line - Pax2Cre, displays gland bud elongation but a failure in gland branching. Surprisingly, adult uterine epithelial deletion of ESR1 using the lactoferrin-Cre (LtfCre) displays normally branched uterine glands. Intriguingly, unbranched glands from Pax2Cre Esr1flox/flox uteri fail to express glandular pre-implantation Lif, preventing implantation chamber formation and embryo alignment along the uterine mesometrial-antimesometrial axis. In contrast, branched glands from LtfCre Esr1flox/flox uteri display reduced expression of glandular Lif resulting in delayed implantation chamber formation and embryo-uterine axes alignment but deliver a normal number of pups. Finally, pre-pubertal unbranched glands in control mice express Lif in the luminal epithelium but fail to express Lif in the glandular epithelium even in the presence of estrogen. These data strongly suggest that branched glands are necessary for pre-implantation glandular Lif expression for implantation success. Our study is the first to identify a relationship between the branched structure and secretory function of uterine glands and provides a framework for understanding how uterine gland structure-function contributes to pregnancy success.
Collapse
Affiliation(s)
- Katrina Granger
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| | - Sarah Fitch
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| | - May Shen
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| | - Jarrett Lloyd
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| | - Aishwarya Bhurke
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| | - Jonathan Hancock
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia
- Interdisciplinary Toxicology Program, University of Georgia
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia
- Interdisciplinary Toxicology Program, University of Georgia
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| |
Collapse
|
4
|
Oss-Ronen L, Redden RA, Lelkes PI. Enhanced Induction of Definitive Endoderm Differentiation of Mouse Embryonic Stem Cells in Simulated Microgravity. Stem Cells Dev 2020; 29:1275-1284. [PMID: 32731794 DOI: 10.1089/scd.2020.0097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Directed in vitro differentiation of pluripotent stem cells toward definitive endoderm (DE) offers great research and therapeutic potential since these cells can further differentiate into cells of the respiratory and gastrointestinal tracts, as well as associated organs such as pancreas, liver, and thyroid. We hypothesized that culturing mouse embryonic stem cells (mESCs) under simulated microgravity (SMG) conditions in rotary bioreactors (BRs) will enhance the induction of directed DE differentiation. To test our hypothesis, we cultured the cells for 6 days in two-dimensional monolayer colony cultures or as embryoid bodies (EBs) in either static conditions or, dynamically, in the rotary BRs. We used flow cytometry and quantitative polymerase chain reaction to analyze the expression of marker proteins and genes, respectively, for pluripotency (Oct3/4) and mesendodermal (Brachyury T), endodermal (FoxA2, Sox17, CxCr4), and mesodermal (Vimentin, Meox1) lineages. Culture in the form of EBs in maintenance media in the presence of leukemia inhibitory factor, in static or SMG conditions, induced expression of some of the differentiation markers, suggesting heterogeneity of the cells. This is in line with previous studies showing that differentiation is initiated as cells are aggregated into EBs even without supplementing differentiation factors to the media. Culturing EBs in static conditions in differentiation media (DM) in the presence of activin A reduced Oct3/4 expression and significantly increased Brachyury T and CxCr4 expression, but downregulated FoxA2 and Sox17. However, culturing in SMG BRs in DM upregulated Brachyury T and all of the DE markers and reduced Oct3/4 expression, indicating the advantage of dynamic cultures in BRs to specifically enhance directed DE differentiation. Given the potential discrepancies between the SMG conditions on earth and actual microgravity conditions, as observed in other studies, future experiments in space flight are required to validate the effects of reduced gravity on mESC differentiation.
Collapse
Affiliation(s)
- Liat Oss-Ronen
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Robert A Redden
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
The effect of dual inhibition of Ras-MEK-ERK and GSK3β pathways on development of in vitro cultured rabbit embryos. ZYGOTE 2020; 28:183-190. [PMID: 32192548 DOI: 10.1017/s0967199419000753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dual inhibition (2i) of Ras-MEK-ERK and GSK3β pathways enables the derivation of embryo stem cells (ESCs) from refractory mouse strains and, for permissive strains, allows ESC derivation with no external protein factor stimuli involvement. In addition, blocking of ERK signalling in 8-cell-stage mouse embryos leads to ablation of GATA4/6 expression in hypoblasts, suggesting fibroblast growth factor (FGF) dependence of hypoblast formation in the mouse. In human, bovine or porcine embryos, the hypoblast remains unaffected or displays slight-to-moderate reduction in cell number. In this study, we demonstrated that segregation of the hypoblast and the epiblast in rabbit embryos is FGF independent and 2i treatment elicits only a limited reinforcement in favour of OCT4-positive epiblast populations against the GATA4-/6-positive hypoblast population. It has been previously shown that TGFβ/Activin A inhibition overcomes the pervasive differentiation and inhomogeneity of rat iPSCs, rat ESCs and human iPSCs while prompting them to acquire naïve properties. However, TGFβ/Activin A inhibition, alone or together with Rho-associated, coiled-coil containing protein kinase (ROCK) inhibition, was not compatible with the viability of rabbit embryos according to the ultrastructural analysis of preimplantation rabbit embryos by electron microscopy. In rabbit models ovulation upon mating allows the precise timing of progression of the pregnancy. It produces several embryos of the desired stage in one pregnancy and a relatively short gestation period, making the rabbit embryo a suitable model to discover the cellular functions and mechanisms of maintenance of pluripotency in embryonic cells and the embryo-derived stem cells of other mammals.
Collapse
|
6
|
Dou X, Zhao Y, Li M, Chen Q, Yamaguchi Y. Raman imaging diagnosis of the early stage differentiation of mouse embryonic stem cell (mESC). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117438. [PMID: 31377684 DOI: 10.1016/j.saa.2019.117438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/23/2019] [Accepted: 07/28/2019] [Indexed: 05/19/2023]
Abstract
Raman microspectroscopy as a non-invasive and label-free technique was applied to diagnose the early stage differentiation of mouse embryonic stem cells. The differentiated and undifferentiated embryonic bodies (EBs) were cultured using handing drop method by the control of Leukemia Inhibitory Factor (LIF). Raman spectra of the periphery cells of differentiated EBs (PrE cells) and those of the interior of undifferentiated EBs (ES cells) were obtained to diagnose the stem cells of different differentiation. It was found from the spectra that the protein content increased as the cells differentiated. Principal component analysis (PCA) was carried out to further analyze the differences between ES cells and PrE cells. The first three principle components contained 98.19% from the total variance. Characteristic bands of ES and PrE cells were chosen to acquire Raman images of two cells according to the results of PCA. In the Raman images, PrE cells had a clear and bright outline in the peripheral areas while ES cells were difficult to identify, this could be a distinct characteristic to discriminate them. The result of the Raman images was consistent with the biological agreement that the differentiated cells were distributed around the periphery.
Collapse
Affiliation(s)
- Xiaoming Dou
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Yubin Zhao
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingda Li
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qinmiao Chen
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yoshinori Yamaguchi
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita City, Osaka 565-0871, Japan.
| |
Collapse
|
7
|
Blastocyst activation engenders transcriptome reprogram affecting X-chromosome reactivation and inflammatory trigger of implantation. Proc Natl Acad Sci U S A 2019; 116:16621-16630. [PMID: 31346081 DOI: 10.1073/pnas.1900401116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Implantation of the blastocyst into the uterus is the gateway for further embryonic development in mammals. Programming of blastocyst to an implantation-competent state known as blastocyst activation is the determining factor for implantation into the receptive uterus. However, it remains largely unclear how the blastocyst is globally programmed for implantation. Employing a delayed implantation mouse model, we show here that the blastocyst undergoes extensive programming essential for implantation. By analyzing the transcriptional profile of blastocysts with different implantation competency, we reveal the dynamic change in the biosynthesis, metabolism, and proliferation during blastocyst reactivation from diapause. We also demonstrate that reactivation of the X chromosome, one of the most important events during periimplantation of female embryonic development, is not completed even in blastocysts under conditions of dormancy, despite long term suspension in the uterus. Moreover, the mural trophectoderm (TE), but not the polar TE, differentiates to be more invasive through the weakened cell-cell tight junctions and extracellular matrices (ECMs). By analyzing the differentially expressed profile of secretory proteins, we further demonstrate that the blastocyst functions as a proinflammatory body to secrete proinflammatory signals, such as TNFα and S100A9, thereby triggering embryo-uterine attachment reaction during implantation. Collectively, our data systematically and comprehensively disclose the programming of blastocyst reactivation from diapause for implantation and uncover previously undefined roles of blastocyst during implantation.
