1
|
Brambila A, Prichard BE, DeWitt JT, Kellogg DR. Evidence for novel mechanisms that control cell-cycle entry and cell size. Mol Biol Cell 2024; 35:ar46. [PMID: 38231863 PMCID: PMC11064657 DOI: 10.1091/mbc.e23-05-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
Entry into the cell cycle in late G1 phase occurs only when sufficient growth has occurred. In budding yeast, a cyclin called Cln3 is thought to link cell-cycle entry to cell growth. Cln3 accumulates during growth in early G1 phase and eventually helps trigger expression of late G1 phase cyclins that drive cell-cycle entry. All current models for cell-cycle entry assume that expression of late G1 phase cyclins is initiated at the transcriptional level. Current models also assume that the sole function of Cln3 in cell-cycle entry is to promote transcription of late G1 phase cyclins, and that Cln3 works solely in G1 phase. Here, we show that cell cycle-dependent expression of the late G1 phase cyclin Cln2 does not require any functions of the CLN2 promoter. Moreover, Cln3 can influence accumulation of Cln2 protein via posttranscriptional mechanisms. Finally, we show that Cln3 has functions in mitosis that strongly influence cell size. Together, these discoveries reveal the existence of surprising new mechanisms that challenge current models for control of cell-cycle entry and cell size.
Collapse
Affiliation(s)
- Amanda Brambila
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Beth E. Prichard
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Jerry T. DeWitt
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Douglas R. Kellogg
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| |
Collapse
|
2
|
Belanger KD, Yewdell WT, Barber MF, Russo AN, Pettit MA, Damuth EK, Hussain N, Geier SJ, Belanger KG. Exportin Crm1 is important for Swi6 nuclear shuttling and MBF transcription activation in Saccharomyces cerevisiae. BMC Mol Cell Biol 2022; 23:10. [PMID: 35189816 PMCID: PMC8862259 DOI: 10.1186/s12860-022-00409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/07/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Swi6 acts as a transcription factor in budding yeast, functioning in two different heterodimeric complexes, SBF and MBF, that activate the expression of distinct but overlapping sets of genes. Swi6 undergoes regulated changes in nucleocytoplasmic localization throughout the cell cycle that correlate with changes in gene expression. This study investigates how nucleocytoplasmic transport by multiple transport factors may influence specific Swi6 activities. RESULTS Here we show that the exportin Crm1 is important for Swi6 nuclear export and activity. Loss of a putative Crm1 NES or inhibition of Crm1 activity results in changes in nucleocytoplasmic Swi6 localization. Alteration of the Crm1 NES in Swi6 results in decreased MBF-mediated gene expression, but does not affect SBF reporter expression, suggesting that export of Swi6 by Crm1 regulates a subset of Swi6 transcription activation activity. Finally, alteration of the putative Crm1 NES in Swi6 results in cells that are larger than wild type, and this increase in cell size is exacerbated by deletion of Msn5. CONCLUSIONS These data provide evidence that Swi6 has at least two different exportins, Crm1 and Msn5, each of which interacts with a distinct nuclear export signal. We identify a putative nuclear export signal for Crm1 within Swi6, and observe that export by Crm1 or Msn5 independently influences Swi6-regulated expression of a different subset of Swi6-controlled genes. These findings provide new insights into the complex regulation of Swi6 transcription activation activity and the role of nucleocytoplasmic shuttling in regulated gene expression.
Collapse
Affiliation(s)
| | - William T. Yewdell
- Department of Biology, Colgate University, Hamilton, NY USA
- Present Address: Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Matthew F. Barber
- Department of Biology, Colgate University, Hamilton, NY USA
- Present Address: Department of Biology, University of Oregon, Eugene, OR USA
| | - Amy N. Russo
- Department of Biology, Colgate University, Hamilton, NY USA
- Present Address: The Estée Lauder Companies, Inc., Mellville, NY USA
| | - Mark A. Pettit
- Department of Biology, Colgate University, Hamilton, NY USA
- Present Address: Department of Emergency Medicine, Rochester General Hospital, Rochester, NY USA
| | - Emily K. Damuth
- Department of Biology, Colgate University, Hamilton, NY USA
- Present Address: Department of Emergency Medicine, Cooper University Health Care, Camden, NJ USA
| | - Naveen Hussain
- Department of Biology, Colgate University, Hamilton, NY USA
- Present Address: Kerry’s Place Autism Services, Aurora, ON Canada
| | - Susan J. Geier
- Department of Biology, Colgate University, Hamilton, NY USA
- Present Address: Department of Chemistry, Colgate University, Hamilton, NY USA
| | - Karyn G. Belanger
- Department of Biology, Colgate University, Hamilton, NY USA
- Present Address: Center for Learning, Teaching, and Research, Colgate University, Hamilton, NY USA
| |
Collapse
|
3
|
Chromosome-Wide Characterization of Intragenic Crossover in Shiitake Mushroom, Lentinula edodes. J Fungi (Basel) 2021; 7:jof7121076. [PMID: 34947058 PMCID: PMC8704546 DOI: 10.3390/jof7121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Meiotic crossover plays a critical role in generating genetic variations and is a central component of breeding. However, our understanding of crossover in mushroom-forming fungi is limited. Here, in Lentinula edodes, we characterized the chromosome-wide intragenic crossovers, by utilizing the single-nucleotide polymorphisms (SNPs) datasets of an F1 haploid progeny. A total of 884 intragenic crossovers were identified in 110 single-spore isolates, the majority of which were closer to transcript start sites. About 71.5% of the intragenic crossovers were clustered into 65 crossover hotspots. A 10 bp motif (GCTCTCGAAA) was significantly enriched in the hotspot regions. Crossover frequencies around mating-type A (MAT-A) loci were enhanced and formed a hotspot in L. edodes. Genome-wide quantitative trait loci (QTLs) mapping identified sixteen crossover-QTLs, contributing 8.5–29.1% of variations. Most of the detected crossover-QTLs were co-located with crossover hotspots. Both cis- and trans-QTLs contributed to the nonuniformity of crossover along chromosomes. On chr2, we identified a QTL hotspot that regulated local, global crossover variation and crossover hotspot in L. edodes. These findings and observations provide a comprehensive view of the crossover landscape in L. edodes, and advance our understandings of conservation and diversity of meiotic recombination in mushroom-forming fungi.
Collapse
|
4
|
Cdk8 Kinase Module: A Mediator of Life and Death Decisions in Times of Stress. Microorganisms 2021; 9:microorganisms9102152. [PMID: 34683473 PMCID: PMC8540245 DOI: 10.3390/microorganisms9102152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/18/2023] Open
Abstract
The Cdk8 kinase module (CKM) of the multi-subunit mediator complex plays an essential role in cell fate decisions in response to different environmental cues. In the budding yeast S. cerevisiae, the CKM consists of four conserved subunits (cyclin C and its cognate cyclin-dependent kinase Cdk8, Med13, and Med12) and predominantly negatively regulates a subset of stress responsive genes (SRG’s). Derepression of these SRG’s is accomplished by disassociating the CKM from the mediator, thus allowing RNA polymerase II-directed transcription. In response to cell death stimuli, cyclin C translocates to the mitochondria where it induces mitochondrial hyper-fission and promotes regulated cell death (RCD). The nuclear release of cyclin C requires Med13 destruction by the ubiquitin-proteasome system (UPS). In contrast, to protect the cell from RCD following SRG induction induced by nutrient deprivation, cyclin C is rapidly destroyed by the UPS before it reaches the cytoplasm. This enables a survival response by two mechanisms: increased ATP production by retaining reticular mitochondrial morphology and relieving CKM-mediated repression on autophagy genes. Intriguingly, nitrogen starvation also stimulates Med13 destruction but through a different mechanism. Rather than destruction via the UPS, Med13 proteolysis occurs in the vacuole (yeast lysosome) via a newly identified Snx4-assisted autophagy pathway. Taken together, these findings reveal that the CKM regulates cell fate decisions by both transcriptional and non-transcriptional mechanisms, placing it at a convergence point between cell death and cell survival pathways.
Collapse
|
5
|
Gigli-Bisceglia N, Hamann T. Outside-in control - does plant cell wall integrity regulate cell cycle progression? PHYSIOLOGIA PLANTARUM 2018; 164:82-94. [PMID: 29652097 DOI: 10.1111/ppl.12744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 05/12/2023]
Abstract
During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity (CWI) while, simultaneously, CWI can influence cellular processes. In yeast and animal cells such a bidirectional relationship also exists between the yeast/animal extracellular matrices and the cell cycle. In yeast, the CWI maintenance mechanism and a dedicated plasma membrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, the knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extracellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant CWI maintenance mechanism might also control cell cycle activity in plant cells.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Thorsten Hamann
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
6
|
Xie JL, Qin L, Miao Z, Grys BT, Diaz JDLC, Ting K, Krieger JR, Tong J, Tan K, Leach MD, Ketela T, Moran MF, Krysan DJ, Boone C, Andrews BJ, Selmecki A, Ho Wong K, Robbins N, Cowen LE. The Candida albicans transcription factor Cas5 couples stress responses, drug resistance and cell cycle regulation. Nat Commun 2017; 8:499. [PMID: 28894103 PMCID: PMC5593949 DOI: 10.1038/s41467-017-00547-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/06/2017] [Indexed: 12/16/2022] Open
Abstract
The capacity to coordinate environmental sensing with initiation of cellular responses underpins microbial survival and is crucial for virulence and stress responses in microbial pathogens. Here we define circuitry that enables the fungal pathogen Candida albicans to couple cell cycle dynamics with responses to cell wall stress induced by echinocandins, a front-line class of antifungal drugs. We discover that the C. albicans transcription factor Cas5 is crucial for proper cell cycle dynamics and responses to echinocandins, which inhibit β-1,3-glucan synthesis. Cas5 has distinct transcriptional targets under basal and stress conditions, is activated by the phosphatase Glc7, and can regulate the expression of target genes in concert with the transcriptional regulators Swi4 and Swi6. Thus, we illuminate a mechanism of transcriptional control that couples cell wall integrity with cell cycle regulation, and uncover circuitry governing antifungal drug resistance.Cas5 is a transcriptional regulator of responses to cell wall stress in the fungal pathogen Candida albicans. Here, Xie et al. show that Cas5 also modulates cell cycle dynamics and responses to antifungal drugs.
