1
|
Hirose S, Osaki T, Kamm RD. Polyploidy of MDA-MB-231 cells drives increased extravasation with enhanced cell-matrix adhesion. APL Bioeng 2025; 9:016105. [PMID: 39974511 PMCID: PMC11836873 DOI: 10.1063/5.0233329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025] Open
Abstract
Metastasis, the leading cause of cancer-related deaths, involves a complex cascade of events, including extravasation. Despite extensive research into metastasis, the mechanisms underlying extravasation remain unclear. Molecular targeted therapies have advanced cancer treatment, yet their efficacy is limited, prompting exploration into novel therapeutic targets. Here, we showed the association of polyploidy in MDA-MB-231 breast cancer cells and their extravasation, using microfluidic systems to reproduce the in vivo microvascular environment. We observed enhanced extravasation in polyploid cells alongside upregulated expression of genes involved in cell-substrate adhesion and cell mechanical dynamics. These findings offer insights into the relationship between polyploidy and extravasation, highlighting potential targets for cancer therapy.
Collapse
Affiliation(s)
- Satomi Hirose
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tatsuya Osaki
- Authors to whom correspondence should be addressed: and
| | - Roger D. Kamm
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
2
|
Kage D, Eirich A, Heinrich K, Kirsch J, Popien J, Wolf A, Volkmann KV, Chang HD, Kaiser T. Cell sorting based on pulse shapes from angle resolved detection of scattered light. Commun Biol 2024; 7:1063. [PMID: 39215170 PMCID: PMC11364749 DOI: 10.1038/s42003-024-06759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Flow cytometry is a key technology for the analysis and sorting of cells or particles at high throughput. Conventional and current flow cytometry is primarily based on fluorescent stains to detect the cells of interest. However, such stains also have disadvantages, as their effect on cells must be carefully tested to avoid effects on the results of the experiments. Alternative approaches using imaging or other label-free techniques often require highly sophisticated setups, are commonly limited in resolution, and produce challenging amounts of data. Our technology exploits scattered light instead. The custom-built flow cytometry setup comprises a fiber array in forward scatter detection for angular resolution and captures the whole pulse shape with advanced signal processing. Thereby this setup enables cell analysis and sorting purely based on scattered light signals without the need for fluorescent labels. We demonstrate the feasibility of this cell sorting technology by sorting cell lines for their cell cycle stages based on scattered light. Furthermore, we demonstrate the ability to classify human peripheral blood T- and B-cell subsets.
Collapse
Affiliation(s)
- Daniel Kage
- German Rheumatology Research Center (DRFZ) - Flow Cytometry Core Facility, Charitéplatz 1 (Virchowweg 12), 10117, Berlin, Germany
| | - Andrej Eirich
- APE Angewandte Physik und Elektronik GmbH, Plauener Straße 163-165 / Haus N, 13053, Berlin, Germany
| | - Kerstin Heinrich
- German Rheumatology Research Center (DRFZ) - Flow Cytometry Core Facility, Charitéplatz 1 (Virchowweg 12), 10117, Berlin, Germany
| | - Jenny Kirsch
- German Rheumatology Research Center (DRFZ) - Flow Cytometry Core Facility, Charitéplatz 1 (Virchowweg 12), 10117, Berlin, Germany
| | - Jan Popien
- APE Angewandte Physik und Elektronik GmbH, Plauener Straße 163-165 / Haus N, 13053, Berlin, Germany
| | - Alexander Wolf
- German Rheumatology Research Center (DRFZ) - Flow Cytometry Core Facility, Charitéplatz 1 (Virchowweg 12), 10117, Berlin, Germany
| | - Konrad V Volkmann
- APE Angewandte Physik und Elektronik GmbH, Plauener Straße 163-165 / Haus N, 13053, Berlin, Germany
| | - Hyun-Dong Chang
- German Rheumatology Research Center (DRFZ) - Flow Cytometry Core Facility, Charitéplatz 1 (Virchowweg 12), 10117, Berlin, Germany
- Department of Cytometry, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Toralf Kaiser
- German Rheumatology Research Center (DRFZ) - Flow Cytometry Core Facility, Charitéplatz 1 (Virchowweg 12), 10117, Berlin, Germany.
| |
Collapse
|
3
|
Hirose S, Osaki T, Kamm RD. Polyploidy of MDA-MB-231 cells drives increased extravasation with enhanced cell-matrix adhesion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601261. [PMID: 39005381 PMCID: PMC11244921 DOI: 10.1101/2024.06.28.601261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Metastasis, the leading cause of cancer-related deaths, involves a complex cascade of events, including extravasation. Despite extensive research into metastasis, the mechanisms underlying extravasation remain unclear. Molecular targeted therapies have advanced cancer treatment, yet their efficacy is limited, prompting exploration into novel therapeutic targets. Here, we showed the association of polyploidy in MDA-MB-231 breast cancer cells and their extravasation, using microfluidic systems to reproduce the in vivo microvascular environment. We observed enhanced extravasation in polyploid cells alongside upregulated expression of genes involved in cell-substrate adhesion and cell mechanical dynamics. These findings offer insights into the relationship between polyploidy and extravasation, highlighting potential targets for cancer therapy.
Collapse
|
4
|
González-Matos M, Aguado ME, Izquierdo M, Monzote L, González-Bacerio J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp Parasitol 2024; 260:108747. [PMID: 38518969 DOI: 10.1016/j.exppara.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.
Collapse
Affiliation(s)
- Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Lianet Monzote
- Department of Parasitology, Center for Research, Diagnosis and Reference, Tropical Medicine Institute "Pedro Kourí", Autopista Novia Del Mediodía Km 6½, La Lisa, La Habana, Cuba.
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba; Department of Biochemistry, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba.
| |
Collapse
|
5
|
Simmons CR, Buchberger A, Henry SJW, Novacek A, Fahmi NE, MacCulloch T, Stephanopoulos N, Yan H. Site-Specific Arrangement and Structure Determination of Minor Groove Binding Molecules in Self-Assembled Three-Dimensional DNA Crystals. J Am Chem Soc 2023; 145:26075-26085. [PMID: 37987645 PMCID: PMC10789492 DOI: 10.1021/jacs.3c07802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The structural analysis of guest molecules in rationally designed and self-assembling DNA crystals has proven an elusive goal since its conception. Oligonucleotide frameworks provide an especially attractive route toward studying DNA-binding molecules by using three-dimensional lattices with defined sequence and structure. In this work, we site-specifically position a suite of minor groove binding molecules, and solve their structures via X-ray crystallography as a proof-of-principle toward scaffolding larger guest species. Two crystal motifs were used to precisely immobilize the molecules DAPI, Hoechst, and netropsin at defined positions in the lattice, allowing us to control occupancy within the crystal. We also solved the structure of a three-ring imidazole-pyrrole-pyrrole polyamide molecule, which sequence-specifically packs in an antiparallel dimeric arrangement within the minor groove. Finally, we engineered a crystal designed to position both netropsin and the polyamide at two distinct locations within the same lattice. Our work elucidates the design principles for the spatial arrangement of functional guests within lattices and opens new potential opportunities for the use of DNA crystals to display and structurally characterize small molecules, peptides, and ultimately proteins of unknown structure.