Collapse
|
8
|
Jalvy S, Veschambre P, Fédou S, Rezvani HR, Thézé N, Thiébaud P. Leukemia inhibitory factor signaling in Xenopus embryo: Insights from gain of function analysis and dominant negative mutant of the receptor. Dev Biol 2019; 447:200-213. [DOI: 10.1016/j.ydbio.2018.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/05/2018] [Accepted: 12/18/2018] [Indexed: 01/19/2023]
|
9
|
Recombinant purified buffalo leukemia inhibitory factor plays an inhibitory role in cell growth. PLoS One 2018; 13:e0198523. [PMID: 29897967 PMCID: PMC5999108 DOI: 10.1371/journal.pone.0198523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/21/2018] [Indexed: 01/22/2023] Open
Abstract
Leukemia Inhibitory Factor (LIF) is a polyfunctional cytokine, involved in numerous regulatory effects in vivo and in vitro, varying from cell proliferation to differentiation, and has therapeutic potential for treating various diseases. In the current study, a COS-1 cell line overexpressing recombinant Buffalo LIF (rBuLIF) was established. The rBuLIF was purified to homogeneity from the total cell lysate of COS-1 cells using a two-step affinity chromatography. The purified LIF was confirmed by western blot and mass spectrometer (MS/MS). Particularly, high-resolution MS has identified the rBuLIF with 73% of sequence coverage with highest confidence parameters and with the search engine score of 4580. We determined the molecular weight of rBuLIF protein to be 58.99 kDa and 48.9 kDa with and without glycosylation, respectively. Moreover, the purified rBuLIF was verified to be functionally active by measuring the growth inhibition of M1 myeloid leukemia cells, revealing a maximum inhibition at 72 hours and half-maximal effective concentration (EC50) of 0.0555 ng/ml, corresponding to a specific activity of >1.6×107 units/mg. Next, we evaluated the effect of rBuLIF on buffalo mammary epithelial cell lines for its role in involution and also identified the IC50 value for BuMEC migrating cells to be 77.8 ng/ml. Additionally, the treatment of MECs (BuMEC and EpH4) displayed significant (P < 0.05) reduction in growth progression, as confirmed by qRT-PCR analysis, suggesting its strong involvement in the involution of the mammary gland in vivo. Thus, we conclude that the glycosylated rBuLIF, purified from COS-1 cells was found to be functionally active as its natural counterpart.
Collapse
|
10
|
Zhou J, Plagge A, Murray P. Functional comparison of distinct Brachyury+ states in a renal differentiation assay. Biol Open 2018; 7:bio.031799. [PMID: 29666052 PMCID: PMC5992531 DOI: 10.1242/bio.031799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mesodermal populations can be generated in vitro from mouse embryonic stem cells (mESCs) using three-dimensional (3-D) aggregates called embryoid bodies or two-dimensional (2-D) monolayer culture systems. Here, we investigated whether Brachyury-expressing mesodermal cells generated using 3-D or 2-D culture systems are equivalent or, instead, have different properties. Using a Brachyury-GFP/E2-Crimson reporter mESC line, we isolated Brachyury-GFP + mesoderm cells using flow-activated cell sorting and compared their gene expression profiles and ex vivo differentiation patterns. Quantitative real-time polymerase chain reaction analysis showed significant up-regulation of Cdx2, Foxf1 and Hoxb1 in the Brachyury-GFP+ cells isolated from the 3-D system compared with those isolated from the 2-D system. Furthermore, using an ex vivo mouse kidney rudiment assay, we found that, irrespective of their source, Brachyury-GFP+ cells failed to integrate into developing nephrons, which are derived from the intermediate mesoderm. However, Brachyury-GFP+ cells isolated under 3-D conditions appeared to differentiate into endothelial-like cells within the kidney rudiments, whereas the Brachyury-GFP+ isolated from the 2-D conditions only did so to a limited degree. The high expression of Foxf1 in the 3-D Brachyury-GFP+ cells combined with their tendency to differentiate into endothelial-like cells suggests that these mesodermal cells may represent lateral plate mesoderm.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Antonius Plagge
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
11
|
Lee SH, Kim BJ, Kim UH. The critical role of uterine CD31 as a post-progesterone signal in early pregnancy. Reproduction 2017; 154:595-605. [DOI: 10.1530/rep-17-0419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/11/2017] [Accepted: 07/31/2017] [Indexed: 11/08/2022]
Abstract
CD31 has been shown to play a role in endothelial cell migration and angiogenesis, which are critical to the formation and function of the endometrium and myometrium in uterine development during early pregnancy. However, the role of CD31 in uterine receptivity during blastocyst implantation is poorly understood. The pregnancy rate in CD31−/− female mice mated with CD31+/+ male mice was higher than that observed in CD31+/+ female mice mated with CD31+/+ male mice. During the receptive phase of implantation, uterine glands were more developed in CD31−/− mice than in CD31+/+ mice, and the uterine weights of CD31−/− mice were increased. Leukemia inhibitory factor (LIF) was highly expressed in the CD31−/− mice during implantation and the expression of LIF was up-regulated by estradiol-17β (E2) + progesterone (P4) in ovariectomized CD31−/− mice, compared with CD31+/+ mice at 8 h after hormone treatment. E2-induced protein synthesis was inhibited by P4 in the CD31+/+ uterus, but not in the uterus of CD31−/− mice. Also, STAT3, HAND2, LIF, and mTOR signals were enhanced in CD31−/− mice. Stromal DNA replication was highly activated in the uterus of CD31−/− mice, manifested by upregulated cyclin series signaling and PCNA expression after E2 + P4treatment. Collectively, CD31 inhibits E2-mediated epithelial proliferation via recruitment and phosphorylation of SHP-2 upon receiving P4signal in early pregnancy.
Collapse
|
12
|
Smith A. Formative pluripotency: the executive phase in a developmental continuum. Development 2017; 144:365-373. [PMID: 28143843 PMCID: PMC5430734 DOI: 10.1242/dev.142679] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The regulative capability of single cells to give rise to all primary embryonic lineages is termed pluripotency. Observations of fluctuating gene expression and phenotypic heterogeneity in vitro have fostered a conception of pluripotency as an intrinsically metastable and precarious state. However, in the embryo and in defined culture environments the properties of pluripotent cells change in an orderly sequence. Two phases of pluripotency, called naïve and primed, have previously been described. In this Hypothesis article, a third phase, called formative pluripotency, is proposed to exist as part of a developmental continuum between the naïve and primed phases. The formative phase is hypothesised to be enabling for the execution of pluripotency, entailing remodelling of transcriptional, epigenetic, signalling and metabolic networks to constitute multi-lineage competence and responsiveness to specification cues. Summary: This Hypothesis article poses that a third state of pluripotency, called formative pluripotency, exists between the naïve and primed states, and is enabling for the execution of pluripotency.
Collapse
Affiliation(s)
- Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
13
|
Cheng J, Rosario G, Cohen TV, Hu J, Stewart CL. Tissue-Specific Ablation of the LIF Receptor in the Murine Uterine Epithelium Results in Implantation Failure. Endocrinology 2017; 158:1916-1928. [PMID: 28368537 PMCID: PMC5460932 DOI: 10.1210/en.2017-00103] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023]
Abstract
The cytokine leukemia inhibitory factor (LIF) is essential for rendering the uterus receptive for blastocyst implantation. In mice, LIF receptor expression (LIFR) is largely restricted to the uterine luminal epithelium (LE). LIF, secreted from the endometrial glands (GEs), binds to the LIFR, activating the Janus kinase-signal transducer and activation of transcription (STAT) 3 (Jak-Stat3) signaling pathway in the LE. JAK-STAT activation converts the LE to a receptive state so that juxtaposed blastocysts begin to implant. To specifically delete the LIFR in the LE, we derived a line of mice in which Cre recombinase was inserted into the endogenous lactoferrin gene (Ltf-Cre). Lactoferrin expression in the LE is induced by E2, and we demonstrate that Cre recombinase activity is restricted to the LE and GE. To determine the requirement of the LIFR in implantation, we derived an additional mouse line carrying a conditional (floxed) Lifrflx/flx gene. Crossing Ltf-Cre mice with Lifrflx/flx mice generated Lifrflx/Δ:LtfCre/+ females that were overtly normal but infertile. Many of these females, despite repeated matings, did not become pregnant. Unimplanted blastocysts were recovered from the Lifrflx/Δ:LtfCre/+ uteri and, when transferred to wild-type recipients, implanted normally, indicating that uterine receptivity rather than the embryo's competency is compromised. The loss of Lifr results in both the failure for STAT3 to translocate to the LE nuclei and a reduction in the expression of the LIF regulated gene Msx1 that regulates uterine receptivity. These results reveal that uterine expression of the LIFR is essential for embryo implantation and further define the components of the LIF signaling pathway necessary for effective implantation.
Collapse
Affiliation(s)
- JrGang Cheng
- Cancer and Developmental Biology Laboratory, Division of Basic Science, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | | | - Tatiana V. Cohen
- Cancer and Developmental Biology Laboratory, Division of Basic Science, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | - Jianbo Hu
- Cancer and Developmental Biology Laboratory, Division of Basic Science, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | | |
Collapse
|
14
|
Brickman JM, Serup P. Properties of embryoid bodies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 6. [PMID: 27911036 DOI: 10.1002/wdev.259] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022]
Abstract
Embryoid bodies (EBs) have been popular in vitro differentiation models for pluripotent stem cells for more than five decades. Initially, defined as aggregates formed by embryonal carcinoma cells, EBs gained more prominence after the derivation of karyotypically normal embryonic stem cells from early mouse blastocysts. In many cases, formation of EBs constitutes an important initial step in directed differentiation protocols aimed at generated specific cell types from undifferentiated stem cells. Indeed state-of-the-art protocols for directed differentiation of cardiomyocytes still rely on this initial EB step. Analyses of spontaneous differentiation of embryonic stem cells in EBs have yielded important insights into the molecules that direct primitive endoderm differentiation and many of the lessons we have learned about the signals and transcription factors governing this differentiation event is owed to EB models, which later were extensively validated in studies of early mouse embryos. EBs show a degree of self-organization that mimics some aspects of early embryonic development, but with important exceptions. Recent studies that employ modern signaling reporters and tracers of lineage commitment have revealed both the strengths and the weaknesses of EBs as a model of embryonic axis formation. In this review, we discuss the history, application, and future potential of EBs as an experimental model. WIREs Dev Biol 2017, 6:e259. doi: 10.1002/wdev.259 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Joshua M Brickman
- DanStem, The Danish Stem Cell Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Palle Serup
- DanStem, The Danish Stem Cell Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Wu HW, Hsiao YH, Chen CC, Yet SF, Hsu CH. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation. Molecules 2016; 21:molecules21070882. [PMID: 27399655 PMCID: PMC6272923 DOI: 10.3390/molecules21070882] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/08/2023] Open
Abstract
The conventional hanging drop technique is the most widely used method for embryoid body (EB) formation. However, this method is labor intensive and limited by the difficulty in exchanging the medium. Here, we report a microfluidic chip-based approach for high-throughput formation of EBs. The device consists of microfluidic channels with 6 × 12 opening wells in PDMS supported by a glass substrate. The PDMS channels were fabricated by replicating polydimethyl-siloxane (PDMS) from SU-8 mold. The droplet formation in the chip was tested with different hydrostatic pressures to obtain optimal operation pressures for the wells with 1000 μm diameter openings. The droplets formed at the opening wells were used to culture mouse embryonic stem cells which could subsequently developed into EBs in the hanging droplets. This device also allows for medium exchange of the hanging droplets making it possible to perform immunochemistry staining and characterize EBs on chip.
