1
|
Muskhelishvili G, Travers A. The regulatory role of DNA supercoiling in nucleoprotein complex assembly and genetic activity. Biophys Rev 2016; 8:5-22. [PMID: 28510220 PMCID: PMC5425797 DOI: 10.1007/s12551-016-0237-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/21/2016] [Indexed: 01/06/2023] Open
Abstract
We argue that dynamic changes in DNA supercoiling in vivo determine both how DNA is packaged and how it is accessed for transcription and for other manipulations such as recombination. In both bacteria and eukaryotes, the principal generators of DNA superhelicity are DNA translocases, supplemented in bacteria by DNA gyrase. By generating gradients of superhelicity upstream and downstream of their site of activity, translocases enable the differential binding of proteins which preferentially interact with respectively more untwisted or more writhed DNA. Such preferences enable, in principle, the sequential binding of different classes of protein and so constitute an essential driver of chromatin organization.
Collapse
Affiliation(s)
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
2
|
Gaillard H, Herrera-Moyano E, Aguilera A. Transcription-associated genome instability. Chem Rev 2013; 113:8638-61. [PMID: 23597121 DOI: 10.1021/cr400017y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla , Av. Américo Vespucio s/n, 41092 Seville, Spain
| | | | | |
Collapse
|
3
|
Ren L, Gao G, Zhao D, Ding M, Luo J, Deng H. Developmental stage related patterns of codon usage and genomic GC content: searching for evolutionary fingerprints with models of stem cell differentiation. Genome Biol 2007; 8:R35. [PMID: 17349061 PMCID: PMC1868930 DOI: 10.1186/gb-2007-8-3-r35] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/08/2007] [Accepted: 03/12/2007] [Indexed: 11/26/2022] Open
Abstract
Developmental-stage-related patterns of gene expression correlate with codon usage and genomic GC content in stem cell hierarchies. Background The usage of synonymous codons shows considerable variation among mammalian genes. How and why this usage is non-random are fundamental biological questions and remain controversial. It is also important to explore whether mammalian genes that are selectively expressed at different developmental stages bear different molecular features. Results In two models of mouse stem cell differentiation, we established correlations between codon usage and the patterns of gene expression. We found that the optimal codons exhibited variation (AT- or GC-ending codons) in different cell types within the developmental hierarchy. We also found that genes that were enriched (developmental-pivotal genes) or specifically expressed (developmental-specific genes) at different developmental stages had different patterns of codon usage and local genomic GC (GCg) content. Moreover, at the same developmental stage, developmental-specific genes generally used more GC-ending codons and had higher GCg content compared with developmental-pivotal genes. Further analyses suggest that the model of translational selection might be consistent with the developmental stage-related patterns of codon usage, especially for the AT-ending optimal codons. In addition, our data show that after human-mouse divergence, the influence of selective constraints is still detectable. Conclusion Our findings suggest that developmental stage-related patterns of gene expression are correlated with codon usage (GC3) and GCg content in stem cell hierarchies. Moreover, this paper provides evidence for the influence of natural selection at synonymous sites in the mouse genome and novel clues for linking the molecular features of genes to their patterns of expression during mammalian ontogenesis.
Collapse
Affiliation(s)
- Lichen Ren
- College of Life Sciences, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ge Gao
- Center for Bioinformatics, College of Life Sciences, National Laboratory of Protein Engineering and Plant Genetics Engineering, Peking University, Beijing, 100871, PR China
| | - Dongxin Zhao
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, 100871, PR China
| | - Mingxiao Ding
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, 100871, PR China
| | - Jingchu Luo
- Center for Bioinformatics, College of Life Sciences, National Laboratory of Protein Engineering and Plant Genetics Engineering, Peking University, Beijing, 100871, PR China
| | - Hongkui Deng
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, 100871, PR China
| |
Collapse
|
4
|
Kelly A, Conway C, O Cróinín T, Smith SGJ, Dorman CJ. DNA supercoiling and the Lrp protein determine the directionality of fim switch DNA inversion in Escherichia coli K-12. J Bacteriol 2006; 188:5356-63. [PMID: 16855224 PMCID: PMC1540041 DOI: 10.1128/jb.00344-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Site-specific recombinases of the integrase family usually require cofactors to impart directionality in the recombination reactions that they catalyze. The FimB integrase inverts the Escherichia coli fim switch (fimS) in the on-to-off and off-to-on directions with approximately equal efficiency. Inhibiting DNA gyrase with novobiocin caused inversion to become biased in the off-to-on direction. This directionality was not due to differential DNA topological distortion of fimS in the on and off phases by the activity of its resident P(fimA) promoter. Instead, the leucine-responsive regulatory (Lrp) protein was found to determine switching outcomes. Knocking out the lrp gene or abolishing Lrp binding sites 1 and 2 within fimS completely reversed the response of the switch to DNA relaxation. Inactivation of either Lrp site alone resulted in mild on-to-off bias, showing that they act together to influence the response of the switch to changes in DNA supercoiling. Thus, Lrp is not merely an architectural element organizing the fim invertasome, it collaborates with DNA supercoiling to determine the directionality of the DNA inversion event.
