1
|
Khalkhali P, Omidi M, Masson-Meyers DS, Akbari B, Dehghan MM, Aminianfar H, Farzad-Mohajeri S, Mansouri V, Nikpasand A, Tayebi L. Promoting Angiogenesis/Osteogenesis by a New Copper/Magnesium Hydroxide Hybrid Nanoparticle: In Vitro and In Vivo Investigation. J Biomed Mater Res A 2025; 113:e37855. [PMID: 39815692 PMCID: PMC12068790 DOI: 10.1002/jbm.a.37855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)2/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The fabricated 3D-printed PCL/Gelatin/MCN scaffolds were investigated in vitro and in vivo. Cell viability tests on murine calvarial preosteoblasts (MC3T3-E1) and human umbilical vein endothelial cells (HUVECs) demonstrated that the scaffolds could induce proper cell proliferation. Additionally, the angiogenic and osteogenic properties of the constructs were evaluated using alkaline phosphatase (ALP) activity, osteogenesis-related, and angiogenesis-related gene expression tests. The in vivo study was conducted using a rat calvarial defect model, which confirmed the superior angiogenic and osteogenic properties of the PCL/gelatin/MCN scaffolds compared to PCL/Gelatin and PCL/Gelatin/Mg(OH)2 scaffolds. Overall, the PCL/Gelatin/MCN scaffolds showed promising potential for bone regeneration, particularly for critical-sized defects where proper angiogenesis is essential for tissue reconstruction.
Collapse
Affiliation(s)
- Parsa Khalkhali
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Meisam Omidi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | | | - Babak Akbari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Veterinary Clinical Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Hossein Aminianfar
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Department of Veterinary Clinical Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical sciences, Tehran 19857-17443, Iran
- Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Amin Nikpasand
- Department of Veterinary Clinical Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
- Institute for Engineering in Medicine, Health, & Human Performance (EnMed), Batten College of Engineering and Technology, Old Dominion University, Norfolk, VA, 23529, USA
| |
Collapse
|
2
|
Ou KL, Chen CK, Huang JJ, Chang WW, Hsieh Li SM, Jiang TX, Widelitz RB, Lansford R, Chuong CM. Adaptive patterning of vascular network during avian skin development: Mesenchymal plasticity and dermal vasculogenesis. Cells Dev 2024; 179:203922. [PMID: 38688358 PMCID: PMC11633821 DOI: 10.1016/j.cdev.2024.203922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
A vasculature network supplies blood to feather buds in the developing skin. Does the vasculature network during early skin development form by sequential sprouting from the central vasculature or does local vasculogenesis occur first that then connect with the central vascular tree? Using transgenic Japanese quail Tg(TIE1p.H2B-eYFP), we observe that vascular progenitor cells appear after feather primordia formation. The vasculature then radiates out from each bud and connects with primordial vessels from neighboring buds. Later they connect with the central vasculature. Epithelial-mesenchymal recombination shows local vasculature is patterned by the epithelium, which expresses FGF2 and VEGF. Perturbing noggin expression leads to abnormal vascularization. To study endothelial origin, we compare transcriptomes of TIE1p.H2B-eYFP+ cells collected from the skin and aorta. Endothelial cells from the skin more closely resemble skin dermal cells than those from the aorta. The results show developing chicken skin vasculature is assembled by (1) physiological vasculogenesis from the peripheral tissue, and (2) subsequently connects with the central vasculature. The work implies mesenchymal plasticity and convergent differentiation play significant roles in development, and such processes may be re-activated during adult regeneration. SUMMARY STATEMENT: We show the vasculature network in the chicken skin is assembled using existing feather buds as the template, and endothelia are derived from local bud dermis and central vasculature.
Collapse
Affiliation(s)
- Kuang-Ling Ou
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America; Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA, United States of America; Burn Center, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, United States of America; Graduate Programs in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - William Weijen Chang
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America; Integrative Stem Cell Center, China Medical University, Taichung, Taiwan; Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Shu-Man Hsieh Li
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America; Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA, United States of America
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Randall B Widelitz
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Rusty Lansford
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States of America; Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America.
| |
Collapse
|
3
|
Al-Saei O, Malka S, Owen N, Aliyev E, Vempalli FR, Ocieczek P, Al-Khathlan B, Fakhro K, Moosajee M. Increasing the diagnostic yield of childhood glaucoma cases recruited into the 100,000 Genomes Project. BMC Genomics 2024; 25:484. [PMID: 38755526 PMCID: PMC11097485 DOI: 10.1186/s12864-024-10353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Childhood glaucoma (CG) encompasses a heterogeneous group of genetic eye disorders that is responsible for approximately 5% of childhood blindness worldwide. Understanding the molecular aetiology is key to improving diagnosis, prognosis and unlocking the potential for optimising clinical management. In this study, we investigated 86 CG cases from 78 unrelated families of diverse ethnic backgrounds, recruited into the Genomics England 100,000 Genomes Project (GE100KGP) rare disease cohort, to improve the genetic diagnostic yield. Using the Genomics England/Genomic Medicine Centres (GE/GMC) diagnostic pipeline, 13 unrelated families were solved (13/78, 17%). Further interrogation using an expanded gene panel yielded a molecular diagnosis in 7 more unrelated families (7/78, 9%). This analysis effectively raises the total number of solved CG families in the GE100KGP to 26% (20/78 families). Twenty-five percent (5/20) of the solved families had primary congenital glaucoma (PCG), while 75% (15/20) had secondary CG; 53% of this group had non-acquired ocular anomalies (including iris hypoplasia, megalocornea, ectopia pupillae, retinal dystrophy, and refractive errors) and 47% had non-acquired systemic diseases such as cardiac abnormalities, hearing impairment, and developmental delay. CYP1B1 was the most frequently implicated gene, accounting for 55% (11/20) of the solved families. We identified two novel likely pathogenic variants in the TEK gene, in addition to one novel pathogenic copy number variant (CNV) in FOXC1. Variants that passed undetected in the GE100KGP diagnostic pipeline were likely due to limitations of the tiering process, the use of smaller gene panels during analysis, and the prioritisation of coding SNVs and indels over larger structural variants, CNVs, and non-coding variants.
Collapse
Affiliation(s)
- Omayma Al-Saei
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Samantha Malka
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Nicholas Owen
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Elbay Aliyev
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | | | - Paulina Ocieczek
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | | | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
- The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
4
|
Chen-Li G, Martinez-Archer R, Coghi A, Roca JA, Rodriguez FJ, Acaba-Berrocal L, Berrocal MH, Wu L. Beyond VEGF: Angiopoietin-Tie Signaling Pathway in Diabetic Retinopathy. J Clin Med 2024; 13:2778. [PMID: 38792322 PMCID: PMC11122151 DOI: 10.3390/jcm13102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Complications from diabetic retinopathy such as diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR) constitute leading causes of preventable vision loss in working-age patients. Since vascular endothelial growth factor (VEGF) plays a major role in the pathogenesis of these complications, VEGF inhibitors have been the cornerstone of their treatment. Anti-VEGF monotherapy is an effective but burdensome treatment for DME. However, due to the intensive and burdensome treatment, most patients in routine clinical practice are undertreated, and therefore, their outcomes are compromised. Even in adequately treated patients, persistent DME is reported anywhere from 30% to 60% depending on the drug used. PDR is currently treated by anti-VEGF, panretinal photocoagulation (PRP) or a combination of both. Similarly, a number of eyes, despite these treatments, continue to progress to tractional retinal detachment and vitreous hemorrhage. Clearly there are other molecular pathways other than VEGF involved in the pathogenesis of DME and PDR. One of these pathways is the angiopoietin-Tie signaling pathway. Angiopoietin 1 (Ang1) plays a major role in maintaining vascular quiescence and stability. It acts as a molecular brake against vascular destabilization and inflammation that is usually promoted by angiopoietin 2 (Ang2). Several pathological conditions including chronic hyperglycemia lead to Ang2 upregulation. Recent regulatory approval of the bi-specific antibody, faricimab, may improve long term outcomes in DME. It targets both the Ang/Tie and VEGF pathways. The YOSEMITE and RHINE were multicenter, double-masked, randomized non-inferiority phase 3 clinical trials that compared faricimab to aflibercept in eyes with center-involved DME. At 12 months of follow-up, faricimab demonstrated non-inferior vision gains, improved anatomic outcomes and a potential for extended dosing when compared to aflibercept. The 2-year results of the YOSEMITE and RHINE trials demonstrated that the anatomic and functional results obtained at the 1 year follow-up were maintained. Short term outcomes of previously treated and treatment-naive eyes with DME that were treated with faricimab during routine clinical practice suggest a beneficial effect of faricimab over other agents. Targeting of Ang2 has been reported by several other means including VE-PTP inhibitors, integrin binding peptide and surrobodies.
Collapse
Affiliation(s)
- Genesis Chen-Li
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica (R.M.-A.); (A.C.)
| | - Rebeca Martinez-Archer
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica (R.M.-A.); (A.C.)
| | - Andres Coghi
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica (R.M.-A.); (A.C.)
| | | | | | - Luis Acaba-Berrocal
- Department of Ophthalmology, Illinois Eye and Ear Infirmary, School of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | | | - Lihteh Wu
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica (R.M.-A.); (A.C.)
- Department of Ophthalmology, Illinois Eye and Ear Infirmary, School of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Lin Y, Luo G, Liu Q, Yang R, Sol Reinach P, Yan D. METTL3-Mediated RNA m6A Modification Regulates the Angiogenic Behaviors of Retinal Endothelial Cells by Methylating MMP2 and TIE2. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 37819742 PMCID: PMC10573643 DOI: 10.1167/iovs.64.13.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023] Open
Abstract
Purpose N6-methyladenosine (m6A) is a commonly occurring modification of mRNAs, catalyzed by a complex containing methyltransferase like 3 (METTL3). Our research aims to explore how METTL3-dependent m6A modification affects the functions of retinal endothelial cells (RECs). Methods An oxygen-induced retinopathy (OIR) mouse model was established, and RECs were isolated using magnetic beads method. Human retinal microvascular endothelial cells (HRMECs) were treated with normoxia (21% O2) or hypoxia (1% O2). Dot blot assay determined m6A modification levels. Quantitative RT-PCR and Western blot detected the mRNA and protein expression levels of the target candidates, respectively. Genes were knocked down by small interfering RNA transfection. Matrigel-based angiogenesis and transwell assays evaluated the abilities of endothelial tube formation and migration, respectively. Methylated RNA immunoprecipitation-qPCR determined the levels of m6A modification in the target genes. Results The m6A modification levels were significantly upregulated in the retinas and RECs of OIR mice. Exposure to hypoxia significantly elevated both METTL3 expression and m6A modification levels in HRMECs. METTL3 knockdown curtailed endothelial tube formation and migration in vitro under both normoxic and hypoxic conditions. Concurrently, this knockdown in HRMECs resulted in reduced m6A modification levels of MMP2 and TIE2 transcripts, subsequently leading to a decrease in their respective protein expressions. Notably, knockdown of MMP2 and TIE2 also markedly inhibited the angiogenic activities of HRMECs. Conclusions METTL3-mediated m6A modification promotes the angiogenic behaviors of RECs by targeting MMP2 and TIE2, suggesting its significance in retinal angiogenesis and METTL3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Yong Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guangying Luo
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qi Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rusen Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peter Sol Reinach
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dongsheng Yan
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Voisin B, Nadella V, Doebel T, Goel S, Sakamoto K, Ayush O, Jo JH, Kelly MC, Kobayashi T, Jiang JX, Hu Y, Yan C, Nagao K. Macrophage-mediated extracellular matrix remodeling controls host Staphylococcus aureus susceptibility in the skin. Immunity 2023; 56:1561-1577.e9. [PMID: 37402364 PMCID: PMC10467568 DOI: 10.1016/j.immuni.2023.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 03/29/2023] [Accepted: 06/08/2023] [Indexed: 07/06/2023]
Abstract
Hypodermis is the predominant site of Staphylococcus aureus infections that cause cellulitis. Given the importance of macrophages in tissue remodeling, we examined the hypodermal macrophages (HDMs) and their impact on host susceptibility to infection. Bulk and single-cell transcriptomics uncovered HDM subsets with CCR2-dichotomy. HDM homeostasis required the fibroblast-derived growth factor CSF1, ablation of which abrogated HDMs from the hypodermal adventitia. Loss of CCR2- HDMs resulted in accumulation of the extracellular matrix component, hyaluronic acid (HA). HDM-mediated HA clearance required sensing by the HA receptor, LYVE-1. Cell-autonomous IGF1 was required for accessibility of AP-1 transcription factor motifs that controlled LYVE-1 expression. Remarkably, loss of HDMs or IGF1 limited Staphylococcus aureus expansion via HA and conferred protection against cellulitis. Our findings reveal a function for macrophages in the regulation of HA with an impact on infection outcomes, which may be harnessed to limit the establishment of infection in the hypodermal niche.