Collapse
Affiliation(s)
- Chad R Simmons
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
| | - Alex Buchberger
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Skylar J W Henry
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Alexandra Novacek
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Nour Eddine Fahmi
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
| | - Tara MacCulloch
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Nicholas Stephanopoulos
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| |
Collapse
|
6
|
Simmons CR, Buchberger A, Henry SJW, Novacek A, Fahmi NE, MacCulloch T, Stephanopoulos N, Yan H. Site-specific arrangement and structure determination of minor groove binding molecules in self-assembled three-dimensional DNA crystals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561756. [PMID: 37873139 PMCID: PMC10592734 DOI: 10.1101/2023.10.10.561756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The structural analysis of guest molecules in rationally designed and self-assembling DNA crystals has proven elusive since its conception. Oligonucleotide frameworks provide an especially attractive route towards studying DNA-binding molecules by using three-dimensional lattices with defined sequence and structure. In this work, we site-specifically position a suite of minor groove binding molecules, and solve their structures via x-ray crystallography, as a proof-of-principle towards scaffolding larger guest species. Two crystal motifs were used to precisely immobilize the molecules DAPI, Hoechst, and netropsin at defined positions in the lattice, allowing us to control occupancy within the crystal. We also solved the structure of a three-ring imidazole-pyrrole-pyrrole polyamide molecule, which sequence-specifically packs in an anti-parallel dimeric arrangement within the minor groove. Finally, we engineered a crystal designed to position both netropsin and the polyamide at two distinct locations within the same lattice. Our work elucidates the design principles for the spatial arrangement of functional guests within lattices and opens new potential opportunities for the use of DNA crystals to display and structurally characterize small molecules, peptides, and ultimately proteins of unknown structure.
Collapse
|
7
|
Mathiesen A, Haynes B, Huyck R, Brown M, Dobrian A. Adipose Tissue-Derived Extracellular Vesicles Contribute to Phenotypic Plasticity of Prostate Cancer Cells. Int J Mol Sci 2023; 24:1229. [PMID: 36674745 PMCID: PMC9864182 DOI: 10.3390/ijms24021229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Metastatic prostate cancer is one of the leading causes of male cancer deaths in the western world. Obesity significantly increases the risk of metastatic disease and is associated with a higher mortality rate. Systemic chronic inflammation can result from a variety of conditions, including obesity, where adipose tissue inflammation is a major contributor. Adipose tissue endothelial cells (EC) exposed to inflammation become dysfunctional and produce a secretome, including extracellular vesicles (EV), that can impact function of cells in distant tissues, including malignant cells. The aim of this study was to explore the potential role of EVs produced by obese adipose tissue and the ECs exposed to pro-inflammatory cytokines on prostate cancer phenotypic plasticity in vitro. We demonstrate that PC3ML metastatic prostate cancer cells exposed to EVs from adipose tissue ECs and to EVs from human adipose tissue total explants display reduced invasion and increased proliferation. The latter functional changes could be attributed to the EV miRNA cargo. We also show that the functional shift is TWIST1-dependent and is consistent with mesenchymal-to-epithelial transition, which is key to establishment of secondary tumor growth. Understanding the complex effects of EVs on prostate cancer cells of different phenotypes is key before their intended use as therapeutics.
Collapse
Affiliation(s)
- Allison Mathiesen
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Bronson Haynes
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Ryan Huyck
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Michael Brown
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Anca Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
8
|
Kumar S, Tripathi J, Maurya DK, Nuwad J, Gautam S. Anti-proliferative effect and underlying mechanism of ethoxy-substituted phylloquinone (vitamin K1 derivative) from Spinacia oleracea leaf and enhancement of its extractability using radiation technology. 3 Biotech 2022; 12:265. [PMID: 36091087 PMCID: PMC9452621 DOI: 10.1007/s13205-022-03264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/17/2022] [Indexed: 11/01/2022] Open
Abstract
In our previous studies, a novel antimutagenic compound, 2-ethoxy-3-(3,7,11,15-tetramethylhexadec-2-ethyl) naphthaquinone-1,4-dione (ethoxy-substituted phylloquinone; ESP) from spinach was characterized and mechanism contributing to its antimutagenicity was deduced. In the current study, anti-proliferative activity of ESP was assessed in lung cancer (A549) cells using MTT [3-(4,5-dimethylthiazole-2yl)-2,5-diphenyl tetrazolium bromide], clonogenic assays and cell cycle analysis. ESP treatment showed selective cytotoxicity against lung cancer cells and no cytotoxicity in normal lung (WI38) cells. Cell cycle analysis revealed that ESP treatment arrests A549 cell population in G2-M phase. In-silico analysis indicated positive drug-likeness features of ESP. Molecular docking showed H-bonding and hydrophobic interactions between ESP and B-DNA dodecamer residues at minor groove. SWATH-MS (Sequential Window Acquisition of All Theoretical Mass Spectra) based proteomic analysis indicated down-regulation of proteins involved in EGFR signaling, NEDDylation and other metabolic pathways and up-regulation of tumor suppressor (STAT1 and NDRG1) proteins. Treatment of spinach powder with gamma radiation (5-20 kGy) from cobalt (Co-60) enhanced the extractability of ESP up to 4.4-fold at the highest dose of 20 kGy. Scanning electron microscopy of spinach powder displayed decrease in smoothness and compactness with increase in radiation dose attributing to its enhanced extractability. Increase in the extractability of ESP with increasing radiation doses as measured by fluorescence intensity and dry weight basis was strongly correlated. Nonetheless, radiation treatment did not affect the functionality of ESP in terms of anti-proliferative and antimutagenic activities. Current findings thus highlight broad spectrum bioactivity of ESP from spinach, its underlying mechanism and applicability of radiation technology in enhancing extractability. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03264-6.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
| | - Jyoti Tripathi
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
| | - Dharmendra K. Maurya
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
- Homi Bhabha National Institute, Mumbai, 400 094 India
| | - Jitendra Nuwad
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
- Homi Bhabha National Institute, Mumbai, 400 094 India
| |
Collapse
|
9
|
Parmar TH, Sangani CB, Kulkarni M. Synthesis of novel drug-like small molecules library based on 1H-benzo[d]imidazole. Aust J Chem 2022. [DOI: 10.1071/ch21238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Ge Y, Rosendahl P, Duran C, Topfner N, Ciucci S, Guck J, Cannistraci CV. Cell Mechanics Based Computational Classification of Red Blood Cells Via Machine Intelligence Applied to Morpho-Rheological Markers. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1405-1415. [PMID: 31670675 DOI: 10.1109/tcbb.2019.2945762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite fluorescent cell-labelling being widely employed in biomedical studies, some of its drawbacks are inevitable, with unsuitable fluorescent probes or probes inducing a functional change being the main limitations. Consequently, the demand for and development of label-free methodologies to classify cells is strong and its impact on precision medicine is relevant. Towards this end, high-throughput techniques for cell mechanical phenotyping have been proposed to get a multidimensional biophysical characterization of single cells. With this motivation, our goal here is to investigate the extent to which an unsupervised machine learning methodology, which is applied exclusively on morpho-rheological markers obtained by real-time deformability and fluorescence cytometry (RT-FDC), can address the difficult task of providing label-free discrimination of reticulocytes from mature red blood cells. We focused on this problem, since the characterization of reticulocytes (their percentage and cellular features) in the blood is vital in multiple human disease conditions, especially bone-marrow disorders such as anemia and leukemia. Our approach reports promising label-free results in the classification of reticulocytes from mature red blood cells, and it represents a step forward in the development of high-throughput morpho-rheological-based methodologies for the computational categorization of single cells. Besides, our methodology can be an alternative but also a complementary method to integrate with existing cell-labelling techniques.
Collapse
|
11
|
Seddek A, Annamalai T, Tse-Dinh YC. Type IA Topoisomerases as Targets for Infectious Disease Treatments. Microorganisms 2021; 9:E86. [PMID: 33401386 PMCID: PMC7823277 DOI: 10.3390/microorganisms9010086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Infectious diseases are one of the main causes of death all over the world, with antimicrobial resistance presenting a great challenge. New antibiotics need to be developed to provide therapeutic treatment options, requiring novel drug targets to be identified and pursued. DNA topoisomerases control the topology of DNA via DNA cleavage-rejoining coupled to DNA strand passage. The change in DNA topological features must be controlled in vital processes including DNA replication, transcription, and DNA repair. Type IIA topoisomerases are well established targets for antibiotics. In this review, type IA topoisomerases in bacteria are discussed as potential targets for new antibiotics. In certain bacterial pathogens, topoisomerase I is the only type IA topoisomerase present, which makes it a valuable antibiotic target. This review will summarize recent attempts that have been made to identify inhibitors of bacterial topoisomerase I as potential leads for antibiotics and use of these inhibitors as molecular probes in cellular studies. Crystal structures of inhibitor-enzyme complexes and more in-depth knowledge of their mechanisms of actions will help to establish the structure-activity relationship of potential drug leads and develop potent and selective therapeutics that can aid in combating the drug resistant bacterial infections that threaten public health.