Collapse
Affiliation(s)
- Jinglin L Xie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
| | - Longguang Qin
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Zhengqiang Miao
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Ben T Grys
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, M5S 3E1
| | - Jacinto De La Cruz Diaz
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, 14642, USA
| | - Kenneth Ting
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
| | - Jonathan R Krieger
- The Hospital for Sick Children, SPARC Biocentre, Toronto, ON, Canada, M5G 0A4
| | - Jiefei Tong
- The Hospital for Sick Children, Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada, M5G 0A4
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Michelle D Leach
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Abderdeen, AB252ZD, UK
| | - Troy Ketela
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
| | - Michael F Moran
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- The Hospital for Sick Children, SPARC Biocentre, Toronto, ON, Canada, M5G 0A4
- The Hospital for Sick Children, Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada, M5G 0A4
| | - Damian J Krysan
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, 14642, USA
- Department of Pediatrics and Microbiology/Immunology, University of Rochester, Rochester, NY, 14642, USA
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, M5S 3E1
| | - Brenda J Andrews
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, M5S 3E1
| | - Anna Selmecki
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1.
| |
Collapse
|
7
|
Adames NR, Schuck PL, Chen KC, Murali TM, Tyson JJ, Peccoud J. Experimental testing of a new integrated model of the budding yeast Start transition. Mol Biol Cell 2015; 26:3966-84. [PMID: 26310445 PMCID: PMC4710230 DOI: 10.1091/mbc.e15-06-0358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/19/2015] [Indexed: 01/29/2023] Open
Abstract
Mathematical modeling of the cell cycle has unveiled recurrent features and emergent behaviors of cellular networks. Constructing new mutants and performing experimental tests during development of a new model of the budding yeast cell cycle yields a more efficient modeling process and results in several testable hypotheses. The cell cycle is composed of bistable molecular switches that govern the transitions between gap phases (G1 and G2) and the phases in which DNA is replicated (S) and partitioned between daughter cells (M). Many molecular details of the budding yeast G1–S transition (Start) have been elucidated in recent years, especially with regard to its switch-like behavior due to positive feedback mechanisms. These results led us to reevaluate and expand a previous mathematical model of the yeast cell cycle. The new model incorporates Whi3 inhibition of Cln3 activity, Whi5 inhibition of SBF and MBF transcription factors, and feedback inhibition of Whi5 by G1–S cyclins. We tested the accuracy of the model by simulating various mutants not described in the literature. We then constructed these novel mutant strains and compared their observed phenotypes to the model’s simulations. The experimental results reported here led to further changes of the model, which will be fully described in a later article. Our study demonstrates the advantages of combining model design, simulation, and testing in a coordinated effort to better understand a complex biological network.
Collapse
Affiliation(s)
- Neil R Adames
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061
| | - P Logan Schuck
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061
| | - Katherine C Chen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061 ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, VA 24061
| | - John J Tyson
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061 Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
| | - Jean Peccoud
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061 ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
8
|
Snf1/AMPK promotes SBF and MBF-dependent transcription in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3254-3264. [DOI: 10.1016/j.bbamcr.2013.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 01/11/2023]
|
9
|
Cheng C, Fu Y, Shen L, Gerstein M. Identification of yeast cell cycle regulated genes based on genomic features. BMC SYSTEMS BIOLOGY 2013; 7:70. [PMID: 23895232 PMCID: PMC3734186 DOI: 10.1186/1752-0509-7-70] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/09/2013] [Indexed: 11/13/2022]
Abstract
Background Time-course microarray experiments have been widely used to identify cell cycle regulated genes. However, the method is not effective for lowly expressed genes and is sensitive to experimental conditions. To complement microarray experiments, we propose a computational method to predict cell cycle regulated genes based on their genomic features – transcription factor binding and motif profiles. Results Through integrating gene-expression data with ChIP-chip binding and putative binding sites of transcription factors, our method shows high accuracy in discriminating yeast cell cycle regulated genes from non-cell cycle regulated ones. We predict 211 novel cell cycle regulated genes. Our model rediscovers the main cell cycle transcription factors and provides new insights into the regulatory mechanisms. The model also reveals a regulatory circuit mediated by a number of key cell cycle regulators. Conclusions Our model suggests that the periodical pattern of cell cycle genes is largely coded in their promoter regions, which can be captured by motif and transcription factor binding data. Cell cycle is controlled by a relatively small number of master transcription factors. The concept of genomic feature based method can be readily extended to human cell cycle process and other transcriptionally regulated processes, such as tissue-specific expression.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|
10
|
Repression of G1/S transcription is mediated via interaction of the GTB motifs of Nrm1 and Whi5 with Swi6. Mol Cell Biol 2013; 33:1476-86. [PMID: 23382076 DOI: 10.1128/mcb.01333-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In Saccharomyces cerevisiae, G1/S transcription factors MBF and SBF regulate a large family of genes important for entry to the cell cycle and DNA replication and repair. Their regulation is crucial for cell viability, and it is conserved throughout evolution. MBF and SBF consist of a common component, Swi6, and a DNA-specific binding protein, Mbp1 and Swi4, respectively. Transcriptional repressors bind to and regulate the activity of both transcription factors. Whi5 binds to SBF and represses its activity at the beginning of the G1 phase to prevent early activation. Nrm1 binds to MBF to repress transcription as cells progress through S phase. Here, we describe a protein motif, the GTB motif (for G1/S transcription factor binding), in Nrm1 and Whi5 that is required to bind to the transcription factors. We also identify a region of the carboxy terminus of Swi6 that is required for Nrm1 and Whi5 binding to their target transcription factors and show that mutation of this region overrides the repression of MBF- and SBF-regulated genes by Nrm1 and Whi5. Finally, we show that the GTB motif is the core of a functional module that is necessary and sufficient for targeting of the transcription factors by their cognate repressors.
Collapse
|
11
|
Hansen L, Mariño-Ramírez L, Landsman D. Differences in local genomic context of bound and unbound motifs. Gene 2012; 506:125-34. [PMID: 22692006 PMCID: PMC3412921 DOI: 10.1016/j.gene.2012.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/04/2012] [Indexed: 11/25/2022]
Abstract
Understanding gene regulation is a major objective in molecular biology research. Frequently, transcription is driven by transcription factors (TFs) that bind to specific DNA sequences. These motifs are usually short and degenerate, rendering the likelihood of multiple copies occurring throughout the genome due to random chance as high. Despite this, TFs only bind to a small subset of sites, thus prompting our investigation into the differences between motifs that are bound by TFs and those that remain unbound. Here we constructed vectors representing various chromatin- and sequence-based features for a published set of bound and unbound motifs representing nine TFs in the budding yeast Saccharomyces cerevisiae. Using a machine learning approach, we identified a set of features that can be used to discriminate between bound and unbound motifs. We also discovered that some TFs bind most or all of their strong motifs in intergenic regions. Our data demonstrate that local sequence context can be strikingly different around motifs that are bound compared to motifs that are unbound. We concluded that there are multiple combinations of genomic features that characterize bound or unbound motifs.
Collapse
Affiliation(s)
- Loren Hansen
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8900 Rockville Pike, Bethesda, MD 20894
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Leonardo Mariño-Ramírez
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8900 Rockville Pike, Bethesda, MD 20894
- PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia
| | - David Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8900 Rockville Pike, Bethesda, MD 20894
| |
Collapse
|
12
|
Kaluarachchi Duffy S, Friesen H, Baryshnikova A, Lambert JP, Chong YT, Figeys D, Andrews B. Exploring the yeast acetylome using functional genomics. Cell 2012; 149:936-48. [PMID: 22579291 DOI: 10.1016/j.cell.2012.02.064] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/24/2012] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Lysine acetylation is a dynamic posttranslational modification with a well-defined role in regulating histones. The impact of acetylation on other cellular functions remains relatively uncharacterized. We explored the budding yeast acetylome with a functional genomics approach, assessing the effects of gene overexpression in the absence of lysine deacetylases (KDACs). We generated a network of 463 synthetic dosage lethal (SDL) interactions involving class I and II KDACs, revealing many cellular pathways regulated by different KDACs. A biochemical survey of genes interacting with the KDAC RPD3 identified 72 proteins acetylated in vivo. In-depth analysis of one of these proteins, Swi4, revealed a role for acetylation in G1-specific gene expression. Acetylation of Swi4 regulates interaction with its partner Swi6, both components of the SBF transcription factor. This study expands our view of the yeast acetylome, demonstrates the utility of functional genomic screens for exploring enzymatic pathways, and provides functional information that can be mined for future studies.