Collapse
Affiliation(s)
- Arlene Kelly
- Department of Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
5
|
Kouzine F, Liu J, Sanford S, Chung HJ, Levens D. The dynamic response of upstream DNA to transcription-generated torsional stress. Nat Struct Mol Biol 2004; 11:1092-100. [PMID: 15502847 DOI: 10.1038/nsmb848] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 09/13/2004] [Indexed: 11/09/2022]
Abstract
The torsional stress caused by counter-rotation of the transcription machinery and template generates supercoils in a closed topological domain, but has been presumed to be too short-lived to be significant in an open domain. This report shows that transcribing RNA polymerases dynamically sustain sufficient torsion to perturb DNA structure even on linear templates. Assays to capture and measure transcriptionally generated torque and to trap short-lived perturbations in DNA structure and conformation showed that the transient forces upstream of active promoters are large enough to drive the supercoil-sensitive far upstream element (FUSE) of the human c-myc into single-stranded DNA. An alternative non-B conformation of FUSE found in stably supercoiled DNA is not accessible dynamically. These results demonstrate that dynamic disturbance of DNA structure provides a real-time measure of ongoing genetic activity.
Collapse
Affiliation(s)
- Fedor Kouzine
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland 20892-1500, USA
| | | | | | | | | |
Collapse
|
6
|
Vinogradov AE. Isochores and tissue-specificity. Nucleic Acids Res 2003; 31:5212-20. [PMID: 12930973 PMCID: PMC212799 DOI: 10.1093/nar/gkg699] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 05/11/2003] [Accepted: 07/03/2003] [Indexed: 11/13/2022] Open
Abstract
The housekeeping (ubiquitously expressed) genes in the mammal genome were shown here to be on average slightly GC-richer than tissue-specific genes. Both housekeeping and tissue-specific genes occupy similar ranges of GC content, but the former tend to concentrate in the upper part of the range. In the human genome, tissue-specific genes show two maxima, GC-poor and GC-rich. The strictly tissue-specific human genes tend to concentrate in the GC-poor region; their distribution is left-skewed and thus reciprocal to the distribution of housekeeping genes. The intermediately tissue-specific genes show an intermediate GC content and the right-skewed distribution. Both in the human and mouse, genes specific for some tissues (e.g., parts of the central nervous system) have a higher average GC content than housekeeping genes. Since they are not transcribed in the germ line (in contrast to housekeeping genes), and therefore have a lower probability of inheritable gene conversion, this finding contradicts the biased gene conversion (BGC) explanation for elevated GC content in the heavy isochores of mammal genome. Genes specific for germ-line tissues (ovary, testes) show a low average GC content, which is also in contradiction to the BGC explanation. Both for the total data set and for the most part of tissues taken separately, a weak positive correlation was found between gene GC content and expression level. The fraction of ubiquitously expressed genes is nearly 1.5-fold higher in the mouse than in the human. This suggests that mouse tissues are comparatively less differentiated (on the molecular level), which can be related to a less pronounced isochoric structure of the mouse genome. In each separate tissue (in both species), tissue-specific genes do not form a clear-cut frequency peak (in contrast to housekeeping genes), but constitute a continuum with a gradually increasing degree of tissue-specificity, which probably reflects the path of cell differentiation and/or an independent use of the same protein in several unrelated tissues.
Collapse
Affiliation(s)
- Alexander E Vinogradov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, St Petersburg 194064, Russia.
| |
Collapse
|
7
|
Opel ML, Arfin SM, Hatfield GW. The effects of DNA supercoiling on the expression of operons of the ilv regulon of Escherichia coli suggest a physiological rationale for divergently transcribed operons. Mol Microbiol 2001; 39:1109-15. [PMID: 11251829 DOI: 10.1111/j.1365-2958.2001.02309.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Transcriptional activities of closely spaced divergent promoters are affected by the accumulation of local negative superhelicity in the region between transcribing RNA polymerase molecules (transcriptional coupling). The effect of this transcription-induced DNA supercoiling on these promoters depends on their intrinsic properties. As the global superhelical density of the chromosome is controlled by the energy charge of the cell, which is affected by environmental stresses and transitions from one growth state to another, the transcriptional coupling that occurs between divergently transcribed promoters is likely to serve a physiological purpose. Here, we suggest that transcriptional coupling between the divergent promoters of the ilvYC operon of Escherichia coli serves to co-ordinate the expression of this operon with other operons of the ilv regulon during metabolic adjustments associated with growth state transitions. As DNA supercoiling-dependent transcriptional coupling between the promoters of other divergently transcribed operons is investigated, additional global gene regulatory mechanisms and physiological roles are sure to emerge.
