1
|
Ye E, Wu E, Han R. Global, regional, and national impact of Down syndrome on child and adolescent mortality from 1980 to 2021, with projections to 2050: a cross-sectional study. Front Public Health 2025; 13:1554589. [PMID: 40342505 PMCID: PMC12058478 DOI: 10.3389/fpubh.2025.1554589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Down syndrome, resulting from trisomy 21, is a prevalent genetic disorder. Despite improvements in life expectancy and quality of life due to medical progress, children and adolescents (under the age of 20 years) with Down syndrome still face higher mortality rates. Future research is essential to elucidate the epidemiological patterns and trends in Down syndrome among children and adolescents, enabling the development of effective prevention and intervention strategies to improve survival and health outcomes. Methods This study draws on Global Burden of Disease (GBD) 2021 mortality data for children and adolescents with Down syndrome. Pearson's correlation coefficient was leveraged to assess the relationship between Down syndrome mortality and the Socio-demographic Index (SDI). The estimated annual percentage change (EAPC) in mortality was calculated to track temporal trends, and the Bayesian age-period-cohort (BAPC) model was employed to forecast future mortality. Results Over the past 42 years, there have been fluctuations in mortality among children and adolescents with Down syndrome. Globally, deaths have decreased by 22.8% from 26.95 thousand (95% uncertainty interval [UI], 10.10-74.66 thousand) in 1980 to 20.81 thousand (95% UI, 14.18-36.49 thousand) in 2021. Furthermore, BAPC model projections indicate a sustained reduction in mortality for children and adolescents with Down syndrome. Predominantly, deaths occur in 0-4 age group, with higher death rates in Low SDI regions, and notably, the number and rate of female patients exceed those of male patients. Intriguingly, a negative correlation was observed between death rates and higher SDI. Conclusion Most countries have seen a decline in Down syndrome deaths among children and adolescents over the last 42 years, but a few high SDI countries are witnessing an increase. Future health interventions should prioritize these countries, focusing on resource allocation, infrastructure, and health education. Continued efforts on care for the 0-4 age group with Down syndrome are crucial to further reducing deaths in this age group.
Collapse
Affiliation(s)
- Erdengqieqieke Ye
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Erman Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Computer Science and Information Technologies, Elviña Campus, University of A Coruña, A Coruña, Spain
| | - Rui Han
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Centre for Reproductive Immunology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Valle MS, Cioni M, Russo C, Malaguarnera L, Casabona A. Applicability of the Instrumented Pendulum Test for Assessing Limb Viscoelastic Properties in Neurological and Internal Diseases: A Narrative Review. Life (Basel) 2025; 15:535. [PMID: 40283090 PMCID: PMC12028550 DOI: 10.3390/life15040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND The pendulum test was first introduced by Wartenberg as a clinical tool for neurological examination in patients with hypertonia. It was later instrumented to measure the kinematic parameters of gravity-imposed knee movements in patients with spasticity. More recently, the instrumented pendulum test has enabled the quantification of stiffness, viscosity, and damping in both the lower and upper limbs across various neurological and internal diseases. OBJECTIVE To highlight the utility of the instrumented pendulum test as a valuable tool for the quantification of stiffness, viscosity, and damping of knee and elbow joints within a clinical setting. DESIGN Narrative review. METHODS A comprehensive search was conducted using PubMed/MEDLINE, focusing on the terms "pendulum test" combined with "viscosity", "stiffness", and "damping". RESULTS The instrumented pendulum test effectively quantifies stiffness, viscosity, and damping of the knee and elbow across various conditions, including rheumatic diseases, chronic obstructive pulmonary disease, hypertonia, and hypotonia. Studies have also demonstrated correlations between these non-neural parameters and factors such as age and disease severity. CONCLUSIONS Findings suggest that the instrumented pendulum test could serve as a valuable tool in clinical decision-making for targeted pharmacological treatments, such as botulinum toxin-A or hyaluronidase injections for spasticity, as well as interventions for myofascial system disorders.
Collapse
Affiliation(s)
- Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.C.)
| | - Matteo Cioni
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.C.)
| | - Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Antonino Casabona
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.C.)
| |
Collapse
|
3
|
Beresford-Webb JA, McAllister CJ, Sleigh A, Walpert MJ, Holland AJ, Zaman SH. Mitochondrial Dysfunction Correlates with Brain Amyloid Binding, Memory, and Executive Function in Down Syndrome: Implications for Alzheimer's Disease in Down Syndrome. Brain Sci 2025; 15:130. [PMID: 40002463 PMCID: PMC11853603 DOI: 10.3390/brainsci15020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Mitochondrial dysfunction is increasingly recognized as a central contributor to neurodegenerative diseases and age-related cognitive decline. Individuals with Down syndrome (DS) are at high risk of neurodegeneration due to Alzheimer's disease (AD). This study aims to explore the relationship between mitochondrial dysfunction, brain amyloid-beta (Aβ) deposition, and cognitive decline in this population. Methods: We investigated mitochondrial function, brain amyloid-beta burden, and cognitive performance in a pilot study of a cohort of 10 eligible adults with DS selected from a sample of 28 individuals with DS. Phosphorus-31 magnetic resonance spectroscopy (31P-MRS) was used to assess mitochondrial function in skeletal muscle using a post-exercise paradigm, while positron emission tomography using 11C-Pittsburgh compound B (PiB-PET) measured brain Aβ deposition. Cognitive performance was evaluated using the Cambridge Cognitive Examination adapted for individuals with Down syndrome (CAMCOG-DS) and executive function batteries. Results: Significant correlations were observed between slowed phosphocreatine (PCr) recovery in muscle and increased Aβ deposition in key brain regions, particularly the striatum. Cognitive performance inversely correlated with mitochondrial function, with pronounced deficits in memory and executive function tasks. Notably, an individual carrying the APOE-ε4 allele exhibited the poorest mitochondrial function, highest Aβ burden, and most severe cognitive impairment, suggesting a potential interaction between genetic risk and mitochondrial health. Conclusions: These findings highlight the role of mitochondrial dysfunction in DS-associated AD (DSAD) and its impact on cognition in adults. The results support targeting mitochondrial pathways as a potential therapeutic strategy to mitigate AD progression in DS populations. Further research with larger cohorts and longitudinal designs is needed to clarify causative mechanisms and develop effective interventions.