Collapse
Affiliation(s)
- Huei-Wen Wu
- Institutes of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan.
| | - Yi-Hsing Hsiao
- Institute of Nano Engineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chih-Chen Chen
- Institute of Nano Engineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan.
| | - Chia-Hsien Hsu
- Institutes of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan.
- Institute of Nano Engineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
16
|
Garg V, Morgani S, Hadjantonakis AK. Capturing Identity and Fate Ex Vivo: Stem Cells from the Mouse Blastocyst. Curr Top Dev Biol 2016; 120:361-400. [PMID: 27475857 DOI: 10.1016/bs.ctdb.2016.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During mouse preimplantation development, three molecularly, morphologically, and spatially distinct lineages are formed, the embryonic epiblast, the extraembryonic primitive endoderm, and the trophectoderm. Stem cell lines representing each of these lineages have now been derived and can be indefinitely maintained and expanded in culture, providing an unlimited source of material to study the interplay of tissue-specific transcription factors and signaling pathways involved in these fundamental cell fate decisions. Here we outline our current understanding of the derivation, maintenance, and properties of these in vitro stem cell models representing the preimplantation embryonic lineages.
Collapse
Affiliation(s)
- V Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| | - S Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - A-K Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States.
| |
Collapse
|
17
|
Kaya Okur HS, Das A, Taylor RN, Bagchi IC, Bagchi MK. Roles of Estrogen Receptor-α and the Coactivator MED1 During Human Endometrial Decidualization. Mol Endocrinol 2016; 30:302-13. [PMID: 26849466 DOI: 10.1210/me.2015-1274] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The steroid hormones 17β-estradiol and progesterone are critical regulators of endometrial stromal cell differentiation, known as decidualization, which is a prerequisite for successful establishment of pregnancy. The present study using primary human endometrial stromal cells (HESCs) addressed the role of estrogen receptor-α (ESR1) in decidualization. Knockdown of ESR1 transcripts by RNA interference led to a marked reduction in decidualization of HESCs. Gene expression profiling at an early stage of decidualization indicated that ESR1 negatively regulates several cell cycle regulatory factors, thereby suppressing the proliferation of HESCs as these cells enter the differentiation program. ESR1 also controls the expression of WNT4, FOXO1, and progesterone receptor (PGR), well-known mediators of decidualization. Whereas ESR1 knockdown strongly inhibited the expression of FOXO1 and WNT4 transcripts within 24 hours of the initiation of decidualization, PGR expression remained unaffected at this early time point. Our study also revealed a major role of cAMP signaling in influencing the function of ESR1 during decidualization. Using a proteomic approach, we discovered that the cAMP-dependent protein kinase A (PKA) phosphorylates Mediator 1 (MED1), a subunit of the mediator coactivator complex, during HESC differentiation. Using immunoprecipitation, we demonstrated that PKA-phosphorylated MED1 interacts with ESR1. The PKA-dependent phosphorylation of MED1 was also correlated with its enhanced recruitment to estrogen-responsive elements in the WNT4 gene. Knockdown of MED1 transcripts impaired the expression of ESR1-induced WNT4 and FOXO1 transcripts and blocked decidualization. Based on these findings, we conclude that modulation of ESR1-MED1 interactions by cAMP signaling plays a critical role in human decidualization.
Collapse
Affiliation(s)
- Hatice S Kaya Okur
- Departments of Molecular and Integrative Physiology (H.S.K.O., M.K.B.) and Comparative Biosciences (A.D., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Amrita Das
- Departments of Molecular and Integrative Physiology (H.S.K.O., M.K.B.) and Comparative Biosciences (A.D., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Robert N Taylor
- Departments of Molecular and Integrative Physiology (H.S.K.O., M.K.B.) and Comparative Biosciences (A.D., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Indrani C Bagchi
- Departments of Molecular and Integrative Physiology (H.S.K.O., M.K.B.) and Comparative Biosciences (A.D., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Milan K Bagchi
- Departments of Molecular and Integrative Physiology (H.S.K.O., M.K.B.) and Comparative Biosciences (A.D., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| |
Collapse
|
18
|
Rosario GX, Stewart CL. The Multifaceted Actions of Leukaemia Inhibitory Factor in Mediating Uterine Receptivity and Embryo Implantation. Am J Reprod Immunol 2016; 75:246-55. [PMID: 26817565 DOI: 10.1111/aji.12474] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023] Open
Abstract
Embryo implantation is mediated by the combined actions of the ovarian hormones E2 and P4 on the uterus. In addition, the pro-inflammatory cytokine, leukaemia inhibitory factor (LIF), plays a pivotal role in regulating uterine receptivity. LIF is expressed in the endometrial glands and has a robust action on the uterine luminal epithelium (LE). In mice, LIF is induced by nidatory E2 and functions to convert the LE from a non-receptive to an embryo-responsive state. LIF mediates its actions by activating the JAK-STAT pathway specifically in the LE. Activation of JAK-STAT pathway results in the induction of many additional pathways, including some 40 + transcription factors, many of which initiate a cascade of changes affecting epithelial polarity, epithelial-mesenchymal interactions, angiogenesis, stromal cell decidualization, and inhibiting cell proliferation. This review discusses the role of LIF and the recent analysis of its action on the uterine LE in regulating endometrial receptivity and implantation.
Collapse
Affiliation(s)
- Gracy Xavier Rosario
- Developmental and Regenerative Biology, Institute of Medical Biology, Singapore City, Singapore
| | - Colin L Stewart
- Developmental and Regenerative Biology, Institute of Medical Biology, Singapore City, Singapore
| |
Collapse
|
19
|
Billard B, Chang CN, Singh AJ, Gross MK, Allen R, Kioussi C. Phenotypic Screening of Drug Library in Actively Differentiating Mouse Embryonic Stem Cells. ACTA ACUST UNITED AC 2016; 21:399-407. [PMID: 26746584 DOI: 10.1177/1087057115624093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/04/2015] [Indexed: 11/17/2022]
Abstract
Phenotypic screening enables the discovery of new drug leads with novel targets. ES cells differentiate into different lineages by successively making use of different subsets of the genome's possible macromolecular interactions. If a compound effectively targets just one of these interactions, it derails the developmental pathway to produce a phenotypical change. The OTRADI microsource spectrum library of 2000 approved drug components, natural products, and bioactive components was screened for compounds that can induce phenotypic changes in ES cell cultures at 10 µM after 3 days. Twenty-one compounds that induced specific morphologies also induced unique changes to an expression profile of a dozen markers of early embryonic development, indicating that each compound has derailed the molecular developmental process in a characteristic way. Phenotypic screens conducted with ES cultures differentiating along different lineages can be used to efficiently prescreen compounds able to regulate cell differentiation lineage.
Collapse
Affiliation(s)
- Bénédicte Billard
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Chih-Ning Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Arun J Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Michael K Gross
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Robert Allen
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA OTRADI, Portland, OR, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
20
|
Wydooghe E, Vandaele L, Heras S, De Sutter P, Deforce D, Peelman L, De Schauwer C, Van Soom A. Autocrine embryotropins revisited: how do embryos communicate with each other in vitro when cultured in groups? Biol Rev Camb Philos Soc 2015; 92:505-520. [PMID: 26608222 DOI: 10.1111/brv.12241] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 10/15/2015] [Accepted: 10/21/2015] [Indexed: 01/10/2023]
Abstract
In the absence of the maternal genital tract, preimplantation embryos can develop in vitro in culture medium where all communication with the oviduct or uterus is absent. In several mammalian species, it has been observed that embryos cultured in groups thrive better than those cultured singly. Here we argue that group-cultured embryos are able to promote their own development in vitro by the production of autocrine embryotropins that putatively serve as a communication tool. The concept of effective communication implies an origin, a signalling agent, and finally a recipient that is able to decode the message. We illustrate this concept by demonstrating that preimplantation embryos are able to secrete autocrine factors in several ways, including active secretion, passive outflow, or as messengers bound to a molecular vehicle or transported within extracellular vesicles. Likewise, we broaden the traditional view that inter-embryo communication is dictated mainly by growth factors, by discussing a wide range of other biochemical messengers including proteins, lipids, neurotransmitters, saccharides, and microRNAs, all of which can be exchanged among embryos cultured in a group. Finally, we describe how different classes of messenger molecules are decoded by the embryo and influence embryo development by triggering different pathways. When autocrine embryotropins such as insulin-like growth factor-I (IGF-I) or platelet activating factor (PAF) bind to their appropriate receptor, the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway will be activated which is important for embryo survival. On the other hand, the mitogen-activated protein kinase (MAPK) pathway is activated when compounds such as hyaluronic acid and serotonin bind to their respective receptors, thereby acting as growth factors. By activating the peroxisome-proliferator-activated receptor family (PPAR) pathway, lipophilic autocrine factors such as prostaglandins or fatty acids have both survival and anti-apoptotic functions. In conclusion, considering different types of messenger molecules simultaneously will be crucial to understanding more comprehensively how embryos communicate with each other in group-culture systems. This approach will assist in the development of novel media for single-embryo culture.