Collapse
Affiliation(s)
- Supipi Kaluarachchi Duffy
- Department of Molecular Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Bi E, Park HO. Cell polarization and cytokinesis in budding yeast. Genetics 2012; 191:347-87. [PMID: 22701052 PMCID: PMC3374305 DOI: 10.1534/genetics.111.132886] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022] Open
Abstract
Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field.
Collapse
Affiliation(s)
- Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|
14
|
A framework for mapping, visualisation and automatic model creation of signal-transduction networks. Mol Syst Biol 2012; 8:578. [PMID: 22531118 PMCID: PMC3361003 DOI: 10.1038/msb.2012.12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
An intuitive formalism for reconstructing cellular networks from empirical data is presented, and used to build a comprehensive yeast MAP kinase network. The accompanying rxncon software tool can convert networks to a range of standard graphical formats and mathematical models. ![]()
Network mapping at the granularity of empirical data that largely avoids combinatorial complexity Automatic visualisation and model generation with the rxncon open source software tool Visualisation in a range of formats, including all three SBGN formats, as well as contingency matrix or regulatory graph Comprehensive and completely references map of the yeast MAP kinase network in the rxncon format
Intracellular signalling systems are highly complex. This complexity makes handling, analysis and visualisation of available knowledge a major challenge in current signalling research. Here, we present a novel framework for mapping signal-transduction networks that avoids the combinatorial explosion by breaking down the network in reaction and contingency information. It provides two new visualisation methods and automatic export to mathematical models. We use this framework to compile the presently most comprehensive map of the yeast MAP kinase network. Our method improves previous strategies by combining (I) more concise mapping adapted to empirical data, (II) individual referencing for each piece of information, (III) visualisation without simplifications or added uncertainty, (IV) automatic visualisation in multiple formats, (V) automatic export to mathematical models and (VI) compatibility with established formats. The framework is supported by an open source software tool that facilitates integration of the three levels of network analysis: definition, visualisation and mathematical modelling. The framework is species independent and we expect that it will have wider impact in signalling research on any system.
Collapse
|
15
|
Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 2012; 189:1145-75. [PMID: 22174182 DOI: 10.1534/genetics.111.128264] [Citation(s) in RCA: 617] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed.
Collapse
|
16
|
Weile J, Pocock M, Cockell SJ, Lord P, Dewar JM, Holstein EM, Wilkinson D, Lydall D, Hallinan J, Wipat A. Customizable views on semantically integrated networks for systems biology. Bioinformatics 2011; 27:1299-306. [PMID: 21414991 PMCID: PMC3077072 DOI: 10.1093/bioinformatics/btr134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 02/10/2011] [Accepted: 03/09/2011] [Indexed: 12/29/2022] Open
Abstract
MOTIVATION The rise of high-throughput technologies in the post-genomic era has led to the production of large amounts of biological data. Many of these datasets are freely available on the Internet. Making optimal use of these data is a significant challenge for bioinformaticians. Various strategies for integrating data have been proposed to address this challenge. One of the most promising approaches is the development of semantically rich integrated datasets. Although well suited to computational manipulation, such integrated datasets are typically too large and complex for easy visualization and interactive exploration. RESULTS We have created an integrated dataset for Saccharomyces cerevisiae using the semantic data integration tool Ondex, and have developed a view-based visualization technique that allows for concise graphical representations of the integrated data. The technique was implemented in a plug-in for Cytoscape, called OndexView. We used OndexView to investigate telomere maintenance in S. cerevisiae. AVAILABILITY The Ondex yeast dataset and the OndexView plug-in for Cytoscape are accessible at http://bsu.ncl.ac.uk/ondexview.
Collapse
Affiliation(s)
- Jochen Weile
- School of Computing Science, Faculty of Science Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim KY, Levin DE. Mpk1 MAPK association with the Paf1 complex blocks Sen1-mediated premature transcription termination. Cell 2011; 144:745-56. [PMID: 21376235 DOI: 10.1016/j.cell.2011.01.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/16/2010] [Accepted: 01/26/2011] [Indexed: 12/29/2022]
Abstract
The Mpk1 MAPK of the yeast cell wall integrity pathway uses a noncatalytic mechanism to activate transcription of stress-induced genes by recruitment of initiation factors to target promoters. We show here that Mpk1 additionally serves a function in transcription elongation that is also independent of its catalytic activity. This function is mediated by an interaction between Mpk1 and the Paf1 subunit of the Paf1C elongation complex. A mutation in Paf1 that blocks this interaction causes a specific defect in transcription elongation of an Mpk1-induced gene, which results from Sen1-dependent premature termination through a Nab3-binding site within the promoter-proximal region of the gene. Our findings reveal a regulatory mechanism in which Mpk1 overcomes transcriptional attenuation by blocking recruitment of the Sen1-Nrd1-Nab3 termination complex to the elongating polymerase. Finally, we demonstrate that this mechanism is conserved in an interaction between the human ERK5 MAPK and human Paf1.
Collapse
Affiliation(s)
- Ki-Young Kim
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | | |
Collapse
|
18
|
Taylor IA, Goldstone DC, Pala P, Haire LF, Smerdon SJ. Structure of the amino-terminal domain from the cell-cycle regulator Swi6. Proteins 2011; 78:2861-5. [PMID: 20635421 DOI: 10.1002/prot.22795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ian A Taylor
- Division of Molecular Structure, National Institute for Medical Research, Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | |
Collapse
|
19
|
Spt10 and Swi4 control the timing of histone H2A/H2B gene activation in budding yeast. Mol Cell Biol 2010; 31:557-72. [PMID: 21115727 DOI: 10.1128/mcb.00909-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The expression of the histone genes is regulated during the cell cycle to provide histones for nucleosome assembly during DNA replication. In budding yeast, histones H2A and H2B are expressed from divergent promoters at the HTA1-HTB1 and HTA2-HTB2 loci. Here, we show that the major activator of HTA1-HTB1 is Spt10, a sequence-specific DNA binding protein with a putative histone acetyltransferase (HAT) domain. Spt10 binds to two pairs of upstream activation sequence (UAS) elements in the HTA1-HTB1 promoter: UAS1 and UAS2 drive HTA1 expression, and UAS3 and UAS4 drive HTB1 expression. UAS3 and UAS4 also contain binding sites for the cell cycle regulator SBF (an Swi4-Swi6 heterodimer), which overlap the Spt10 binding sites. The binding of Spt10 and binding of SBF to UAS3 and UAS4 are mutually exclusive in vitro. Both SBF and Spt10 are bound in cells arrested with α-factor, apparently awaiting a signal to activate transcription. Soon after the removal of α-factor, SBF initiates a small, early peak of HTA1 and HTB1 transcription, which is followed by a much larger peak due to Spt10. Both activators dissociate from the HTA1-HTB1 promoter after expression has been activated. Thus, SBF and Spt10 cooperate to control the timing of HTA1-HTB1 expression.
Collapse
|
20
|
Kim KY, Levin DE. Transcriptional reporters for genes activated by cell wall stress through a non-catalytic mechanism involving Mpk1 and SBF. Yeast 2010; 27:541-8. [PMID: 20641022 DOI: 10.1002/yea.1782] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The Mpk1 MAP kinase of the cell wall integrity (CWI) signalling pathway induces transcription of the FKS2 gene in response to cell wall stress through a non-catalytic mechanism that involves stable association of Mpk1 with the Swi4 transcription factor. This dimeric complex binds to a Swi4 recognition site in the FKS2 promoter. The Swi6 transcription factor is also required to bind this ternary complex for transcription initiation to ensue. In this context, the Mlp1 pseudokinase serves a redundant function with Mpk1. We have identified three additional genes, CHA1, YLR042c and YKR013w, that are induced by cell wall stress through the same mechanism. We report on the behaviour of several promoter-lacZ reporter plasmids designed to detect cell wall stress transcription through this pathway.