Collapse
Affiliation(s)
- Jessica A. Beresford-Webb
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Trumpington Road, Cambridge CB2 8AH, UK
| | - Catherine J. McAllister
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Trumpington Road, Cambridge CB2 8AH, UK
| | - Alison Sleigh
- Wolfson Brain Imaging Centre, University of Cambridge and NIHR Cambridge Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Madeleine J. Walpert
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Trumpington Road, Cambridge CB2 8AH, UK
| | - Anthony J. Holland
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Trumpington Road, Cambridge CB2 8AH, UK
| | - Shahid H. Zaman
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Trumpington Road, Cambridge CB2 8AH, UK
- Cambridgeshire & Peterborough Foundation NHS Trust, Douglas House, Trumpington Road, Cambridge CB2 8AH, UK
| |
Collapse
|
4
|
Hore K, Ali U. Anaesthesia for the child with trisomy 21. BJA Educ 2024; 24:440-446. [PMID: 39605313 PMCID: PMC11589198 DOI: 10.1016/j.bjae.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 11/29/2024] Open
Affiliation(s)
- K. Hore
- Great Ormond Street Hospital, London, UK
| | - U. Ali
- Great Ormond Street Hospital, London, UK
| |
Collapse
|
5
|
Korenberg JR. Oxytocin and our place in the universe. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 20:100270. [PMID: 39524402 PMCID: PMC11546525 DOI: 10.1016/j.cpnec.2024.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Is the oxytocin-vasopressin (OT-AVP) system a part of the unseen force that subtly (in a clever and indirect way) directs our human fascination to ourselves? And is it possible that this fundamental drive is the inevitable handmaiden of the genetic selection for survival and reproduction that is played out at the level of the individual, the family and the society? Perhaps. But an equally intense biological drive to experience the unknown is intertwined and exists in the individual as "curiosity". Both are essential for survival and success of the species. Curiously, the path to understanding ourselves, the joy of discovery and joining with others on this imperial journey to the OT-AVP system may itself be driven by the same system. I have been driven and inspired to understand "Us" for some unseen reason. This chapter relates how a driving curiosity and search for meaning led to the critical training and inspired mentorship essential for developing novel genetic, cellular and imaging technologies necessary for each advance toward this deeper understanding. Specifically, the chapter describes my recognition of human "Genetics" as the hub of medicine and the language of human neurobiology. We then set out the rationale for and sequential development of four technologies (dense whole genome arrays of genomic markers integrated with the recombination map; needed to genetically dissect and define the genetic contributions to the distinct features of brain and social behavior in Down syndrome and Williams syndrome. These include generation of 1) dense whole genome arrays of genomic markers integrated with the recombination and gene maps for defining rare cases of WS differing by one or more deleted genes, 2) analytic methods for parsing genetic contributions to standardized outcomes of cognitive and behavioral data, 3) technologies using multicolor and multi temporal fluorescence in situ hybridization to define the subcellular and neuroanatomic localization of candidate genes in the non-human primate (macaque) brain, and 4) an approach to integrating timed measures of blood neuropeptides and genomic DNA sequence variants with self-reported religious experience in devout members of the LDS church. Working across evolution and ontogeny at the cellular, neural systems and organismal levels, has led to a suspicion that a bit of the grand design may involve OT, AVP and their partners in the subtle and artful processes of the last one-half billion years that link survival of our species with our prized capacity for abstract thought and spirituality.