Collapse
Affiliation(s)
- M L Opel
- Departments of Microbiology and Molecular Genetics and Biological Chemistry, College of Medicine, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
8
|
Opel ML, Hatfield GW. DNA supercoiling-dependent transcriptional coupling between the divergently transcribed promoters of the ilvYC operon of Escherichia coli is proportional to promoter strengths and transcript lengths. Mol Microbiol 2001; 39:191-8. [PMID: 11123701 DOI: 10.1046/j.1365-2958.2001.02249.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The twin-domain model of Liu and Wang suggested that high levels of DNA supercoiling generated in the region between closely spaced divergently transcribed promoters could serve to couple the activities of these promoters transcriptionally. In this report, we use topoisomer sets of defined superhelical densities as DNA templates in a purified in vitro transcription system to demonstrate transcriptional coupling between the divergently transcribed ilvY and ilvC promoters of the ilvYC operon of Escherichia coli. Current evidence for this type of DNA supercoiling-dependent transcriptional coupling, based largely on the in vivo activities of promoters contained in engineered DNA constructs, suggests that the transcription complex must be physically hindered to generate DNA supercoils and to prevent their diffusion throughout the DNA duplex. However, the in vitro results presented here demonstrate that (i) transcriptional coupling is observed between the divergent promoters of the ilvYC operon in the absence of transcript anchoring; (ii) the magnitude of the negative DNA supercoiling generated in the divergent promoter region is proportional to the sum of the global and transcription-induced superhelicity; and (iii) the magnitude of this transcription-induced superhelicity is proportional to promoter strengths and transcript lengths.
Collapse
Affiliation(s)
- M L Opel
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
9
|
Weng YS, Xing D, Clikeman JA, Nickoloff JA. Transcriptional effects on double-strand break-induced gene conversion tracts. Mutat Res 2000; 461:119-32. [PMID: 11018585 DOI: 10.1016/s0921-8777(00)00043-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription stimulates spontaneous homologous recombination, but prior studies have not investigated the effects of transcription on double-strand break (DSB)-induced recombination in yeast. We examined products of five ura3 direct repeat substrates in yeast using alleles that were transcribed at low or high levels. In each strain, recombination was stimulated by DSBs created in vivo at an HO site in one copy of ura3. Increasing transcription levels in donor or recipient alleles did not further stimulate DSB-induced recombination, nor did it alter the relative frequencies of conversion and deletion (pop-out) events. This result is consistent with the idea that transcription enhances spontaneous recombination by increasing initiation. Gene conversion tracts were measured using silent restriction fragment length polymorphisms (RFLPs) at approximately 100bp intervals. Transcription did not alter average tract lengths, but increased transcription in donor alleles increased both the frequency of promoter-proximal (5') unidirectional tracts and conversion of 5' markers. Increased transcription in recipient alleles increased the frequency of bidirectional tracts. We demonstrate that these effects are due to transcription per se, and not just transcription factor binding. These results suggest that transcription influences aspects of gene conversion after initiation, such as strand invasion and/or mismatch repair (MMR).
Collapse
Affiliation(s)
- Y S Weng
- Department of Cancer Biology, Harvard University, School of Public Health, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
10
|
O'Gara JP, Dorman CJ. Effects of local transcription and H-NS on inversion of the fim switch of Escherichia coli. Mol Microbiol 2000; 36:457-66. [PMID: 10792731 DOI: 10.1046/j.1365-2958.2000.01864.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fim switch of Escherichia coli is responsible for phase-variable expression of type 1 fimbriae. Switching in the ON-to-OFF and OFF-to-ON directions is promoted by the FimB recombinase, while the FimE recombinase directs switching predominantly in the ON-to-OFF direction. The effects of local promoter activity and the H-NS nucleoid-associated protein on inversion of the switch were assessed. In contrast to FimB-mediated inversion, inversion of the switch by the FimE recombinase was unaffected by the H-NS status of the cell. Transcription towards the switch from within a translationally inactivated fimE gene was found to bias the switch strongly in the OFF direction, creating a FimE+-like phenotype in the absence of the FimE protein. This biasing was H-NS dependent and was also contingent on transcription from within the switch. These data show that local transcription and a nucleoid-associated protein both contribute to the modulation of a site-specific recombination event on the bacterial chromosome.
Collapse
Affiliation(s)
- J P O'Gara
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin, Trinity College, Dublin 2, Republic of Ireland
| | | |
Collapse
|
11
|
Abstract
It is well known that transcription can induce torsional stress in DNA, affecting the activity of nearby genes or even inducing structural transitions in the DNA duplex. It has long been assumed that the generation of significant torsional stress requires the DNA to be anchored, forming a limited topological domain, because otherwise it would spin almost freely about its axis. Previous estimates of the rotational drag have, however, neglected the role of small natural bends in the helix backbone. We show how these bends can increase the drag several thousandfold relative to prior estimates, allowing significant torsional stress even in linear unanchored DNA. The model helps explain several puzzling experimental results on structural transitions induced by transcription of DNA.