Collapse
Affiliation(s)
- Ki-Young Kim
- Department of Molecular and Cell Biology, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | | |
Collapse
|
21
|
Correia I, Alonso-Monge R, Pla J. MAPK cell-cycle regulation in Saccharomyces cerevisiae and Candida albicans. Future Microbiol 2010; 5:1125-41. [DOI: 10.2217/fmb.10.72] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cell cycle is the sequential set of events that living cells undergo in order to duplicate. This process must be tightly regulated as alterations may lead to diseases such as cancer. The molecular events that control the cell cycle are directional and involve regulatory molecules such as cyclins and cyclin-dependent kinases (CDKs). The budding yeast Saccharomyces cerevisiae has become a model to study this complex system since it shares several mechanisms with higher eukaryotes. Signal transduction pathways are biochemical mechanisms that sense environmental changes and there is recent evidence that they control the progression through the cell cycle in response to several stimuli. In response to pheromone, the budding yeast arrests the cell cycle in the G1 phase at the START stage. Activation of the pheromone response pathway leads to the phosphorylation of Far1, which inhibits the function of complexes formed by G1 cyclins (Cln1 and Cln2) and the CDK (Cdc28), blocking the transition to the S phase. This response prepares the cells to fuse cytoplasms and nuclei to generate a diploid cell. Activation of the Hog1 MAP kinase in response to osmotic stress or arsenite leads to the transient arrest of the cell cycle in G1 phase, which is mediated by direct phosphorylation of the CDK inhibitor, Sic1, and by downregulation of cyclin expression. Osmotic stress also induces a delay in G2 phase by direct phosphorylation of Hsl7 via Hog1, which results in the accumulation of Swe1. As a consequence, cell cycle arrest allows cells to survive upon stress. Finally, cell wall damage can induce cell cycle arrest at G2 via the cell integrity MAPK Slt2. By linking MAPK signal transduction pathways to the cell cycle machinery, a tight and precise control of the cell division takes place in response to environmental changes. Research into similar MAPK-mediated cell cycle regulation in the opportunistic pathogen Candida albicans may result in the development of new antifungal therapies.
Collapse
Affiliation(s)
- Inês Correia
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | | |
Collapse
|
22
|
Kim KY, Truman AW, Caesar S, Schlenstedt G, Levin DE. Yeast Mpk1 cell wall integrity mitogen-activated protein kinase regulates nucleocytoplasmic shuttling of the Swi6 transcriptional regulator. Mol Biol Cell 2010; 21:1609-19. [PMID: 20219973 PMCID: PMC2861618 DOI: 10.1091/mbc.e09-11-0923] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The yeast SBF transcription factor is a heterodimer comprised of Swi4 and Swi6 that has a well defined role in cell cycle-specific transcription. SBF serves a second function in the transcriptional response to cell wall stress in which activated Mpk1 mitogen-activated protein kinase of the cell wall integrity signaling pathway forms a complex with Swi4, the DNA binding subunit of SBF, conferring upon Swi4 the ability to bind DNA and activate transcription of FKS2. Although Mpk1-Swi4 complex formation and transcriptional activation of FKS2 does not require Mpk1 catalytic activity, Swi6 is phosphorylated by Mpk1 and must be present in the Mpk1-Swi4 complex for transcriptional activation of FKS2. Here, we find that Mpk1 regulates Swi6 nucleocytoplasmic shuttling in a biphasic manner. First, formation of the Mpk1-Swi4 complex recruits Swi6 to the nucleus for transcriptional activation. Second, Mpk1 negatively regulates Swi6 by phosphorylation on Ser238, which inhibits nuclear entry. Ser238 neighbors a nuclear localization signal (NLS) whose function is blocked by phosphorylation at Ser238 in a manner similar to the regulation by Cdc28 of another Swi6 NLS, revealing a mechanism for the integration of multiple signals to a single endpoint. Finally, the Kap120 beta-importin binds the Mpk1-regulated Swi6 NLS but not the Cdc28-regulated NLS.
Collapse
Affiliation(s)
- Ki-Young Kim
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
23
|
Swamy KBS, Cho CY, Chiang S, Tsai ZTY, Tsai HK. Impact of DNA-binding position variants on yeast gene expression. Nucleic Acids Res 2010; 37:6991-7001. [PMID: 19767613 PMCID: PMC2790881 DOI: 10.1093/nar/gkp743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transcription factors (TFs) regulate gene expression by binding to specific binding sites (TFBSs) in gene promoters. TFBS motifs may contain one or more variable positions. Although the prevailing assumption is that nucleotide variants at such positions are functionally equivalent, there is increasing evidence that such variants play a role in regulation of gene expression. In this article, we propose a method for studying the relationship between the expression of target genes and nucleotide variants in TFBS motifs at a genome-wide scale in Saccharomyces cerevisiae, especially the combinatorial effects of variants at two positions. Our analysis shows that nucleotide variations in more than one-third of variable positions and in 20% of dependent position pairs are highly correlated to gene expression. We define such positions as 'functional'. However, some positions are only functional as dependent pairs, but not individually. In addition, a significant proportion of the functional positions have been well conserved across all yeast-related species studied. We also find that some positions require the presence of co-occurring TFs, while others maintain their functionality in the absence of a co-occurring TF. Our analysis supports the importance of nucleotide variants at variable positions of TFBSs in gene regulation.
Collapse
Affiliation(s)
- Krishna B S Swamy
- Institute of Information Science, National Yang-Ming University, Taiwan
| | | | | | | | | |
Collapse
|
24
|
Kainth P, Andrews B. Quantitative cell array screening to identify regulators of gene expression. Brief Funct Genomics 2009; 9:13-23. [PMID: 19952074 DOI: 10.1093/bfgp/elp047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the last decade or so, advances in genome-scale technologies have allowed systematic and detailed analysis of gene function. The experimental accessibility of budding yeast makes it a test-bed for technology development and application of new functional genomic tools and resources that pave the way for comparable efforts in higher eukaryotes. In this article, we review advances in reporter screening technology to discover trans-acting regulators of promoters (or cis-elements) of interest in the context of a novel functional genomics approach called Reporter Synthetic Genetic Array (R-SGA) analysis. We anticipate that this methodology will enable researchers to collect quantitative data on hundreds of gene expression pathways in an effort to better understand transcriptional regulatory networks.
Collapse
Affiliation(s)
- Pinay Kainth
- Banting and Best Department of Medical Research, Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario, Canada
| | | |
Collapse
|
25
|
A general life-death selection strategy for dissecting protein functions. Nat Methods 2009; 6:813-6. [PMID: 19820714 DOI: 10.1038/nmeth.1389] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 08/18/2009] [Indexed: 11/08/2022]
Abstract
Clonal selection strategies are central tools in molecular biology. We developed a general strategy to dissect protein functions through positive and negative clonal selection for protein-protein interactions, based on a protein-fragment complementation assay using Saccharomyces cerevisiae cytosine deaminase as a reporter. We applied this method to mutational or chemical disruption of protein-protein interactions in yeast and to dissection of the functions of an allosterically activated transcription factor, Swi6.
Collapse
|
26
|
Mechanism of Mpk1 mitogen-activated protein kinase binding to the Swi4 transcription factor and its regulation by a novel caffeine-induced phosphorylation. Mol Cell Biol 2009; 29:6449-61. [PMID: 19805511 DOI: 10.1128/mcb.00794-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Mpk1 mitogen-activated protein kinase (MAPK) of the cell wall integrity signaling pathway uses a noncatalytic mechanism to activate the SBF (Swi4/Swi6) transcription factor. Active Mpk1 forms a complex with Swi4, the DNA-binding subunit of SBF, conferring the ability to bind DNA. Because SBF activation is independent of Mpk1 catalytic activity but requires Mpk1 to be in an active conformation, we sought to understand how Mpk1 interacts with Swi4. Mutational analysis revealed that binding and activation of Swi4 by Mpk1 requires an intact D-motif-binding site, a docking surface common to MAPKs that resides distal to the phosphorylation loop but does not require the substrate-binding site, revealing a novel mechanism for MAPK target regulation. Additionally, we found that Mpk1 binds near the autoinhibitory C terminus of Swi4, suggesting an activation mechanism in which Mpk1 substitutes for Swi6 in promoting Swi4 DNA binding. Finally, we show that caffeine is an atypical activator of cell wall integrity signaling, because it induces phosphorylation of the Mpk1 C-terminal extension at Ser423 and Ser428. These phosphorylations were dependent on the DNA damage checkpoint kinases, Mec1/Tel1 and Rad53. Phosphorylation of Ser423 specifically blocked SBF activation by preventing Mpk1 association with Swi4, revealing a novel mechanism for regulating MAPK target specificity.
Collapse
|
27
|
Yeast Mpk1 mitogen-activated protein kinase activates transcription through Swi4/Swi6 by a noncatalytic mechanism that requires upstream signal. Mol Cell Biol 2008; 28:2579-89. [PMID: 18268013 DOI: 10.1128/mcb.01795-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall integrity mitogen-activated protein kinase (MAPK) cascade of Saccharomyces cerevisiae drives changes in gene expression in response to cell wall stress. We show that the MAPK of this pathway (Mpk1) and its pseudokinase paralog (Mlp1) use a noncatalytic mechanism to activate transcription of the FKS2 gene. Transcriptional activation of FKS2 was dependent on the Swi4/Swi6 (SBF) transcription factor and on an activating signal to Mpk1 but not on protein kinase activity. Activated (phosphorylated) Mpk1 and Mlp1 were detected in a complex with Swi4 and Swi6 at the FKS2 promoter. Mpk1 association with Swi4 in vivo required phosphorylation of Mpk1. Promoter association of Mpk1 and the Swi4 DNA-binding subunit of SBF were codependent but did not require Swi6, indicating that the MAPK confers DNA-binding ability to Swi4. Based on these data, we propose a model in which phosphorylated Mpk1 or Mlp1 forms a dimeric complex with Swi4 that is competent to associate with the FKS2 promoter. This complex then recruits Swi6 to activate transcription. Finally, we show that human ERK5, a functional ortholog of Mpk1, is similarly capable of driving FKS2 expression in the absence of protein kinase activity, suggesting that this mammalian MAPK may also have a noncatalytic function in vivo.