Collapse
Affiliation(s)
- Eline Wydooghe
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Leen Vandaele
- Animal Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), B-9090, Melle, Belgium
| | - Sonia Heras
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Petra De Sutter
- Department of Reproductive Medicine, University Hospital, Ghent University, B-9000, Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000, Ghent, Belgium
| | - Luc Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Catharina De Schauwer
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| |
Collapse
|
21
|
Pawar S, Laws MJ, Bagchi IC, Bagchi MK. Uterine Epithelial Estrogen Receptor-α Controls Decidualization via a Paracrine Mechanism. Mol Endocrinol 2015; 29:1362-74. [PMID: 26241389 DOI: 10.1210/me.2015-1142] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Steroid hormone-regulated differentiation of uterine stromal cells, known as decidualization, is essential for embryo implantation. The role of the estrogen receptor-α (ESR1) during this differentiation process is unclear. Development of conditional Esr1-null mice showed that deletion of this gene in both epithelial and stromal compartments of the uterus leads to a complete blockade of decidualization, indicating a critical role of ESR1 during this process. To further elucidate the cell type-specific function of ESR1 in the uterus, we created WE(d/d) mice in which Esr1 is ablated in uterine luminal and glandular epithelia but is retained in the stroma. Uteri of WE(d/d) mice failed to undergo decidualization, indicating that epithelial ESR1 contributes to stromal differentiation via a paracrine mechanism. We noted markedly reduced production of the leukemia inhibitory factor (LIF) in WE(d/d) uteri. Supplementation with LIF restored decidualization in WE(d/d) mice. Our study indicated that LIF acts synergistically with progesterone to induce the expression of Indian hedgehog (IHH) in uterine epithelium and its receptor patched homolog 1 in the stroma. IHH then induces the expression of chicken ovalbumin upstream promoter-transcription factor II, a transcription factor that promotes stromal differentiation. To address the mechanism by which LIF induces IHH expression, we used mice lacking uterine epithelial signal transducer and activator of transcription 3, a well-known mediator of LIF signaling. Our study revealed that LIF-mediated induction of IHH occurs without the activation of epithelial signal transducer and activator of transcription 3 but uses an alternate pathway involving the activation of the ERK1/2 kinase. Collectively our results provide unique insights into the paracrine mechanisms by which ESR1 directs epithelial-stromal dialogue during pregnancy establishment.
Collapse
Affiliation(s)
- S Pawar
- Departments of Molecular and Integrative Physiology (S.P., M.K.B.) and Comparative Biosciences (M.J.L., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - M J Laws
- Departments of Molecular and Integrative Physiology (S.P., M.K.B.) and Comparative Biosciences (M.J.L., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - I C Bagchi
- Departments of Molecular and Integrative Physiology (S.P., M.K.B.) and Comparative Biosciences (M.J.L., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - M K Bagchi
- Departments of Molecular and Integrative Physiology (S.P., M.K.B.) and Comparative Biosciences (M.J.L., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
22
|
Kim KY, Lee G, Yoon M, Cho EH, Park CS, Kim MG. Expression Analyses Revealed Thymic Stromal Co-Transporter/Slc46A2 Is in Stem Cell Populations and Is a Putative Tumor Suppressor. Mol Cells 2015; 38:548-61. [PMID: 26013383 PMCID: PMC4469913 DOI: 10.14348/molcells.2015.0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 01/08/2023] Open
Abstract
By combining conventional single cell analysis with flow cytometry and public database searches with bioinformatics tools, we extended the expression profiling of thymic stromal cotransporter (TSCOT), Slc46A2/Ly110, that was shown to be expressed in bipotent precursor and cortical thymic epithelial cells. Genome scale analysis verified TSCOT expression in thymic tissue- and cell type- specific fashion and is also expressed in some other epithelial tissues including skin and lung. Coexpression profiling with genes, Foxn1 and Hoxa3, revealed the role of TSCOT during the organogenesis. TSCOT expression was detected in all thymic epithelial cells (TECs), but not in the CD31(+) endothelial cell lineage in fetal thymus. In addition, ABC transporter-dependent side population and Sca-1(+) fetal TEC populations both contain TSCOT-expressing cells, indicating TEC stem cells express TSCOT. TSCOT expression was identified as early as in differentiating embryonic stem cells. TSCOT expression is not under the control of Foxn1 since TSCOT is present in the thymic rudiment of nude mice. By searching variations in the expression levels, TSCOT is positively associated with Grhl3 and Irf6. Cytokines such as IL1b, IL22 and IL24 are the potential regulators of the TSCOT expression. Surprisingly, we found TSCOT expression in the lung is diminished in lung cancers, suggesting TSCOT may be involved in the suppression of lung tumor development. Based on these results, a model for TEC differentiation from the stem cells was proposed in context of multiple epithelial organ formation.
Collapse
Affiliation(s)
- Ki Yeon Kim
- Department of Biological Sciences, Inha University, Incheon 402-720,
Korea
| | - Gwanghee Lee
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110,
USA
| | - Minsang Yoon
- Department of Biological Sciences, Inha University, Incheon 402-720,
Korea
| | - Eun Hye Cho
- Department of Biological Sciences, Inha University, Incheon 402-720,
Korea
| | - Chan-Sik Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736,
Korea
| | - Moon Gyo Kim
- Department of Biological Sciences, Inha University, Incheon 402-720,
Korea
| |
Collapse
|
23
|
Chu B, Zhong L, Dou S, Wang J, Li J, Wang M, Shi Q, Mei Y, Wu M. miRNA-181 regulates embryo implantation in mice through targeting leukemia inhibitory factor. J Mol Cell Biol 2015; 7:12-22. [DOI: 10.1093/jmcb/mjv006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
24
|
Rosario GX, Hondo E, Jeong JW, Mutalif R, Ye X, Yee LX, Stewart CL. The LIF-mediated molecular signature regulating murine embryo implantation. Biol Reprod 2014; 91:66. [PMID: 25031358 DOI: 10.1095/biolreprod.114.118513] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The establishment of a receptive uterus is the prime requirement for embryo implantation. In mice, the E2-induced cytokine leukemia inhibitory factor (LIF) is essential in switching the uterine luminal epithelium (LE) from a nonreceptive to a receptive state. Here we define the LIF-mediated switch using array analysis and informatics to identify LIF-induced changes in gene expression and annotated signaling pathways specific to the LE. We compare gene expression profiles at 0, 1, 3, and 6 h, following LIF treatment. During the first hour, the JAK-STAT signaling pathway is activated and the expression of 54 genes declines, primarily affecting LE cytoskeletal and chromatin organization as well as a transient reduction in the progesterone, TGFbetaR1, and ACVR1 receptors. Simultaneously 256 genes increase expression, of which 42 are transcription factors, including Sox, Kfl, Hes, Hey, and Hox families. Within 3 h, the expression of 3987 genes belonging to more than 25 biological process pathways was altered. We confirmed the mRNA and protein distribution of key genes from 10 pathways, including the Igf-1, Vegf, Toll-like receptors, actin cytoskeleton, ephrin, integrins, TGFbeta, Wnt, and Notch pathways. These data identify novel LIF-activated pathways in the LE and define the molecular basis between the refractory and receptive uterine phases. More broadly, these findings highlight the staggering capacity of a single cytokine to induce a dynamic and complex network of changes in a simple epithelium essential to mammalian reproduction and provide a basis for identifying new routes to regulating female reproduction.
Collapse
Affiliation(s)
- Gracy X Rosario
- Developmental and Regenerative Biology, Institute of Medical Biology, A*STAR, Immunos, Singapore
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Division of Biofunctional Development, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Jae-Wook Jeong
- Department of Obstetrics and Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - Rafidah Mutalif
- Developmental and Regenerative Biology, Institute of Medical Biology, A*STAR, Immunos, Singapore
| | - Xiaoqian Ye
- Developmental and Regenerative Biology, Institute of Medical Biology, A*STAR, Immunos, Singapore
| | - Li Xuan Yee
- Developmental and Regenerative Biology, Institute of Medical Biology, A*STAR, Immunos, Singapore
| | - Colin L Stewart
- Developmental and Regenerative Biology, Institute of Medical Biology, A*STAR, Immunos, Singapore
| |
Collapse
|
25
|
Abstract
Stem cells constitute a population of "primitive cells" with the ability to divide indefinitely and give rise to specialized cells under special conditions. Because of these two characteristics they have received particular attention in recent decades. These cells are the primarily responsible factors for the regeneration of tissues and organs and for the healing of lesions, a feature that makes them a central key in the development of cell-based medicine, called Regenerative Medicine. The idea of wound and organ repair and body regeneration is as old as the mankind, reflecting the human desire for inhibiting aging and immortality and it is first described in the ancient Greek myth of Prometheus. It is of interest that the myth refers to liver, an organ with remarkable regenerative ability after loss of mass and function caused by liver injury or surgical resection. Over the last decade there has been an important progress in understanding liver physiology and the mechanisms underlying hepatic development and regeneration. As liver transplantation, despite its difficulties, remains the only effective therapy for advanced liver disease so far, scientific interest has nowadays been orientated towards Regenerative Medicine and the use of stem cells to repair damaged liver. This review is focused on the available literature concerning the role of stem cells in liver regeneration. It summarizes the results of studies concerning endogenous liver regeneration and stem cell experimental protocols. Moreover, this review discusses the clinical studies that have been conducted in humans so far.