Collapse
Affiliation(s)
- P Nelson
- Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Krasilnikov AS, Podtelezhnikov A, Vologodskii A, Mirkin SM. Large-scale effects of transcriptional DNA supercoiling in vivo. J Mol Biol 1999; 292:1149-60. [PMID: 10512709 DOI: 10.1006/jmbi.1999.3117] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The scale of negative DNA supercoiling generated by transcription in Top(+) Escherichia coli cells was assessed from the efficiency of cruciform formation upstream of a regulated promoter. An increase in negative supercoiling upon promoter induction led to cruciform formation, which was quantitatively measured by chemical probing of intracellular DNA. By placing a cruciform-forming sequence at varying distances from the promoter, we found that the half-dissociation length of transcription supercoiling wave is approximately 800 bp. This is the first proof that transcription can affect DNA structure on such a remarkably large scale in vivo. Moreover, cooperative binding of the cI repressor to the upstream promoter DNA did not preclude efficient diffusion of transcriptional supercoiling. Finally, our plasmids appeared to contain discrete domains of DNA supercoiling, defined by the features and relative orientation of different promoters.
Collapse
Affiliation(s)
- A S Krasilnikov
- Department of Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
13
|
Piruat JI, Aguilera A. A novel yeast gene, THO2, is involved in RNA pol II transcription and provides new evidence for transcriptional elongation-associated recombination. EMBO J 1998; 17:4859-72. [PMID: 9707445 PMCID: PMC1170815 DOI: 10.1093/emboj/17.16.4859] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have identified two novel yeast genes, THO1 and THO2, that partially suppress the transcription defects of hpr1Delta mutants by overexpression. We show by in vivo transcriptional and recombinational analysis of tho2Delta cells that THO2 plays a role in RNA polymerase II (RNA pol II)-dependent transcription and is required for the stability of DNA repeats, as previously shown for HPR1. The tho2Delta mutation reduces the transcriptional efficiency of yeast DNA sequences down to 25% of the wild-type levels and abolishes transcription of the lacZ sequence. In addition, tho2Delta causes a strong increase in the frequency of recombination between direct repeats (>2000-fold above wild-type levels). Some DNA repeats cannot even be maintained in the cell. This hyper-recombination phenotype is dependent on transcription and is not observed in DNA repeats that are not transcribed. The higher the impairment of transcription caused by tho2Delta, the higher the frequency of recombination of a particular DNA region. The tho2Delta mutation also increases the frequency of plasmid loss. Our work not only identifies a novel yeast gene, THO2, with similar function to HPR1, but also provides new evidence for transcriptional blocks as a source of recombination. We propose that there is a set of proteins including Hpr1p and Tho2p, in the absence of which RNA pol II transcription is stalled or blocked, causing genetic instability.
Collapse
Affiliation(s)
- J I Piruat
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Sevilla, Spain
| | | |
Collapse
|
14
|
Liu CC, Hühne R, Tu J, Lorbach E, Dröge P. The resolvase encoded by Xanthomonas campestris transposable element ISXc5 constitutes a new subfamily closely related to DNA invertases. Genes Cells 1998; 3:221-33. [PMID: 9663657 DOI: 10.1046/j.1365-2443.1998.00182.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Conservative site-specific recombination is responsible for the resolution of cointegrates which result during the transposition of class II transposable elements. Resolution is catalysed by a transposon-encoded recombinase, resolvase, that belongs to a large family of recombinases, including DNA invertases. Resolvases and the related invertases are likely to employ similar reaction mechanisms during recombination. There are important differences, however. Resolvases require two accessory DNA binding sites within each of the two directly repeated recombination sites. Invertases instead need a host factor, Fis, and an enhancer type DNA sequence, in addition to two inversely orientated recombination sites. RESULTS The resolvase encoded by transposable element ISXc5 from the gram-negative phytopathogen Xanthomonas campestris shows two features which distinguish it from other known resolvases. First, it is more closely phylogenetically related to invertases than other resolvases. In particular, two functionally important regions seem highly conserved between this resolvase and members of the invertase subfamily. Second, the enzyme exhibits a large extension of its carboxy-terminal domain with unknown function. We purified ISXc5 resolvase and analysed its resolution reaction in vitro. Our biochemical and DNA topological analysis reveals that critical features of resolution are similar, if not identical, to that carried out by gammadelta resolvase. However, despite its apparent similarity to invertases, we were unable to detect recombination on standard substrates for DNA inversion, in either the presence or absence of Fis. CONCLUSIONS ISXc5 resolvase employs a reaction mechanism which is common to members of the resolvase family. Its position near the evolutionary borderline to invertases and its high degree of identity within two functionally important regions with members of the DNA invertase subfamily suggest that only a few replacements of critical residues may suffice to convert this resolvase into a functional, possibly Fis-dependent invertase.
Collapse
Affiliation(s)
- C C Liu
- Institute of Genetics, University of Cologne, Weyertal, Germany
| | | | | | | | | |
Collapse
|
15
|
Abstract
In the past few years two fascinating and new scientific fields, the science of DNA-structure and topology and the theory of molecular computers have been growing independently. The main goal of this paper is to establish an interesting connection between them and to propose a novel paradigm for the future construction of DNA-computing devices based on supercoil energetics. The basic principle of the proposed model can also be applied to describe the communication between topologically closed segments in real genomes, which is believed to take part in the complex process of gene regulation. An implementation of the recent model is proposed by which polynomials of one real variable can be evaluated in a simple in vitro recombination assay.