Collapse
|
28
|
Datta D, Zhao H. Statistical methods to infer cooperative binding among transcription factors in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2007; 24:545-52. [PMID: 17989095 DOI: 10.1093/bioinformatics/btm523] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Transcription factors regulate transcription in prokaryotes and eukaryotes by binding to specific DNA sequences in the regulatory regions of the genes. This regulation usually occurs in a coordinated manner involving multiple transcription factors. Genome-wide location data, also called ChIP-chip data, have enabled researchers to infer the binding sites for individual regulatory proteins. However, current methods to infer binding sites, such as simple thresholding based on p-values, are not optimal for a number of study objectives like combinatorial regulation, leading to potential loss of information. Hence, there is a need to develop more efficient statistical methods for analyzing such data. RESULTS We propose to use log-linear models to study cooperative binding among transcription factors and have developed an Expectation-Maximization algorithm for statistical inferences. Our method is advantageous over simple thresholding methods both based on simulation and real data studies. We apply our method to infer the cooperative network of 204 regulators in Rich Medium and a subset of them in four different environmental conditions. Our results indicate that the cooperative network is condition specific; for a set of regulators, the network structure changes under different environmental conditions. AVAILABILITY Our program is available at http://bioinformatics.med.yale.edu/TFcooperativity.
Collapse
Affiliation(s)
- Debayan Datta
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
29
|
Balaji S, Babu MM, Iyer LM, Luscombe NM, Aravind L. Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. J Mol Biol 2006; 360:213-27. [PMID: 16762362 DOI: 10.1016/j.jmb.2006.04.029] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 04/01/2006] [Accepted: 04/14/2006] [Indexed: 11/23/2022]
Abstract
Studies on various model systems have shown that a relatively small number of transcription factors can set up strikingly complex spatial and temporal patterns of gene expression. This is achieved mainly by means of combinatorial or differential gene regulation, i.e. regulation of a gene by two or more transcription factors simultaneously or under different conditions. While a number of specific molecular details of the mechanisms of combinatorial regulation have emerged, our understanding of the general principles of combinatorial regulation on a genomic scale is still limited. In this work, we approach this problem by using the largest assembled transcriptional regulatory network for yeast. A specific network transformation procedure was used to obtain the co-regulatory network describing the set of all significant associations among transcription factors in regulating common target genes. Analysis of the global properties of the co-regulatory network suggested the presence of two classes of regulatory hubs: (i) those that make many co-regulatory associations, thus serving as integrators of disparate cellular processes; and (ii) those that make few co-regulatory associations, and thereby specifically regulate one or a few major cellular processes. Investigation of the local structure of the co-regulatory network revealed a significantly higher than expected modular organization, which might have emerged as a result of selection by functional constraints. These constraints probably emerge from the need for extensive modular backup and the requirement to integrate transcriptional inputs of multiple distinct functional systems. We then explored the transcriptional control of three major regulatory systems (ubiquitin signaling, protein kinase and transcriptional regulation systems) to understand specific aspects of their upstream control. As a result, we observed that ubiquitin E3 ligases are regulated primarily by unique transcription factors, whereas E1 and E2 enzymes share common transcription factors to a much greater extent. This suggested that the deployment of E3s unique to specific functional contexts may be mediated significantly at the transcriptional level. Likewise, we were able to uncover evidence for much higher upstream transcription control of transcription factors themselves, in comparison to components of other regulatory systems. We believe that the results presented here might provide a framework for testing the role of co-regulatory associations in eukaryotic transcriptional control.
Collapse
Affiliation(s)
- S Balaji
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda 20894, USA.
| | | | | | | | | |
Collapse
|
30
|
Raithatha SA, Stuart DT. Meiosis-specific regulation of the Saccharomyces cerevisiae S-phase cyclin CLB5 is dependent on MluI cell cycle box (MCB) elements in its promoter but is independent of MCB-binding factor activity. Genetics 2005; 169:1329-42. [PMID: 15654101 PMCID: PMC1449548 DOI: 10.1534/genetics.104.036103] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In proliferating S. cerevisiae, genes whose products function in DNA replication are regulated by the MBF transcription factor composed of Mbp1 and Swi6 that binds to consensus MCB sequences in target promoters. We find that during meiotic development a subset of DNA replication genes exemplified by TMP1 and RNR1 are regulated by Mbp1. Deletion of Mbp1 deregulated TMP1 and RNR1 but did not interfere with premeiotic S-phase, meiotic recombination, or spore formation. Surprisingly, deletion of MBP1 had no effect on the expression of CLB5, which is purportedly controlled by MBF. Extensive analysis of the CLB5 promoter revealed that the gene is largely regulated by elements within a 100-bp fragment containing a cluster of MCB sequences. Surprisingly, induction of the CLB5 promoter requires MCB sequences, but not Mbp1, implying that another MCB-binding factor may exist in cells undergoing meiosis. In addition, full activation of CLB5 during meiosis requires Clb5 activity, suggesting that CLB5 may be regulated by a positive feedback mechanism. We further demonstrate that during meiosis MCBs function as effective transcriptional activators independent of MBP1.
Collapse
|
31
|
Geymonat M, Spanos A, Wells GP, Smerdon SJ, Sedgwick SG. Clb6/Cdc28 and Cdc14 regulate phosphorylation status and cellular localization of Swi6. Mol Cell Biol 2004; 24:2277-85. [PMID: 14993267 PMCID: PMC355859 DOI: 10.1128/mcb.24.6.2277-2285.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nuclear export of the transcription factor Swi6 during the budding yeast Saccharomyces cerevisiae cell cycle is known to require phosphorylation of the Swi6 serine 160 residue. We show that Clb6/Cdc28 kinase is required for this nuclear export. Furthermore, Cdc28 combined with the S-phase cyclin Clb6 specifically phosphorylates serine 160 of Swi6 in vitro. Nuclear import of Swi6 occurs concomitantly with dephosphorylation of serine 160 in late M phase. We show that Cdc14 phosphatase, the principal effector of the mitotic exit network, can trigger nuclear import of Swi6 in vivo and that Cdc14 dephosphorylates Swi6 at serine 160 in vitro. Taken together, these observations show how Swi6 dephosphorylation and phosphorylation are integrated into changes of Cdc28 activity governing entry and exit from the G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Marco Geymonat
- Division of Yeast Genetics, National Institute for Medical Research, London NW7 1AA, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Taneda T, Kikuchi A. Genetic analysis of RSC58, which encodes a component of a yeast chromatin remodeling complex, and interacts with the transcription factor Swi6. Mol Genet Genomics 2004; 271:479-89. [PMID: 15034784 DOI: 10.1007/s00438-004-0999-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 02/20/2004] [Indexed: 11/26/2022]
Abstract
Before transcription can begin, the chromatin structure must be rearranged at the nucleosome level. In yeast the nucleosome remodeling complex RSC is involved in this process and it is essential for growth. Recent analysis of the RSC by mass spectrometry has suggested that the product of YLR033w, an essential gene of unknown function, is a novel component of the complex, and the gene has been renamed RSC58. Rsc58 is predicted to be 502 amino acids long. We have isolated five temperature-sensitive mutations in RSC58 and studied the cellular function of the gene. Our major findings are the following. (1) Two of the alleles have a frameshift mutation near the 3' end of the gene, in codons 482 and 485, respectively. The first mutation is associated with the more severe phenotype. This is compatible with the finding that removal of the C-terminal 25 residues of Rsc58 is lethal to cells. These results suggest that C-terminal region is essential for Rsc58 function. (2) RSC4, which codes for another member of the RSC, was found to be a multicopy suppressor of the phenotype of one of the temperature-sensitive mutants. (3) Two-hybrid analysis identified Swi6, a transcription factor, as a candidate interactor with Rsc58. An interaction between Rsc58 and Swi6 is also suggested by the fact that rsc58-ts Deltaswi6 double mutants show a more severe growth defect than either mutation alone. These results suggest the possibility that Rsc58 mediates between nucleosome remodeling and the initiation of transcription.
Collapse
Affiliation(s)
- T Taneda
- Division of Molecular Mycology and Medicine, Center for Neural Disease and Cancer, Graduate School of Medicine, Nagoya University, Tsurumai-cho 65, Showa-ku, 466-8550 Nagoya, Japan
| | | |
Collapse
|
33
|
Harreman MT, Kline TM, Milford HG, Harben MB, Hodel AE, Corbett AH. Regulation of nuclear import by phosphorylation adjacent to nuclear localization signals. J Biol Chem 2004; 279:20613-21. [PMID: 14998990 DOI: 10.1074/jbc.m401720200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many important regulatory proteins, including cell cycle regulators and transcription factors, contain a phosphorylation site within or adjacent to a classic nuclear localization signal (NLS) sequence. Previous studies show that the nuclear localization of these cargoes can be regulated by phosphorylation at these sites. It was hypothesized that this phosphorylation regulates the nuclear import of NLS cargo proteins by modulating the interaction of the cargo with the classic nuclear transport receptor, importin alpha. In this study, we utilize in vitro solution binding assays and in vivo analyses to directly test this model. We demonstrate that mimicking phosphorylation at a site adjacent to an NLS decreases the binding affinity of the NLS for importin alpha. This decrease in cargo affinity for importin alpha correlates with a decrease in nuclear accumulation in vivo. Through these analyses, we show that the cell cycle-dependent nuclear import of the Saccharomyces cerevisiae transcription factor Swi6p correlates with a phosphorylation-dependent change in affinity for importin alpha. Furthermore, we present data using the SV40 NLS to suggest that this form of regulation can be utilized to artificially modulate the nuclear import of a cargo, which is usually constitutively targeted to the nucleus. This work defines one molecular mechanism for regulating nuclear import by the classic NLS-mediated transport pathway.