Collapse
Affiliation(s)
- Ahmed Seddek
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
12
|
Baglini E, Salerno S, Barresi E, Robello M, Da Settimo F, Taliani S, Marini AM. Multiple Topoisomerase I (TopoI), Topoisomerase II (TopoII) and Tyrosyl-DNA Phosphodiesterase (TDP) inhibitors in the development of anticancer drugs. Eur J Pharm Sci 2021; 156:105594. [DOI: 10.1016/j.ejps.2020.105594] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
|
13
|
Frey C, Pfeil J, Neckernuss T, Geiger D, Weishaupt K, Platzman I, Marti O, Spatz JP. Label‐free monitoring and manipulation of microfluidic water‐in‐oil droplets. VIEW 2020. [DOI: 10.1002/viw.20200101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Christoph Frey
- Department of Cellular Biophysics Max Planck Institute for Medical Research Heidelberg Germany
- Institute for Molecular Systems Engineering University of Heidelberg Heidelberg Germany
| | - Jonas Pfeil
- Institute of Experimental Physics University of Ulm Ulm Germany
| | | | - Daniel Geiger
- Institute of Experimental Physics University of Ulm Ulm Germany
| | - Klaus Weishaupt
- Department of Cellular Biophysics Max Planck Institute for Medical Research Heidelberg Germany
- Institute for Molecular Systems Engineering University of Heidelberg Heidelberg Germany
| | - Ilia Platzman
- Department of Cellular Biophysics Max Planck Institute for Medical Research Heidelberg Germany
- Institute for Molecular Systems Engineering University of Heidelberg Heidelberg Germany
| | - Othmar Marti
- Institute of Experimental Physics University of Ulm Ulm Germany
| | - Joachim P. Spatz
- Department of Cellular Biophysics Max Planck Institute for Medical Research Heidelberg Germany
- Institute for Molecular Systems Engineering University of Heidelberg Heidelberg Germany
- Max Planck School Matter to Life Heidelberg Germany
| |
Collapse
|
14
|
Sun Y, Saha LK, Saha S, Jo U, Pommier Y. Debulking of topoisomerase DNA-protein crosslinks (TOP-DPC) by the proteasome, non-proteasomal and non-proteolytic pathways. DNA Repair (Amst) 2020; 94:102926. [DOI: 10.1016/j.dnarep.2020.102926] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/24/2023]
|
15
|
Caymaz B, Yıldız U, Akkoç S, Gerçek Z, Şengül A, Coban B. Synthesis, Characterization, and Antiproliferative Activity Studies of Novel Benzimidazole‐Imidazopyridine Hybrids as DNA Groove Binders. ChemistrySelect 2020. [DOI: 10.1002/slct.202001580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bahar Caymaz
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| | - Ufuk Yıldız
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| | - Senem Akkoç
- Department of Basic Pharmaceutical SciencesFaculty of PharmacySüleyman Demirel University Isparta 32260 Turkey
| | - Zuhal Gerçek
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| | - Abdurrahman Şengül
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| | - Burak Coban
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| |
Collapse
|
16
|
Benzoxazines as new human topoisomerase I inhibitors and potential poisons. ACTA ACUST UNITED AC 2019; 28:65-73. [PMID: 31832989 DOI: 10.1007/s40199-019-00315-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The numbers of topoisomerase I targeted drugs on the market are very limited although they are used clinically for treatment of solid tumors. Hence, studies about finding new chemical structures which specifically target topoisomerase I are still remarkable. OBJECTIVES In this present study, we tested previously synthesized 3,4-dihydro-2H-1,4-benzoxazin-3-one derivatives to reveal their human DNA topoisomerase I inhibitory potentials. METHODS We investigated inhibitory activities of 3,4-dihydro-2H-1,4-benzoxazin-3-one derivatives on human topoisomerase I by relaxation assay to clarify inhibition mechanisms of effective derivatives with EMSA and T4 DNA ligase based intercalation assay. With SAR study, it was tried to find out effective groups in the ring system. RESULTS While 10 compounds showed catalytic inhibitory activity, 8 compounds were found to be potential topoisomerase poisons. 4 of them also exhibited both activities. 2-hydroxy-3,4-dihydro-2H-1,4-benzoxazin-3-one (BONC-001) was the most effective catalytic inhibitor (IC50:8.34 mM) and ethyl 6-chloro-4-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-acetate (BONC-013) was the strongest potential poison (IC50:0.0006 mM). BONC-013 was much more poisonous than camptothecin (IC50:0.034 mM). Intercalation assay showed that BONC-013 was not an intercalator and BONC-001 most probably prevented enzyme-substrate binding in an unknown way. Another important result of this study was that OH group instead of ethoxycarbonylmethyl group at R position of benzoxazine ring was important for hTopo I catalytic inhibition while the attachment of a methyl group of R1 position at R2 position were play a role for increasing of its poisonous effect. CONCLUSION As a result, we presented new DNA topoisomerase I inhibitors which might serve novel constructs for future anticancer agent designs. Graphical abstract.
Collapse
|
17
|
Ongaro A, Ribaudo G, Zagotto G, Memo M, Gianoncelli A. Synthesis via A3 Coupling Reaction of Anthracene‐Propargylamine as a New Scaffold for the Interaction with DNA. ChemistrySelect 2019. [DOI: 10.1002/slct.201902975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alberto Ongaro
- Department of Molecular and Translational MedicineUniversity of Brescia Viale Europa 11 25123 Brescia Italy
| | - Giovanni Ribaudo
- Department of Molecular and Translational MedicineUniversity of Brescia Viale Europa 11 25123 Brescia Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences University of Padova Via Marzolo 5 35131 Padova Italy
| | - Maurizio Memo
- Department of Molecular and Translational MedicineUniversity of Brescia Viale Europa 11 25123 Brescia Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational MedicineUniversity of Brescia Viale Europa 11 25123 Brescia Italy
| |
Collapse
|
18
|
Babgi BA, Abdellattif MH, Hussien MA, Eltayeb NE. Exploring DNA-Binding and anticancer properties of benzoimidazolyl-ferrocene dye. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.126918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Wu H, Xia L, Qu Y, Zhao K, Wang C, Wu Y. Synthesis, structure, luminescence and electrochemical and antioxidant properties of anion‐controlled silver(I) complexes with 2,2′‐(1,4‐butanediyl)bis‐1,3‐benzoxazole. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Huilu Wu
- School of Chemical and Biological EngineeringLanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Lixian Xia
- School of Chemical and Biological EngineeringLanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Yao Qu
- School of Chemical and Biological EngineeringLanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Kun Zhao
- School of Chemical and Biological EngineeringLanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Cong Wang
- School of Chemical and Biological EngineeringLanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Yancong Wu
- School of Chemical and Biological EngineeringLanzhou Jiaotong University Lanzhou Gansu 730070 China
| |
Collapse
|
20
|
Lippeveld M, Knill C, Ladlow E, Fuller A, Michaelis LJ, Saeys Y, Filby A, Peralta D. Classification of Human White Blood Cells Using Machine Learning for Stain‐Free Imaging Flow Cytometry. Cytometry A 2019; 97:308-319. [DOI: 10.1002/cyto.a.23920] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/10/2019] [Accepted: 10/02/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Maxim Lippeveld
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research Ghent Belgium
- Department of Applied Mathematics, Computer Science and StatisticsGhent University Belgium
| | - Carly Knill
- Institute of Cellular MedicineNewcastle University Newcastle upon Tyne UK
| | - Emma Ladlow
- Institute of Cellular MedicineNewcastle University Newcastle upon Tyne UK
- Newcastle Upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Andrew Fuller
- Institute of Cellular MedicineNewcastle University Newcastle upon Tyne UK
| | - Louise J Michaelis
- Great North Children's Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
- Institute of Health and SocietyUniversity of Newcastle Newcastle upon Tyne UK
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research Ghent Belgium
- Department of Applied Mathematics, Computer Science and StatisticsGhent University Belgium
| | - Andrew Filby
- Institute of Cellular MedicineNewcastle University Newcastle upon Tyne UK
| | - Daniel Peralta
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research Ghent Belgium
- Department of Applied Mathematics, Computer Science and StatisticsGhent University Belgium
| |
Collapse
|
21
|
DNA/RNA recognition controlled by the glycine linker and the guanidine moiety of phenanthridine peptides. Int J Biol Macromol 2019; 134:422-434. [PMID: 31082420 DOI: 10.1016/j.ijbiomac.2019.05.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 12/27/2022]
Abstract
The binding of four phenanthridine-guanidine peptides to DNA/RNA was evaluated via spectrophotometric/microcalorimetric methods and computations. The minor structural modifications-the type of the guanidine group (pyrrole guanidine (GCP) and arginine) and the linker length (presence or absence of glycine)-greatly affected the conformation of compounds and consequently the binding to double- (ds-) and single-stranded (ss-) polynucleotides. GCP peptide with shorter linker was able to distinguish between RNA (A-helix) and DNA (B-helix) by different circular dichroism response at 295 nm and thus can be used as a chiral probe. Opposed to the dominant stretched conformation of GCP peptide with shorter linker, the more flexible and longer linker of its analogue enabled the molecule to adopt the intramolecularly stacked form which resulted in weaker yet selective binding to DNA. Beside efficient organization of ss-polynucleotide structures, GCP peptide with shorter linker bound stronger to ss-DNA/RNA compared to arginine peptides which emphasize the importance of GCP unit.