Collapse
Affiliation(s)
- I M Kulić
- Mathematisches Institut, Universität Stuttgart, Germany.
| |
Collapse
|
16
|
|
17
|
Chávez S, Aguilera A. The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes Dev 1997; 11:3459-70. [PMID: 9407037 PMCID: PMC316820 DOI: 10.1101/gad.11.24.3459] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The yeast HPR1 gene plays an important role in genome stability, as indicated by the observation that hpr1 mutants have high frequencies of DNA repeat recombination and chromosome loss. Here we report that HPR1 is required for transcriptional elongation. Transcription driven from constitutive and regulated yeast promoters cannot elongate through the bacterial lacZ coding region in hpr1Delta cells, but progresses efficiently through other sequences such as yeast PHO5. We show that HPR1 is not required for transcription activation and that the previously reported effects of hpr1Delta on the activation of different promoters is a consequence of the incapacity of hpr1Delta cells to elongate transcription through lacZ, used as reporter. Transcriptional defects are also observed in yeast DNA sequences of hpr1Delta cells in the presence of the transcription elongation inhibitor 6-azauracil. In all cases, the blockage of transcription elongation in hpr1Delta is associated with both the high frequency of deletions and the increase in plasmid instability that we report here. Therefore, in addition to the identification of a new element involved in transcriptional elongation, our work provides evidence for a new source of genomic instability.
Collapse
Affiliation(s)
- S Chávez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | | |
Collapse
|
18
|
Wang Z, Dröge P. Long-range effects in a supercoiled DNA domain generated by transcription in vitro. J Mol Biol 1997; 271:499-510. [PMID: 9281422 DOI: 10.1006/jmbi.1997.1197] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The translocation of a transcription complex can transiently introduce positive and negative superhelical windings into the template DNA. To gain further insight into this dynamic DNA supercoiling mechanism and its possible involvement in biological processes, we employed an in vitro system in which site-specific recombination by gammadelta resolvase is topologically coupled to transcription-induced negative supercoiling. Our kinetic experiments suggest that recombination is closely linked to the process of supercoiling by transcription. We utilized the known high speed at which two resolvase-bound recombination sites can pair to form a synaptic complex in kinetic experiments with DNA substrates containing three recombination sites. Our data provide evidence for the existence of a transient gradient of negative supercoiling. Such a gradient seems to be predominantly a consequence of DNA double helix rotation behind a translocating RNA polymerase and originates within a broad region up to two kilobase-pairs upstream of the transcriptional start site. We further demonstrate that the topological coupling between transcription and recombination is not affected when the DNA-bending protein integration host factor from E. coli is bound to multiple sites within the phage lambda attachment region. We discuss implications of our in vitro findings with respect to possible in vivo functions of the dynamic nature of transcription-induced supercoiling.
Collapse
Affiliation(s)
- Z Wang
- Institute of Genetics, University of Cologne, Im Weyertal 121, Cologne, D-50931, Germany
| | | |
Collapse
|
19
|
Prado F, Piruat JI, Aguilera A. Recombination between DNA repeats in yeast hpr1delta cells is linked to transcription elongation. EMBO J 1997; 16:2826-35. [PMID: 9184227 PMCID: PMC1169891 DOI: 10.1093/emboj/16.10.2826] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The induction of recombination by transcription activation has been documented in prokaryotes and eukaryotes. Unwinding of the DNA duplex, disruption of chromatin structure or changes in local supercoiling associated with transcription can be indirectly responsible for the stimulation of recombination. Here we provide genetic and molecular evidence for a specific mechanism of stimulation of recombination by transcription. We show that the induction of deletions between repeats in hpr1delta cells of Saccharomyces cerevisiae is linked to transcription elongation. Molecular analysis of different direct repeat constructs reveals that deletions induced by hpr1delta are specific for repeat constructs in which transcription initiating at an external promoter traverses particular regions of the DNA flanked by the repeats. Transcription becomes HPR1 dependent when elongating through such regions. Both the induction of deletions and the HPR1 dependence of transcription were abolished when a strong terminator was used to prevent transcription from proceeding through the DNA region flanked by the repeats. In contrast to previously reported cases of transcription-induced recombination, there was no correlation between high levels of transcripts and high levels of recombination. Our study provides evidence that direct repeat recombination can be induced by transcriptional elongation.
Collapse
Affiliation(s)
- F Prado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
20
|
Ohba R, Matsumoto K, Ishimi Y. Induction of DNA replication by transcription in the region upstream of the human c-myc gene in a model replication system. Mol Cell Biol 1996; 16:5754-63. [PMID: 8816489 PMCID: PMC231576 DOI: 10.1128/mcb.16.10.5754] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
An important relationship between transcription and initiation of DNA replication in both eukaryotes and prokaryotes has been suggested. In an attempt to understand the molecular mechanism of this interaction, we examined whether transcription can induce DNA replication in vitro by constructing a system in which both replication and transcription were combined. Relaxed circular DNA possessing a replication initiation zone located upstream of the human c-myc gene and a T7 promoter near the P1 promoter of the gene was replicated in the presence of T7 RNA polymerase. In our model system, replication was carried out with the proteins required for simian virus 40 DNA replication. DNA synthesis, which was dependent on both T7 RNA polymerase and the replication proteins, was detected mainly in the promoter and upstream regions of the c-myc gene. Blocking RNA synthesis at the initial stage of the reaction severely reduced DNA synthesis, suggesting that RNA chain elongation is required to induce DNA synthesis. The results indicated that transcription can induce DNA replication in the upstream region of the transcribed gene, most likely by introducing negative supercoiling into the region, which results in unwinding of the DNA duplex.