Collapse
Affiliation(s)
- Michelle T Harreman
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
34
|
Porter SE, Washburn TM, Chang M, Jaehning JA. The yeast pafl-rNA polymerase II complex is required for full expression of a subset of cell cycle-regulated genes. EUKARYOTIC CELL 2002; 1:830-42. [PMID: 12455700 PMCID: PMC126743 DOI: 10.1128/ec.1.5.830-842.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously described an alternative form of RNA polymerase II in yeast lacking the Srb and Med proteins but including Pafl, Cdc73, Hprl, and Ccr4. The Pafl-RNA polymerase II complex (Paf1 complex) acts in the same pathway as the Pkc1-mitogen-activated protein kinase cascade and is required for full expression of many cell wall biosynthetic genes. The expression of several of these cell integrity genes, as well as many other Paf1-requiring genes identified by differential display and microarray analyses, is regulated during the cell cycle. To determine whether the Paf1 complex is required for basal or cyclic expression of these genes, we assayed transcript abundance throughout the cell cycle. We found that transcript abundance for a subset of cell cycle-regulated genes, including CLN1, HO, RNR1, and FAR1, is reduced from 2- to 13-fold in a paf1delta strain, but that this reduction is not promoter dependent. Despite the decreased expression levels, cyclic expression is still observed. We also examined the possibility that the Paf1 complex acts in the same pathway as either SBF (Swi4/Swi6) or MBF (Mbp1/Swi6), the partially redundant cell cycle transcription factors. Consistent with the possibility that they have overlapping essential functions, we found that loss of Paf1 is lethal in combination with loss of Swi4 or Swi6. In addition, overexpression of either Swi4 or Mbp1 suppresses some paf1delta phenotypes. These data establish that the Paf1 complex plays an important role in the essential regulatory pathway controlled by SBF and MBF.
Collapse
Affiliation(s)
- Stephanie E Porter
- Department of Biochemistry and Molecular Genetics and Molecular Biology Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
35
|
Calzada A, Bueno A. Genes involved in the initiation of DNA replication in yeast. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 212:133-207. [PMID: 11804036 DOI: 10.1016/s0074-7696(01)12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Replication and segregation of the information contained in genomic DNA are strictly regulated processes that eukaryotic cells alternate to divide successfully. Experimental work on yeast has suggested that this alternation is achieved through oscillations in the activity of a serine/threonine kinase complex, CDK, which ensures the timely activation of DNA synthesis. At the same time, this CDK-mediated activation sets up the basis of the mechanism that ensures ploidy maintenance in eukaryotes. DNA synthesis is initiated at discrete sites of the genome called origins of replication on which a prereplicative complex (pre-RC) of different protein subunits is formed during the G1 phase of the cell division cycle. Only after pre-RCs are formed is the genome competent to be replicated. Several lines of evidence suggest that CDK activity prevents the assembly of pre-RCs ensuring single rounds of genome replication during each cell division cycle. This review offers a descriptive discussion of the main molecular events that a unicellular eukaryote such as the budding yeast Saccharomyces cerevisiae undergoes to initiate DNA replication.
Collapse
Affiliation(s)
- Arturo Calzada
- Instituto de Microbiología--Bioquímica/Centro de Investigación del Cancer, Departamento de Microbiología y Genética, Edificio Departamental, CSIC/Universidad de Salamanca, Spain
| | | |
Collapse
|
36
|
Sidorova JM, Breeden LL. Precocious S-phase entry in budding yeast prolongs replicative state and increases dependence upon Rad53 for viability. Genetics 2002; 160:123-36. [PMID: 11805050 PMCID: PMC1461931 DOI: 10.1093/genetics/160.1.123] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Precocious entry into S phase due to overproduction of G1 regulators can cause genomic instability. The mechanisms of this phenomenon are largely unknown. We explored the consequences of precocious S phase in yeast by overproducing a deregulated form of Swi4 (Swi4-t). Swi4 is a late G1-specific transcriptional activator that, in complex with Swi6, binds to SCB elements and activates late G1-specific genes, including G1 cyclins. We find that wild-type cells tolerate Swi4-t, whereas checkpoint-deficient rad53-11 cells lose viability within several divisions when Swi4-t is overproduced. Rad53 kinase activity is increased in cells overproducing Swi4-t, indicating activation of the checkpoint. We monitored the transition from G1 to S in cells with Swi4-t and found that there is precocious S-phase entry and that the length of S phase is extended. Moreover, there were more replication intermediates, and firing of at least a subset of origins may have been more extensive in the cells expressing Swi4-t. Our working hypothesis is that Rad53 modulates origin firing based upon growth conditions to optimize the rate of S-phase progression without adversely affecting fidelity. This regulation becomes essential when S phase is influenced by Swi4-t.
Collapse
Affiliation(s)
- Julia M Sidorova
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | |
Collapse
|
37
|
Baetz K, Moffat J, Haynes J, Chang M, Andrews B. Transcriptional coregulation by the cell integrity mitogen-activated protein kinase Slt2 and the cell cycle regulator Swi4. Mol Cell Biol 2001; 21:6515-28. [PMID: 11533240 PMCID: PMC99798 DOI: 10.1128/mcb.21.19.6515-6528.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the heterodimeric transcription factor SBF (for SCB binding factor) is composed of Swi4 and Swi6 and activates gene expression at the G(1)/S-phase transition of the mitotic cell cycle. Cell cycle commitment is associated not only with major alterations in gene expression but also with highly polarized cell growth; the mitogen-activated protein kinase (MAPK) Slt2 is required to maintain cell wall integrity during periods of polarized growth and cell wall stress. We describe experiments aimed at defining the regulatory pathway involving the cell cycle transcription factor SBF and Slt2-MAPK. Gene expression assays and chromatin immunoprecipitation experiments revealed Slt2-dependent recruitment of SBF to the promoters of the G(1) cyclins PCL1 and PCL2 after activation of the Slt2-MAPK pathway. We performed DNA microarray analysis and identified other genes whose expression was reduced in both SLT2 and SWI4 deletion strains. Genes that are sensitive to both Slt2 and Swi4 appear to be uniquely regulated and reveal a role for Swi4, the DNA-binding component of SBF, which is independent of the regulatory subunit Swi6. Some of the Swi4- and Slt2-dependent genes do not require Swi6 for either their expression or for Swi4 localization to their promoters. Consistent with these results, we found a direct interaction between Swi4 and Slt2. Our results establish a new Slt2-dependent mode of Swi4 regulation and suggest roles for Swi4 beyond its prominent role in controlling cell cycle transcription.
Collapse
Affiliation(s)
- K Baetz
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
38
|
Macpherson N, Measday V, Moore L, Andrews B. A yeast taf17 mutant requires the Swi6 transcriptional activator for viability and shows defects in cell cycle-regulated transcription. Genetics 2000; 154:1561-76. [PMID: 10747053 PMCID: PMC1461044 DOI: 10.1093/genetics/154.4.1561] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In Saccharomyces cerevisiae, the Swi6 protein is a component of two transcription factors, SBF and MBF, that promote expression of a large group of genes in the late G1 phase of the cell cycle. Although SBF is required for cell viability, SWI6 is not an essential gene. We performed a synthetic lethal screen to identify genes required for viability in the absence of SWI6 and identified 10 complementation groups of swi6-dependent lethal mutants, designated SLM1 through SLM10. We were most interested in mutants showing a cell cycle arrest phenotype; both slm7-1 swi6Delta and slm8-1 swi6Delta double mutants accumulated as large, unbudded cells with increased 1N DNA content and showed a temperature-sensitive growth arrest in the presence of Swi6. Analysis of the transcript levels of cell cycle-regulated genes in slm7-1 SWI6 mutant strains at the permissive temperature revealed defects in regulation of a subset of cyclin-encoding genes. Complementation and allelism tests showed that SLM7 is allelic with the TAF17 gene, which encodes a histone-like component of the general transcription factor TFIID and the SAGA histone acetyltransferase complex. Sequencing showed that the slm7-1 allele of TAF17 is predicted to encode a version of Taf17 that is truncated within a highly conserved region. The cell cycle and transcriptional defects caused by taf17(slm7-1) are consistent with the role of TAF(II)s as modulators of transcriptional activation and may reflect a role for TAF17 in regulating activation by SBF and MBF.