Collapse
Affiliation(s)
- Benjamin Voisin
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vinod Nadella
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Doebel
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shubham Goel
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Keiko Sakamoto
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Otgonzaya Ayush
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jay-Hyun Jo
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael C Kelly
- Cancer Research Technology Program, Single-Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tetsuro Kobayashi
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ying Hu
- Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Chunhua Yan
- Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Benz AP, Hijazi Z, Lindbäck J, Connolly SJ, Eikelboom JW, Kastner P, Ziegler A, Alexander JH, Granger CB, Lopes RD, Oldgren J, Siegbahn A, Wallentin L. Plasma angiopoietin-2 and its association with heart failure in patients with atrial fibrillation. Europace 2023; 25:euad200. [PMID: 37461214 PMCID: PMC10359110 DOI: 10.1093/europace/euad200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/24/2023] [Indexed: 07/22/2023] Open
Abstract
AIMS Several biomarkers are associated with clinical outcomes in patients with atrial fibrillation (AF), but a causal relationship has not been established. This study aimed to evaluate angiopoietin-2, a novel candidate biomarker of endothelial inflammation and vascular remodelling, in patients with AF. METHODS AND RESULTS Angiopoietin-2 was measured in plasma obtained from patients with AF treated with aspirin monotherapy (exploration cohort, n = 2987) or with oral anticoagulation (validation cohort, n = 13 079). Regression models were built to assess the associations between angiopoietin-2, clinical characteristics, and outcomes. In both cohorts, plasma angiopoietin-2 was independently associated with AF on the baseline electrocardiogram and persistent/permanent AF, age, history of heart failure, female sex, tobacco use/smoking, body mass index, renal dysfunction, diabetes, and N-terminal pro-B-type natriuretic peptide (NT-proBNP). Angiopoietin-2 was independently associated with subsequent hospitalization for heart failure after adjusting for age, creatinine, and clinical characteristics in the exploration cohort [c-index 0.79, 95% confidence interval (CI) 0.75-0.82; third vs. first quartile, hazard ratio (HR) 1.74, 95% CI 1.26-2.41] and in the validation cohort (c-index 0.76, 95% CI 0.74-0.78; HR 1.58, 95% CI 1.37-1.82). In both cohorts, the association persisted when also adjusting for NT-proBNP (P ≤ 0.001). In full multivariable models also adjusted for NT-proBNP, angiopoietin-2 did not show statistically significant associations with ischaemic stroke, cardiovascular and all-cause death, or major bleeding that were consistent across the two cohorts. CONCLUSIONS In patients with AF, plasma levels of angiopoietin-2 were independently associated with subsequent hospitalization for heart failure and provided incremental prognostic value to clinical risk factors and NT-proBNP.
Collapse
Affiliation(s)
- Alexander P Benz
- Population Health Research Institute, McMaster University, 237 Barton St. E., Hamilton, Ontario L8L 2X2, Canada
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg-University, Langenbeckstr. 1, Mainz 55131, Germany
| | - Ziad Hijazi
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
| | - Johan Lindbäck
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Stuart J Connolly
- Population Health Research Institute, McMaster University, 237 Barton St. E., Hamilton, Ontario L8L 2X2, Canada
| | - John W Eikelboom
- Population Health Research Institute, McMaster University, 237 Barton St. E., Hamilton, Ontario L8L 2X2, Canada
| | | | | | - John H Alexander
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | | | - Renato D Lopes
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Jonas Oldgren
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
| | - Agneta Siegbahn
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Lars Wallentin
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Bartish M, Abraham MJ, Gonçalves C, Larsson O, Rolny C, Del Rincón SV. The role of eIF4F-driven mRNA translation in regulating the tumour microenvironment. Nat Rev Cancer 2023; 23:408-425. [PMID: 37142795 DOI: 10.1038/s41568-023-00567-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Cells can rapidly adjust their proteomes in dynamic environments by regulating mRNA translation. There is mounting evidence that dysregulation of mRNA translation supports the survival and adaptation of cancer cells, which has stimulated clinical interest in targeting elements of the translation machinery and, in particular, components of the eukaryotic initiation factor 4F (eIF4F) complex such as eIF4E. However, the effect of targeting mRNA translation on infiltrating immune cells and stromal cells in the tumour microenvironment (TME) has, until recently, remained unexplored. In this Perspective article, we discuss how eIF4F-sensitive mRNA translation controls the phenotypes of key non-transformed cells in the TME, with an emphasis on the underlying therapeutic implications of targeting eIF4F in cancer. As eIF4F-targeting agents are in clinical trials, we propose that a broader understanding of their effect on gene expression in the TME will reveal unappreciated therapeutic vulnerabilities that could be used to improve the efficacy of existing cancer therapies.
Collapse
Affiliation(s)
- Margarita Bartish
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Madelyn J Abraham
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Christophe Gonçalves
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Ola Larsson
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Rolny
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Sonia V Del Rincón
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|
9
|
Chang FC, Liu CH, Luo AJ, Tao-Min Huang T, Tsai MH, Chen YJ, Lai CF, Chiang CK, Lin TH, Chiang WC, Chen YM, Chu TS, Lin SL. Angiopoietin-2 inhibition attenuates kidney fibrosis by hindering chemokine C-C motif ligand 2 expression and apoptosis of endothelial cells. Kidney Int 2022; 102:780-797. [DOI: 10.1016/j.kint.2022.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
|
10
|
Meltzer M, Eliash N, Azoulay Z, Hadad U, Papo N. In vitro inhibition of cancer angiogenesis and migration by a nanobody that targets the orphan receptor Tie1. Cell Mol Life Sci 2022; 79:312. [PMID: 35604495 PMCID: PMC11072481 DOI: 10.1007/s00018-022-04336-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
The human signaling molecules Tie1 and Tie2 receptor tyrosine kinases (RTKs) play important pathophysiological roles in many diseases, including different cancers. The activity of Tie1 is mediated mainly through the downstream angiopoietin-1 (Ang1)-dependent activation of Tie2, rendering both Tie 1 and the Tie1/Tie2/Ang1 axis attractive putative targets for therapeutic intervention. However, the development of inhibitors that target Tie1 and an understanding of their effect on Tie2 and on the Tie1/Tie2/Ang1 axis remain unfulfilled tasks, due, largely, to the facts that Tie1 is an orphan receptor and is difficult to produce and use in the quantities required for immune antibody library screens. In a search for a selective inhibitor of this orphan receptor, we sought to exploit the advantages (e.g., small size that allows binding to hidden epitopes) of non-immune nanobodies and to simultaneously overcome their limitations (i.e., low expression and stability). We thus performed expression, stability, and affinity screens of yeast-surface-displayed naïve and predesigned synthetic (non-immune) nanobody libraries against the Tie1 extracellular domain. The screens yielded a nanobody with high expression and good affinity and specificity for Tie1, thereby yielding preferential binding for Tie1 over Tie2. The stability, selectivity, potency, and therapeutic potential of this synthetic nanobody were profiled using in vitro and cell-based assays. The nanobody triggered Tie1-dependent inhibition of RTK (Tie2, Akt, and Fak) phosphorylation and angiogenesis in endothelial cells, as well as suppression of human glioblastoma cell viability and migration. This study opens the way to developing nanobodies as therapeutics for different cancers associated with Tie1 activation.
Collapse
Affiliation(s)
- May Meltzer
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel
| | - Noam Eliash
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel
| | - Ziv Azoulay
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
11
|
Mezu-Ndubuisi OJ, Maheshwari A. Role of the Endothelium in Neonatal Diseases. NEWBORN 2022; 1:44-57. [PMID: 35754998 PMCID: PMC9217741 DOI: 10.5005/jp-journals-11002-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In both fetal and neonatal physiologic and pathologic processes in most organs, endothelial cells are known to play critical roles. Although the endothelium is one of the most ubiquitous cell type in the body, the tight adherence to the blood vessel wall has made it difficult to study their diverse function and structure. In this article, we have reviewed endothelial cell origins and explored their heterogeneity in terms of structure, function, developmental changes, and their role in inflammatory and infectious diseases. We have also attempted to evaluate the untapped therapeutic potentials of endothelial cells in neonatal disease. This article comprises various peer-reviewed studies, including ours, and an extensive database literature search from EMBASE, PubMed, and Scopus.
Collapse
Affiliation(s)
- Olachi J Mezu-Ndubuisi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
12
|
Agrud A, Subburaju S, Goel P, Ren J, Kumar AS, Caldarone BJ, Dai W, Chavez J, Fukumura D, Jain RK, Kloner RA, Vasudevan A. Gabrb3 endothelial cell-specific knockout mice display abnormal blood flow, hypertension, and behavioral dysfunction. Sci Rep 2022; 12:4922. [PMID: 35318369 PMCID: PMC8941104 DOI: 10.1038/s41598-022-08806-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Our recent studies uncovered a novel GABA signaling pathway in embryonic forebrain endothelial cells that works independently from neuronal GABA signaling and revealed that disruptions in endothelial GABAA receptor-GABA signaling from early embryonic stages can directly contribute to the origin of psychiatric disorders. In the GABAA receptor β3 subunit endothelial cell conditional knockout (Gabrb3ECKO) mice, the β3 subunit is deleted selectively from endothelial cells, therefore endothelial GABAA receptors become inactivated and dysfunctional. There is a reduction in vessel densities and increased vessel morphology in the Gabrb3ECKO telencephalon that persists in the adult neocortex. Gabrb3ECKO mice show behavioral deficits such as impaired reciprocal social interactions, communication deficits, heightened anxiety, and depression. Here, we characterize the functional changes in Gabrb3ECKO mice by evaluating cortical blood flow, examine the consequences of loss of endothelial Gabrb3 on cardiac tissue, and define more in-depth altered behaviors. Red blood cell velocity and blood flow were increased in the cortical microcirculation of the Gabrb3ECKO mice. The Gabrb3ECKO mice had a reduction in vessel densities in the heart, similar to the brain; exhibited wavy, myocardial fibers, with elongated 'worm-like' nuclei in their cardiac histology, and developed hypertension. Additional alterations in behavioral function were observed in the Gabrb3ECKO mice such as increased spontaneous exploratory activity and rearing in an open field, reduced short term memory, decreased ambulatory activity in CLAMS testing, and altered prepulse inhibition to startle, an important biomarker of psychiatric diseases such as schizophrenia. Our results imply that vascular Gabrb3 is a key player in the brain as well as the heart, and its loss in both organs can lead to concurrent development of psychiatric and cardiac dysfunction.