Collapse
Affiliation(s)
- R Ohba
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | |
Collapse
|
21
|
Abstract
A synthetic strand of RNA has been designed so that it can adopt two different topological states (a circle and a trefoil knot) when ligated into a cyclic molecule. The RNA knot and circle have been characterized by their behavior in gel electrophoresis and sedimentation experiments. This system allows one to assay for the existence of an RNA topoisomerase, because the two RNA molecules can be inter-converted only by a strand passage event. We find that the interconversion of these two species can be catalyzed by Escherichia coli DNA topoisomerase III, indicating that this enzyme can act as an RNA topoisomerase. The conversion of circles to knots is accompanied by a small amount of RNA catenane generation. These findings suggest that strand passage must be considered a potential component of the folding and modification of RNA structures.
Collapse
Affiliation(s)
- H Wang
- Department of Chemistry, New York University, NY 10003, USA
| | | | | |
Collapse
|
22
|
Gendron D, Delbecchi L, Bourgaux-Ramoisy D, Bourgaux P. An enhancer of recombination in polyomavirus DNA. J Virol 1996; 70:4748-60. [PMID: 8676502 PMCID: PMC190412 DOI: 10.1128/jvi.70.7.4748-4760.1996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Previous work from this laboratory has indicated that intramolecular homologous recombination of polyomavirus (Py) DNA is dependent upon promoter structure or function. In this report, we demonstrate that Py DNA contains not two but three binding sites for transcription factor YY1, all located on the late side of viral origin of replication (ori) and the third well within the VP1 coding sequence. This third site (Y3), which may or may not play a role in transcription regulation, is immediately adjacent to a previously described recombination hot spot (S1/S2). We found that Py replicons carrying an altered Y3 site recombined in a manner suggesting partial inactivation of the S1/S hot spot. Point mutations precluding the binding of YY1 to Y3 in vitro depressed hot spot activity in vivo; however, of the two reciprocal products reflecting recombination at this spot, only that carrying the mutated Y3 site arose at a reduced rate. These results are interpreted in light of a model assuming that recombination occurs within a transcriptionally active viral chromatin tethered to the nuclear matrix by YY1.
Collapse
Affiliation(s)
- D Gendron
- Department of Microbiology, The Medical School, Université de Sherbrooke, Québec, Canada
| | | | | | | |
Collapse
|
23
|
Wang Z, Dröge P. Differential control of transcription-induced and overall DNA supercoiling by eukaryotic topoisomerases in vitro. EMBO J 1996; 15:581-9. [PMID: 8599941 PMCID: PMC449976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The global superhelical state of intracellular DNA is stringently controlled by topoisomerase action. Little is know, however, about topoisomerase-directed relaxation of localized DNA supercoiling generated by protein tracking processes such as transcription. Here we use transcription by a yeast Gal4 and phage T7 RNA polymerase fusion protein to induce localized supercoiling which, in turn, triggers site-specific DNA recombination by gamma delta resolvase. We demonstrate that only large amounts of eukaryotic topoisomerase I interfere, through supercoiling relaxation, with the topological coupling between transcription and recombination. The additional presence of a strong cleavage site for topoisomerase I has little influence on the relaxation of localized supercoiling. We also show that high levels of human topoisomerase II fail to compete with transcription-driven recombination. However, drastically reduced amounts of either enzyme completely suppress recombination of overall supercoiled DNA. Together, our results reveal a marked difference in topoisomerase requirement to relax transcription-induced and global DNA supercoiling. We discuss possible reasons for this difference and conclude that localized supercoiling frequently may escape relaxation by eukaryotic topoisomerases to mediate topological couplings between DNA transactions.
Collapse
Affiliation(s)
- Z Wang
- Department of Biology, University of Konstanz, Germany
| | | |
Collapse
|
24
|
Ljungman M, Hanawalt PC. Presence of negative torsional tension in the promoter region of the transcriptionally poised dihydrofolate reductase gene in vivo. Nucleic Acids Res 1995; 23:1782-9. [PMID: 7784183 PMCID: PMC306936 DOI: 10.1093/nar/23.10.1782] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA topology has been suggested to play an important role in the process of transcription. Negative torsional tension has been shown to stimulate both pre-initiation complex formation and promoter clearance on plasmid DNA in vitro. We recently showed that genomic DNA in human cells contains localized torsional tension. In the present study we have further characterized and mapped torsional tension in the dihydrofolate reductase (DHFR) gene in Chinese hamster ovary (CHO) cells and investigated the effects of differential rates of transcription on the magnitude and location of this tension. Using psoralen photo-cross-linking in conjunction with X-irradiation, we found that relaxable psoralen hypersensitivity was specifically localized to the promoter region of the serum-regulated DHFR gene in serum-stimulated, but not in serum-starved, cells. Moreover, this hypersensitivity did not appear to be caused by transcription elongation, since it persisted in cells in which transcription of the DHFR gene had been reduced by the transcription inhibitor 5,6-dichloro-1-beta-D-ribofurano-sylbenzimidazole (DRB). We suggest that the generation of negative torsional tension in DNA may play an important role in gene regulation by poising genes for transcription.