Collapse
|
6
|
Anshu K, Kristensen K, Godar SP, Zhou X, Hartley SL, Litovsky RY. Speech Recognition and Spatial Hearing in Young Adults With Down Syndrome: Relationships With Hearing Thresholds and Auditory Working Memory. Ear Hear 2024; 45:1568-1584. [PMID: 39090791 PMCID: PMC11493531 DOI: 10.1097/aud.0000000000001549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
OBJECTIVES Individuals with Down syndrome (DS) have a higher incidence of hearing loss (HL) compared with their peers without developmental disabilities. Little is known about the associations between HL and functional hearing for individuals with DS. This study investigated two aspects of auditory functions, "what" (understanding the content of sound) and "where" (localizing the source of sound), in young adults with DS. Speech reception thresholds in quiet and in the presence of interferers provided insight into speech recognition, that is, the "what" aspect of auditory maturation. Insights into "where" aspect of auditory maturation were gained from evaluating speech reception thresholds in colocated versus separated conditions (quantifying spatial release from masking) as well as right versus left discrimination and sound location identification. Auditory functions in the "where" domain develop during earlier stages of cognitive development in contrast with the later developing "what" functions. We hypothesized that young adults with DS would exhibit stronger "where" than "what" auditory functioning, albeit with the potential impact of HL. Considering the importance of auditory working memory and receptive vocabulary for speech recognition, we hypothesized that better speech recognition in young adults with DS, in quiet and with speech interferers, would be associated with better auditory working memory ability and receptive vocabulary. DESIGN Nineteen young adults with DS (aged 19 to 24 years) participated in the study and completed assessments on pure-tone audiometry, right versus left discrimination, sound location identification, and speech recognition in quiet and with speech interferers that were colocated or spatially separated. Results were compared with published data from children and adults without DS and HL, tested using similar protocols and stimuli. Digit Span tests assessed auditory working memory. Receptive vocabulary was examined using the Peabody Picture Vocabulary Test Fifth Edition. RESULTS Seven participants (37%) had HL in at least 1 ear; 4 individuals had mild HL, and 3 had moderate HL or worse. Participants with mild or no HL had ≥75% correct at 5° separation on the discrimination task and sound localization root mean square errors (mean ± SD: 8.73° ± 2.63°) within the range of adults in the comparison group. Speech reception thresholds in young adults with DS were higher than all comparison groups. However, spatial release from masking did not differ between young adults with DS and comparison groups. Better (lower) speech reception thresholds were associated with better hearing and better auditory working memory ability. Receptive vocabulary did not predict speech recognition. CONCLUSIONS In the absence of HL, young adults with DS exhibited higher accuracy during spatial hearing tasks as compared with speech recognition tasks. Thus, auditory processes associated with the "where" pathways appear to be a relative strength than those associated with "what" pathways in young adults with DS. Further, both HL and auditory working memory impairments contributed to difficulties in speech recognition in the presence of speech interferers. Future larger-sized samples are needed to replicate and extend our findings.
Collapse
Affiliation(s)
- Kumari Anshu
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Kayla Kristensen
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Shelly P. Godar
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Xin Zhou
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- Currently at The Chinese University of Hong Kong, Hong Kong
| | - Sigan L. Hartley
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- School of Human Ecology, University of Wisconsin–Madison, Madison, WI, USA
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Communication Sciences and Disorders, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
7
|
Marderstein AR, De Zuani M, Moeller R, Bezney J, Padhi EM, Wong S, Coorens THH, Xie Y, Xue H, Montgomery SB, Cvejic A. Single-cell multi-omics map of human fetal blood in Down syndrome. Nature 2024; 634:104-112. [PMID: 39322663 PMCID: PMC11446839 DOI: 10.1038/s41586-024-07946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Down syndrome predisposes individuals to haematological abnormalities, such as increased number of erythrocytes and leukaemia in a process that is initiated before birth and is not entirely understood1-3. Here, to understand dysregulated haematopoiesis in Down syndrome, we integrated single-cell transcriptomics of over 1.1 million cells with chromatin accessibility and spatial transcriptomics datasets using human fetal liver and bone marrow samples from 3 fetuses with disomy and 15 fetuses with trisomy. We found that differences in gene expression in Down syndrome were dependent on both cell type and environment. Furthermore, we found multiple lines of evidence that haematopoietic stem cells (HSCs) in Down syndrome are 'primed' to differentiate. We subsequently established a Down syndrome-specific map linking non-coding elements to genes in disomic and trisomic HSCs using 10X multiome data. By integrating this map with genetic variants associated with blood cell counts, we discovered that trisomy restructured regulatory interactions to dysregulate enhancer activity and gene expression critical to erythroid lineage differentiation. Furthermore, as mutations in Down syndrome display a signature of oxidative stress4,5, we validated both increased mitochondrial mass and oxidative stress in Down syndrome, and observed that these mutations preferentially fell into regulatory regions of expressed genes in HSCs. Together, our single-cell, multi-omic resource provides a high-resolution molecular map of fetal haematopoiesis in Down syndrome and indicates significant regulatory restructuring giving rise to co-occurring haematological conditions.
Collapse
Affiliation(s)
| | - Marco De Zuani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rebecca Moeller
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jon Bezney
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Evin M Padhi
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Shuo Wong
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Yilin Xie
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Haoliang Xue
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Stephen B Montgomery
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Ana Cvejic
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Cambridge Stem Cell Institute, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Murphy AJ, Wilton SD, Aung-Htut MT, McIntosh CS. Down syndrome and DYRK1A overexpression: relationships and future therapeutic directions. Front Mol Neurosci 2024; 17:1391564. [PMID: 39114642 PMCID: PMC11303307 DOI: 10.3389/fnmol.2024.1391564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Down syndrome is a genetic-based disorder that results from the triplication of chromosome 21, leading to an overexpression of many triplicated genes, including the gene encoding Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A). This protein has been observed to regulate numerous cellular processes, including cell proliferation, cell functioning, differentiation, and apoptosis. Consequently, an overexpression of DYRK1A has been reported to result in cognitive impairment, a key phenotype of individuals with Down syndrome. Therefore, downregulating DYRK1A has been explored as a potential therapeutic strategy for Down syndrome, with promising results observed from in vivo mouse models and human clinical trials that administered epigallocatechin gallate. Current DYRK1A inhibitors target the protein function directly, which tends to exhibit low specificity and selectivity, making them unfeasible for clinical or research purposes. On the other hand, antisense oligonucleotides (ASOs) offer a more selective therapeutic strategy to downregulate DYRK1A expression at the gene transcript level. Advances in ASO research have led to the discovery of numerous chemical modifications that increase ASO potency, specificity, and stability. Recently, several ASOs have been approved by the U.S. Food and Drug Administration to address neuromuscular and neurological conditions, laying the foundation for future ASO therapeutics. The limitations of ASOs, including their high production cost and difficulty delivering to target tissues can be overcome by further advances in ASO design. DYRK1A targeted ASOs could be a viable therapeutic approach to improve the quality of life for individuals with Down syndrome and their families.