Collapse
|
22
|
Dong DQ, Chen WJ, Yang Y, Gao X, Wang ZL. Merrifield Resin Supported Ionic Liquids/Iodide as an Efficient and Recyclable Catalyst for the Synthesis of Benzimidazoles. ChemistrySelect 2019. [DOI: 10.1002/slct.201900060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dao-Qing Dong
- College of Chemistry and Pharmaceutical Sciences; Qingdao Agricultural University, Qingdao; 266109 P.R.China
| | - Wen-Jing Chen
- College of Chemistry and Pharmaceutical Sciences; Qingdao Agricultural University, Qingdao; 266109 P.R.China
| | - Yun Yang
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; Xiangtan 411201 P.R. China
| | - Xing Gao
- School of Chemical and Biological Engineering; Qilu Institute of Technology; Jinan 250200 People's Republic of China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences; Qingdao Agricultural University, Qingdao; 266109 P.R.China
| |
Collapse
|
23
|
Combined pharmacophore-guided 3D-QSAR, molecular docking, and virtual screening on bis-benzimidazoles and ter-benzimidazoles as DNA–topoisomerase I poisons. Struct Chem 2019. [DOI: 10.1007/s11224-018-1257-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Chen JC, Jockusch RA. Protomers of DNA-binding dye fluoresce different colours: intrinsic photophysics of Hoechst 33258. Phys Chem Chem Phys 2019; 21:16848-16858. [DOI: 10.1039/c9cp02421b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new form of DNA-binder Hoechst 33258 is stabilised upon desolvation. Altered optical properties include a distinct green fluorescence.
Collapse
Affiliation(s)
- JoAnn C. Chen
- Department of Chemistry
- University of Toronto
- Toronto
- Canada M5S 3H6
| | | |
Collapse
|
25
|
Dai Y, Hua Q, Ling J, Shao C, Zhong C, Zhang X, Hu Y, Zhang L, Liu Y. Quantum chemical calculation of free radical substitution reaction mechanism of camptothecin. J Mol Graph Model 2018; 84:174-181. [PMID: 30015049 DOI: 10.1016/j.jmgm.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/31/2022]
Abstract
Free radical substitution reaction, which has low energy barrier and takes place in mild reaction conditions, is an important method for camptothecin's modification. The experimental data show that the free radical substitution reaction of camptothecin has high site selectivity, and prefers to take place at site 7. Up to now, few researches focus on the mechanism of it. In this study, the differences of the reaction rate constant (k) for the reactions at different sites, such as site of 7, 9, 10, 11, 12, were investigated with B3LYP of density functional theory at the 6-31 + G (d, p) base set level and CPCM aqueous solvent model. It was found that the substitution reaction can be carried out in two steps in acidic condition. First, the methyl radical attacks the corresponding site to form an intermediate having methyl radical combined with the camptothecin skeleton, and then a hydrogen atom was abstracted by the singlet oxygen to form methyl camptothecin, wherein the first step was the rate control step of the reaction. The results show that site 7 has the higherreaction rate constant (k) than other examined sites, indicating that the reaction tends to take place on site 7 position, which is in agreement with the experimental results.
Collapse
Affiliation(s)
- Yujie Dai
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Qingyuan Hua
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Jun Ling
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Chunfu Shao
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Xiuli Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Yanying Hu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Liming Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Yaotian Liu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| |
Collapse
|
26
|
Klimova RR, Momotyuk ED, Demidova NA, Chernoryzh YY, Koval VS, Ivanov AA, Zhuze AL, Kushch AA. [Dimeric bisbenzimidazoles suppress the herpes simplex virus and human cytomegalovirus infections in cell сultures]. Vopr Virusol 2018; 62:162-168. [PMID: 29733165 DOI: 10.18821/0507-4088-2017-62-4-162-168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 11/17/2022]
Abstract
Antiviral activity of new AТ-specific fluorescent symmetric dimeric bisbenzimidazoles of DBА(n) series was assessed in the cell models of infections caused by type 1 herpes simplex virus (HSV1) and human cytomegalovirus (CMV). In DBA(n) molecules bisbenzimidazole fragments are bound to an oligomethylene liner with varied number of methylene groups in the linker (n = 1, 3, 5, 7, 9, 11). In contrast to DB(n) dimeric bisbenzimidazoles, in DBA(n) series terminal fragments of macromolecules contain N-dimethylaminopropylcarboxamide groups instead of N-methylpiperazine groups. DBА(n) compounds better dissolve in water, pass across plasma and nuclear membrane, and stain DNA in living cells. DBA(1) and DBA(7) produced therapeutic effects in HSV1 infection; DBA(7) completely suppressed the infection. DBA(11) displayed in vitro therapeutic activity in HSV1 and CMV infections. In addition, DBA(7) and DBA(1) showed microbicidal activity. Thus, DBA(11), which is active against two viruses causing severe diseases with serious health consequences for immunodeficient individuals, should be further investigated. High antiviral activity of DBA(7) in all test models indicates that this compound is a promising active agent for innovative antiviral drugs.