Collapse
Affiliation(s)
- M Ljungman
- Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor 48109-0582, USA
| | | |
Collapse
|
25
|
Finnie NJ, Gottlieb TM, Blunt T, Jeggo PA, Jackson SP. DNA-dependent protein kinase activity is absent in xrs-6 cells: implications for site-specific recombination and DNA double-strand break repair. Proc Natl Acad Sci U S A 1995; 92:320-4. [PMID: 7816841 PMCID: PMC42870 DOI: 10.1073/pnas.92.1.320] [Citation(s) in RCA: 262] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA-dependent protein kinase (DNA-PK) is a nuclear serine/threonine protein kinase composed of a catalytic subunit called p350 and a DNA binding component termed Ku. Ku consists of two tightly associated polypeptides of approximately 70 kDa and 80 kDa (Ku80). An intriguing feature of DNA-PK is that it binds to DNA ends and other discontinuities in DNA and requires these structures for its activation. This suggests that DNA-PK may function in DNA repair and/or recombination. Consistent with this, Ku DNA binding activity was shown recently to be absent in extracts of hamster xrs-6 cells, which are defective in DNA double-strand (ds) break repair and V(D)J recombination. Furthermore, xrs-6 cells are complemented by expression of the Ku80 cDNA. To date, DNA-PK activity has been demonstrated unequivocally only in extracts of primate cells. Here, we describe an assay that can detect DNA-PK activity in extracts of mouse, hamster, Xenopus, and Drosophila cells. Using this assay, we find that xrs-6 cells completely lack DNA-PK activity. By contrast, xrs-6 derivatives complemented by human chromosome fragments bearing the Ku80 gene have restored both the DNA end binding and kinase activities associated with DNA-PK. Finally, we show that xrs-6 extracts are complemented biochemically by purified Ku. Our findings indicate that the xrs-6 defects are direct consequences of the mutation in Ku80 and implicate DNA-PK in recombination and DNA repair processes.
Collapse
Affiliation(s)
- N J Finnie
- Wellcome Trust/Cancer Research Campaign Institute, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Dove SL, Dorman CJ. The site-specific recombination system regulating expression of the type 1 fimbrial subunit gene of Escherichia coli is sensitive to changes in DNA supercoiling. Mol Microbiol 1994; 14:975-88. [PMID: 7715458 DOI: 10.1111/j.1365-2958.1994.tb01332.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have studied the effect of altering the in vivo level of DNA supercoiling on the phase-variable expression of the Escherichia coli fimA gene. Transcription from the fimA promoter was unaffected by changes in DNA supercoiling whether caused by the introduction of a topA::Tn10 mutation or by inhibition of DNA gyrase with the antibiotic novobiocin. However, inversion of the fimA promoter fragment was altered in response to perturbation of DNA supercoiling. Specifically, inactivation of topA reduced the rate of promoter fragment inversion in both the ON-to-OFF and the OFF-to-ON directions. This effect correlated with the loss of functional topA and not with the global level of DNA supercoiling. Inhibition of DNA gyrase introduced a bias in favour of the OFF-to-ON inversion; the ON-to-OFF inversion was affected only slightly. Changes in expression of fimB, the gene coding for the recombinase that catalyses fimA promoter fragment inversion in the strains used in this study, did not correlate with effects on fimA phase variation: we found that transcription of fimB was inhibited by loss of functional topA and was enhanced by inhibition of DNA gyrase in a manner that correlated well with the global level of in vivo DNA supercoiling. A model is presented to account for the effects of lost topoisomerase function on fimA gene expression.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Base Sequence
- DNA Probes/genetics
- DNA Topoisomerases, Type I/genetics
- DNA Transposable Elements
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Fimbriae Proteins
- Fimbriae, Bacterial
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Molecular Sequence Data
- Mutation
- Novobiocin/pharmacology
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- Recombination, Genetic
- Topoisomerase II Inhibitors
- Transcription, Genetic
Collapse
Affiliation(s)
- S L Dove
- Department of Biochemistry, University of Dundee, UK
| | | |
Collapse
|
27
|
McBurney MW, Fournier S, Schmidt-Kastner PK, Jardine K, Craig J. Unstable integration of transfected DNAs into embryonal carcinoma cells. SOMATIC CELL AND MOLECULAR GENETICS 1994; 20:529-40. [PMID: 7892650 DOI: 10.1007/bf02255843] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Plasmid DNA can be efficiently transfected into embryonal carcinoma cells but it is difficult to isolate clones of cells stably expressing genes present on the transfected plasmids. Even in clonal populations derived from transfected cells, the introduced genes are expressed in some but not all cells. Cotransfection with a region of the Pgk-1 gene results in more efficient, stable cotransformation due to increased numbers of copies of the transfected plasmids integrated into the genomic DNA. The PgK-1 genomic sequences did not allow the plasmid DNA to replicate autonomously but seemed to enhance the ligation of transfected plasmids before their integration into the host genome. Our results suggest a model in which the plasmid DNAs are able to integrate and subsequently excise from the host genome by recombination events enhanced by transcription through the tandemly repeated sequences of the transfected plasmids.