Collapse
|
26
|
Campbell PA, Rudnicki MA. Oct4 interaction with Hmgb2 regulates Akt signaling and pluripotency. Stem Cells 2014; 31:1107-20. [PMID: 23495099 DOI: 10.1002/stem.1365] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/26/2013] [Accepted: 01/31/2013] [Indexed: 12/20/2022]
Abstract
In pluripotent stem cells, bivalent domains mark the promoters of developmentally regulated loci. Histones in these chromatin regions contain coincident epigenetic modifications of gene activation and repression. How these marks are transmitted to maintain the pluripotent state in daughter progeny remains poorly understood. Our study demonstrates that Oct4 post-translational modifications (PTMs) form a positive feedback loop, which promotes Akt activation and interaction with Hmgb2 and the SET complex. This preserves H3K27me3 modifications in daughter progeny and maintains the pluripotent gene expression signature in murine embryonic stem cells. However, if Oct4 is not phosphorylated, a negative feedback loop is formed that inactivates Akt and initiates the DNA damage response. Oct4 sumoylation then is required for G1/S progression and transmission of the repressive H3K27me3 mark. Therefore, PTMs regulate the ability of Oct4 to direct the spatio-temporal formation of activating and repressing complexes to orchestrate chromatin plasticity and pluripotency. Our work highlights a previously unappreciated role for Oct4 PTM-dependent interactions in maintaining restrained Akt signaling and promoting a primitive epigenetic state.
Collapse
Affiliation(s)
- Pearl A Campbell
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
27
|
The States of Pluripotency: Pluripotent Lineage Development in the Embryo and in the Dish. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/208067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pluripotent cell lineage of the embryo comprises a series of temporally and functionally distinct intermediary cell states, the epiblast precursor cell of the newly formed blastocyst, the epiblast population of the inner cell mass, and the early and late epiblast of the postimplantation embryo, referred to here as early and late primitive ectoderm. Pluripotent cell populations representative of the embryonic populations can be formed in culture. Although multiple pluripotent cell states are now recognised, little is known about the signals and pathways that progress cells from the epiblast precursor cell to the late primitive ectoderm in the embryo or in culture. The characterisation of cell states is most advanced in mouse where conditions for culturing distinct pluripotent cell states are well established and embryonic material is accessible. This review will focus on the pluripotent cell states present during embryonic development in the mouse and what is known of the mechanisms that regulate the progression of the lineage from the epiblast precursor cell and the ground state of pluripotency to the late primitive ectoderm present immediately prior to cell differentiation.
Collapse
|
28
|
Taha MF, Javeri A, Kheirkhah O, Majidizadeh T, Khalatbary AR. Neural differentiation of mouse embryonic and mesenchymal stem cells in a simple medium containing synthetic serum replacement. J Biotechnol 2014; 172:1-10. [DOI: 10.1016/j.jbiotec.2013.11.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/17/2013] [Accepted: 11/29/2013] [Indexed: 01/23/2023]
|
29
|
Ichimura T, Chiu LD, Fujita K, Kawata S, Watanabe TM, Yanagida T, Fujita H. Visualizing cell state transition using Raman spectroscopy. PLoS One 2014; 9:e84478. [PMID: 24409302 PMCID: PMC3883674 DOI: 10.1371/journal.pone.0084478] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/14/2013] [Indexed: 11/22/2022] Open
Abstract
System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC) differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA), which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states.
Collapse
Affiliation(s)
- Taro Ichimura
- Quantitative Biology Center, Riken, Suita, Osaka, Japan
| | - Liang-da Chiu
- Department of Applied Physics, Osaka University, Suita, Osaka, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Suita, Osaka, Japan
| | - Satoshi Kawata
- Department of Applied Physics, Osaka University, Suita, Osaka, Japan
- Nanophotonics Laboratory, Riken, Wako, Saitama, Japan
| | | | - Toshio Yanagida
- Quantitative Biology Center, Riken, Suita, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Hideaki Fujita
- Quantitative Biology Center, Riken, Suita, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
30
|
Pawar S, Starosvetsky E, Orvis GD, Behringer RR, Bagchi IC, Bagchi MK. STAT3 regulates uterine epithelial remodeling and epithelial-stromal crosstalk during implantation. Mol Endocrinol 2013; 27:1996-2012. [PMID: 24100212 DOI: 10.1210/me.2013-1206] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Embryo implantation is regulated by a variety of endometrial factors, including cytokines, growth factors, and transcription factors. Earlier studies identified the leukemia inhibitory factor (LIF), a cytokine produced by uterine glands, as an essential regulator of implantation. LIF, acting via its cell surface receptor, activates the signal transducer and activator of transcription 3 (STAT3) in the uterine epithelial cells. However, the precise mechanism via which activated STAT3 promotes uterine function during implantation remains unknown. To identify the molecular pathways regulated by STAT3, we created SW(d/d) mice in which Stat3 gene is conditionally inactivated in uterine epithelium. The SW(d/d) mice are infertile due to a lack of embryo attachment to the uterine luminal epithelium and consequent implantation failure. Gene expression profiling of uterine epithelial cells of SW(d/d) mice revealed dysregulated expression of specific components of junctional complexes, including E-cadherin, α- and β-catenin, and several claudins, which critically regulate epithelial junctional integrity and embryo attachment. In addition, uteri of SW(d/d) mice exhibited markedly reduced stromal proliferation and differentiation, indicating that epithelial STAT3 controls stromal function via a paracrine mechanism. The stromal defect arose from a drastic reduction in the production of several members of the epidermal growth factor family in luminal epithelium of SW(d/d) uteri and the resulting lack of activation of epidermal growth factor receptor signaling and mitotic activity in the stromal cells. Collectively, our results uncovered an intricate molecular network operating downstream of STAT3 that regulates uterine epithelial junctional reorganization, and stromal proliferation, and differentiation, which are critical determinants of successful implantation.
Collapse
Affiliation(s)
- Sandeep Pawar
- PhD, Professor and Head, Department of Molecular and Integrative Physiology, 534 Burrill Hall, 407 South Goodwin, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
| | | | | | | | | | | |
Collapse
|
31
|
STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proc Natl Acad Sci U S A 2013; 110:16975-80. [PMID: 24082147 DOI: 10.1073/pnas.1315862110] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The activation of STAT3 by tyrosine phosphorylation, essential for normal development and for a normal inflammatory response to invading pathogens, is kept in check by negative regulators. Abnormal constitutive activation of STAT3, which contributes to the pathology of cancer and to chronic inflammatory diseases such as rheumatoid arthritis, occurs when negative regulation is not fully effective. SOCS3, the major negative regulator of STAT3, is induced by tyrosine-phosphorylated STAT3 and terminates STAT3 phosphorylation about 2 h after initial exposure of cells to members of the IL-6 family of cytokines by binding cooperatively to the common receptor subunit gp130 and JAKs 1 and 2. We show here that when the epidermal growth factor receptor (EGFR) is present and active, STAT3 is rephosphorylated about 4 h after exposure of cells to IL-6 or oncostatin M and remains active for many hours. Newly synthesized IL-6 drives association of the IL-6 receptor and gp130 with EGFR, leading to EGFR-dependent rephosphorylation of STAT3, which is not inhibited by the continued presence of SOCS3. This second wave of STAT3 activation supports sustained expression of a subset of IL-6-induced proteins, several of which play important roles in inflammation and cancer, in which both IL-6 secretion and EGFR levels are often elevated.
Collapse
|
32
|
Morgani SM, Canham MA, Nichols J, Sharov AA, Migueles RP, Ko MSH, Brickman JM. Totipotent embryonic stem cells arise in ground-state culture conditions. Cell Rep 2013; 3:1945-57. [PMID: 23746443 PMCID: PMC3701323 DOI: 10.1016/j.celrep.2013.04.034] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 01/17/2023] Open
Abstract
Embryonic stem cells (ESCs) are derived from mammalian embryos during the transition from totipotency, when individual blastomeres can make all lineages, to pluripotency, when they are competent to make only embryonic lineages. ESCs maintained with inhibitors of MEK and GSK3 (2i) are thought to represent an embryonically restricted ground state. However, we observed heterogeneous expression of the extraembryonic endoderm marker Hex in 2i-cultured embryos, suggesting that 2i blocked development prior to epiblast commitment. Similarly, 2i ESC cultures were heterogeneous and contained a Hex-positive fraction primed to differentiate into trophoblast and extraembryonic endoderm. Single Hex-positive ESCs coexpressed epiblast and extraembryonic genes and contributed to all lineages in chimeras. The cytokine LIF, necessary for ESC self-renewal, supported the expansion of this population but did not directly support Nanog-positive epiblast-like ESCs. Thus, 2i and LIF support a totipotent state comparable to early embryonic cells that coexpress embryonic and extraembryonic determinants. Embryos cultured in 2i are blocked before extraembryonic lineage segregation ESCs cultured in 2i express extraembryonic markers heterogeneously Single 2i ESCs differentiate into both embryonic and extraembryonic lineages LIF promotes proliferation of extraembryonically primed ESC populations
Collapse
Affiliation(s)
- Sophie M Morgani
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Gabriel E, Schievenbusch S, Kolossov E, Hengstler JG, Rotshteyn T, Bohlen H, Nierhoff D, Hescheler J, Drobinskaya I. Differentiation and selection of hepatocyte precursors in suspension spheroid culture of transgenic murine embryonic stem cells. PLoS One 2012; 7:e44912. [PMID: 23028675 PMCID: PMC3454367 DOI: 10.1371/journal.pone.0044912] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/09/2012] [Indexed: 01/08/2023] Open
Abstract
Embryonic stem cell-derived hepatocyte precursor cells represent a promising model for clinical transplantations to diseased livers, as well as for establishment of in vitro systems for drug metabolism and toxicology investigations. This study aimed to establish an in vitro culture system for scalable generation of hepatic progenitor cells. We used stable transgenic clones of murine embryonic stem cells possessing a reporter/selection vector, in which the enhanced green fluorescent protein- and puromycin N-acetyltransferase-coding genes are driven by a common alpha-fetoprotein gene promoter. This allowed for "live" monitoring and puromycin selection of the desired differentiating cell type possessing the activated alpha-fetoprotein gene. A rotary culture system was established, sequentially yielding initially partially selected hepatocyte lineage-committed cells, and finally, a highly purified cell population maintained as a dynamic suspension spheroid culture, which progressively developed the hepatic gene expression phenotype. The latter was confirmed by quantitative RT-PCR analysis, which showed a progressive up-regulation of hepatic genes during spheroid culture, indicating development of a mixed hepatocyte precursor-/fetal hepatocyte-like cell population. Adherent spheroids gave rise to advanced differentiated hepatocyte-like cells expressing hepatic proteins such as albumin, alpha-1-antitrypsin, cytokeratin 18, E-cadherin, and liver-specific organic anion transporter 1, as demonstrated by fluorescent immunostaining. A fraction of adherent cells was capable of glycogen storage and of reversible up-take of indocyanine green, demonstrating their hepatocyte-like functionality. Moreover, after transplantation of spheroids into the mouse liver, the spheroid-derived cells integrated into recipient. These results demonstrate that large-scale hepatocyte precursor-/hepatocyte-like cultures can be established for use in clinical trials, as well as in in vitro screening assays.