Collapse
Affiliation(s)
- R R Klimova
- D.I. Ivanovsky Institute of Virology «Federal Research Center of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya», Moscow, 123098, Russian Federation
| | - E D Momotyuk
- D.I. Ivanovsky Institute of Virology «Federal Research Center of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya», Moscow, 123098, Russian Federation.,Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, 109473, Russian Federation
| | - N A Demidova
- Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, 109473, Russian Federation
| | - Ya Yu Chernoryzh
- D.I. Ivanovsky Institute of Virology «Federal Research Center of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya», Moscow, 123098, Russian Federation
| | - V S Koval
- Engelhardt Institute of Molecular Biology, Moscow, 119991, Russian Federation.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russian Federation
| | - A A Ivanov
- Blokhin Russian Cancer Research Center, Research Institute of Carcinogenesis, Moscow, 115478, Russian Federation
| | - A L Zhuze
- Engelhardt Institute of Molecular Biology, Moscow, 119991, Russian Federation
| | - A A Kushch
- D.I. Ivanovsky Institute of Virology «Federal Research Center of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya», Moscow, 123098, Russian Federation
| |
Collapse
|
27
|
Miyan L, Zulkarnain, Ahmad A. Spectroscopic and spectrophotometric studies on hydrogen bonded charge transfer complex of 2-amino-4-methylthiazole with chloranilic acid at different temperatures. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
28
|
High throughput screening against pantothenate synthetase identifies amide inhibitors against Mycobacterium tuberculosis and Staphylococcus aureus. In Silico Pharmacol 2018; 6:9. [PMID: 30607322 DOI: 10.1007/s40203-018-0046-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/10/2018] [Indexed: 01/14/2023] Open
Abstract
Abstract Pantothenate is a crucial enzyme for the synthesis of coenzyme A and acyl carrier protein in Mycobacterium tuberculosis and Staphylococcus aureus. It is indispensable for the growth and survival of these bacteria. Amides analogs are designed and have been used as inhibitors of pantothenate synthetase. Molecular docking approach has been used to design and predict the drug activity of molecule to the specific disease. In this work, more than hundred amides have been screened by Discovery Studio molecular docking programme to search best suitable molecule for the treatment of Mycobacterium tuberculosis. Pharmacophore generation has been done to recognize the binding modes of inhibitors in the receptor active site. To observe the stability and flexibility of inhibitors molecular dynamics (MD) simulation has been done; Lipinski's rule of five protocols is followed to screen drug likeness and ADMET (absorption, distribution, metabolism, excretion and toxicity) filtration is also used to value toxicity. DFT computation of optimized geometry and derivation of MOs has been used to correlate the drug likeness. The small difference in energy between HOMO and LUMO may help to activate the drug in the protein environment quickly. 2-Hydroxy-5-[(E)-2-{4-[(prop-2-enamido)sulfonyl]phenyl}diazen-1-yl]benzoic acid (M1) shows best theoretical efficiency against Mycobacterium tuberculosis (MTB) pantothenate synthetase and so does 2-hydroxy-5-[(E)-2-{4-[(2-phenylacetamido)sulfonyl]phenyl}diazen-1-yl]benzoic acid (M2) against Staphylococcus aureus pantothenate synthetase. These compounds also bind to Adenine-Thymine region of tuberculosis DNA. Graphical abstract
Collapse
|
29
|
Specific and highly efficient condensation of GC and IC DNA by polyaza pyridinophane derivatives. Int J Biol Macromol 2018; 109:143-151. [PMID: 29247733 DOI: 10.1016/j.ijbiomac.2017.11.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 11/23/2022]
Abstract
Two bis-polyaza pyridinophane derivatives and their monomeric reference compounds revealed strong interactions with ds-DNA and RNA. The bis-derivatives show a specific condensation of GC- and IC-DNA, which is almost two orders of magnitude more efficient than the well-known condensation agent spermine. The type of condensed DNA was identified as ψ-DNA, characterized by the exceptionally strong CD signals. At variance to the almost silent AT(U) polynucleotides, these strong CD signals allow the determination of GC-condensates at nanomolar nucleobase concentrations. Detailed thermodynamic characterisation by ITC reveals significant differences between the DNA binding of the bis-derivative compounds (enthalpy driven) and that of spermine and of their monomeric counterparts (entropy driven). Atomic force microscopy confirmed GC-DNA compaction by the bis-derivatives and the formation of toroid- and rod-like structures responsible for the ψ-type pattern in the CD spectra.
Collapse
|
30
|
Wolloscheck D, Krishnamoorthy G, Nguyen J, Zgurskaya HI. Kinetic Control of Quorum Sensing in Pseudomonas aeruginosa by Multidrug Efflux Pumps. ACS Infect Dis 2018; 4:185-195. [PMID: 29115136 DOI: 10.1021/acsinfecdis.7b00160] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pseudomonas aeruginosa is an important human pathogen, the physiology and virulence of which are under the control of quorum sensing signals. These signals often have dual roles, functioning as toxins to some cells and as oxidative-stress protectors for their producer cells. Hence, their internal and external concentrations should be tightly controlled. In this study, we analyzed the interplay between the multidrug efflux transporters MexEF-OprN and MexG/HI-OpmD in quorum sensing of P. aeruginosa. We found that the two transporters have overlapping substrate specificities but different efficiencies. When overproduced, both MexEF-OprN and MexG/HI-OpmD provide clinical levels of resistance to diverse fluoroquinolones and protect P. aeruginosa against toxic phenazines. However, this similarity is enabled by synergistic interactions with the outer membrane. In hyperporinated cells, MexG/HI-OpmD is saturated by much lower concentrations of fluoroquinolones but is more efficient than MexEF-OprN in efflux of phenazines. Unlike MexEF-OprN, mutational inactivation of MexG/HI-OpmD reduces the levels of pyocyanin and makes P. aeruginosa cells hypersusceptible to phenazines. Our results further show that MexG binds pyocyanin, physically associates with MexHI, and represses the activity of the transporter, revealing a negative regulatory role of this protein. We conclude that differences in kinetic properties of transporters are critical to maintain proper intra- and extracellular concentrations of phenazines and other signaling molecules and that MexG/HI-OpmD controls the steady state in the synthesis and secretion of phenazines.
Collapse
Affiliation(s)
- David Wolloscheck
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Ganesh Krishnamoorthy
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Jennifer Nguyen
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
31
|
Synthesis and molecular modeling of new benzimidazoles as glutathione S-transferase inhibitors and anticancer agents. Future Med Chem 2017; 10:157-181. [PMID: 29235906 DOI: 10.4155/fmc-2017-0137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Synthesis of novel glutathione S-transferases (GSTs) inhibitors constitutes a promising strategy in cancer treatment. Results & methodology: A new set of benzimidazoles clubbed with various heterocycles as GST inhibitors and anticancer agents were synthesized. The biological results proved the potential of the new compounds as GST inhibitors, specifically compounds 7 and 14 which produced more potency than ethacrynic acid by three- and tenfold, respectively. Most compounds exhibited promising cytotoxic activity against breast and colon cancer cell lines. Molecular modeling studies revealed that compounds 7 and 14 showed good binding with the amino acids of the GST protein. CONCLUSION Both compounds 7 and 14 fulfilled the Lipinski's rule of five suggesting them as new promising GST inhibitors and anticancer agents.
Collapse
|
32
|
Zulkarnain, Miyan L, Ahmad A, Fazle Alam M, Younus H. Synthesis, single-crystal, DNA interaction, spectrophotometric and spectroscopic characterization of the hydrogen-bonded charge transfer complex of 2-aminopyrimidine with π-acceptor chloranilic acid at different temperature in acetonitrile. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:195-208. [DOI: 10.1016/j.jphotobiol.2017.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/23/2017] [Accepted: 07/03/2017] [Indexed: 01/01/2023]
|
33
|
Freimann R, Wutz A. A fast and efficient size separation method for haploid embryonic stem cells. BIOMICROFLUIDICS 2017; 11:054117. [PMID: 29152028 PMCID: PMC5663646 DOI: 10.1063/1.5006326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 10/19/2017] [Indexed: 05/22/2023]
Abstract
Hemizygous mutations introduced in haploid genomes can directly expose a phenotype, thus facilitating gene function analysis and forward genetic screening. Recently, mammalian haploid cells could be derived from mouse, rat, monkey, and human embryos and have been applied to screens of cellular mechanisms including cell signaling, pathogen host factors, and developmental pathways. Notably, haploid cell cultures have an intrinsic tendency for diploidization and, thus, require periodic cell sorting. Here, we report a method for rapid purification of haploid mouse embryonic stem cells from mixed cell populations with high viability and yield. Our method uses membranes with micrometer pores for force-free separation and facilitates enrichment of haploid cells without flow cytometry. The separation method simplifies maintaining haploid cell cultures and has further applications in establishing haploid cell lines from embryos and isolating cell cycle phases of mammalian cells.