Collapse
Affiliation(s)
- Anass Agrud
- grid.280933.30000 0004 0452 8371Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105 USA
| | - Sivan Subburaju
- grid.280933.30000 0004 0452 8371Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105 USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA 02215 USA ,grid.240206.20000 0000 8795 072XDivision of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Pranay Goel
- grid.280933.30000 0004 0452 8371Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105 USA
| | - Jun Ren
- grid.32224.350000 0004 0386 9924Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Ashwin Srinivasan Kumar
- grid.32224.350000 0004 0386 9924Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA ,grid.116068.80000 0001 2341 2786Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Barbara J. Caldarone
- grid.38142.3c000000041936754XMouse Behavior Core, Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Wangde Dai
- grid.280933.30000 0004 0452 8371Huntington Medical Research Institutes, Pasadena, CA USA ,grid.42505.360000 0001 2156 6853Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA USA
| | - Jesus Chavez
- grid.280933.30000 0004 0452 8371Huntington Medical Research Institutes, Pasadena, CA USA ,grid.42505.360000 0001 2156 6853Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA USA
| | - Dai Fukumura
- grid.32224.350000 0004 0386 9924Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Rakesh K. Jain
- grid.32224.350000 0004 0386 9924Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Robert A. Kloner
- grid.280933.30000 0004 0452 8371Huntington Medical Research Institutes, Pasadena, CA USA ,grid.42505.360000 0001 2156 6853Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA USA
| | - Anju Vasudevan
- Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA, 91105, USA.
| |
Collapse
|
13
|
Angiopoietin-2-induced lymphatic endothelial cell migration drives lymphangiogenesis via the β1 integrin-RhoA-formin axis. Angiogenesis 2022; 25:373-396. [PMID: 35103877 DOI: 10.1007/s10456-022-09831-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/08/2021] [Indexed: 11/01/2022]
Abstract
Lymphangiogenesis is an essential physiological process but also a determining factor in vascular-related pathological conditions. Angiopoietin-2 (Ang2) plays an important role in lymphatic vascular development and function and its upregulation has been reported in several vascular-related diseases, including cancer. Given the established role of the small GTPase RhoA on cytoskeleton-dependent endothelial functions, we investigated the relationship between RhoA and Ang2-induced cellular activities. This study shows that Ang2-driven human dermal lymphatic endothelial cell migration depends on RhoA. We demonstrate that Ang2-induced migration is independent of the Tie receptors, but dependent on β1 integrin-mediated RhoA activation with knockdown, pharmacological approaches, and protein sequencing experiments. Although the key proteins downstream of RhoA, Rho kinase (ROCK) and myosin light chain, were activated, blockade of ROCK did not abrogate the Ang2-driven migratory effect. However, formins, an alternative target of RhoA, were identified as key players, and especially FHOD1. The Ang2-RhoA relationship was explored in vivo, where lymphatic endothelial RhoA deficiency blocked Ang2-induced lymphangiogenesis, highlighting RhoA as an important target for anti-lymphangiogenic treatments.
Collapse
|
14
|
Arrigo A, Bandello F. Retinal vein occlusion: drug targets and therapeutic implications. Expert Opin Ther Targets 2021; 25:847-864. [PMID: 34775882 DOI: 10.1080/14728222.2021.2005026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The pathogenesis of retinal vein occlusion (RVO) is extremely complex and includes several mediators. These mediators represent potential drug targets that can be used in the development of intravitreal drugs. AREAS COVERED PubMed/MEDLINE databases were accessed between April-May 2021 to find the most relevant scientific papers regarding drug targets and therapeutic implications in RVO, focusing on current therapeutic options and potential cornerstones of future advances in treatment. EXPERT OPINION Before the introduction of intravitreal therapies, the visual outcome following a diagnosis of RVO was extremely poor. Anti-VEGF and corticosteroid treatments have radically changed RVO prognosis, helping to preserve patients' visual function and their quality of life. According to current clinical data, anti-VEGF and corticosteroid drugs are associated with both pros and cons; the present recommendation is to employ anti-VEGF molecules as a first-line treatment. Advances in our understanding of the biomolecular characteristics of RVO offer a solid basis for the development of new therapeutic targets and treatments.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
15
|
Fröbel J, Landspersky T, Percin G, Schreck C, Rahmig S, Ori A, Nowak D, Essers M, Waskow C, Oostendorp RAJ. The Hematopoietic Bone Marrow Niche Ecosystem. Front Cell Dev Biol 2021; 9:705410. [PMID: 34368155 PMCID: PMC8339972 DOI: 10.3389/fcell.2021.705410] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
The bone marrow (BM) microenvironment, also called the BM niche, is essential for the maintenance of fully functional blood cell formation (hematopoiesis) throughout life. Under physiologic conditions the niche protects hematopoietic stem cells (HSCs) from sustained or overstimulation. Acute or chronic stress deregulates hematopoiesis and some of these alterations occur indirectly via the niche. Effects on niche cells include skewing of its cellular composition, specific localization and molecular signals that differentially regulate the function of HSCs and their progeny. Importantly, while acute insults display only transient effects, repeated or chronic insults lead to sustained alterations of the niche, resulting in HSC deregulation. We here describe how changes in BM niche composition (ecosystem) and structure (remodeling) modulate activation of HSCs in situ. Current knowledge has revealed that upon chronic stimulation, BM remodeling is more extensive and otherwise quiescent HSCs may be lost due to diminished cellular maintenance processes, such as autophagy, ER stress response, and DNA repair. Features of aging in the BM ecology may be the consequence of intermittent stress responses, ultimately resulting in the degeneration of the supportive stem cell microenvironment. Both chronic stress and aging impair the functionality of HSCs and increase the overall susceptibility to development of diseases, including malignant transformation. To understand functional degeneration, an important prerequisite is to define distinguishing features of unperturbed niche homeostasis in different settings. A unique setting in this respect is xenotransplantation, in which human cells depend on niche factors produced by other species, some of which we will review. These insights should help to assess deviations from the steady state to actively protect and improve recovery of the niche ecosystem in situ to optimally sustain healthy hematopoiesis in experimental and clinical settings.
Collapse
Affiliation(s)
- Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Theresa Landspersky
- School of Medicine, Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| | - Gülce Percin
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Christina Schreck
- School of Medicine, Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| | - Susann Rahmig
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Alessandro Ori
- Proteomics of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marieke Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division Inflammatory Stress in Stem Cells, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany.,Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.,Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Robert A J Oostendorp
- School of Medicine, Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| |
Collapse
|
16
|
Huang XL, Khan MI, Wang J, Ali R, Ali SW, Zahra QUA, Kazmi A, Lolai A, Huang YL, Hussain A, Bilal M, Li F, Qiu B. Role of receptor tyrosine kinases mediated signal transduction pathways in tumor growth and angiogenesis-New insight and futuristic vision. Int J Biol Macromol 2021; 180:739-752. [PMID: 33737188 DOI: 10.1016/j.ijbiomac.2021.03.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022]
Abstract
In the past two decades, significant progress has been made in the past two decades towards the understanding of the basic mechanisms underlying cancer growth and angiogenesis. In this context, receptor tyrosine kinases (RTKs) play a pivotal role in cell proliferation, differentiation, growth, motility, invasion, and angiogenesis, all of which contribute to tumor growth and progression. Mutations in RTKs lead to abnormal signal transductions in several pathways such as Ras-Raf, MEK-MAPK, PI3K-AKT and mTOR pathways, affecting a wide range of biological functions including cell proliferation, survival, migration and vascular permeability. Increasing evidence demonstrates that multiple kinases are involved in angiogenesis including RTKs such as vascular endothelial growth factor, platelet derived growth factor, epidermal growth factor, insulin-like growth factor-1, macrophage colony-stimulating factor, nerve growth factor, fibroblast growth factor, Hepatocyte Growth factor, Tie 1 & 2, Tek, Flt-3, Flt-4 and Eph receptors. Overactivation of RTKs and its downstream regulation is implicated in tumor initiation and angiogenesis, representing one of the hallmarks of cancer. This review discusses the role of RTKs, PI3K, and mTOR, their involvement, and their implication in pro-oncogenic cellular processes and angiogenesis with effective approaches and newly approved drugs to inhibit their unrestrained action.
Collapse
Affiliation(s)
- Xiao Lin Huang
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Jing Wang
- First Affiliated Hospital of University of Science and Technology of China Hefei, Anhui 230036, China
| | - Rizwan Ali
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Syed Wajahat Ali
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qurat-Ul-Ain Zahra
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ahsan Kazmi
- Department of Pathology, Al-Nafees Medical College and Hospital, Isra University, Islamabad 45600, Pakistan
| | - Arbelo Lolai
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yu Lin Huang
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Alamdar Hussain
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska Hospital, Huddinge, SE 141 86 Stockholm, Sweden; Department of Biosciences, COMSATS Institute of Information Technology, Chak Shahzad Campus, Islamabad 44000, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Fenfen Li
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Bensheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
17
|
Grant D, Wanner N, Frimel M, Erzurum S, Asosingh K. Comprehensive phenotyping of endothelial cells using flow cytometry 2: Human. Cytometry A 2020; 99:257-264. [PMID: 33369145 DOI: 10.1002/cyto.a.24293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In vascular research, clinical samples and samples from animal models are often used together to foster translation of preclinical findings to humans. General concepts of endothelia and murine-specific endothelial phenotypes were discussed in part 1 of this two part series. Here, in part 2, we present a comprehensive overview of human-specific endothelial phenotypes. Pan-endothelial cell markers, organ specific endothelial antigens, and flow cytometric immunophenotyping of blood-borne endothelial cells are reviewed.
Collapse
Affiliation(s)
- Dillon Grant
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Wanner
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew Frimel
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Flow Cytometry Core Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Grant D, Wanner N, Frimel M, Erzurum S, Asosingh K. Comprehensive phenotyping of endothelial cells using flow cytometry 1: Murine. Cytometry A 2020; 99:251-256. [PMID: 33345421 DOI: 10.1002/cyto.a.24292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
The endothelium forms a selective barrier between circulating blood or lymph and surrounding tissue. Endothelial cells play an essential role in vessel homeostasis, and identification of these cells is critical in vascular biology research. However, characteristics of endothelial cells differ depending on the location and type of blood or lymph vessel. Endothelial cell subsets are numerous and often identified using different flow cytometric markers, making immunophenotyping these cells complex. In part 1 of this two part review series, we present a comprehensive overview of markers for the flow cytometric identification and phenotyping of murine endothelial subsets. These subsets can be distinguished using a panel of cell surface and intracellular markers shared by all endothelial cells in combination with additional markers of specialized endothelial cell types. This review can be used to determine the best markers for identifying and phenotyping desired murine endothelial cell subsets.