Collapse
Affiliation(s)
- Aidan J. Murphy
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - May T. Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Craig S. McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
9
|
AlMail A, Jamjoom A, Pan A, Feng MY, Chau V, D'Gama AM, Howell K, Liang NSY, McTague A, Poduri A, Wiltrout K, Bassett AS, Christodoulou J, Dupuis L, Gill P, Levy T, Siper P, Stark Z, Vorstman JAS, Diskin C, Jewitt N, Baribeau D, Costain G. Consensus reporting guidelines to address gaps in descriptions of ultra-rare genetic conditions. NPJ Genom Med 2024; 9:27. [PMID: 38582909 PMCID: PMC10998895 DOI: 10.1038/s41525-024-00408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/27/2024] [Indexed: 04/08/2024] Open
Abstract
Genome-wide sequencing and genetic matchmaker services are propelling a new era of genotype-driven ascertainment of novel genetic conditions. The degree to which reported phenotype data in discovery-focused studies address informational priorities for clinicians and families is unclear. We identified reports published from 2017 to 2021 in 10 genetics journals of novel Mendelian disorders. We adjudicated the quality and detail of the phenotype data via 46 questions pertaining to six priority domains: (I) Development, cognition, and mental health; (II) Feeding and growth; (III) Medication use and treatment history; (IV) Pain, sleep, and quality of life; (V) Adulthood; and (VI) Epilepsy. For a subset of articles, all subsequent published follow-up case descriptions were identified and assessed in a similar manner. A modified Delphi approach was used to develop consensus reporting guidelines, with input from content experts across four countries. In total, 200 of 3243 screened publications met inclusion criteria. Relevant phenotypic details across each of the 6 domains were rated superficial or deficient in >87% of papers. For example, less than 10% of publications provided details regarding neuropsychiatric diagnoses and "behavioural issues", or about the type/nature of feeding problems. Follow-up reports (n = 95) rarely contributed this additional phenotype data. In summary, phenotype information relevant to clinical management, genetic counselling, and the stated priorities of patients and families is lacking for many newly described genetic diseases. The PHELIX (PHEnotype LIsting fiX) reporting guideline checklists were developed to improve phenotype reporting in the genomic era.
Collapse
Affiliation(s)
- Ali AlMail
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Program in Genetics & Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Ahmed Jamjoom
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amy Pan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Min Yi Feng
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vann Chau
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada
| | - Alissa M D'Gama
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Katherine Howell
- Department of Neurology, Royal Children's Hospital, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Nicole S Y Liang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada
| | - Amy McTague
- Department of Neurology, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kimberly Wiltrout
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Anne S Bassett
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | - Lucie Dupuis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada
| | - Peter Gill
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Tess Levy
- Division of Psychiatry, Ichan School of Medicine at Mount Sinai, New York City, NY, USA
| | - Paige Siper
- Division of Psychiatry, Ichan School of Medicine at Mount Sinai, New York City, NY, USA
| | - Zornitza Stark
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia
| | - Jacob A S Vorstman
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
| | - Catherine Diskin
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Natalie Jewitt
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Danielle Baribeau
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada.
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.
| | - Gregory Costain
- Program in Genetics & Genome Biology, SickKids Research Institute, Toronto, ON, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
10
|
Sukreet S, Rafii MS, Rissman RA. From understanding to action: Exploring molecular connections of Down syndrome to Alzheimer's disease for targeted therapeutic approach. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12580. [PMID: 38623383 PMCID: PMC11016820 DOI: 10.1002/dad2.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
Down syndrome (DS) is caused by a third copy of chromosome 21. Alzheimer's disease (AD) is a neurodegenerative condition characterized by the deposition of amyloid-beta (Aβ) plaques and neurofibrillary tangles in the brain. Both disorders have elevated Aβ, tau, dysregulated immune response, and inflammation. In people with DS, Hsa21 genes like APP and DYRK1A are overexpressed, causing an accumulation of amyloid and neurofibrillary tangles, and potentially contributing to an increased risk of AD. As a result, people with DS are a key demographic for research into AD therapeutics and prevention. The molecular links between DS and AD shed insights into the underlying causes of both diseases and highlight potential therapeutic targets. Also, using biomarkers for early diagnosis and treatment monitoring is an active area of research, and genetic screening for high-risk individuals may enable earlier intervention. Finally, the fundamental mechanistic parallels between DS and AD emphasize the necessity for continued research into effective treatments and prevention measures for DS patients at risk for AD. Genetic screening with customized therapy approaches may help the DS population in current clinical studies and future biomarkers.