Collapse
Affiliation(s)
- Remo Freimann
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| |
Collapse
|
34
|
Ali I, Lone MN, Aboul-Enein HY. Imidazoles as potential anticancer agents. MEDCHEMCOMM 2017; 8:1742-1773. [PMID: 30108886 PMCID: PMC6084102 DOI: 10.1039/c7md00067g] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 12/19/2022]
Abstract
Cancer is a black spot on the face of humanity in this era of science and technology. Presently, several classes of anticancer drugs are available in the market, but issues such as toxicity, low efficacy and solubility have decreased the overall therapeutic indices. Thus, the search for new promising anticancer agents continues, and the battle against cancer is far from over. Imidazole is an aromatic diazole and alkaloid with anticancer properties. There is considerable interest among scientists in developing imidazoles as safe alternatives to anticancer chemotherapy. The present article describes the structural, chemical, and biological features of imidazoles. Several classes of imidazoles as anticancer agents based on their mode of action have been critically discussed. A careful observation has been made into pharmacologically active imidazoles with better or equal therapeutic effects compared to well-known imidazole-based anticancer drugs, which are available on the market. A brief discussion of the toxicities of imidazoles has been made. Finally, the current challenges and future perspectives of imidazole based anticancer drug development are conferred.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry , Jamia Millia Islamia (Central University) , New Delhi-110025 , India . ;
| | - Mohammad Nadeem Lone
- Department of Chemistry , Jamia Millia Islamia (Central University) , New Delhi-110025 , India . ;
| | - Haasan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department , Pharmaceutical and Drug Industries Research Division , National Research Centre , Dokki , Giza 12622 , Egypt
| |
Collapse
|
35
|
Chatterjee T, Chatterjee BK, Chakrabarti P. Modelling of growth kinetics of Vibrio cholerae in presence of gold nanoparticles: effect of size and morphology. Sci Rep 2017; 7:9671. [PMID: 28851910 PMCID: PMC5575114 DOI: 10.1038/s41598-017-09357-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/25/2017] [Indexed: 01/05/2023] Open
Abstract
Emergence of multiple drug resistant strains of pathogenic bacteria calls for new initiatives to combat infectious diseases. Gold nanoparticles (AuNPs), because of their non-toxic nature and size/shape dependent optical properties, offer interesting possibility. Here we report the antibacterial efficacy of AuNPs of different size and shape (AuNS10, AuNS100 and AuNR10; the number indicating the diameter in nm; S stands for sphere and R for rod) against the classical (O395) and El Tor (N16961) biotypes of Vibrio cholerae, the etiological agent responsible for cholera. Growth kinetics was monitored by measuring optical density at different time intervals and fitted by non-linear regression of modified Buchanan model. Sigmoidal growth curve for VcO395 indicated the existence of single phenotype population and was affected by AuNR10 only, implying the importance of morphology of AuNP. Growth of VcN16961 was affected by all three AuNPs indicating the vulnerability of El Tor biotype. Interestingly, VcN16961 exhibited the occurrence of two phenotypic subpopulations - one with shorter (vulnerable Type 1) and the other with extended (tolerant Type 2) lag phase. Various assays were conducted to probe the impact of AuNPs on bacterial cells. Apart from AuNR10, antimicrobial efficacy of AuNS10 was better compared to AuNS100.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, 700054, India.
| | - Barun K Chatterjee
- Department of Physics, Bose Institute, 93/1A.P.C. Road, Kolkata, 700009, India
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, 700054, India
- Bioinformatics Centre, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, 700054, India
| |
Collapse
|
36
|
Ranjan N, Story S, Fulcrand G, Leng F, Ahmad M, King A, Sur S, Wang W, Tse-Dinh YC, Arya DP. Selective Inhibition of Escherichia coli RNA and DNA Topoisomerase I by Hoechst 33258 Derived Mono- and Bisbenzimidazoles. J Med Chem 2017; 60:4904-4922. [DOI: 10.1021/acs.jmedchem.7b00191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Nihar Ranjan
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Sandra Story
- NUBAD LLC, 900B West Faris
Road, Greenville, South Carolina 29605, United States
| | - Geraldine Fulcrand
- Department
of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Department
of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Muzammil Ahmad
- Genome
Instability and Chromatin Remodeling Section, Lab of Genetics, National
Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, United States
| | - Ada King
- NUBAD LLC, 900B West Faris
Road, Greenville, South Carolina 29605, United States
| | - Souvik Sur
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Weidong Wang
- Genome
Instability and Chromatin Remodeling Section, Lab of Genetics, National
Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, United States
| | - Yuk-Ching Tse-Dinh
- Department
of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Dev P. Arya
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- NUBAD LLC, 900B West Faris
Road, Greenville, South Carolina 29605, United States
| |
Collapse
|
37
|
Valenzuela MS, Green N, Liu S. Identification of Berenil Target Sites in Plasmid pBR322. INTERNATIONAL JOURNAL OF BIOORGANIC CHEMISTRY & MOLECULAR BIOLOGY 2017; 5:24-30. [PMID: 29104898 PMCID: PMC5667686 DOI: 10.19070/2332-2756-170004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Berenil, a minor groove DNA binding molecule, has been extensively used in veterinary medicine. Modeling studies have suggested that berenil binds to A/T rich regions on the DNA and the product of this interaction causes the formation of crosslinks between opposite DNA strands. These crosslinks could potentially inhibit fundamental biological processes including transcription and DNA replication. We had previously used the pBR322 genome as a model system to investigate the role of A/T sequences on berenil activity. We reported that the insertion of poly(dA)poly(dT) sequences into the pBR322 genome causes replication inhibition of the recombinant plasmids when cultures were exposed to berenil. However, we noticed that even in the absence of these sequences the parental plasmid replication was also inhibited, albeit less than the recombinants. This observation led us to the present study were we attempted to identify the location of natural berenil target sites in the pBR322 genome. Through a combination of deletion analysis, recombinant DNA and a replication assay we uncovered a 378 bp DNA fragment that has all the hallmarks of a berenil target site. A recombinant plasmid lacking this region is more refractive to the drug than the parental plasmid, and another variant containing and extra copy of this region increases the susceptibility of the plasmid towards berenil. The 378 bp region is about 60% A/T rich and contains about 21 potential berenil binding sites.
Collapse
Affiliation(s)
- MS Valenzuela
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, 1005 DB Todd Jr. BIvd, Nashville, TN, USA
| | - N Green
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, 1005 DB Todd Jr. BIvd, Nashville, TN, USA
| | - S Liu
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, 1005 DB Todd Jr. BIvd, Nashville, TN, USA
| |
Collapse
|
38
|
Shi X, Mao S, Shen K, Wu H, Tang X. Synthesis, crystal structure, antioxidation and fluorescence of two lanthanide complexes with a noncyclic polyether Schiff base ligand. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1320394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xinkui Shi
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P. R. China
| | - Shanshan Mao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P. R. China
| | - Kesheng Shen
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P. R. China
| | - Huilu Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P. R. China
| | - Xia Tang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P. R. China
| |
Collapse
|
39
|
Koval VS, Ivanov AA, Salyanov VI, Stomakhin AA, Oleinikov VA, Zhuze AL. DNA sequence-specific ligands: XVI. Series of the DBP(n) fluorescent dimeric bisbenzimidazoles with 1,4-piperazine-containing linkers. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s106816201702008x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Zhang TT, Yang F, Li XL, Zhao W, Xu JJ, Chen HY. A multifunctional silver nanocomposite for the apoptosis of cancer cells and intracellular imaging. Chem Commun (Camb) 2017; 53:5614-5617. [DOI: 10.1039/c7cc02834b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A multifunctional silver nanoparticle based nanocomposite for specific cancer cell therapy andin situimaging.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Fan Yang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Xiang-ling Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
41
|
Liu CH, Tsao MH, Sahoo SL, Wu WC. Magnetic nanoparticles with fluorescence and affinity for DNA sensing and nucleus staining. RSC Adv 2017. [DOI: 10.1039/c6ra25610d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The fluorescence magnetic nanoparticles offer versatile platforms for nucleus imaging and DNA adsorption.