Collapse
Affiliation(s)
- Dillon Grant
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Wanner
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew Frimel
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Flow Cytometry Core Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
19
|
Madsen SD, Giler MK, Bunnell BA, O'Connor KC. Illuminating the Regenerative Properties of Stem Cells In Vivo with Bioluminescence Imaging. Biotechnol J 2020; 16:e2000248. [PMID: 33089922 DOI: 10.1002/biot.202000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/17/2020] [Indexed: 11/10/2022]
Abstract
Preclinical animal studies are essential to the development of safe and effective stem cell therapies. Bioluminescence imaging (BLI) is a powerful tool in animal studies that enables the real-time longitudinal monitoring of stem cells in vivo to elucidate their regenerative properties. This review describes the application of BLI in preclinical stem cell research to address critical challenges in producing successful stem cell therapeutics. These challenges include stem cell survival, proliferation, homing, stress response, and differentiation. The applications presented here utilize bioluminescence to investigate a variety of stem and progenitor cells in several different in vivo models of disease and implantation. An overview of luciferase reporters is provided, along with the advantages and disadvantages of BLI. Additionally, BLI is compared to other preclinical imaging modalities and potential future applications of this technology are discussed in emerging areas of stem cell research.
Collapse
Affiliation(s)
- Sean D Madsen
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Margaret K Giler
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.,Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kim C O'Connor
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
20
|
Abstract
Microvasculature functions at the tissue and cell level, regulating local mass exchange of oxygen and nutrient-rich blood. While there has been considerable success in the biofabrication of large- and small-vessel replacements, functional microvasculature has been particularly challenging to engineer due to its size and complexity. Recently, three-dimensional bioprinting has expanded the possibilities of fabricating sophisticated microvascular systems by enabling precise spatiotemporal placement of cells and biomaterials based on computer-aided design. However, there are still significant challenges facing the development of printable biomaterials that promote robust formation and controlled 3D organization of microvascular networks. This review provides a thorough examination and critical evaluation of contemporary biomaterials and their specific roles in bioprinting microvasculature. We first provide an overview of bioprinting methods and techniques that enable the fabrication of microvessels. We then offer an in-depth critical analysis on the use of hydrogel bioinks for printing microvascularized constructs within the framework of current bioprinting modalities. We end with a review of recent applications of bioprinted microvasculature for disease modeling, drug testing, and tissue engineering, and conclude with an outlook on the challenges facing the evolution of biomaterials design for bioprinting microvasculature with physiological complexity.
Collapse
Affiliation(s)
- Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
21
|
Nguyen QD, Heier JS, Do DV, Mirando AC, Pandey NB, Sheng H, Heah T. The Tie2 signaling pathway in retinal vascular diseases: a novel therapeutic target in the eye. Int J Retina Vitreous 2020; 6:48. [PMID: 33072401 PMCID: PMC7557096 DOI: 10.1186/s40942-020-00250-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background Retinal vascular diseases such as neovascular age-related macular degeneration, diabetic retinopathy and/or diabetic macular edema, and retinal vein occlusion with macular edema—share several key pathophysiologic aspects including neovascularization, vascular permeability, and inflammation. The role of vascular endothelial growth factor (VEGF) in these processes, and the therapeutic benefits of VEGF inhibition, have been well characterized. Anti-VEGF therapy is highly effective for many patients but is not uniformly effective in all patients and imposes a significant treatment burden. More recently, the role of the Tie2 signaling pathway in the pathophysiology of retinal vascular diseases has been investigated, and the Tie2 pathway represents a novel therapeutic target for these conditions. Areas covered The index review describes the Tie2 pathway and its complementary role to the VEGF pathway in the angiogenesis cascade and will summarize studies of molecules in development to therapeutically modulate the Tie2 pathway in retinal vascular diseases. Conclusions Activation of the Tie2 pathway leads to downstream signaling that promotes vascular health and stability and decreases vascular permeability and inflammation. AXT107 is a collagen IV–derived synthetic peptide with a dual mechanism of action that involves suppression of VEGF signaling and activation of the Tie2 pathway; these actions are accomplished by AXT107 binding to and disrupting different integrin, leading to blockade of the VEGF receptor and rearrangement of cellular Tie2 rendering it susceptible to Ang2 agonism. Other Tie2 agonist compounds are also in development, including faricimab and razuprotafib. Tie2 activation only modestly impacts angiogenesis on its own but significantly potentiates VEGF suppression. Co-regulation of the VEGF and Tie2 signaling pathways has the potential to improve functional and structural outcomes in eyes with retinal vascular diseases.
Collapse
Affiliation(s)
- Quan Dong Nguyen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA 94303 USA
| | | | - Diana V Do
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA 94303 USA
| | | | | | - Huan Sheng
- AsclepiX Therapeutics, Baltimore, MD USA
| | | |
Collapse
|
22
|
Jiang Z, Carlantoni C, Allanki S, Ebersberger I, Stainier DYR. Tek (Tie2) is not required for cardiovascular development in zebrafish. Development 2020; 147:dev.193029. [PMID: 32928907 DOI: 10.1242/dev.193029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Angiopoietin/TIE signalling plays a major role in blood and lymphatic vessel development. In mouse, Tek (previously known as Tie2) mutants die prenatally due to a severely underdeveloped cardiovascular system. In contrast, in zebrafish, previous studies have reported that although embryos injected with tek morpholinos (MOs) exhibit severe vascular defects, tek mutants display no obvious vascular malformations. To further investigate the function of zebrafish Tek, we generated a panel of loss-of-function tek mutants, including RNA-less alleles, an allele lacking the MO-binding site, an in-frame deletion allele and a premature termination codon-containing allele. Our data show that all these mutants survive to adulthood with no obvious cardiovascular defects. MO injections into tek mutants lacking the MO-binding site or the entire tek locus cause similar vascular defects to those observed in MO-injected +/+ siblings, indicating off-target effects of the MOs. Surprisingly, comprehensive phylogenetic profiling and synteny analyses reveal that Tek was lost in the largest teleost clade, suggesting a lineage-specific shift in the function of TEK during vertebrate evolution. Altogether, these data show that Tek is dispensable for zebrafish development, and probably dispensable in most teleost species.
Collapse
Affiliation(s)
- Zhen Jiang
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany .,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim 61231, Germany
| | - Claudia Carlantoni
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim 61231, Germany
| | - Srinivas Allanki
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim 61231, Germany
| | - Ingo Ebersberger
- Goethe University Frankfurt am Main, Institute of Cell Biology and Neuroscience, Frankfurt 60438, Germany .,Senckenberg Biodiversity and Climate Research Center (S-BIKF), Frankfurt 60438, Germany.,LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt 60438, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany .,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim 61231, Germany
| |
Collapse
|
23
|
Qin S, Yi M, Jiao D, Li A, Wu K. Distinct Roles of VEGFA and ANGPT2 in Lung Adenocarcinoma and Squamous Cell Carcinoma. J Cancer 2020; 11:153-167. [PMID: 31892982 PMCID: PMC6930396 DOI: 10.7150/jca.34693] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/26/2019] [Indexed: 01/03/2023] Open
Abstract
Background: Vascular endothelial growth factor A (VEGFA) and angiopoietin 2 (ANGPT2) are key mediators in angiogenesis. The expression and clinical significance of VEGFA and ANGPT2 have been investigated in lung cancer, but the results are controversial. The specific roles of VEGFA and ANGPT2 in adenocarcinoma (ADC) and squamous cell carcinoma (SQC) are still not fully understood. To characterize it, we conducted the current study. Materials and Methods: The relationships between clinic-pathological characteristics and the protein expressions of VEGFA and ANGPT2 were analyzed on tissue microarrays by immunohistochemistry (IHC) staining. Then public databases were used to evaluate the association of VEGFA and ANGPT2 mRNA expressions with clinic-pathological parameters and prognosis. Cobalt chloride (CoCl2) was adopted to mimic a hypoxic microenvironment and western blot was used to detect the expression of hypoxia inducible factor-1α (HIF-1α), VEGFA and ANGPT2 in lung cancer cell lines. Results: IHC staining revealed that the expressions of VEGFA and ANGPT2 were enriched in lung cancer tissues compared with normal tissues. Additionally, both VEGFA and ANGPT2 protein levels were significantly associated with the tumor size and lymph node metastasis only in ADC, not SQC. More importantly, increased VEGFA and ANGPT2 protein levels were negatively correlated with overall survival (OS) of ADC individuals. Meta-analyses of 22 gene expression omnibus (GEO) databases of lung cancer implicated that patients with higher VEGFA and ANGPT2 mRNA expressions tended to have advanced stage in ADC rather than SQC. Kaplan-Meier plot analyses further verified that high levels of VEGFA and ANGPT2 mRNA were associated with poor survival only in ADC. Moreover, the combination of VEGFA and ANGPT2 could more precisely predict prognosis in ADC. In hypoxia-mimicking conditions, induced expression of HIF-1α unregulated VEGFA and ANGPT2 proteins abundance. Conclusion: Our results showed hypoxia upregulated the protein levels of VEGFA and ANGPT2 in lung cancer cell lines, and the roles of VEGFA and ANGPT2 were distinct in ADC and SQC. Combined detections of VEGFA and ANGPT2 may be valuable prognostic biomarkers for ADC and double block of VEGFA and ANGPT2 may improve therapeutic outcome.
Collapse
Affiliation(s)
- Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Anping Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| |
Collapse
|
24
|
Bilimoria J, Singh H. The Angiopoietin ligands and Tie receptors: potential diagnostic biomarkers of vascular disease. J Recept Signal Transduct Res 2019; 39:187-193. [PMID: 31429357 DOI: 10.1080/10799893.2019.1652650] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Angiopoietin-1 (Angpt1)/Tie2 signaling pathway is important in regulating vascular function. Angpt1-induced Tie2 activation promotes vascular endothelial cell survival and reduces vascular leakage. Angiopoietin-2 (Angpt2), a weak agonist/antagonist of Tie2, opposes and regulates Angpt1 action. The Tie family of receptor tyrosine kinases, Tie2 and Tie1, exist as either homo-or heterodimers. The molecular complex between the receptors is also crucial in controlling Angpt1 signaling; hence, the molecular balance between Angpt1:Angpt2 and Tie2:Tie1 is important in determining endothelial integrity and vascular stability. This review presents evidence of the change observed in the Angiopoietin/Tie molecules in various pathophysiological conditions and discusses the potential clinical applications of these molecules in vascular complications.