Collapse
Affiliation(s)
- Sonal Sukreet
- Department of NeurosciencesUniversity of California‐San DiegoLa JollaCaliforniaUSA
| | - Michael S. Rafii
- Department of Neurology, Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Robert A. Rissman
- Department of NeurosciencesUniversity of California‐San DiegoLa JollaCaliforniaUSA
- Department Physiology and Neuroscience, Alzheimer’s Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
11
|
Chapman LR, Ramnarine IVP, Zemke D, Majid A, Bell SM. Gene Expression Studies in Down Syndrome: What Do They Tell Us about Disease Phenotypes? Int J Mol Sci 2024; 25:2968. [PMID: 38474215 DOI: 10.3390/ijms25052968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Down syndrome is a well-studied aneuploidy condition in humans, which is associated with various disease phenotypes including cardiovascular, neurological, haematological and immunological disease processes. This review paper aims to discuss the research conducted on gene expression studies during fetal development. A descriptive review was conducted, encompassing all papers published on the PubMed database between September 1960 and September 2022. We found that in amniotic fluid, certain genes such as COL6A1 and DSCR1 were found to be affected, resulting in phenotypical craniofacial changes. Additionally, other genes such as GSTT1, CLIC6, ITGB2, C21orf67, C21orf86 and RUNX1 were also identified to be affected in the amniotic fluid. In the placenta, dysregulation of genes like MEST, SNF1LK and LOX was observed, which in turn affected nervous system development. In the brain, dysregulation of genes DYRK1A, DNMT3L, DNMT3B, TBX1, olig2 and AQP4 has been shown to contribute to intellectual disability. In the cardiac tissues, dysregulated expression of genes GART, ETS2 and ERG was found to cause abnormalities. Furthermore, dysregulation of XIST, RUNX1, SON, ERG and STAT1 was observed, contributing to myeloproliferative disorders. Understanding the differential expression of genes provides insights into the genetic consequences of DS. A better understanding of these processes could potentially pave the way for the development of genetic and pharmacological therapies.
Collapse
Affiliation(s)
- Laura R Chapman
- Sheffield Children's NHS Foundation Trust, Clarkson St, Sheffield S10 2TH, UK
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
| | - Isabela V P Ramnarine
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
| | - Dan Zemke
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
| | - Arshad Majid
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2GJ, UK
| | - Simon M Bell
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2GJ, UK
| |
Collapse
|
12
|
Rondón-Avalo S, Rodríguez-Medina C, Botero JE. Association of Down syndrome with periodontal diseases: Systematic review and meta-analysis. SPECIAL CARE IN DENTISTRY 2024; 44:360-368. [PMID: 37341556 DOI: 10.1111/scd.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Down syndrome (DS) is distinguished by cognitive disability, a concave profile, and systemic complications. Oral diseases have been reported to be common in DS patients. OBJECTIVE To investigate the association between DS and periodontal diseases. METHODS Two independent reviewers searched six bibliographic databases up to January 2023 and used additional search methods to identify published studies on gingivitis or periodontitis in people with and without DS. Meta-analysis, risk of bias, sensibility analysis, publication bias, and evidence grading were all carried out. RESULTS Twenty-six studies were included for analysis. There was a tendency for increased plaque accumulation, periodontal probing, periodontal attachment level, bleeding on probing and indices in DS individuals. Meta-analysis of 11 studies showed a significant association between DS and periodontitis (OR 3.93; 95% CI 1.81-8.53). Probing depth was significantly high in individuals with DS as compared to controls (mean difference 0.40 mm; 95% CI 0.09-0.70). Gingivitis was significantly associated (OR 1.93; 95% CI 1.09-3.41) with DS in four studies. The evidence was classified as 'moderate certainty'. CONCLUSION Medium/low-quality studies demonstrate that Down syndrome is strongly associated with periodontitis and moderately associated with gingivitis.
Collapse
Affiliation(s)
- Sara Rondón-Avalo
- Facultad de Odontología, Universidad de Antioquia, Medellín, Colombia
| | | | | |
Collapse
|
13
|
Rohrlach AB, Rivollat M, de-Miguel-Ibáñez P, Nordfors U, Liira AM, Teixeira JC, Roca-Rada X, Armendáriz-Martija J, Boyadzhiev K, Boyadzhiev Y, Llamas B, Tiliakou A, Mötsch A, Tuke J, Prevedorou EA, Polychronakou-Sgouritsa N, Buikstra J, Onkamo P, Stockhammer PW, Heyne HO, Lemke JR, Risch R, Schiffels S, Krause J, Haak W, Prüfer K. Cases of trisomy 21 and trisomy 18 among historic and prehistoric individuals discovered from ancient DNA. Nat Commun 2024; 15:1294. [PMID: 38378781 PMCID: PMC10879165 DOI: 10.1038/s41467-024-45438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Aneuploidies, and in particular, trisomies represent the most common genetic aberrations observed in human genetics today. To explore the presence of trisomies in historic and prehistoric populations we screen nearly 10,000 ancient human individuals for the presence of three copies of any of the target autosomes. We find clear genetic evidence for six cases of trisomy 21 (Down syndrome) and one case of trisomy 18 (Edwards syndrome), and all cases are present in infant or perinatal burials. We perform comparative osteological examinations of the skeletal remains and find overlapping skeletal markers, many of which are consistent with these syndromes. Interestingly, three cases of trisomy 21, and the case of trisomy 18 were detected in two contemporaneous sites in early Iron Age Spain (800-400 BCE), potentially suggesting a higher frequency of burials of trisomy carriers in those societies. Notably, the care with which the burials were conducted, and the items found with these individuals indicate that ancient societies likely acknowledged these individuals with trisomy 18 and 21 as members of their communities, from the perspective of burial practice.