Collapse
Affiliation(s)
- N Macpherson
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M55 1A8, Canada
| | | | | | | |
Collapse
|
39
|
Baetz K, Andrews B. Regulation of cell cycle transcription factor Swi4 through auto-inhibition of DNA binding. Mol Cell Biol 1999; 19:6729-41. [PMID: 10490612 PMCID: PMC84664 DOI: 10.1128/mcb.19.10.6729] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, two transcription factors, SBF (SCB binding factor) and MBF (MCB binding factor), promote the induction of gene expression at the G(1)/S-phase transition of the mitotic cell cycle. Swi4 and Mbp1 are the DNA binding components of SBF and MBF, respectively. The Swi6 protein is a common subunit of both transcription factors and is presumed to play a regulatory role. SBF binding to its target sequences, the SCBs, is a highly regulated event and requires the association of Swi4 with Swi6 through their C-terminal domains. Swi4 binding to SCBs is restricted to the late M and G(1) phases, when Swi6 is localized to the nucleus. We show that in contrast to Swi6, Swi4 remains nuclear throughout the cell cycle. This finding suggests that the DNA binding domain of Swi4 is inaccessible in the full-length protein when not complexed with Swi6. To explore this hypothesis, we expressed Swi4 and Swi6 in insect cells by using the baculovirus system. We determined that partially purified Swi4 cannot bind SCBs in the absence of Swi6. However, Swi4 derivatives carrying point mutations or alterations in the extreme C terminus were able to bind DNA or activate transcription in the absence of Swi6, and the C terminus of Swi4 inhibited Swi4 derivatives from binding DNA in trans. Full-length Swi4 was determined to be monomeric in solution, suggesting an intramolecular mechanism for auto-inhibition of binding to DNA by Swi4. We detected a direct in vitro interaction between a C-terminal fragment of Swi4 and the N-terminal 197 amino acids of Swi4, which contain the DNA binding domain. Together, our data suggest that intramolecular interactions involving the C-terminal region of Swi4 physically prevent the DNA binding domain from binding SCBs. The interaction of the carboxy-terminal region of Swi4 with Swi6 alleviates this inhibition, allowing Swi4 to bind DNA.
Collapse
Affiliation(s)
- K Baetz
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
40
|
Colwill K, Field D, Moore L, Friesen J, Andrews B. In vivo analysis of the domains of yeast Rvs167p suggests Rvs167p function is mediated through multiple protein interactions. Genetics 1999; 152:881-93. [PMID: 10388809 PMCID: PMC1460664 DOI: 10.1093/genetics/152.3.881] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Morphological changes during cell division in the yeast Saccharomyces cerevisiae are controlled by cell-cycle regulators. The Pcl-Pho85p kinase complex has been implicated in the regulation of the actin cytoskeleton at least in part through Rvs167p. Rvs167p consists of three domains called BAR, GPA, and SH3. Using a two-hybrid assay, we demonstrated that each region of Rvs167p participates in protein-protein interactions: the BAR domain bound the BAR domain of another Rvs167p protein and that of Rvs161p, the GPA region bound Pcl2p, and the SH3 domain bound Abp1p. We identified Rvs167p as a Las17p/Bee1p-interacting protein in a two-hybrid screen and showed that Las17p/Bee1p bound the SH3 domain of Rvs167p. We tested the extent to which the Rvs167p protein domains rescued phenotypes associated with deletion of RVS167: salt sensitivity, random budding, and endocytosis and sporulation defects. The BAR domain was sufficient for full or partial rescue of all rvs167 mutant phenotypes tested but not required for the sporulation defect for which the SH3 domain was also sufficient. Overexpression of Rvs167p inhibits cell growth. The BAR domain was essential for this inhibition and the SH3 domain had only a minor effect. Rvs167p may link the cell cycle regulator Pcl-Pho85p kinase and the actin cytoskeleton. We propose that Rvs167p is activated by phosphorylation in its GPA region by the Pcl-Pho85p kinase. Upon activation, Rvs167p enters a multiprotein complex, making critical contacts in its BAR domain and redundant or minor contacts with its SH3 domain.
Collapse
Affiliation(s)
- K Colwill
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
41
|
Abstract
Ankyrin (ANK) repeats were first found in the Swi6 transcription factor of Saccharomyces cerevisiae and since then were identified in many proteins of eukaryotes and prokaryotes. These repeats are thought to serve as protein association domains. In Swi6, ANK repeats affect DNA binding of both the Swi4/Swi6 and Mbp1/Swi6 complexes. We have previously described generation of random mutations within the ANK repeats of Swi6 that render the protein temperature sensitive in its ability to activate HO transcription. Two of these SWI6 mutants were used in a screen for high copy suppressors of this phenotype. We found that MSN1, which encodes a transcriptional activator, and NHP6A, which encodes an HMG-like protein, are able to suppress defective Swi6 function. Both of these gene products are involved in HO transcription, and Nhp6A may also be involved in CLN1 transcription. Moreover, because overexpression of NHP6A can suppress caffeine sensitivity of one of the SWI6 ANK mutants, swi6-405, other SWI6-dependent genes may also be affected by Nhp6A. We hypothesize that Nhp6A and Msn1 modulate Swi6-dependent gene transcription indirectly, through effects on chromatin structure or other transcription factors, because we have not been able to demonstrate that either Msn1 or Nhp6A interact with the Swi4/Swi6 complex.
Collapse
Affiliation(s)
- J Sidorova
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
42
|
Mendenhall MD, Hodge AE. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62:1191-243. [PMID: 9841670 PMCID: PMC98944 DOI: 10.1128/mmbr.62.4.1191-1243.1998] [Citation(s) in RCA: 300] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclin-dependent protein kinase (CDK) encoded by CDC28 is the master regulator of cell division in the budding yeast Saccharomyces cerevisiae. By mechanisms that, for the most part, remain to be delineated, Cdc28 activity controls the timing of mitotic commitment, bud initiation, DNA replication, spindle formation, and chromosome separation. Environmental stimuli and progress through the cell cycle are monitored through checkpoint mechanisms that influence Cdc28 activity at key cell cycle stages. A vast body of information concerning how Cdc28 activity is timed and coordinated with various mitotic events has accrued. This article reviews that literature. Following an introduction to the properties of CDKs common to many eukaryotic species, the key influences on Cdc28 activity-cyclin-CKI binding and phosphorylation-dephosphorylation events-are examined. The processes controlling the abundance and activity of key Cdc28 regulators, especially transcriptional and proteolytic mechanisms, are then discussed in detail. Finally, the mechanisms by which environmental stimuli influence Cdc28 activity are summarized.
Collapse
Affiliation(s)
- M D Mendenhall
- L. P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536-0096, USA.
| | | |
Collapse
|
43
|
Sedgwick SG, Taylor IA, Adam AC, Spanos A, Howell S, Morgan BA, Treiber MK, Kanuga N, Banks GR, Foord R, Smerdon SJ. Structural and functional architecture of the yeast cell-cycle transcription factor swi6. J Mol Biol 1998; 281:763-75. [PMID: 9719633 DOI: 10.1006/jmbi.1998.1996] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural and functional organisation of Swi6, a transcriptional regulator of the budding yeast cell cycle has been analysed by a combination of biochemical, biophysical and genetic methods. Limited proteolysis indicates the presence of a approximately 15 kDa N-terminal domain which is dispensable for Swi6 activity in vivo and which is separated from the rest of the molecule by an extended linker of at least 43 residues. Within the central region, a 141 residue segment that is capable of transcriptional activation encompasses a structural domain of approximately 85 residues. In turn, this is tightly associated with an adjacent 28 kDa domain containing at least four ankyrin-repeat (ANK) motifs. A second protease sensitive region connects the ANK domain to the remaining 30 kDa C-terminal portion of Swi6 which contains a second transcriptional activator and sequences required for heteromerisation with Swi4 or Mbp1. Transactivation by the activating regions of Swi6 is antagonised when either are combined with the central ankyrin repeat motifs. Hydrodynamic measurements indicate that an N-terminal 62 kDa fragment comprising the first three domains is monomeric in solution and exhibits an unusually high frictional coefficient consistent with the extended, multi-domain structure suggested by proteolytic analysis.
Collapse
Affiliation(s)
- S G Sedgwick
- Division of Yeast Genetics, National Institute for Medical Research, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tabtiang RK, Herskowitz I. Nuclear proteins Nut1p and Nut2p cooperate to negatively regulate a Swi4p-dependent lacZ reporter gene in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:4707-18. [PMID: 9671481 PMCID: PMC109057 DOI: 10.1128/mcb.18.8.4707] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/1998] [Accepted: 05/14/1998] [Indexed: 02/08/2023] Open
Abstract
The URS2 region of the Saccharomyces cerevisiae HO upstream region contains 10 binding sites for the Swi4p/Swi6p transcription factor and confers Swi4p dependence for transcription. Using a hybrid promoter, UASGAL (upstream activation sequence of GAL1)-URS2R, in which the GAL1-10 regulatory region is fused to the proximal 360 bp of URS2, we isolated mutants in which Swi4p is no longer required for transcription. Mutations of SIN4, ROX3, SRB8, SRB9, SRB10, SRB11, and two novel genes, NUT1 and NUT2, relieve the requirement of Swi4p for expression of this reporter. We found that NUT1 (open reading frame [ORF] YGL151w) is a nonessential gene, that NUT2 (ORF YPR168w) is essential, and that both Nut1p and Nut2p encode nuclear proteins. Deletion of NUT1 causes a constitutive, Swi4p-independent phenotype only in combination with the nut2-1 allele or an allele of CCR4. In contrast, inactivation of a temperature-sensitive allele of NUT2, nut2-ts70, alone causes constitutivity. nut1Delta nut2-1 cells and sin4Delta cells exhibit Swi4p-independent expression of an ho-lacZ reporter but not of an intact ho gene. Likewise, a pPHO5-lacZ construct is constitutively expressed in nut1 nut2 mutants relative to their wild-type counterparts. These results suggest that Nut1p, Nut2p, Sin4p, and Ccr4p define a group of proteins that negatively regulate transcription in a subtle manner which is revealed by artificial reporter genes.