Collapse
Affiliation(s)
- Jay Bilimoria
- Faculty of Health and Life Sciences, Leicester School of Allied Health Sciences, De Montfort University , Leicester , UK
| | - Harprit Singh
- Faculty of Health and Life Sciences, Leicester School of Allied Health Sciences, De Montfort University , Leicester , UK
| |
Collapse
|
25
|
Li J, Cechova S, Wang L, Isakson BE, Le TH, Shi W. Loss of reticulocalbin 2 lowers blood pressure and restrains ANG II-induced hypertension in vivo. Am J Physiol Renal Physiol 2019; 316:F1141-F1150. [PMID: 30943068 PMCID: PMC6620588 DOI: 10.1152/ajprenal.00567.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Hypertension affects over 1 billion people worldwide and increases the risk for heart failure, stroke, and chronic kidney disease. Despite high prevalence and devastating impact, its etiology still remains poorly understood for most hypertensive cases. Rcn2, which encodes reticulocalbin 2, is a candidate gene for atherosclerosis that we have previously reported in mice. Here, we identified Rcn2 as a novel regulator of blood pressure in mice. Rcn2 was abundantly expressed in the endothelium and adventitia of normal arteries and was dramatically upregulated in the medial layer of the artery undergoing structural remodeling. Deletion of Rcn2 lowered basal blood pressure and attenuated ANG II-induced hypertension in C57BL/6 mice. siRNA knockdown of Rcn2 dramatically increased production of the nitric oxide (NO) breakdown products nitrite and nitrate by endothelial cells but not by smooth muscle cells. Isolated carotid arteries from Rcn2-/- mice showed an increased sensitivity to the ACh-induced NO-mediated relaxant response compared with arteries of Rcn2+/+ mice. Analysis of a recent meta-data set showed associations of genetic variants near RCN2 with blood pressure in humans. These data suggest that Rcn2 regulates blood pressure and contributes to hypertension through actions on endothelial NO synthase.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology and Medical Imaging, University of Virginia , Charlottesville, Virginia
| | - Sylvia Cechova
- Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Lina Wang
- Department of Medicine, University of Virginia , Charlottesville, Virginia
- Department of Pulmonary Medicine, Qingdao University Hospital , Qingdao , China
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Thu H Le
- Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
26
|
Sun R, Bao M, Long X, Yuan Y, Wu M, Li X, Bao J. Metabolic gene NR4A1 as a potential therapeutic target for non-smoking female non-small cell lung cancer patients. Thorac Cancer 2019; 10:715-727. [PMID: 30806032 PMCID: PMC6449245 DOI: 10.1111/1759-7714.12989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Although cigarette smoking is considered one of the key risk factors for lung cancer, 15% of male patients and 53% of female patients with lung cancer are non-smokers. Metabolic changes are critical features of cancer. Therapeutic target identification from a metabolic perspective in non-small cell lung cancer (NSCLC) tissue of female non-smokers has long been ignored. RESULTS Based on microarray data retrieved from Affymetrix expression arrays E-GEOD-19804, we found that the downregulated genes in non-smoking female NSCLC patients tended to participate in protein/amino acid and lipid metabolism, while upregulated genes were more involved in protein/amino acid and carbohydrate metabolism. Combining nutrient metabolic co-expression, protein-protein interaction network construction and overall survival assessment, we identified NR4A1 and TIE1 as potential therapeutic targets for NSCLC in female non-smokers. To accelerate the drug development for non-smoking female NSCLC patients, we identified nilotinib as a potential agonist targeting NR4A1 encoded protein by molecular docking and molecular dynamic stimulation. We also show that nilotinib inhibited proliferation and induced senescence of cells in non-smoking female NSCLC patients in vitro. CONCLUSIONS These results not only uncover nutrient metabolic characteristics in non-smoking female NSCLC patients, but also provide a new paradigm for identifying new targets and drugs for novel therapy for such patients.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Down-Regulation
- Drug Screening Assays, Antitumor
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Non-Smokers/statistics & numerical data
- Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 4, Group A, Member 1/chemistry
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Protein Interaction Maps
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Receptor, TIE-1/genetics
- Receptor, TIE-1/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Rong Sun
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Min‐Yue Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Long
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Yuan Yuan
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Miao‐Miao Wu
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Xin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jin‐Ku Bao
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
27
|
Khan OF, Kowalski PS, Doloff JC, Tsosie JK, Bakthavatchalu V, Winn CB, Haupt J, Jamiel M, Langer R, Anderson DG. Endothelial siRNA delivery in nonhuman primates using ionizable low-molecular weight polymeric nanoparticles. SCIENCE ADVANCES 2018; 4:eaar8409. [PMID: 29963629 PMCID: PMC6021147 DOI: 10.1126/sciadv.aar8409] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/18/2018] [Indexed: 05/19/2023]
Abstract
Dysfunctional endothelial cells contribute to the pathophysiology of many diseases, including vascular disease, stroke, hypertension, atherosclerosis, organ failure, diabetes, retinopathy, and cancer. Toward the goal of creating a new RNA-based therapy to correct aberrant endothelial cell gene expression in humans, efficient gene silencing in the endothelium of nonhuman primates was achieved by delivering small interfering RNA (siRNA) with 7C1, a low-molecular weight, ionizable polymer that forms nanoparticles. After a single intravenous administration of 1 mg of siRNA per kilogram of animal, 7C1 nanoparticles delivering Tie2 siRNA caused Tie2 mRNA levels to decrease by approximately 80% in the endothelium of the lung. Significant decreases in Tie2 mRNA were also found in the heart, retina, kidney, pancreas, and bone. Blood chemistry and liver function analysis before and after treatment all showed protein and enzyme concentrations within the normal reference ranges. Furthermore, after controlling for siRNA-specific effects, no significant increases in inflammatory cytokine concentrations were found in the serum. Similarly, no gross lesions or significant underlying pathologies were observed after histological examination of nonhuman primate tissues. This study is the first demonstration of endothelial gene silencing in multiple nonhuman primate organs using systemically administered siRNA nanoparticles and highlights the potential of this approach for the treatment of disease in humans.
Collapse
Affiliation(s)
- Omar F. Khan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Piotr S. Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joshua C. Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jonathan K. Tsosie
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Vasudevan Bakthavatchalu
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Caroline Bodi Winn
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Jennifer Haupt
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Morgan Jamiel
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author.
| |
Collapse
|
28
|
Shlamkovich T, Aharon L, Barton WA, Papo N. Utilizing combinatorial engineering to develop Tie2 targeting antagonistic angiopoetin-2 ligands as candidates for anti-angiogenesis therapy. Oncotarget 2018; 8:33571-33585. [PMID: 28422724 PMCID: PMC5464891 DOI: 10.18632/oncotarget.16827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/24/2017] [Indexed: 11/25/2022] Open
Abstract
In many human cancers, the receptor tyrosine kinase (RTK) Tie2 plays important roles in mediating proliferation, survival, migration and angiogenesis. Thus, molecules that could potently inhibit activation of the Tie2 receptor would have a significant impact on cancer therapy. Nevertheless, attempts to develop Tie2-targeted inhibitors have met with little success, and there is currently no FDA-approved therapeutic selectively targeting Tie2. We used a combinatorial protein engineering approach to develop a new generation of angiopoietin (Ang)2-derived Tie2 antagonists as potential cancer therapeutics and as tools to study angiogenesis. The construct for designing a yeast surface display (YSD) library of potential antagonists was an Ang2 binding domain (Ang2-BD) that retains Tie2 binding ability but prevents ligand multimerization and receptor dimerization and activation. This mutant library was then screened by quantitative high-throughput flow cytometric sorting to identify Ang2-BD variants with increased expression, stability and affinity to Tie2. The selected variants were recombinantly expressed and showed high affinity to soluble and cellular Tie2 and strongly inhibited both Tie2 phosphorylation and endothelial capillary tube formation and cell invasion compared to the parental Ang2-BD. The significance of the study lies in the insight it provides into the sequence-structure-function relationships and mechanism of action of the antagonistic Ang mutants. The approach of using a natural protein ligand as a molecular scaffold for engineering high-affinity agents can be applied to other ligands to create functional protein antagonists against additional biomedical targets.
Collapse
Affiliation(s)
- Tomer Shlamkovich
- Department of Biotechnology Engineering, and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lidan Aharon
- Department of Biotechnology Engineering, and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - William A Barton
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, Richmond, Virginia, United States of America
| | - Niv Papo
- Department of Biotechnology Engineering, and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
29
|
Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc Natl Acad Sci U S A 2018; 115:1298-1303. [PMID: 29358379 PMCID: PMC5819405 DOI: 10.1073/pnas.1714446115] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The angiopoietin (ANGPT)-TIE2/TEK signaling pathway is essential for blood and lymphatic vascular homeostasis. ANGPT1 is a potent TIE2 activator, whereas ANGPT2 functions as a context-dependent agonist/antagonist. In disease, ANGPT2-mediated inhibition of TIE2 in blood vessels is linked to vascular leak, inflammation, and metastasis. Using conditional knockout studies in mice, we show TIE2 is predominantly activated by ANGPT1 in the cardiovascular system and by ANGPT2 in the lymphatic vasculature. Mechanisms underlying opposing actions of ANGPT2 in blood vs. lymphatic endothelium are poorly understood. Here we show the endothelial-specific phosphatase VEPTP (vascular endothelial protein tyrosine phosphatase) determines TIE2 response to ANGPT2. VEPTP is absent from lymphatic endothelium in mouse in vivo, permitting ANGPT2/TIE2-mediated lymphangiogenesis. Inhibition of VEPTP converts ANGPT2 into a potent TIE2 activator in blood endothelium. Our data support a model whereby VEPTP functions as a rheostat to modulate ANGPT2 ligand effect on TIE2.
Collapse
|
30
|
Hanna J, Yücel YH, Zhou X, Mathieu E, Paczka-Giorgi LA, Gupta N. Progressive loss of retinal blood vessels in a live model of retinitis pigmentosa. CANADIAN JOURNAL OF OPHTHALMOLOGY 2017; 53:391-401. [PMID: 30119795 DOI: 10.1016/j.jcjo.2017.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To assess retinal blood vessels in a live retinitis pigmentosa (RP) model with rd1 mutation and green fluorescent protein (GFP) expressed in vascular endothelium. METHODS Homozygous (hm) Tie2-GFP mice with rd1 mutation and known retinal degeneration were crossed with wild-type CD1 mice to generate control heterozygous (ht) Tie2-GFP mice. The retinas of 16 live hm mice were evaluated at 2 weeks and 3, 5, and 8 months of age, and compared with age-matched control ht and CD1 mice by optical coherence tomography (OCT) and confocal scanning laser ophthalmoscopy (cSLO). Fluorescence intensity was measured and compared between strains at 3, 5, and 8 months. In vivo findings were validated by immunostaining with collagen IV and isolectin histopathology. RESULTS All hm Tie2-GFP mice showed progressive outer retinal degeneration by OCT. Loss of small branches of blood vessels and then larger main vessels was seen by cSLO. Retinal tissue and vessels were preserved in control ht mice. At all ages, measurements of fluorescence intensity were reduced in hm compared with ht mice (p < 0.001). In all strains, intensity at 8 months was reduced compared with 3 months (p < 0.001) and 5 months (p = 0.021). Histopathological studies confirmed in vivo findings and revealed a pattern of blood vessel regression in the deep plexus, followed by intermediate and superficial retinal plexuses. CONCLUSIONS This is the first evidence of progressive loss of retinal blood vessels in a live mouse model of RP. These findings may be highly relevant to understanding retinal degeneration in RP to prevent blindness.
Collapse
Affiliation(s)
- Joseph Hanna
- Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ont; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ont
| | - Yeni H Yücel
- Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ont; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ont; Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ont; Ophthalmic Pathology Laboratory, University of Toronto, Toronto, Ont
| | - Xun Zhou
- Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ont
| | - Emily Mathieu
- Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ont; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ont
| | - Luz A Paczka-Giorgi
- Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ont
| | - Neeru Gupta
- Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ont; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ont; Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ont; Dalla Lana School of Public Health, University of Toronto, Toronto, Ont.
| |
Collapse
|
31
|
Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems. Clin Sci (Lond) 2017; 131:87-103. [PMID: 27941161 PMCID: PMC5146956 DOI: 10.1042/cs20160129] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/23/2016] [Accepted: 07/07/2016] [Indexed: 12/30/2022]
Abstract
Endothelial cells that form the inner layer of blood and lymphatic vessels are important regulators of vascular functions and centrally involved in the pathogenesis of vascular diseases. In addition to the vascular endothelial growth factor (VEGF) receptor pathway, the angiopoietin (Ang)-Tie system is a second endothelial cell specific ligand-receptor signalling system necessary for embryonic cardiovascular and lymphatic development. The Ang-Tie system also regulates postnatal angiogenesis, vessel remodelling, vascular permeability and inflammation to maintain vascular homoeostasis in adult physiology. This system is implicated in numerous diseases where the vasculature has an important contribution, such as cancer, sepsis, diabetes, atherosclerosis and ocular diseases. Furthermore, mutations in the TIE2 signalling pathway cause defects in vascular morphogenesis, resulting in venous malformations and primary congenital glaucoma. Here, we review recent advances in the understanding of the Ang-Tie signalling system, including cross-talk with the vascular endothelial protein tyrosine phosphatase (VE-PTP) and the integrin cell adhesion receptors, focusing on the Ang-Tie system in vascular development and pathogenesis of vascular diseases.