Collapse
Affiliation(s)
- Chi-Hsien Liu
- Graduate Institute of Biochemical and Biomedical Engineering
- Chang Gung University
- Tao-Yuan 333
- Taiwan
- Graduate Institute of Health Industry Technology
| | - Min-Han Tsao
- Graduate Institute of Biochemical and Biomedical Engineering
- Chang Gung University
- Tao-Yuan 333
- Taiwan
| | - Soubhagya Laxmi Sahoo
- Graduate Institute of Biochemical and Biomedical Engineering
- Chang Gung University
- Tao-Yuan 333
- Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology
- Chang Gung Memorial Hospital
- Taoyuan
- Taiwan
- College of Medicine
| |
Collapse
|
42
|
DNA Targeting as a Likely Mechanism Underlying the Antibacterial Activity of Synthetic Bis-Indole Antibiotics. Antimicrob Agents Chemother 2016; 60:7067-7076. [PMID: 27620482 DOI: 10.1128/aac.00309-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/04/2016] [Indexed: 02/07/2023] Open
Abstract
We previously reported the synthesis and biological activity of a series of cationic bis-indoles with potent, broad-spectrum antibacterial properties. Here, we describe mechanism of action studies to test the hypothesis that these compounds bind to DNA and that this target plays an important role in their antibacterial outcome. The results reported here indicate that the bis-indoles bind selectively to DNA at A/T-rich sites, which is correlated with the inhibition of DNA and RNA synthesis in representative Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) organisms. Further, exposure of E. coli and S. aureus to representative bis-indoles resulted in induction of the DNA damage-inducible SOS response. In addition, the bis-indoles were found to be potent inhibitors of cell wall biosynthesis; however, they do not induce the cell wall stress stimulon in S. aureus, suggesting that this pathway is inhibited by an indirect mechanism. In light of these findings, the most likely basis for the observed activities of these compounds is their ability to bind to the minor groove of DNA, resulting in the inhibition of DNA and RNA synthesis and other secondary effects.
Collapse
|
43
|
Bansal S, Bajaj P, Pandey S, Tandon V. Topoisomerases: Resistance versus Sensitivity, How Far We Can Go? Med Res Rev 2016; 37:404-438. [PMID: 27687257 DOI: 10.1002/med.21417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
DNA topoisomerases are ubiquitously present remarkable molecular machines that help in altering topology of DNA in living cells. The crucial role played by these nucleases during DNA replication, transcription, and recombination vis-à-vis less sequence similarity among different species makes topoisomerases unique and attractive targets for different anticancer and antibacterial drugs. However, druggability of topoisomerases by the existing class of molecules is increasingly becoming questationable due to resistance development predominated by mutations in the corresponding genes. The current scenario facing a decline in the development of new molecules further comprises an important factor that may challenge topoisomerase-targeting therapy. Thus, it is imperative to wisely use the existing inhibitors lest with this rapid rate of losing grip over the target we may not go too far. Furthermore, it is important not only to design new molecules but also to develop new approaches that may avoid obstacles in therapies due to multiple resistance mechanisms. This review provides a succinct account of different classes of topoisomerase inhibitors, focuses on resistance acquired by mutations in topoisomerases, and discusses the various approaches to increase the efficacy of topoisomerase inhibitors. In a later section, we also suggest the possibility of using bisbenzimidazoles along with efflux pump inhibitors for synergistic bactericidal effects.
Collapse
Affiliation(s)
- Sandhya Bansal
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Priyanka Bajaj
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Stuti Pandey
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
44
|
Amirbekyan K, Duchemin N, Benedetti E, Joseph R, Colon A, Markarian SA, Bethge L, Vonhoff S, Klussmann S, Cossy J, Vasseur JJ, Arseniyadis S, Smietana M. Design, Synthesis, and Binding Affinity Evaluation of Hoechst 33258 Derivatives for the Development of Sequence-Specific DNA-Based Asymmetric Catalysts. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00495] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karen Amirbekyan
- Institut
des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM Place Eugène Bataillon, 34095 Montpellier, France
- Department
of Physical Chemistry, Yerevan State University, 1 Alex Manoogian, Yerevan 0025, Armenia
| | - Nicolas Duchemin
- Laboratoire
de Chimie Organique, Institute of Chemistry, Biology and Innovation
(CBI) - ESPCI ParisTech/CNRS (UMR8231)/PSL* Research University, 10 rue Vauquelin, 75231 CEDEX 05 Paris, France
| | - Erica Benedetti
- Laboratoire
de Chimie Organique, Institute of Chemistry, Biology and Innovation
(CBI) - ESPCI ParisTech/CNRS (UMR8231)/PSL* Research University, 10 rue Vauquelin, 75231 CEDEX 05 Paris, France
| | - Rinah Joseph
- Laboratoire
de Chimie Organique, Institute of Chemistry, Biology and Innovation
(CBI) - ESPCI ParisTech/CNRS (UMR8231)/PSL* Research University, 10 rue Vauquelin, 75231 CEDEX 05 Paris, France
| | - Aude Colon
- Laboratoire
de Chimie Organique, Institute of Chemistry, Biology and Innovation
(CBI) - ESPCI ParisTech/CNRS (UMR8231)/PSL* Research University, 10 rue Vauquelin, 75231 CEDEX 05 Paris, France
| | - Shiraz A. Markarian
- Department
of Physical Chemistry, Yerevan State University, 1 Alex Manoogian, Yerevan 0025, Armenia
| | - Lucas Bethge
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Stephan Vonhoff
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Sven Klussmann
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Janine Cossy
- Laboratoire
de Chimie Organique, Institute of Chemistry, Biology and Innovation
(CBI) - ESPCI ParisTech/CNRS (UMR8231)/PSL* Research University, 10 rue Vauquelin, 75231 CEDEX 05 Paris, France
| | - Jean-Jacques Vasseur
- Institut
des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM Place Eugène Bataillon, 34095 Montpellier, France
| | - Stellios Arseniyadis
- Laboratoire
de Chimie Organique, Institute of Chemistry, Biology and Innovation
(CBI) - ESPCI ParisTech/CNRS (UMR8231)/PSL* Research University, 10 rue Vauquelin, 75231 CEDEX 05 Paris, France
- School
of Biological and Chemical Sciences, Queen Mary University of London, Joseph Priestley Building, Mile End Road, London E1 4NS, United Kingdom
| | - Michael Smietana
- Institut
des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
45
|
Blasi T, Hennig H, Summers HD, Theis FJ, Cerveira J, Patterson JO, Davies D, Filby A, Carpenter AE, Rees P. Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nat Commun 2016; 7:10256. [PMID: 26739115 PMCID: PMC4729834 DOI: 10.1038/ncomms10256] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/19/2015] [Indexed: 12/19/2022] Open
Abstract
Imaging flow cytometry combines the high-throughput capabilities of conventional flow cytometry with single-cell imaging. Here we demonstrate label-free prediction of DNA content and quantification of the mitotic cell cycle phases by applying supervised machine learning to morphological features extracted from brightfield and the typically ignored darkfield images of cells from an imaging flow cytometer. This method facilitates non-destructive monitoring of cells avoiding potentially confounding effects of fluorescent stains while maximizing available fluorescence channels. The method is effective in cell cycle analysis for mammalian cells, both fixed and live, and accurately assesses the impact of a cell cycle mitotic phase blocking agent. As the same method is effective in predicting the DNA content of fission yeast, it is likely to have a broad application to other cell types. Imaging flow cytometry enables high-throughput acquisition of fluorescence, brightfield and darkfield images of biological cells. Here, Blasi et al. demonstrate that applying machine learning algorithms on brightfield and darkfield images can detect cellular phenotypes without the need for fluorescent stains, enabling label-free assays.