Collapse
Affiliation(s)
- Elke Gabriel
- Institute of Neurophysiology, Center of Physiology and Pathophysiology, University of Cologne, Cologne, Germany
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Tamara Rotshteyn
- Institute of Neurophysiology, Center of Physiology and Pathophysiology, University of Cologne, Cologne, Germany
| | | | - Dirk Nierhoff
- Gastroenterology and Hepatology Clinic, University of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, Center of Physiology and Pathophysiology, University of Cologne, Cologne, Germany
| | - Irina Drobinskaya
- Institute of Neurophysiology, Center of Physiology and Pathophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
34
|
Su RW, Jia B, Ni H, Lei W, Yue SL, Feng XH, Deng WB, Liu JL, Zhao ZA, Wang TS, Yang ZM. Junctional adhesion molecule 2 mediates the interaction between hatched blastocyst and luminal epithelium: induction by progesterone and LIF. PLoS One 2012; 7:e34325. [PMID: 22511936 PMCID: PMC3325240 DOI: 10.1371/journal.pone.0034325] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/26/2012] [Indexed: 11/18/2022] Open
Abstract
Background Junctional adhesion molecule 2 (Jam2) is a member of the JAM superfamily. JAMs are localized at intercellular contacts and participated in the assembly and maintenance of junctions, and control of cell permeability. Because Jam2 is highly expressed in the luminal epithelium on day 4 of pregnancy, this study was to determine whether Jam2 plays a role in uterine receptivity and blastocyst attachment in mouse uterus. Methodology/Principal Findings Jam2 is highly expressed in the uterine luminal epithelium on days 3 and 4 of pregnancy. Progesterone induces Jam2 expression in ovariectomized mice, which is blocked by progesterone antagonist RU486. Jam2 expression on day 4 of pregnancy is also inhibited by RU486 treatment. Leukemia inhibitory factor (LIF) up-regulates Jam2 protein in isolated luminal epithelium from day 4 uterus, which is blocked by S3I-201, a cell-permeable inhibitor for Stat3 phosphorylation. Under adhesion assay, recombinant Jam2 protein increases the rate of blastocyst adhesion. Both soluble recombinant Jam2 and Jam3 can reverse this process. Conclusion Jam2 is highly expressed in the luminal epithelium of receptive uterus and up-regulated by progesterone and LIF via tyrosine phosphorylation of Stat3. Jam2 may play a role in the interaction between hatched blastocyst and receptive uterus.
Collapse
Affiliation(s)
- Ren-Wei Su
- Department of Biology, Shantou University, Shantou, China
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- College of Life Science, Xiamen University, Xiamen, Fujian, China
| | - Bo Jia
- College of Life Science, Xiamen University, Xiamen, Fujian, China
| | - Hua Ni
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wei Lei
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shun-Li Yue
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xu-Hui Feng
- College of Life Science, Xiamen University, Xiamen, Fujian, China
| | - Weng-Bo Deng
- College of Life Science, Xiamen University, Xiamen, Fujian, China
| | - Ji-Long Liu
- Department of Biology, Shantou University, Shantou, China
| | - Zhen-Ao Zhao
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tong-Song Wang
- Department of Biology, Shantou University, Shantou, China
| | - Zeng-Ming Yang
- Department of Biology, Shantou University, Shantou, China
- College of Life Science, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
35
|
Mouse and human pluripotent stem cells and the means of their myogenic differentiation. Results Probl Cell Differ 2012; 55:321-56. [PMID: 22918815 DOI: 10.1007/978-3-642-30406-4_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, are an important tool in the studies focusing at the differentiation of various cell types, including skeletal myoblasts. They are also considered as a source of the cells that due to their pluripotent character and availability could be turned into any required tissue and then used in future in regenerative medicine. However, the methods of the derivation of some of cell types from pluripotent cells still need to be perfected. This chapter summarizes the history and current advancements in the derivation and testing of pluripotent stem cells-derived skeletal myoblasts. It focuses at the in vitro methods allowing the differentiation of stem cells grown in monolayer or propagated as embryoid bodies, and also at in vivo tests allowing the verification of the functionality of obtained skeletal myoblasts.
Collapse
|
36
|
El-Hagrasy MA, Shimizu E, Saito M, Yamaguchi Y, Tamiya E. Discrimination of primitive endoderm in embryoid bodies by Raman microspectroscopy. Anal Bioanal Chem 2011; 402:1073-81. [DOI: 10.1007/s00216-011-5554-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/08/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
|
37
|
González IM, Martin PM, Burdsal C, Sloan JL, Mager S, Harris T, Sutherland AE. Leucine and arginine regulate trophoblast motility through mTOR-dependent and independent pathways in the preimplantation mouse embryo. Dev Biol 2011; 361:286-300. [PMID: 22056783 DOI: 10.1016/j.ydbio.2011.10.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 01/06/2023]
Abstract
Uterine implantation is a critical element of mammalian reproduction and is a tightly and highly coordinated event. An intricate and reciprocal uterine-embryo dialog exists to synchronize uterine receptivity with the concomitant activation of the blastocyst, maximizing implantation success. While a number of pathways involved in regulating uterine receptivity have been identified in the mouse, less is understood about blastocyst activation, the process by which the trophectoderm (TE) receives extrinsic cues that initiate new characteristics essential for implantation. Amino acids (AA) have been found to regulate blastocyst activation and TE motility in vitro. In particular, we find that arginine and leucine alone are necessary and sufficient to induce TE motility. Both arginine and leucine act individually and additively to propagate signals that are dependent on the activity of the mammalian target of rapamycin complex 1 (mTORC1). The activities of the well-established downstream targets of mTORC1, p70S6K and 4EBP, do not correlate with trophoblast motility, suggesting that an independent-rapamycin-sensitive pathway operates to induce trophoblast motility, or that other, parallel amino acid-dependent pathways are also involved. We find that endogenous uterine factors act to induce mTORC1 activation and trophoblast motility at a specific time during pregnancy, and that this uterine signal is later than the previously defined signal that induces the attachment reaction. In vivo matured blastocysts exhibit competence to respond to an 8-hour AA stimulus by activating mTOR and subsequently undergoing trophoblast outgrowth by the morning of day 4.5 of pregnancy, but not on day 3.5. By the late afternoon of day 4.5, the embryos no longer require any exposure to AA to undergo trophoblast outgrowth in vitro, demonstrating the existence and timing of an equivalent in vivo signal. These results suggest that there are two separate uterine signals regulating implantation, one that primes the embryo for the attachment reaction and another that activates mTOR and initiates invasive behavior.
Collapse
Affiliation(s)
- Isabel M González
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22901, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Terakawa J, Wakitani S, Sugiyama M, Inoue N, Ohmori Y, Kiso Y, Hosaka YZ, Hondo E. Embryo implantation is blocked by intraperitoneal injection with anti-LIF antibody in mice. J Reprod Dev 2011; 57:700-7. [PMID: 21836375 DOI: 10.1262/jrd.11-048h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leukemia inhibitory factor (LIF) is essential for embryo implantation in mice and plays an important role in other mammals including humans. Intraperitoneal (i.p.) injections with anti-LIF antibody (7.5 µg/g body weight, 3 times) between D3 (D1 = day of vaginal plug detection) and D4 effectively blocked embryo implantation; complete inhibition was achieved in C57BL/6J mice, and implantation was dramatically reduced in ICR mice (reduced to 27%). Normal rabbit IgG used as the control did not disturb embryo implantation. Anti-LIF antibody was localized not only in the stroma, but also in the luminal epithelium and the glandular lumen after i.p. injections. Growth-arrested blastocysts were recovered from the uterus without any implantation sites in both strains. Blastocysts made contact with the LE on the antimesometrial side; however, uterine stromal cells did not undergo secondary decidual reaction, and the uterine lumen was open, even at D7. Several regions of decidualization in ICR mice treated with anti-LIF antibody were smaller than those of the control, and development of blastocysts was delayed. The expression of LIF-regulated genes, such as immune-responsive gene-1 and insulin-like growth factor binding protein-3, was significantly decreased in C57BL/6J mice treated with anti-LIF antibody compared with the control, but not in ICR mice. The present study demonstrated that simple ip injections of an antibody are sufficient to block one of the important factors involved in embryo implantation in mice, and this method should also be easily applicable to the investigation of other factors involved in implantation.