Collapse
|
32
|
Bhatwadekar AD, Beli E, Diao Y, Chen J, Luo Q, Alex A, Caballero S, Dominguez JM, Salazar TE, Busik JV, Segal MS, Grant MB. Conditional Deletion of Bmal1 Accentuates Microvascular and Macrovascular Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1426-1435. [PMID: 28432873 PMCID: PMC5455061 DOI: 10.1016/j.ajpath.2017.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/30/2022]
Abstract
The brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (BMAL)-1 constitutes a major transcriptional regulator of the circadian clock. Here, we explored the impact of conditional deletion of Bmal1 in endothelium and hematopoietic cells in murine models of microvascular and macrovascular injury. We used two models of Bmal1fx/fx;Tek-Cre mice, a retinal ischemia/reperfusion model and a neointimal hyperplasia model of the femoral artery. Eyes were enumerated for acellular capillaries and were stained for oxidative damage markers using nitrotyrosine immunohistochemistry. LSK (lineage-negative, stem cell antigen-1-positive, c-Kit-positive) cells were quantified and proliferation assessed. Hematopoiesis is influenced by innervation to the bone marrow, which we assessed using IHC analysis. The number of acellular capillaries increased threefold, and nitrotyrosine staining increased 1.5-fold, in the retinas of Bmal1fx/fx;Tek-Cre mice. The number of LSK cells from the Bmal1fx/fx;Tek-Cre mice decreased by 1.5-fold and was accompanied by a profound decrease in proliferative potential. Bmal1fx/fx;Tek-Cre mice also exhibited evidence of bone marrow denervation, demonstrating a loss of neurofilament-200 staining. Injured femoral arteries showed a 20% increase in neointimal hyperplasia compared with similarly injured wild-type controls. Our study highlights the importance of the circadian clock in maintaining vascular homeostasis and demonstrates that specific deletion of BMAL1 in endothelial and hematopoietic cells results in phenotypic features similar to those of diabetes.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Eleni Beli
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yanpeng Diao
- Department of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jonathan Chen
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Qianyi Luo
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alpha Alex
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sergio Caballero
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| | - James M Dominguez
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tatiana E Salazar
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Mark S Segal
- Department of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Maria B Grant
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
33
|
Torigata M, Yamakawa D, Takakura N. Elevated expression of Tie1 is accompanied by acquisition of cancer stemness properties in colorectal cancer. Cancer Med 2017; 6:1378-1388. [PMID: 28464467 PMCID: PMC5463078 DOI: 10.1002/cam4.1072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/13/2017] [Accepted: 03/12/2017] [Indexed: 12/15/2022] Open
Abstract
The Tie receptors 1 and 2 (Tie1/2) play crucial roles in embryonic angiogenesis. Recent studies suggest enhanced expression of Tie1 in several types of cancer and negative correlations between Tie1 levels and clinical outcome. These observations suggest important functions of Tie1 not only for vascular formation but also in tumorigenesis. Ligands for Tie2, that is angiopoietins 1-4, have been identified, but not for Tie1. To determine the molecular functions of Tie1, its detailed characterization in tumors would be helpful. Herein, we report that Tie1 is up-regulated in colorectal cancer. Detailed analysis using tumor-bearing models and immunohistochemistry combined with Flow cytometric analysis and cell sorting (FACS) revealed that Tie1 protein was expressed in a small population of malignant tumor cells. Intriguingly, Tie1 expression was observed and could be maintained only in vivo. Further analysis using sphere-formation culture revealed that Tie1-positive cells are enriched within the population of tumor cells with cancer stemness properties. Indeed, Tie1-positive tumor cells derived from a murine model overexpressed Lgr5, a typical stemness marker for colorectal cancer. Our results provide a novel insight into Tie1 function in tumorigenesis and suggest clinical applications to target cancer stem cells.
Collapse
Affiliation(s)
- Miku Torigata
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Daishi Yamakawa
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
34
|
Mueller SB, Kontos CD. Tie1: an orphan receptor provides context for angiopoietin-2/Tie2 signaling. J Clin Invest 2016; 126:3188-91. [PMID: 27548526 DOI: 10.1172/jci89963] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Angiopoietin-1/Tie2 (ANG1/Tie2) signaling is well documented as regulating angiogenesis and vessel maturation. This pathway is complicated by involvement of the orphan receptor Tie1, which has been implicated as both a positive and negative regulator of ANG1/Tie2 signaling, and ANG2, which can serve as both a Tie2 agonist and antagonist, depending on the context. Two papers in this issue of the JCI provide new insight into this complicated pathway. Korhonen et al. reveal that Tie1 acts to modulate the effects of ANG1 and ANG2 on Tie2 in vitro and in vivo. Kim et al. demonstrate that ANG2 acts as a Tie2 agonist in non-pathological conditions, whereas in the setting of inflammation, ANG2 functions as a Tie2 antagonist and promotes vascular dysfunction. Both studies indicate that inflammation promotes cleavage of the ectodomain of Tie1 and that this cleavage event corresponds with the switch of ANG2 from a Tie2 agonist to an antagonist. The results of these studies lay the groundwork for future strategies to therapeutically exploit this pathway in diseases characterized by adverse vascular remodeling and increased permeability.
Collapse
|
35
|
Yu X, Sha J, Xiang S, Qin S, Conrad P, Ghosh SK, Weinberg A, Ye F. Suppression of KSHV-induced angiopoietin-2 inhibits angiogenesis, infiltration of inflammatory cells, and tumor growth. Cell Cycle 2016; 15:2053-65. [PMID: 27294705 DOI: 10.1080/15384101.2016.1196303] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Kaposi's sarcoma (KS) is a highly angiogenic and inflammatory neoplasia. The angiogenic and inflammatory cytokine angiopoietin-2 (Ang-2) is strongly expressed in KS due to Kaposi's sarcoma-associated herpesvirus (KSHV) infection. In the present study, we determined how Ang-2 contributes to development of KS by using telomerase-immortalized human umbilical vein endothelial cells (TIVE) as a model, which become malignantly transformed and express increased levels of Ang-2 following KSHV infection. Ang-2 released from TIVE-KSHV cells induces tyrosine phosphorylation of Tie-2 receptor from both human and mouse endothelial cells and promotes angiogenesis in nude mice. Functional inhibition or expressional "knock-down" of Ang-2 in these cells blocks angiogenesis and inhibits tumor growth. Ang-2 suppression also reduces the numbers of infiltrating monocytes/macrophages in tumors. In transwell-based cell migration assays, Ang-2 indeed enhances migration of human monocytes in a dose-dependent manner. These results underscore a pivotal role of KSHV-induced Ang-2 in KS tumor development by promoting both angiogenesis and inflammation. Our data also suggest that selective drug targeting of Ang-2 may be used for treatment of KS.
Collapse
Affiliation(s)
- Xiaolan Yu
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA.,b Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University , Wuhan , Hubei , China
| | - Jingfeng Sha
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Shao Xiang
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Sanhai Qin
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Patricia Conrad
- c Department of Genetics , School of Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Santosh K Ghosh
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Aaron Weinberg
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Fengchun Ye
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| |
Collapse
|
36
|
Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects. Sci Rep 2016; 6:27374. [PMID: 27271057 PMCID: PMC4895436 DOI: 10.1038/srep27374] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/17/2016] [Indexed: 12/18/2022] Open
Abstract
A series of biodegradable Mg-Cu alloys is designed to induce osteogenesis, stimulate angiogenesis, and provide long-lasting antibacterial performance at the same time. The Mg-Cu alloys with precipitated Mg2Cu intermetallic phases exhibit accelerated degradation in the physiological environment due to galvanic corrosion and the alkaline environment combined with Cu release endows the Mg-Cu alloys with prolonged antibacterial effects. In addition to no cytotoxicity towards HUVECs and MC3T3-E1 cells, the Mg-Cu alloys, particularly Mg-0.03Cu, enhance the cell viability, alkaline phosphatase activity, matrix mineralization, collagen secretion, osteogenesis-related gene and protein expressions of MC3T3-E1 cells, cell proliferation, migration, endothelial tubule forming, angiogenesis-related gene, and protein expressions of HUVECs compared to pure Mg. The favorable osteogenesis and angiogenesis are believed to arise from the release of bioactive Mg and Cu ions into the biological environment and the biodegradable Mg-Cu alloys with osteogenesis, angiogenesis, and long-term antibacterial ability are very promising in orthopedic applications.
Collapse
|
37
|
Kitajima D, Kasamatsu A, Nakashima D, Miyamoto I, Kimura Y, Saito T, Suzuki T, Endo-Sakamoto Y, Shiiba M, Tanzawa H, Uzawa K. Tie2 Regulates Tumor Metastasis of Oral Squamous Cell Carcinomas. J Cancer 2016; 7:600-7. [PMID: 27053959 PMCID: PMC4820737 DOI: 10.7150/jca.13820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/22/2016] [Indexed: 01/12/2023] Open
Abstract
The endothelial-specific receptor, tyrosine kinase with immunoglobulin-like loops and epidermal growth factor homology domains-2 (Tie2) is a member of the tyrosine kinase family and is ubiquitous in normal tissues; however, little is known about the mechanisms and roles of Tie2 in oral squamous cell carcinomas (OSCCs). In the current study, we investigated the expression status of Tie2 in OSCCs by quantitative reverse transcriptase-polymerase chain reaction, immunoblotting, and immunohistochemistry and the functional mechanisms of Tie2 using its overexpressed OSCC (oeTie2) cells and Tie2 blocking by its antibody. We found that Tie2 expression was down-regulated significantly (p < 0.05) in OSCCs compared with normal counterparts in vitro and in vivo. Interestingly, oeTie2 cells showed higher cellular adhesion (p < 0.05) and lower cellular invasion (p < 0.05) compared with control cells; whereas there was similar cellular proliferation in both transfectants. Furthermore, cellular adhesion was inhibited and invasion was activated by Tie2 function-blocking antibody (p < 0.05), indicating that Tie2 directly regulates cellular adhesion and invasion. As expected, among the clinical variables analyzed, Tie2-positivity in patients with OSCC was correlated closely with negative lymph node metastasis. These results suggested for the first time that Tie2 plays an important role in tumor metastasis and may be a potential biomarker for OSCC metastasis.