Collapse
Affiliation(s)
- M W McBurney
- University of Ottawa, Department of Medicine, Ontario, Canada
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- P M Watt
- Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, U.K
| | | |
Collapse
|
29
|
McBurney MW, Fournier S, Jardine K, Sutherland L. Intragenic regions of the murine Pgk-1 locus enhance integration of transfected DNAs into genomes of embryonal carcinoma cells. SOMATIC CELL AND MOLECULAR GENETICS 1994; 20:515-28. [PMID: 7892649 DOI: 10.1007/bf02255842] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Introduction of recombinant genes into mammalian cells in culture has been an important procedure in establishing the molecular mechanisms of various cellular processes. The efficiency with which plasmid borne recombinant genes are expressed following stable integration into genomes of embryonal carcinoma cells is low. Using the P19 embryonal carcinoma cells as recipients, we found that constructs carrying the promoter and intragenic regions of the murine Pgk-1 gene were expressed with high efficiency. This elevated expression was associated with increased numbers of copies of the transfected plasmid DNA stably associated with the genomes of recipient cells. The elevated plasmid copy numbers may result from enhanced ligation of transfected plasmids because cotransfected plasmids were also integrated in increased numbers. The enhanced integration and expression of transfected plasmids required active transcription through an intragenic region of Pgk-1, perhaps resulting in more recombinogenic plasmid DNAs.
Collapse
Affiliation(s)
- M W McBurney
- University of Ottawa, Department of Medicine, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
30
|
Abstract
Mutation frequency decline is the rapid and irreversible decline in the suppressor mutation frequency of Escherichia coli cells if the cells are kept in nongrowth media immediately following the mutagenic treatment. The gene mfd, which is necessary for mutation frequency decline, encodes a protein of 130 kDa which couples transcription to excision repair by binding to RNA polymerase and to UvrA, which is the damage recognition subunit of the excision repair enzyme. Although current evidence suggests that transcription-repair coupling is the cause of the preferential repair of the transcribed strand of mRNA encoding genes as well as of suppressor tRNA genes, the decline occurs under stringent response conditions in which the tRNA genes are not efficiently transcribed. Thus, the mechanism of strand-specific repair is well understood, but some questions remain regarding the precise mechanism of mutation frequency decline.
Collapse
Affiliation(s)
- C P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599
| | | |
Collapse
|
31
|
Dröge P. Protein tracking-induced supercoiling of DNA: a tool to regulate DNA transactions in vivo? Bioessays 1994; 16:91-9. [PMID: 8147849 DOI: 10.1002/bies.950160205] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An interplay between DNA-dependent biological processes appears to be crucial for cell viability. At the molecular level, this interplay relies heavily on the communication between DNA-bound proteins, which can be facilitated and controlled by the dynamic structure of double-stranded DNA. Hence, DNA structural alterations are recognized as potential tools to transfer biological information over some distance within a genome. Until recently, however, direct evidence for DNA structural information as a mediator between cellular processes was lacking. This changed when the concept of transient waves of DNA supercoiling, induced by proteins tracking along the right-handed DNA double helix, came into the limelight. Indeed, a number of observations now suggest that helix tracking-induced DNA structural information might be exploited to participate in the regulation of a variety of DNA transactions in vivo.
Collapse
Affiliation(s)
- P Dröge
- Department of Biology, University of Konstanz, Germany
| |
Collapse
|
32
|
Abstract
The leu-500 mutation is an A-to-G point mutation in the -10 region of the promoter controlling the leuABCD operon of Salmonella typhimurium. Suppression of the leu-500 mutation in an S. typhimurium topA mutant has demonstrated the functional dependency of this mutated promoter on negative supercoiling. A plasmid bearing a minimal leu-500 promoter region (positions -80 to +87) failed to restore its expression in the S. typhimurium topA mutant. We showed that transcription-mediated local negative supercoiling can activate the leu-500 promoter on a plasmid. The coupled transcription and translation process is required for this activation, but peptide-mediated membrane anchorage may not be involved in this activation. Although the effect of negative supercoiling generated during transcription away from the promoter is limited to a short distance of 250 bp, it can activate the negative-supercoiling-dependent leu-500 promoter from positions either 5' or 3' of the leu-500 promoter. In the presence of a parallel-oriented lac promoter which transcribed away from the 3' end of the leu-500 promoter, transcriptional activation of the leu-500 promoter is a strong indication of cooperativity during the transcriptional initiation process.
Collapse
Affiliation(s)
- J Tan
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201
| | | | | |
Collapse
|