Collapse
Affiliation(s)
- Jumpei Terakawa
- Laboratory of Animal Morphology and Function, Division of Biofunctional Development, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Leukemia inhibitory factor stimulates the transition of primordial to primary follicle and supports the goat primordial follicle viability in vitro. ZYGOTE 2011; 20:73-8. [PMID: 21414252 DOI: 10.1017/s0967199411000074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this study was to evaluate the effect of leukemia inhibitory factor (LIF) on the activation and survival of preantral follicles cultured in vitro enclosed in ovarian fragments (in situ). Goat ovarian cortex was divided into fragments to be used in this study. One fragment was immediately fixed (fresh control - FC) and the remaining fragments were cultured in supplemented minimum essential medium (MEM) without (cultured control - CC) or with different concentrations of LIF (1, 10, 50, 100 or 200 ng/ml) for 1 or 7 days, at 39°C in air with 5% CO2. Fresh control, CC and treated ovarian fragments were processed for histological and fluorescence analysis. The percentage of histological normal preantral follicles cultured for 7 days with 1 ng/ml (49.3%), 10 ng/ml (58.6%) and 50 ng/ml (58%) of LIF was higher than in the CC (32.6%; p < 0.05). After 7 days of culture, the percentage of primordial follicles in situ cultured with LIF decreased and primary follicles increased in all LIF concentrations compared with FC and CC (p < 0.05). In conclusion, LIF induced primordial follicle activation and supported preantral follicle viability of goat ovarian tissues cultured for 7 days.
Collapse
|
40
|
Genome-wide interrogation of Mammalian stem cell fate determinants by nested chromosome deletions. PLoS Genet 2010; 6:e1001241. [PMID: 21170304 PMCID: PMC3000362 DOI: 10.1371/journal.pgen.1001241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 11/05/2010] [Indexed: 01/26/2023] Open
Abstract
Understanding the function of important DNA elements in mammalian stem cell genomes would be enhanced by the availability of deletion collections in which segmental haploidies are precisely characterized. Using a modified Cre-loxP–based system, we now report the creation and characterization of a collection of ∼1,300 independent embryonic stem cell (ESC) clones enriched for nested chromosomal deletions. Mapping experiments indicate that this collection spans over 25% of the mouse genome with good representative coverage of protein-coding genes, regulatory RNAs, and other non-coding sequences. This collection of clones was screened for in vitro defects in differentiation of ESC into embryoid bodies (EB). Several putative novel haploinsufficient regions, critical for EB development, were identified. Functional characterization of one of these regions, through BAC complementation, identified the ribosomal gene Rps14 as a novel haploinsufficient determinant of embryoid body formation. This new library of chromosomal deletions in ESC (DelES: http://bioinfo.iric.ca/deles) will serve as a unique resource for elucidation of novel protein-coding and non-coding regulators of ESC activity. Stem cells have received considerable public attention in part because of their potential application in regenerative therapies. Stem cells can be operationally defined as cells that have the unique property to self-renew, as well as to generate more differentiated progeny (differentiation). However, much remains to be learned about the genes regulating stem cell differentiation and renewal, their relationship to each other, and the signaling pathways that control their expression and/or activity. In this paper, we present a new resource developed in our laboratory, called DelES, for chromosomal deletion in ES cells. By reinserting deleted DNA fragments in a set of ESC clones harboring nested chromosomal deletions, we identified the Rps14 gene as being haploinsufficient for embryoid body formation. We think that our library of more than 1,300 clones represents a new resource that should allow the identification of genes and other elements that are essential for stem cell activity.
Collapse
|
41
|
Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev Rep 2010; 6:248-59. [PMID: 20431964 DOI: 10.1007/s12015-010-9149-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alongside their contribution to research, human embryonic stem cells (hESC) may also prove valuable for cell-based therapies. Traditionally, these cells have been grown in adhesion culture either with or without feeder cells, allowing for their continuous growth as undifferentiated cells. However, to be applicable in therapy and industry they must be produced in a scalable and controlled process. Here we present for the first time a suspension culture system for undifferentiated hESC and induced pluripotent stem cells (iPSC), based on medium supplemented with the IL6RIL6 chimera (interleukin-6 receptor fused to interleukin-6), and basic fibroblast growth factor. Four hESC lines cultured in this system maintained all ESC features after 20 passages, including stable karyotype and pluripotency. Similar results were obtained when hESC were replaced with iPSC from two different cell lines. We demonstrate that the IL6RIL6 chimera supports the self-renewal and expansion of undifferentiated hESC and iPSC in suspension, and thus present another efficient system for large-scale propagation of undifferentiated pluripotent cells for clinical and translational applications.
Collapse
|
42
|
Jeong JW, Kwak I, Lee KY, Kim TH, Large MJ, Stewart CL, Kaestner KH, Lydon JP, DeMayo FJ. Foxa2 is essential for mouse endometrial gland development and fertility. Biol Reprod 2010; 83:396-403. [PMID: 20484741 DOI: 10.1095/biolreprod.109.083154] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During embryonic development, Foxa2 is required for the formation of the node and notochord, and ablation of this gene results in defects in gastrulation, neural tube patterning, and gut morphogenesis. Foxa2 has been shown to be expressed specifically in the glandular epithelium of the murine uterus. To study the uterine function of Foxa2, this gene was conditionally ablated in the mouse uterus by crossing mice with floxed Foxa2 alleles, Foxa2(loxP/loxP), with the Pgr(cre) mouse model. Pgr(cre/+) Foxa2(loxP/loxP) mice showed significantly reduced fertility. Analysis of the uterus on Day 5.5 of pregnancy showed disrupted blastocyst implantation. Pgr(cre/+) Foxa2(loxP/loxP) mice also showed a severe impairment of the uterus to respond to the artificial induction of the decidual response. Morphological examination of the uteri of these mice showed a severe reduction in the number of endometrial glands. The loss of endometrial glands resulted in the reduction of leukemia inhibitory factor (Lif) expression. The lack of a decidual response could be partially rescued by an intrauterine injection of LIF before the initiation of the decidual response. This analysis demonstrates that Foxa2 regulates endometrial gland development and that mice with a loss of endometrial glands cannot support implantation in part due to the loss of LIF, which is a requisite for fertility in the mouse.
Collapse
Affiliation(s)
- Jae-Wook Jeong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hughes JN, Dodge N, Rathjen PD, Rathjen J. A novel role for gamma-secretase in the formation of primitive streak-like intermediates from ES cells in culture. Stem Cells 2010; 27:2941-51. [PMID: 19750540 DOI: 10.1002/stem.218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
gamma-Secretase is a membrane-associated protease with multiple intracellular targets, a number of which have been shown to influence embryonic development and embryonic stem (ES) cell differentiation. This paper describes the use of the gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) to evaluate the role of gamma-secretase in the differentiation of pluripotent stem cells to the germ lineages. The addition of DAPT did not prevent the formation of primitive ectoderm-like cells from ES cells in culture. In contrast, the addition of DAPT during primitive ectoderm-like cell differentiation interfered with the ability of both serum and BMP4 to induce a primitive streak-like intermediate and resulted in the preferential formation of neurectoderm. Similarly, DAPT reduced the formation of primitive streak-like intermediates from differentiating human ES cells; the culture conditions used resulted in a population enriched in human surface ectoderm. These data suggest that gamma-secretase may form part of the general pathway by which mesoderm is specified within the primitive streak. The addition of an E-cadherin neutralizing antibody was able to partially reverse the effect of DAPT, suggesting that DAPT may be preventing the formation of primitive streak-like intermediates and promoting neurectoderm differentiation by stabilizing E-cadherin and preventing its proteolysis.
Collapse
Affiliation(s)
- James N Hughes
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | | | |
Collapse
|
44
|
Washington JM, Rathjen J, Felquer F, Lonic A, Bettess MD, Hamra N, Semendric L, Tan BSN, Lake JA, Keough RA, Morris MB, Rathjen PD. L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Am J Physiol Cell Physiol 2010; 298:C982-92. [PMID: 20164384 DOI: 10.1152/ajpcell.00498.2009] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of cell therapeutics from embryonic stem (ES) cells will require technologies that direct cell differentiation to specific somatic cell lineages in response to defined factors. The initial step in formation of the somatic lineages from ES cells, differentiation to an intermediate, pluripotent primitive ectoderm-like cell, can be achieved in vitro by formation of early primitive ectoderm-like (EPL) cells in response to a biological activity contained within the conditioned medium MEDII. Fractionation of MEDII has identified two activities required for EPL cell formation, an activity with a molecular mass of <3 kDa and a second, much larger species. Here, we have identified the low-molecular-weight activity as l-proline. An inhibitor of l-proline uptake, glycine, prevented the differentiation of ES cells in response to MEDII. Supplementation of the culture medium of ES cells with >100 M l-proline and some l-proline-containing peptides resulted in changes in colony morphology, cell proliferation, gene expression, and differentiation kinetics consistent with differentiation toward a primitive ectoderm-like cell. This activity appeared to be associated with l-proline since other amino acids and analogs of proline did not exhibit an equivalent activity. Activation of the mammalian target of rapamycin (mTOR) signaling pathway was found to be necessary but not sufficient for l-proline activity; addition of other activators of the mTOR signaling pathway failed to alter the ES cell phenotype. This is the first report describing a role for amino acids in the regulation of pluripotency and cell differentiation and identifies a novel role for the imino acid l-proline.