Collapse
Affiliation(s)
- Thomas Blasi
- Imaging Platform at the Broad Institute of Harvard and MIT, 415 Main St, Cambridge, Massachusetts 02142, USA.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Department of Mathematics, Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany
| | - Holger Hennig
- Imaging Platform at the Broad Institute of Harvard and MIT, 415 Main St, Cambridge, Massachusetts 02142, USA
| | - Huw D Summers
- College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Fabian J Theis
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Department of Mathematics, Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany
| | - Joana Cerveira
- Flow Cytometry Facility, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - James O Patterson
- Cell Cycle Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, Holborn WC2A 3LY, UK
| | - Derek Davies
- Flow Cytometry Facility, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Andrew Filby
- Newcastle Upon Tyne University, Faculty of Medical Sciences, Bioscience Centre, International Centre for life, Newcastle Upon Tyne NE1 7RU, UK
| | - Anne E Carpenter
- Imaging Platform at the Broad Institute of Harvard and MIT, 415 Main St, Cambridge, Massachusetts 02142, USA
| | - Paul Rees
- Imaging Platform at the Broad Institute of Harvard and MIT, 415 Main St, Cambridge, Massachusetts 02142, USA.,College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
46
|
Targeting bacterial topoisomerase I to meet the challenge of finding new antibiotics. Future Med Chem 2016; 7:459-71. [PMID: 25875873 DOI: 10.4155/fmc.14.157] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Resistance of bacterial pathogens to current antibiotics has grown to be an urgent crisis. Approaches to overcome this challenge include identification of novel targets for discovery of new antibiotics. Bacterial topoisomerase I is present in all bacterial pathogens as a potential target for bactericidal topoisomerase poison inhibitors. Recent efforts have identified inhibitors of bacterial topoisomerase I with antibacterial activity. Additional research on the mode of action and binding site of these inhibitors would provide further validation of the target and establish that bacterial topoisomerase I is druggable. Bacterial topoisomerase I is a potentially high value target for discovery of new antibiotics. Demonstration of topoisomerase I as the cellular target of an antibacterial compound would provide proof-of-concept validation.
Collapse
|
47
|
Diminazene aceturate—An antiparasitic drug of antiquity: Advances in pharmacology & therapeutics. Pharmacol Res 2015; 102:138-57. [DOI: 10.1016/j.phrs.2015.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/28/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022]
|
48
|
Kumar H, Devaraji V, Prasath R, Jadhao M, Joshi R, Bhavana P, Ghosh SK. Groove binding mediated structural modulation and DNA cleavage by quinoline appended chalcone derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:605-615. [PMID: 26163783 DOI: 10.1016/j.saa.2015.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
The present study embodies the detail DNA binding interaction of a potential bioactive quinoline appended chalcone derivative (E)-3-(anthracen-10-yl)-1-(6,8-dibromo-2-methylquinolin-3-yl)prop-2-en-1-one (ADMQ) with calf thymus DNA (ctDNA) and its consequences by UV-Vis absorption, steady state fluorescence spectroscopy, fluorescence anisotropy, circular dichromism, helix melting, agarose gel electrophoresis, molecular docking, Induced Fit Docking (IFD) and molecular dynamics (MD) simulation. The UV-Vis absorption and fluorescence study reveal that the molecule undergoes considerable interaction with the nucleic acid. The control KI quenching experiment shows the lesser accessibility of ADMQ molecule to the ionic quencher (I(-)) in presence of ctDNA as compared to the bulk aqueous phase. Insignificant change in helix melting temperature as well as in circular dichromism (CD) spectra points toward non-covalent groove binding interaction. The moderate rotational confinement of this chalcone derivative (anisotropy=0.106) trapped in the nucleic acid environment, the comparative displacement assay with well-known minor groove binder Hoechst 33258 and intercalator Ethidium Bromide establishes the minor groove binding interactions of the probe molecule. Molecular docking, IFD and MD simulation reveal that the DNA undergoes prominent morphological changes in terms of helix unwinding and bending to accommodate ADMQ in a crescent shape at an angle of 110° in a sequence specific manner. During interaction, ADMQ rigidifies and bends the sugar phosphate backbone of the nucleic acid and thereby shortens its overall length by 3.02Å. Agarose gel electrophoresis experiment with plasmid pBR 322 reveals that the groove binded ADMQ result in a concentration dependent cleavage of plasmid DNA into its supercoiled and nicked circular form. The consolidated spectroscopic research described herein provides quantitative insight into the interaction of a heterocyclic chalcone derivative with relevant target nucleic acid, which may be useful for the future research on chalcone based therapeutic agents.
Collapse
Affiliation(s)
- Himank Kumar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India
| | - Vinod Devaraji
- Department of Pharmaceutical Chemistry, College of Pharmacy, Madras Medical College, Chennai 600003, India
| | - Rangaraj Prasath
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Manojkumar Jadhao
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India
| | - Ritika Joshi
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India
| | - Purushothaman Bhavana
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Sujit Kumar Ghosh
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India.
| |
Collapse
|
49
|
de Lucca RMR, Batista Júnior J, Fontes CJF, Bahia MDO, Bassi-Branco CL. Genotoxic effects of the antimalarial drug lumefantrine in human lymphocytes in vitro and computational prediction of the mechanism associated with its interaction with DNA. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:556-562. [PMID: 25821123 DOI: 10.1002/em.21942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Abstract
Lumefantrine (LF) is an aryl-amino alcohol antimalarial drug used in artemisinin-based combination therapies against malaria worldwide. In this study, we investigated the genotoxic effects of LF in human lymphocytes in vitro, and the potential noncovalent interaction of LF with DNA using a 3D DNA-docking model. The number of DNA breaks and the frequency of nuclear buds (NBUDS) was significantly increased (P < 0.01 and P < 0. 05, respectively) at LF concentrations of 60, 80, and 100 µg/mL (LF60, LF80, and LF100, respectively). Frequency (‰) of micronuclei (MN) formation also increased after LF treatments. However, this was only significant for LF100 (P = 0.01) and LF80 (P = 0.001). LF did not affect the frequency of nucleoplasmic bridges (NPBs) (P = 0.12) or the nuclear division index (NDI) (P = 0.32). Computational analysis suggests that LF may interact noncovalently with DNA via the DNA minor groove surface with a predicted binding affinity energy of -7.2 kcal/mol and showing a favorable shape complementary to this groove. Our results suggest that LF has clastogenic effects in human lymphocytes in vitro due to noncovalent interaction with the minor groove of DNA.
Collapse
Affiliation(s)
- Renato M R de Lucca
- Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - João Batista Júnior
- Faculdade de Farmácia, Centro Universitário do Distrito Federal, Brasília, Brazil
| | - Cor J Fernandes Fontes
- Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
- Laboratório de Malária, Hospital Universitário Júlio Müller, Cuiabá, Brazil
| | - Marcelo de Oliveira Bahia
- Pós-graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Carmen L Bassi-Branco
- Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| |
Collapse
|
50
|
Bukhari M, Deng H, Jones N, Towne Z, Woodworth CD, Samways DSK. Selective permeabilization of cervical cancer cells to an ionic DNA-binding cytotoxin by activation of P2Y receptors. FEBS Lett 2015; 589:1498-504. [PMID: 25937122 PMCID: PMC4497545 DOI: 10.1016/j.febslet.2015.04.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
Extracellular ATP is known to permeabilize certain cell types to polyatomic cations like YO-PRO1. Here, we report that extracellularly applied ATP stimulated rapid uptake and accumulation of an otherwise weakly membrane permeable fluorescent DNA-binding cytotoxin, Hoechst 33258, into cervical cancer cells. While ATP stimulated Hoechst 33258 uptake in 20-70% of cells from seven cervical cancer cell lines, it stimulated uptake in less than 8% of cervical epithelial cells obtained from the normal transformation zone and ectocervix tissue of 11 patients. ATP-evoked Hoechst 33258 uptake was independent of ionotropic P2X receptors, but dependent on activation of P2Y receptors. Thus, we show here that cervical cancer cells can be selectively induced to take up and accumulate an ionic cytotoxin by exposure to extracellular ATP.
Collapse
Affiliation(s)
- Maurish Bukhari
- Department of Biology, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699-5805, USA
| | - Han Deng
- Department of Biology, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699-5805, USA
| | - Noelle Jones
- Department of Biology, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699-5805, USA
| | - Zachary Towne
- Department of Biology, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699-5805, USA
| | - Craig D Woodworth
- Department of Biology, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699-5805, USA
| | - Damien S K Samways
- Department of Biology, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699-5805, USA.
| |
Collapse
|