Collapse
Affiliation(s)
- R K Tabtiang
- Program in Biochemistry and Molecular Biology, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143-0448, USA
| | | |
Collapse
|
45
|
Taylor IA, Treiber MK, Olivi L, Smerdon SJ. The X-ray structure of the DNA-binding domain from the Saccharomyces cerevisiae cell-cycle transcription factor Mbp1 at 2.1 A resolution. J Mol Biol 1997; 272:1-8. [PMID: 9299332 DOI: 10.1006/jmbi.1997.1229] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The structure of the DNA-binding domain of the Saccharomyces cerevisiae cell-cycle transcription factor Mbp1 has been solved using the multiwavelength anomalous diffraction (MAD) technique on crystals of selenomethionyl protein and refined at 2.1 A resolution. The molecule is globular, consisting of a twisted, six-stranded beta-barrel that is packed against a loose bundle of four alpha-helices. Two of the beta-strands in combination with two of the helices form a structure characteristic of the DNA-binding motif found in the CAP family of helix-turn-helix transcription factors. In Mbp1, this beta2/alpha2 motif is associated with regions of both positive electrostatic potential and sequence conservation within the Mbp1/Swi4 family, suggesting a role in DNA-binding in these proteins. A combination of structural and biochemical data further indicate a similarity to HNF3gamma/fork head, a member of the family of "winged" helix-turn-helix proteins. We propose a model for DNA-binding involving a recognition helix in the major groove, phosphodiester backbone interactions through the beta-hairpin and further base and/or phosphate interactions mediated by a C-terminal, positively charged loop.
Collapse
Affiliation(s)
- I A Taylor
- Division of Protein Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, U.K
| | | | | | | |
Collapse
|
46
|
Partridge JF, Mikesell GE, Breeden LL. Cell cycle-dependent transcription of CLN1 involves swi4 binding to MCB-like elements. J Biol Chem 1997; 272:9071-7. [PMID: 9083033 DOI: 10.1074/jbc.272.14.9071] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two promoter elements have been defined that activate G1/S-specific transcription in Saccharomyces cerevisiae. SCB elements (CACGAAA) are activated by the Swi4-Swi6 complex, and MCB elements (ACGCGTNA) are activated by the Mbp1-Swi6 complex. CLN1 encodes a cyclin which is expressed during this interval, and requires Swi4 and Swi6 for peak transcription, but it has no consensus SCB elements in its promoter. Two SCB-like sequences had been previously noted and suggested to be the functional promoter elements. Our studies indicate that these sequences are unable to activate transcription of a lacZ reporter construct, or to bind Swi4-Swi6 complexes in vitro. However, a cluster of three sequences resembling MCB sequences are active promoter elements, sufficient to confer G1/S-specific transcription to a reporter. These sites are the predominant activation elements in the CLN1 promoter, and despite their resemblance to MCB elements, they bind Swi4-Swi6 complexes in vitro and require Swi4 and Swi6 for their activity in vivo. This indicates that the sequences that promote Swi4/Swi6 binding have not been fully defined, or that there are multiple Swi4- and Swi6-containing complexes with distinct DNA binding specificities. In addition to these novel Swi4/Swi6-binding sites, these studies also show that there must be at least one novel promoter element that can confer G1/S-specific transcription to CLN1, because when all the potential SCB- and MCB-like sequences are eliminated the transcript is still cell cycle regulated.
Collapse
Affiliation(s)
- J F Partridge
- Fred Hutchinson Cancer Research Center, Basic Sciences Division, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
47
|
Ho Y, Mason S, Kobayashi R, Hoekstra M, Andrews B. Role of the casein kinase I isoform, Hrr25, and the cell cycle-regulatory transcription factor, SBF, in the transcriptional response to DNA damage in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1997; 94:581-6. [PMID: 9012827 PMCID: PMC19556 DOI: 10.1073/pnas.94.2.581] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/1996] [Accepted: 11/01/1996] [Indexed: 02/03/2023] Open
Abstract
In the budding yeast, Saccharomyces cerevisiae, DNA damage or ribonucleotide depletion causes the transcriptional induction of an array of genes with known or putative roles in DNA repair. The ATM-like kinase, Mec1, and the serine/threonine protein kinases, Rad53 and Dun1, are required for this transcriptional response. In this paper, we provide evidence suggesting that another kinase, Hrr25, is also involved in the transcriptional response to DNA damage through its interaction with the transcription factor, Swi6. The Swi6 protein interacts with Swi4 to form the SBF complex and with Mbp1 to form the MBF complex. SBF and MBF are required for the G1-specific expression of G1 cyclins and genes required for S-phase. We show that Swi6 associates with and is phosphorylated by Hrr25 in vitro. We find that swi4, swi6, and hrr25 mutants, but not mbp1 mutants, are sensitive to hydroxyurea and the DNA-damaging agent methyl methane-sulfonate and are defective in the transcriptional induction of a subset of DNA damage-inducible genes. Both the sensitivity of swi6 mutants to methyl methanesulfonate and hydroxyurea and the transcriptional defect of hrr25 mutants are rescued by overexpression of SWI4, implicating the SBF complex in the Hrr25/Swi6-dependent response to DNA damage.
Collapse
Affiliation(s)
- Y Ho
- Department of Molecular and Medical Genetics, University of Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
48
|
Siegmund RF, Nasmyth KA. The Saccharomyces cerevisiae Start-specific transcription factor Swi4 interacts through the ankyrin repeats with the mitotic Clb2/Cdc28 kinase and through its conserved carboxy terminus with Swi6. Mol Cell Biol 1996; 16:2647-55. [PMID: 8649372 PMCID: PMC231255 DOI: 10.1128/mcb.16.6.2647] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
At a point in late G1 termed Start, yeast cells enter S phase, duplicate their spindle pole bodies, and form buds. These events require activation of Cdc28 kinase by G1 cyclins. Swi4 associates with Swi6 to form the SCB-binding factor complex which activates G1 cyclin genes CLN1 and CLN2 in late G1. In G2 and M phases, the transcriptional activity of SCB-binding factor is repressed by the mitotic Clb2/Cdc28 kinase. Mbp1, a transcription factor related to Swi4, forms the MCB-binding factor complex with Swi6, which activates DNA synthesis genes and S-phase cyclin genes CLB5 and CLB6 in late G1. Clb2/Cdc28 kinase is not required for the repression of MCB-binding factor transcriptional activity in G2 and M phase. We show here that the Swi4 carboxy terminus is sufficient for interaction with Swi6 in vitro. A carboxy-terminal domain of Swi6 is required and sufficient for interaction with Swi4. The carboxy terminus of Mbp1 is sufficient for interaction with Swi6, and the carboxy terminus of Swi6 is required for interaction with Mbp1. By coimmunoprecipitation, we show that Swi4 but not Mbp1 interacts with Clb2/Cdc28 kinase in vivo during the G2 and M phases of the cell cycle. We demonstrate that the ankyrin repeats of Swi4 mediate the interaction with Clb2/Cdc28 kinase. The ankyrin repeats constitute a domain by which a cell cycle-specific transcription factor can interact with cyclin-dependent kinase complexes, thus enabling it to link its transcriptional activity to cell cycle progression.
Collapse
Affiliation(s)
- R F Siegmund
- Research Institute of Molecular Pathology, Vienna, Austria
| | | |
Collapse
|
49
|
Harrington LA, Andrews BJ. Binding to the yeast SwI4,6-dependent cell cycle box, CACGAAA, is cell cycle regulated in vivo. Nucleic Acids Res 1996; 24:558-65. [PMID: 8604294 PMCID: PMC145676 DOI: 10.1093/nar/24.4.558] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In Saccharomyces cerevisiae commitment to cell division occurs late in the G1 phase of the cell cycle at a point called Start and requires the activity of the Cdc28 protein kinase and its associated G1 cyclins. The Swi4,6-dependent cell cycle box binding factor, SBF, is important for maximal expression of the G1 cyclin and HO endonuclease genes at Start. The cell cycle regulation of these genes is modulated through an upstream regulatory element termed the SCB (SwI4,6-dependent cell cycle box, CACGAAA), which is dependent on both SWI4 and SWI6. Although binding of SWI4 and SWI6 to SCB sequences has been well characterized in vitro, the binding of SBF in vivo has not been examined. We used in vivo dimethyl sulfate footprinting to examine the occupancy of SCB sequences throughout the cell cycle. We found that binding to SCB sequences occurred in the G1 phase of the cell cycle and was greatly reduced in G2. In the absence of either SWI4 or SWI6, SCB sequences were not occupied at any cell cycle stage. These results suggest that the G1-specific expression of SCB-dependent genes is regulated at the level of DNA binding in vivo.
Collapse
Affiliation(s)
- L A Harrington
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
50
|
Affiliation(s)
- L Breeden
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| |
Collapse
|