Collapse
|
45
|
Ji YF, Chen LY, Xu KH, Yao JF, Shi YF. Locally elevated leukemia inhibitory factor in the inflamed fallopian tube resembles that found in tubal pregnancy. Fertil Steril 2009; 91:2308-14. [DOI: 10.1016/j.fertnstert.2008.01.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 01/26/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
|
46
|
Messana JM, Hwang NS, Coburn J, Elisseeff JH, Zhang Z. Size of the embryoid body influences chondrogenesis of mouse embryonic stem cells. J Tissue Eng Regen Med 2009; 2:499-506. [PMID: 18956411 DOI: 10.1002/term.125] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
For applications in tissue engineering and regenerative medicine, embryonic stem cells (ESCs) are commonly pre-differentiated in the form of embryoid bodies (EBs). The uncontrolled cell differentiation in EBs results in a highly heterogeneous cell population, an unfavourable condition for therapeutic development. The purpose of this study was to determine an optimal size of EBs for chondrogenic differentiation. EBs were produced in suspension culture with mouse ESCs (ES-D3 GL). The 5-day-old EBs were sorted under a microscope by diameter: small EBs (S-EBs, < 100 microm), medium EBs (M-EBs, 100-150 microm) and large EBs (L-EBs, > 150 microm). The three sizes of EBs were cultured separately for 3 weeks in chondrogenic medium. Type II collagen and aggrecan gene expression was significantly upregulated in the S-EBs, when compared with the M-EBs and L-EBs (p < 0.05 and p < 0.001, respectively). Proteoglycans produced by the cells derived from S-EBs were > 50% of the other two groups. In addition, both Oct4 and Sox2 were expressed more in S-EBs than in M-EBs and L-EBs. Type X collagen expression was relatively increased in L-EBs. Slight shifts toward haematopoietic and endothelial differentiation were seen in the L- and M-EBs. In summary, the size of EBs has implications on ESC differentiation. Cells derived from S-EBs have a greater chondrogenic potential than those from M-EBs and L-EBs. The size of EBs can be a parameter utilized to optimize ESC differentiation for tissue engineering.
Collapse
Affiliation(s)
- Joseph M Messana
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
47
|
Terakawa J, Hondo E, Sugiyama M, Wakitani S, Stewart CL, Kiso Y. Agrin pathway is controlled by leukemia inhibitory factor (LIF) in murine implantation. J Reprod Dev 2009; 55:293-8. [PMID: 19325217 DOI: 10.1262/jrd.20162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrin is the heparan sulfate proteoglycan (HSPG) that is well known as the molecule that aggregates acetylcholine receptor (AChR) through muscle specific kinase (MuSK) and rapsyn at neuromuscular junctions. HSPGs are spatiotemporally expressed in embryonic and maternal tissues during implantation. The present study examined the role of agrin in the mouse embryo using leukemia inhibitory factor (LIF)-deficient mice, which show complete sterility. Agrin was detected widely in the cytoplasm of uterine luminal epithelial cells at the third day of pregnancy (Day 3) and Day 4. At Day 5, agrin moved to the apical surface of the luminal epithelium. This migration was not found in LIF-deficient mice. AChR was also found in the apical surface of the uterine epithelium at Day 4 and Day 5 in normal mice. LIF-deficient mice did not show this pattern of expression. Only nAChR b1 subunit mRNA was increased at Day 5 in normal mice. Furthermore, acetylcholinesterase was active in the uterine stroma of normal mice throughout the implantation period and was exclusively active in the uterine epithelium at Day 4. Taken together, agrin signaling was activated in the uterus during embryo implantation in the mice. Here, we suggest that the agrin pathway is involved in closure of the uterine epithelium toward placentation.
Collapse
Affiliation(s)
- Jumpei Terakawa
- Department of Veterinary Anatomy, Faculty of Agriculture, Yamaguchi University
| | | | | | | | | | | |
Collapse
|
48
|
Harry GJ, Kraft AD. Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin Drug Metab Toxicol 2008; 4:1265-77. [PMID: 18798697 PMCID: PMC2658618 DOI: 10.1517/17425255.4.10.1265] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The impact of an inflammatory response, as well as interactions between the immune and nervous systems, are rapidly assuming major roles in neurodegenerative disease and injury. However, it is now appreciated that the exact nature of such responses can differ with each type of insult and interaction. More recently, neuroinflammation and the associated cellular response of microglia are being considered for their contribution to neurotoxicity of environmental agents; yet, so far, the inclusion of inflammatory end points into neurotoxicity assessment have relied primarily on relatively limited measures or driven by in vitro models of neurotoxicity. OBJECTIVE To present background information on relevant biological considerations of neuroinflammation and the microglia response demonstrating the complex integrative nature of these biological processes and raising concern with regards to translation of effects demonstrated in vitro to the in vivo situation. Specific points are addressed that would influence the design and interpretation of neuroinflammation with regards to neurotoxicology assessment. CONCLUSION There is a complex and dynamic response in the brain to regulate inflammatory processes and maintain a normal homeostatic level. The classification of such responses as beneficial or detrimental is an oversimplification. Neuroinflammation should be considered as a balanced network of processes in which subtle modifications can shift the cells toward disparate outcomes. The tendency to overinterpret data obtained in an isolated culture system should be discouraged. Rather, the use of cross-disciplinary approaches to evaluate several end points should be incorporated into the assessment of inflammatory contributions to the neurotoxicity of environmental exposures.
Collapse
Affiliation(s)
- Gaylia Jean Harry
- National Institute of Environmental Health Sciences, National Institutes of Health, Neurotoxicology Group, Laboratory of Neurobiology, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
49
|
Drobinskaya I, Linn T, Saric T, Bretzel RG, Bohlen H, Hescheler J, Kolossov E. Scalable selection of hepatocyte- and hepatocyte precursor-like cells from culture of differentiating transgenically modified murine embryonic stem cells. Stem Cells 2008; 26:2245-56. [PMID: 18556507 DOI: 10.1634/stemcells.2008-0387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Potential therapeutic applications of embryonic stem cell (ESC)-derived hepatocytes are limited by their relatively low output in differentiating ESC cultures, as well as by the danger of contamination with tumorigenic undifferentiated ESCs. To address these problems, we developed transgenic murine ESC clones possessing bicistronic expression vector that contains the alpha-fetoprotein gene promoter driving a cassette for the enhanced green "live" fluorescent reporter protein (eGFP) and a puromycin resistance gene. Under established culture conditions these clones allowed for both monitoring of differentiation and for puromycin selection of hepatocyte-committed cells in a suspension mass culture of transgenic ESC aggregates ("embryoid bodies" [EBs]). When plated on fibronectin, the selected eGFP-positive cells formed colonies, in which intensely proliferating hepatocyte precursor-like cells gave rise to morphologically differentiated cells expressing alpha-1-antitrypsin, alpha-fetoprotein, and albumin. A number of cells synthesized glycogen and in some of the cells cytokeratin 18 microfilaments were detected. Major hepatocyte marker genes were expressed in the culture, along with the gene and protein expression of stem/progenitor markers, suggesting the features of both hepatocyte precursors and more advanced differentiated cells. When cultured in suspension, the EB-derived puromycin-selected cells formed spheroids capable of outgrowing on an adhesive substrate, resembling the behavior of fetal mouse hepatic progenitor cells. The established system based on the highly efficient selection/purification procedure could be suitable for scalable generation of ESC-derived hepatocyte- and hepatocyte precursor-like cells and offers a potential in vitro source of cells for transplantation therapy of liver diseases, tissue engineering, and drug and toxicology screening.
Collapse
Affiliation(s)
- Irina Drobinskaya
- Institute for Neurophysiology, Center of Physiology and Pathophysiology, University of Cologne, Robert-Koch Str. 39, D-50931 Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Tapia A, Salamonsen LA, Manuelpillai U, Dimitriadis E. Leukemia inhibitory factor promotes human first trimester extravillous trophoblast adhesion to extracellular matrix and secretion of tissue inhibitor of metalloproteinases-1 and -2. Hum Reprod 2008; 23:1724-32. [PMID: 18492704 PMCID: PMC2474668 DOI: 10.1093/humrep/den121] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Leukemia inhibitory factor (LIF) is a pleiotropic cytokine that is essential for blastocyst implantation in mice. It has been suggested that LIF may play a role in human first trimester extravillous trophoblast (EVT) invasion. The aim of the present study was to establish whether LIF induces changes in EVT function related to invasiveness. METHODS Primary first trimester human EVT cell cultures were treated with/without LIF and the effects on cell adhesion to fibronectin (FN), vitronectin (VN) and laminin (LN) were assessed. Transcript levels of integrin subunits that mediate cell adhesion to these extracellular matrix (ECM) elements were determined by real-time RT-PCR. Matrix metalloproteinase (MMP)2 and MMP9 secretion was assessed by gelatine zymography and tissue inhibitors matrix metalloproteinase (TIMP) -1 and TIMP-2 secretion by enzyme-linked immunosorbent assay. RESULTS EVT cells showed increased adhesion to FN, VN and LN ECM elements in response to LIF (20, 20 and 29%, respectively, P < 0.05 FN and VN compared to control; and P < 0.001 LN compared to control). Integrin beta(4) mRNA levels decreased by 50% following LIF treatment (P < 0.001 versus control). MMP2 and MMP9 secretion was not affected by LIF but LIF did increase secretion of TIMP-1 and -2 (P < 0.001 versus control). LIF stimulated the phosphorylation of signal transducer and activator of transcription (STAT) 3 protein while it did not affect STAT3 protein abundance. The addition of a LIF inhibitor attenuated the LIF-induced STAT3 phosphorylation in EVT. CONCLUSION The results suggest that LIF can regulate EVT invasion, suggesting an important role in early placental development.
Collapse
Affiliation(s)
- Alejandro Tapia
- Prince Henry's Institute of Medical Research, PO Box, 5152 Clayton, VIC 3168, Australia
| | | | | | | |
Collapse
|