Collapse
Affiliation(s)
- Daisuke Kitajima
- 1. Department of Oral Science Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Kasamatsu
- 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Dai Nakashima
- 1. Department of Oral Science Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Isao Miyamoto
- 1. Department of Oral Science Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yasushi Kimura
- 1. Department of Oral Science Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tomoaki Saito
- 1. Department of Oral Science Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | - Yosuke Endo-Sakamoto
- 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masashi Shiiba
- 4. Department of Clinical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hideki Tanzawa
- 1. Department of Oral Science Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan;; 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Katsuhiro Uzawa
- 1. Department of Oral Science Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan;; 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
38
|
Santhosh D, Huang Z. A Tie2-driven BAC-TRAP transgenic line for in vivo endothelial gene profiling. Genesis 2016; 54:136-45. [PMID: 26817747 DOI: 10.1002/dvg.22923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/30/2015] [Accepted: 01/25/2016] [Indexed: 12/14/2022]
Abstract
Recent technological innovations including bacterial artificial chromosome-based translating ribosome affinity purification (BAC-TRAP) have greatly facilitated analysis of cell type-specific gene expression in vivo, especially in the nervous system. To better study endothelial gene expression in vivo, we have generated a BAC-TRAP transgenic mouse line where the L10a ribosomal subunit is tagged with EGFP and placed under the control of the endothelium-specific Tie2 (Tek) promoter. We show that transgene expression in this line is widely, but specifically, detected in endothelial cells in several brain regions throughout pre- and postnatal development, as well as in other organs. We also show that this line results in highly significant enrichment of endothelium-specific mRNAs from brain tissues at different stages. This BAC-TRAP line therefore provides a useful genetic tool for in vivo endothelial gene profiling under various developmental, physiological, and pathological conditions. genesis 54:136-145, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Devi Santhosh
- Department of Neuroscience, Program in Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of and Neurology, Program in Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Zhen Huang
- Department of Neuroscience, Program in Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
39
|
Sato H, Kasai S, Maesawa C. Temporal expression in rats of receptor tyrosine kinase Tie2 during early wound healing after tooth extraction. J Oral Sci 2015; 57:313-8. [PMID: 26666854 DOI: 10.2334/josnusd.57.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
We examined the role of Tie2 in regulating wound healing after tooth extraction. Wistar rats underwent maxillary incisor tooth extraction, and immunodetection techniques were used to determine Tie2 expression in the healing wound. The wound was initially filled with blood coagulum containing densely aggregated erythrocytes, leukocytes, fibrin, and endothelial progenitor cells, indicating that blood vessel formation started in the socket. Tie2 was detected on monocytic cell membranes. On day 3, fibroblastic cells proliferated in the coagulum, small vessels appeared by day 5, and new bone formed in the vessel-rich area. Robust woven bone trabeculae were present around vessels by day 7, and woven bone and osteoclast-like giant cells were present on day 10. Woven bone surrounded sinusoidal capillary-like vessels. Full-length (140-160 kDa) Tie2 was not detected at any time, although Tie2 fragments were present in the healing wound. N-terminus- and C-terminus-specific Tie2 antibodies detected 40-kDa and 60-kDa fragments or 70-kDa and 50-kDa fragments, respectively. The levels of these fragments decreased during the first 3 days and started to increase by day 5-10. The Tie2 extracellular domain initially inhibited angiogenesis, and its degradation relieved inhibition of new vessel formation. The onset of vessel formation in the wound may be induced by scattered endothelial progenitor cells.
Collapse
Affiliation(s)
- Hirotaka Sato
- Department of Pathology, Division of Anatomical and Cellular Pathology, Iwate Medical University
| | | | | |
Collapse
|
40
|
Zinter MS, Spicer A, Orwoll BO, Alkhouli M, Dvorak CC, Calfee CS, Matthay MA, Sapru A. Plasma angiopoietin-2 outperforms other markers of endothelial injury in prognosticating pediatric ARDS mortality. Am J Physiol Lung Cell Mol Physiol 2015; 310:L224-31. [PMID: 26660787 DOI: 10.1152/ajplung.00336.2015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/06/2015] [Indexed: 01/06/2023] Open
Abstract
Angiopoietin-2 (Ang-2) is a key mediator of pulmonary vascular permeability. This study tested the association between plasma Ang-2 and mortality in pediatric acute respiratory distress syndrome (ARDS), with stratification for prior hematopoietic cellular transplantation (HCT), given the severe, yet poorly understood, ARDS phenotype of this subgroup. We enrolled 259 children <18 years of age with ARDS; 25 had prior HCT. Plasma Ang-2, von Willebrand Factor antigen (vWF), and vascular endothelial growth factor (VEGF) were measured on ARDS days 1 and 3 and correlated with patient outcomes. Day 1 and day 3 Ang-2 levels were associated with mortality independent of age, sex, race, and P/F ratio [odds ratio (OR) 3.7, 95% CI 1.1-11.5, P = 0.027; and OR 10.2, 95% confidence interval (CI) 2.2-46.5, P = 0.003, for each log10 increase in Ang-2]. vWF was associated with mortality (P = 0.027), but VEGF was not. The association between day 1 Ang-2 and mortality was independent of levels of both vWF and VEGF (OR 3.6, 95% CI 1.1-12.1, P = 0.039, for each log10 increase in Ang-2). 45% of the cohort had a rising Ang-2 between ARDS day 1 and 3 (adjusted mortality OR 3.3, 95% CI 1.2-9.2, P = 0.026). HCT patients with a rising Ang-2 had 70% mortality compared with 13% mortality for those without (OR 16.3, 95% CI 1.3-197.8, P = 0.028). Elevated plasma levels of Ang-2 were associated with mortality independent of vWF and VEGF. A rising Ang-2 between days 1 and 3 was strongly associated with mortality, particularly in pediatric HCT patients, suggesting vulnerability to ongoing endothelial damage.
Collapse
Affiliation(s)
- Matt S Zinter
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of California, San Francisco, California; University of California, San Francisco, Benioff Children's Hospital, San Francisco, California
| | - Aaron Spicer
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of California, San Francisco, California; University of California, San Francisco, Benioff Children's Hospital, San Francisco, California
| | - Benjamin O Orwoll
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of California, San Francisco, California; University of California, San Francisco, Benioff Children's Hospital, San Francisco, California
| | - Mustafa Alkhouli
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of California, San Francisco, California; University of California, San Francisco, Benioff Children's Hospital, San Francisco, California
| | - Christopher C Dvorak
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, School of Medicine, University of California, San Francisco, California; University of California, San Francisco, Benioff Children's Hospital, San Francisco, California
| | - Carolyn S Calfee
- Division of Pulmonary and Critical Care Medicine, Departments of Anesthesia and Medicine, University of California, San Francisco, California; Cardiovascular Research Institute, University of California, San Francisco, California; and
| | - Michael A Matthay
- Division of Pulmonary and Critical Care Medicine, Departments of Anesthesia and Medicine, University of California, San Francisco, California; Cardiovascular Research Institute, University of California, San Francisco, California; and
| | - Anil Sapru
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of California, San Francisco, California; University of California, San Francisco, Benioff Children's Hospital, San Francisco, California
| |
Collapse
|
41
|
Gingipains from the Periodontal Pathogen Porphyromonas gingivalis Play a Significant Role in Regulation of Angiopoietin 1 and Angiopoietin 2 in Human Aortic Smooth Muscle Cells. Infect Immun 2015; 83:4256-65. [PMID: 26283334 DOI: 10.1128/iai.00498-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/11/2015] [Indexed: 12/24/2022] Open
Abstract
Angiopoietin 1 (Angpt1) and angiopoietin 2 (Angpt2) are the ligands of tyrosine kinase (Tie) receptors, and they play important roles in vessel formation and the development of inflammatory diseases, such as atherosclerosis. Porphyromonas gingivalis is a Gram-negative periodontal bacterium that is thought to contribute to the progression of cardiovascular disease. The aim of this study was to investigate the role of P. gingivalis infection in the modulation of Angpt1 and Angpt2 in human aortic smooth muscle cells (AoSMCs). We exposed AoSMCs to wild-type (W50 and 381), gingipain mutant (E8 and K1A), and fimbrial mutant (DPG-3 and KRX-178) P. gingivalis strains and to different concentrations of tumor necrosis factor (TNF). The atherosclerosis risk factor TNF was used as a positive control in this study. We found that P. gingivalis (wild type, K1A, DPG3, and KRX178) and TNF upregulated the expression of Angpt2 and its transcription factor ETS1, respectively, in AoSMCs. In contrast, Angpt1 was inhibited by P. gingivalis and TNF. However, the RgpAB mutant E8 had no effect on the expression of Angpt1, Angpt2, or ETS1 in AoSMCs. The results also showed that ETS1 is critical for P. gingivalis induction of Angpt2. Exposure to Angpt2 protein enhanced the migration of AoSMCs but had no effect on proliferation. This study demonstrates that gingipains are crucial to the ability of P. gingivalis to markedly increase the expressed Angpt2/Angpt1 ratio in AoSMCs, which determines the regulatory role of angiopoietins in angiogenesis and their involvement in the development of atherosclerosis. These findings further support the association between periodontitis and cardiovascular disease.
Collapse
|
42
|
Boscolo E, Limaye N, Huang L, Kang KT, Soblet J, Uebelhoer M, Mendola A, Natynki M, Seront E, Dupont S, Hammer J, Legrand C, Brugnara C, Eklund L, Vikkula M, Bischoff J, Boon LM. Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects. J Clin Invest 2015; 125:3491-504. [PMID: 26258417 DOI: 10.1172/jci76004] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/02/2015] [Indexed: 01/19/2023] Open
Abstract
Venous malformations (VMs) are composed of ectatic veins with scarce smooth muscle cell coverage. Activating mutations in the endothelial cell tyrosine kinase receptor TIE2 are a common cause of these lesions. VMs cause deformity, pain, and local intravascular coagulopathy, and they expand with time. Targeted pharmacological therapies are not available for this condition. Here, we generated a model of VMs by injecting HUVECs expressing the most frequent VM-causing TIE2 mutation, TIE2-L914F, into immune-deficient mice. TIE2-L914F-expressing HUVECs formed VMs with ectatic blood-filled channels that enlarged over time. We tested both rapamycin and a TIE2 tyrosine kinase inhibitor (TIE2-TKI) for their effects on murine VM expansion and for their ability to inhibit mutant TIE2 signaling. Rapamycin prevented VM growth, while TIE2-TKI had no effect. In cultured TIE2-L914F-expressing HUVECs, rapamycin effectively reduced mutant TIE2-induced AKT signaling and, though TIE2-TKI did target the WT receptor, it only weakly suppressed mutant-induced AKT signaling. In a prospective clinical pilot study, we analyzed the effects of rapamycin in 6 patients with difficult-to-treat venous anomalies. Rapamycin reduced pain, bleeding, lesion size, functional and esthetic impairment, and intravascular coagulopathy. This study provides a VM model that allows evaluation of potential therapeutic strategies and demonstrates that rapamycin provides clinical improvement in patients with venous malformation.
Collapse
|
43
|
Barry DM, Xu K, Meadows SM, Zheng Y, Norden PR, Davis GE, Cleaver O. Cdc42 is required for cytoskeletal support of endothelial cell adhesion during blood vessel formation in mice. Development 2015; 142:3058-70. [PMID: 26253403 DOI: 10.1242/dev.125260] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022]
Abstract
The Rho family of small GTPases has been shown to be required in endothelial cells (ECs) during blood vessel formation. However, the underlying cellular events controlled by different GTPases remain unclear. Here, we assess the cellular mechanisms by which Cdc42 regulates mammalian vascular morphogenesis and maintenance. In vivo deletion of Cdc42 in embryonic ECs (Cdc42(Tie2KO)) results in blocked lumen formation and endothelial tearing, leading to lethality of mutant embryos by E9-10 due to failed blood circulation. Similarly, inducible deletion of Cdc42 (Cdc42(Cad5KO)) at mid-gestation blocks angiogenic tubulogenesis. By contrast, deletion of Cdc42 in postnatal retinal vessels leads to aberrant vascular remodeling and sprouting, as well as markedly reduced filopodia formation. We find that Cdc42 is essential for organization of EC adhesion, as its loss results in disorganized cell-cell junctions and reduced focal adhesions. Endothelial polarity is also rapidly lost upon Cdc42 deletion, as seen by failed localization of apical podocalyxin (PODXL) and basal actin. We link observed failures to a defect in F-actin organization, both in vitro and in vivo, which secondarily impairs EC adhesion and polarity. We also identify Cdc42 effectors Pak2/4 and N-WASP, as well as the actomyosin machinery, to be crucial for EC actin organization. This work supports the notion of Cdc42 as a central regulator of the cellular machinery in ECs that drives blood vessel formation.