Collapse
Affiliation(s)
- Adam Benjamin Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Maïté Rivollat
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- ArcheOs lab, Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, 9000, Gent, Belgium
- Archaeo-DNA lab, Department of Archaeology, Durham University, Lower Mount Joy, South Road, Durham, DH1 3LE, UK
- De la Préhistoire à l'Actuel, Culture, Environnement, Anthropologie - UMR 5199, Bordeaux University, Bât. B8, Allée Geoffroy Saint Hilaire, CS50023, 33615, Pessac cedex, France
| | - Patxuka de-Miguel-Ibáñez
- Department of Prehistory, Archaeology, Ancient History and Greek and Latin Philology, INAPH, University of Alicante, San Vicente del Raspeig, Spain
- Sociedad de Ciencias Aranzadi, Donosti, Spain
- Hospital Verge dels Lliris, Alcoi, Alicante, Spain
| | - Ulla Nordfors
- Department of Biology, University of Turku, Turku, Finland
| | - Anne-Mari Liira
- Department of Archaeology, University of Turku, Turku, Finland
| | - João C Teixeira
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, ACT, Australia
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA, Australia
- CEIS.20 Centro de Estudos Interdisciplinares, Universidade de Coimbra, Coimbra, Portugal
| | - Xavier Roca-Rada
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | | | - Kamen Boyadzhiev
- National Archaeological Institute with Museum at the Bulgarian Academy of Sciences, Saborna str. 2, Sofia, Bulgaria
| | - Yavor Boyadzhiev
- National Archaeological Institute with Museum at the Bulgarian Academy of Sciences, Saborna str. 2, Sofia, Bulgaria
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
- Telethon Kids Institute, Indigenous Genomics Research Group, Adelaide, SA, Australia
| | - Anthi Tiliakou
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Angela Mötsch
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | - Jonathan Tuke
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, SA, Australia
| | | | | | - Jane Buikstra
- Department of Anthropology, Arizona State University, Tempe, AZ, USA
| | - Päivi Onkamo
- Department of Biology, University of Turku, Turku, Finland
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Philipp W Stockhammer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
- Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University, Geschwister-Scholl-Platz 1, München, Germany
| | - Henrike O Heyne
- Hasso-Plattner-Institute, University of Potsdam, Potsdam, Germany
- Hasso Plattner Institute, Mount Sinai School of Medicine, New York, USA
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Roberto Risch
- Departament de Prehistòria, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kay Prüfer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
14
|
Vanwalleghem S, Miljkovitch R. A systematic review on attachment and down syndrome. JOURNAL OF INTELLECTUAL & DEVELOPMENTAL DISABILITY 2023; 48:409-420. [PMID: 39815888 DOI: 10.3109/13668250.2023.2208744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/26/2023] [Indexed: 01/18/2025]
Abstract
BACKGROUND To document whether the sociocognitive peculiarities of people with Down Syndrome impact the construction of attachment at different ages, a systematic review of the literature was carried out. METHOD This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, was conducted on three databases: psycINFO, MEDLINE, and Psychology and Behavioural Sciences Collection (1975-2021). Twelve studies were included. RESULTS Most children with Down syndrome develop specific attachment patterns in infancy and childhood, and around half of them become secure. However, the risk of exhibiting atypical/unclassifiable or disorganised attachment is higher among children with Down syndrome compared to typically developing children. Findings are mixed regarding the specific role of cognitive disability. CONCLUSION These findings highlight the fact that Down syndrome does not preclude the establishment of secure attachment. However, more research is needed to understand what the unclassifiable category represents in terms of attachment.
Collapse
Affiliation(s)
- S Vanwalleghem
- UR CLIPSYD, Department of Psychology, Université Paris Nanterre, Nanterre, France
| | - R Miljkovitch
- Psychology Laboratoire Paragraphe, Department of Psychology, Université Paris 8, Saint-Denis cedex, France
| |
Collapse
|
15
|
Fahed E, Msheik A, Yazbeck M, Rahal M, Antoun S, Geagea C, Younes P. Unveiling Dandy-Walker syndrome: A surprising twist in the tale of acute hydrocephalus and Down syndrome child. eNeurologicalSci 2023; 33:100480. [PMID: 37928178 PMCID: PMC10624568 DOI: 10.1016/j.ensci.2023.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/13/2023] [Accepted: 10/08/2023] [Indexed: 11/07/2023] Open
Abstract
The correlation between Down syndrome and Dandy-Walker syndrome is an exceptionally uncommon occurrence. To date, only four cases have been documented. All previously reported cases involved individuals under the age of 37 months, with prenatal or birth diagnoses. Additionally, most of these cases displayed a limited life expectancy and experienced poor developmental outcomes. In this report, we present the first-ever instance of an 11-year-old male patient, previously undiagnosed with Dandy-Walker syndrome, who presented with acute intracranial hypertension. Magnetic Resonance Imaging revealed an active hydrocephalus caused by a Dandy-Walker malformation. The patient's condition was effectively managed through the implementation of a ventriculo-cysto-peritoneal shunt. This case highlights the coexistence of Dandy-Walker syndrome and Down syndrome in an asymptomatic young patient. Furthermore, it demonstrates that active hydrocephalus in such cases can be successfully addressed through either endoscopic third ventriculostomy or ventriculo-cysto-peritoneal shunt procedures.