Collapse
Affiliation(s)
- David M Barry
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Ke Xu
- Department SCRB, Harvard University, Cambridge, MA 02138, USA
| | - Stryder M Meadows
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA 70118, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Pieter R Norden
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
44
|
Palmieri C. Immunohistochemical Expression of Angiogenic Factors by Neoplastic Epithelial Cells Is Associated With Canine Prostatic Carcinogenesis. Vet Pathol 2015; 52:607-613. [PMID: 25281650 DOI: 10.1177/0300985814549951] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The dog is the only species, other than humans, in which spontaneous prostatic cancer occurs; therefore, dogs are a valuable model for the study of factors that regulate tumor progression. Angiogenesis is important in the development and spread of a variety of cancers, including prostate cancer. To better define the role of cancer epithelial cells in prostate cancer neovascularization, immunohistochemical staining for angiogenic factors (vascular endothelial growth factor [VEGF], platelet endothelial cell adhesion molecule-1 [PECAM-1], Tie-2, and fibroblast growth factor-2 [FGF-2]) was performed on formalin-fixed, paraffin-embedded tissues from 10 normal prostates, 15 hyperplastic prostates, and 11 prostatic carcinomas from dogs. Normal and hyperplastic epithelial cells were negative for PECAM-1, VEGF, and Tie-2, while the same markers were expressed with a variable intensity of cytoplasmic staining by neoplastic cells. Mild to moderate FGF-2 staining was detected in all normal prostates with less than 10% of positive cells, mainly distributed in the basal layer. The percentage of FGF-2-positive hyperplastic cells was variable, with both basal and secretory cells exhibiting a perinuclear to diffuse cytoplasmic staining. The mean number of positive cells and the intensity of staining were higher in prostatic carcinomas than normal and hyperplastic prostates. Moreover, microvessel density analyzed on PECAM-1-stained slides was increased in prostate cancer compared with normal and hyperplastic prostates. Therefore, prostatic neoplastic cells are capable of simultaneous expression of various angiogenic factors and may increase tumor proliferation and angiogenesis in a paracrine and autocrine fashion.
Collapse
Affiliation(s)
- C Palmieri
- School of Veterinary Science, The University of Queensland, Queensland, Australia
| |
Collapse
|
45
|
Khan OF, Zaia EW, Jhunjhunwala S, Xue W, Cai W, Yun DS, Barnes CM, Dahlman JE, Dong Y, Pelet JM, Webber MJ, Tsosie JK, Jacks TE, Langer R, Anderson DG. Dendrimer-Inspired Nanomaterials for the in Vivo Delivery of siRNA to Lung Vasculature. NANO LETTERS 2015; 15:3008-16. [PMID: 25789998 PMCID: PMC4825876 DOI: 10.1021/nl5048972] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Targeted RNA delivery to lung endothelial cells has the potential to treat conditions that involve inflammation, such as chronic asthma and obstructive pulmonary disease. To this end, chemically modified dendrimer nanomaterials were synthesized and optimized for targeted small interfering RNA (siRNA) delivery to lung vasculature. Using a combinatorial approach, the free amines on multigenerational poly(amido amine) and poly(propylenimine) dendrimers were substituted with alkyl chains of increasing length. The top performing materials from in vivo screens were found to primarily target Tie2-expressing lung endothelial cells. At high doses, the dendrimer-lipid derivatives did not cause chronic increases in proinflammatory cytokines, and animals did not suffer weight loss due to toxicity. We believe these materials have potential as agents for the pulmonary delivery of RNA therapeutics.
Collapse
Affiliation(s)
- Omar F. Khan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Edmond W. Zaia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Siddharth Jhunjhunwala
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wen Xue
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wenxin Cai
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dong Soo Yun
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carmen M. Barnes
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - James E. Dahlman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yizhou Dong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Anesthesiology, Children’s Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Jeisa M. Pelet
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew J. Webber
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jonathan K. Tsosie
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tyler E. Jacks
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel G. Anderson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Corresponding Author.
| |
Collapse
|
46
|
Brunckhorst MK, Xu Y, Lu R, Yu Q. Angiopoietins promote ovarian cancer progression by establishing a procancer microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 184:2285-96. [PMID: 25043619 DOI: 10.1016/j.ajpath.2014.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 04/16/2014] [Accepted: 05/06/2014] [Indexed: 02/03/2023]
Abstract
Despite decades of research, the survival rate of ovarian cancer patients is largely unchanged. Current chemotherapeutic drugs are effective only transiently because patients with advanced disease eventually develop resistance. Thus, there is a pressing need for identifying novel therapeutic targets in ovarian cancer. Mounting evidence suggests that angiopoietins (Angpts) may play an essential role in cancer progression; however, the expression profiles and biological effects of Angpts on ovarian cancer remain largely unknown. Here, we show that, compared with their normal counterparts, expressions of Angpt1, Angpt2, and Angpt4 are increased in ovarian cancer cells and tissues and that human ovarian cancer cells also express the Angpt receptor Tie-2-receptor tyrosine kinase. We show that increased expression of Angpt1, Angpt2, or Angpt4 promotes intraperitoneal growth of ovarian cancers and shortens survival of the experimental mice. We further show, for the first time, that Angpts promote accumulation of cancer-associated fibroblasts and tumor angiogenesis in the ovarian cancer microenvironment, as well as enhance ovarian cancer cell proliferation and invasion in vivo. In addition, we establish a novel function of Angpts in promoting proliferation and invasion and inducing Tie-2 and extracellular signal-regulated kinase 1/2 activation in ovarian cancer-associated fibroblasts. Taken together, these data suggest that the Angpt-Tie-2 functional axis is an important player in ovarian cancer progression and an attractive target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Melissa K Brunckhorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yin Xu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rong Lu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Qin Yu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
47
|
Abstract
The endothelial TIE1 and TIE2 receptor tyrosine kinases form a distinct subfamily characterized by their unique extracellular domains. Together with the angiopoietin growth factors (ANGPT1, ANGPT2, ANGPT4, also abbreviated as ANG), the TIE receptors form an endothelial specific signaling pathway with important functions in the regulation of lymphatic and cardiovascular development and vascular homeostasis. Angiopoietins exist in multimeric forms that activate the TIE receptors via unique mechanism. In endothelial cell–cell contacts, angiopoietins induce the formation of homomeric in trans TIE receptor complexes extending across the cell junctions, whereas matrix-bound angiopoietin-1 (ANG1) activates the TIE receptors in a cis configuration. In comparison to the vascular endothelial growth factor receptors, the TIE receptors undergo little ubiquitin-mediated degradation after activation, whereas TIE2 signaling is negatively regulated by the vascular endothelial protein tyrosine phosphatase, VE-PTP. ANG1 activation of TIE2 supports vascular stabilization, whereas angiopoietin-2 (ANG2), a context-dependent weak TIE2 agonist/antagonist, promotes pathological tumor angiogenesis, vascular permeability, and inflammation. Recently, ANG2 has been found to mediate some of its vascular destabilizing and angiogenic functions via integrin signalling. The circulating levels of ANG2 are increased in cancer, and in several human diseases associated with inflammation and vascular leak, for example, in sepsis. Blocking of ANG2 has emerged as a potential novel therapeutic strategy for these diseases. In addition, preclinical results demonstrate that genetic TIE1 deletion in mice inhibits the vascularization and growth of tumor isografts and protects from atherosclerosis, with little effect on normal vascular homeostasis in adult mice. The ability of the ANG-TIE pathway to control vessel stability and angiogenesis makes it an interesting vascular target for the treatment of the various diseases.
Collapse
|
48
|
Scholz A, Plate KH, Reiss Y. Angiopoietin-2: a multifaceted cytokine that functions in both angiogenesis and inflammation. Ann N Y Acad Sci 2015; 1347:45-51. [PMID: 25773744 DOI: 10.1111/nyas.12726] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 12/12/2022]
Abstract
Angiogenesis and inflammation are two highly linked processes. In the last decade, several factors with dual function in both of these major pathways have been identified. This review focuses on angiopoietin-2 (Ang-2), an important proangiogenic factor that has more recently been implicated in mediating inflammatory processes as well. Ang-2 is upregulated in multiple inflammatory diseases and has been implicated in the direct control of inflammation-related signaling pathways. As a consequence of its multiple roles, designs for therapeutic targeting of Ang-2 should consider the dual function of this factor in regulating angiogenesis and inflammation.
Collapse
Affiliation(s)
- Alexander Scholz
- Department of Pathology, Laboratory of Immunology and Vascular Biology, Stanford University School of Medicine, Stanford, California
| | - Karl H Plate
- Edinger Institute/Institute of Neurology, Frankfurt University Medical School, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,German Cancer Consortium (DKTK), Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yvonne Reiss
- Edinger Institute/Institute of Neurology, Frankfurt University Medical School, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,German Cancer Consortium (DKTK), Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
49
|
Khan OF, Zaia EW, Yin H, Bogorad RL, Pelet JM, Webber MJ, Zhuang I, Dahlman JE, Langer R, Anderson DG. Ionizable amphiphilic dendrimer-based nanomaterials with alkyl-chain-substituted amines for tunable siRNA delivery to the liver endothelium in vivo. Angew Chem Int Ed Engl 2014; 53:14397-401. [PMID: 25354018 PMCID: PMC4785599 DOI: 10.1002/anie.201408221] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/03/2014] [Indexed: 12/11/2022]
Abstract
A library of dendrimers was synthesized and optimized for targeted small interfering RNA (siRNA) delivery to different cell subpopulations within the liver. Using a combinatorial approach, a library of these nanoparticle-forming materials was produced wherein the free amines on multigenerational poly(amido amine) and poly(propylenimine) dendrimers were substituted with alkyl chains of increasing length, and evaluated for their ability to deliver siRNA to liver cell subpopulations. Interestingly, two lead delivery materials could be formulated in a manner to alter their tissue tropism within the liver-with formulations from the same material capable of preferentially delivering siRNA to 1) endothelial cells, 2) endothelial cells and hepatocytes, or 3) endothelial cells, hepatocytes, and tumor cells in vivo. The ability to broaden or narrow the cellular destination of siRNA within the liver may provide a useful tool to address a range of liver diseases.
Collapse
Affiliation(s)
- Omar F. Khan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Edmond W. Zaia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hao Yin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Roman L. Bogorad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jeisa M. Pelet
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Matthew J. Webber
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Iris Zhuang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James E. Dahlman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Department of Chemical Engineering, and Institute for Medical, Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Daniel G. Anderson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Department of Chemical Engineering, and Institute for Medical, Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
50
|
Khan OF, Zaia EW, Yin H, Bogorad RL, Pelet JM, Webber MJ, Zhuang I, Dahlman JE, Langer R, Anderson DG. Ionizable Amphiphilic Dendrimer-Based Nanomaterials with Alkyl-Chain-Substituted Amines for Tunable siRNA Delivery to the Liver Endothelium In Vivo. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|