Collapse
Affiliation(s)
- Elie Fahed
- Neurosurgery department, Bellevue Medical Center, Beirut, Lebanon
| | - Ali Msheik
- Neurosurgery, Faculty of medical sciences, Lebanese University, Lebanon
| | - Mohamad Yazbeck
- Neurosurgery Department, Clemenceau Medical Center, Beirut, Lebanon
| | - Maya Rahal
- Pediatrics department, Bellevue Medical Center, Beirut, Lebanon
| | | | - Caroline Geagea
- Pediatrics department, Bellevue Medical Center, Beirut, Lebanon
| | - Philippe Younes
- Neurosurgery department, Bellevue Medical Center, Beirut, Lebanon
| |
Collapse
|
16
|
Serrano ME, Kim E, Siow B, Ma D, Rojo L, Simmons C, Hayward D, Gibbins D, Singh N, Strydom A, Fisher EM, Tybulewicz VL, Cash D. Investigating brain alterations in the Dp1Tyb mouse model of Down syndrome. Neurobiol Dis 2023; 188:106336. [PMID: 38317803 PMCID: PMC7615598 DOI: 10.1016/j.nbd.2023.106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Down syndrome (DS) is one of the most common birth defects and the most prevalent genetic form of intellectual disability. DS arises from trisomy of chromosome 21, but its molecular and pathological consequences are not fully understood. In this study, we compared Dp1Tyb mice, a DS model, against their wild-type (WT) littermates of both sexes to investigate the impact of DS-related genetic abnormalities on the brain phenotype. We performed in vivo whole brain magnetic resonance imaging (MRI) and hippocampal 1H magnetic resonance spectroscopy (MRS) on the animals at 3 months of age. Subsequently, ex vivo MRI scans and histological analyses were conducted post-mortem. Our findings unveiled the following neuroanatomical and biochemical alterations in the Dp1Tyb brains: a smaller surface area and a rounder shape compared to WT brains, with DS males also presenting smaller global brain volume compared with the counterpart WT. Regional volumetric analysis revealed significant changes in 26 out of 72 examined brain regions, including the medial prefrontal cortex and dorsal hippocampus. These alterations were consistently observed in both in vivo and ex vivo imaging data. Additionally, high-resolution ex vivo imaging enabled us to investigate cerebellar layers and hippocampal sub-regions, revealing selective areas of decrease and remodelling in these structures. An analysis of hippocampal metabolites revealed an elevation in glutamine and the glutamine/glutamate ratio in the Dp1Tyb mice compared to controls, suggesting a possible imbalance in the excitation/inhibition ratio. This was accompanied by the decreased levels of taurine. Histological analysis revealed fewer neurons in the hippocampal CA3 and DG layers, along with an increase in astrocytes and microglia. These findings recapitulate multiple neuroanatomical and biochemical features associated with DS, enriching our understanding of the potential connection between chromosome 21 trisomy and the resultant phenotype.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Bernard Siow
- The Francis Crick Institute, London, United Kingdom
| | - Da Ma
- Department of Internal Medicine Section of Gerontology and Geriatric Science, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Loreto Rojo
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | | | | | - Nisha Singh
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | | | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
17
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Zbucka-Krętowska M. The Role of Oxidative Stress in Trisomy 21 Phenotype. Cell Mol Neurobiol 2023; 43:3943-3963. [PMID: 37819608 PMCID: PMC10661812 DOI: 10.1007/s10571-023-01417-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023]
Abstract
Extensive research has been conducted to gain a deeper understanding of the deregulated metabolic pathways in the development of trisomy 21 (T21) or Down syndrome. This research has shed light on the hypothesis that oxidative stress plays a significant role in the manifestation of the T21 phenotype. Although in vivo studies have shown promising results in mitigating the detrimental effects of oxidative stress, there is currently a lack of introduced antioxidant treatment options targeting cognitive impairments associated with T21. To address this gap, a comprehensive literature review was conducted to provide an updated overview of the involvement of oxidative stress in T21. The review aimed to summarize the insights into the pathogenesis of the Down syndrome phenotype and present the findings of recent innovative research that focuses on improving cognitive function in T21 through various antioxidant interventions. By examining the existing literature, this research seeks to provide a holistic understanding of the role oxidative stress plays in the development of T21 and to explore novel approaches that target multiple aspects of antioxidant intervention to improve cognitive function in individuals with Down syndrome. The guides -base systematic review process (Hutton et al. 2015).
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland.
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, ul. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland.
| |
Collapse
|
18
|
Jakus D, Roje D, Alujević Jakus I, Tandara L, Čepić K. COMBINED FIRST TRIMESTER SCREENING FOR FETAL DOWN SYNDROME AT THE SPLIT UNIVERSITY HOSPITAL CENTER: A SEVEN-YEAR EXPERIENCE. Acta Clin Croat 2023; 62:539-545. [PMID: 39310680 PMCID: PMC11414010 DOI: 10.20471/acc.2023.62.03.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 07/02/2021] [Indexed: 09/25/2024] Open
Abstract
The aim of this study was to present the results and to explore the success of combined screening at the Split University Hospital Center. A cross-sectional retrospective study was performed, including all pregnant women who underwent combined screening at the Split University Hospital Center from 2011 to 2017. Data were collected from the hospital archives. During the research period, a total of 6898 pregnant women underwent combined screening. With the high risk cut-off value set at 1:250, the sensitivity of combined screening was 81.0% and specificity 96.8% (AUC 0.929, 95% CI 0.859-1.000; p<0.001). The mean value of a priori risk of Down syndrome based on age was higher than the one calculated by combined screening (1:487.57 vs. 1:13216.9; p<0.001). The number of women who were a priori at a high risk of Down syndrome was significantly higher than the number of those at a high risk based on combined screening results (1457 vs. 239; p<0.001). With the increase in women's age, a statistically significant increase was detected in the mean value of a priori risk of Down syndrome, as well as in the risk based on combined screening results (p<0.001). Combined screening detected a high risk in 8.09% (118/1457) of pregnant women a priori at a high risk of Down syndrome, as well as in 2.22% (121/5441) of pregnant women a priori at a low risk of it. Thus, combined screening placed 121 pregnant women a priori at a low risk in the high-risk group. Down syndrome was subsequently confirmed in 17 (14.05%) women. Analysis of the combined screening results confirmed the validity of using the said fetal Down syndrome screening method in the study population of pregnant women.
Collapse
Affiliation(s)
- Dora Jakus
- Department of Urology, Split University Hospital Center, Split, Croatia
| | - Damir Roje
- Department of Obstetrics and Gynecology, Split University Hospital Center, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| | - Ivana Alujević Jakus
- Department of Obstetrics and Gynecology, Split University Hospital Center, Split, Croatia
| | - Leida Tandara
- Department of Medical Laboratory Diagnostics, Split University Hospital Center, Split, Croatia
| | - Katarina Čepić
- Department of Medical Laboratory Diagnostics, Split University Hospital Center, Split, Croatia
| |
Collapse
|
19
|
Thomazeau A, Lassalle O, Manzoni OJ. Glutamatergic synaptic deficits in the prefrontal cortex of the Ts65Dn mouse model for Down syndrome. Front Neurosci 2023; 17:1171797. [PMID: 37841687 PMCID: PMC10569174 DOI: 10.3389/fnins.2023.1171797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Down syndrome (DS), the most prevalent cause of intellectual disability, stems from a chromosomal anomaly resulting in an entire or partial extra copy of chromosome 21. This leads to intellectual disability and a range of associated symptoms. While there has been considerable research focused on the Ts65Dn mouse model of DS, particularly in the context of the hippocampus, the synaptic underpinnings of prefrontal cortex (PFC) dysfunction in DS, including deficits in working memory, remain largely uncharted territory. In a previous study featuring mBACtgDyrk1a mice, which manifest overexpression of the Dyrk1a gene, a known candidate gene linked to intellectual disability and microcephaly in DS, we documented adverse effects on spine density, alterations in the molecular composition of synapses, and the presence of synaptic plasticity deficits within the PFC. The current study aimed to enrich our understanding of the roles of different genes in DS by studying Ts65Dn mice, which overexpress several genes including Dyrk1a, to compare with our previous work on mBACtgDyrk1a mice. Through ex-vivo electrophysiological experiments, including patch-clamp and extracellular field potential recordings, we identified alterations in the intrinsic properties of PFC layer V/VI pyramidal neurons in Ts65Dn male mice. Additionally, we observed changes in the synaptic plasticity range. Notably, long-term depression was absent in Ts65Dn mice, while synaptic or pharmacological long-term potentiation remained fully expressed in these mice. These findings provide valuable insights into the intricate synaptic mechanisms contributing to PFC dysfunction in DS, shedding light on potential therapeutic avenues for addressing the neurocognitive symptoms associated with this condition.
Collapse
Affiliation(s)
- Aurore Thomazeau
- Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Université Aix-Marseille, Marseille, France
- INMED, INSERM U1249, Marseille, France
| | - Olivier Lassalle
- Université Aix-Marseille, Marseille, France
- INMED, INSERM U1249, Marseille, France
| | - Olivier J. Manzoni
- Université Aix-Marseille, Marseille, France
- INMED, INSERM U1249, Marseille, France
| |
Collapse
|
20
|
Murray A, Gough G, Cindrić A, Vučković F, Koschut D, Borelli V, Petrović DJ, Bekavac A, Plećaš A, Hribljan V, Brunmeir R, Jurić J, Pučić-Baković M, Slana A, Deriš H, Frkatović A, Groet J, O'Brien NL, Chen HY, Yeap YJ, Delom F, Havlicek S, Gammon L, Hamburg S, Startin C, D'Souza H, Mitrečić D, Kero M, Odak L, Krušlin B, Krsnik Ž, Kostović I, Foo JN, Loh YH, Dunn NR, de la Luna S, Spector T, Barišić I, Thomas MSC, Strydom A, Franceschi C, Lauc G, Krištić J, Alić I, Nižetić D. Dose imbalance of DYRK1A kinase causes systemic progeroid status in Down syndrome by increasing the un-repaired DNA damage and reducing LaminB1 levels. EBioMedicine 2023; 94:104692. [PMID: 37451904 PMCID: PMC10435767 DOI: 10.1016/j.ebiom.2023.104692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND People with Down syndrome (DS) show clinical signs of accelerated ageing. Causative mechanisms remain unknown and hypotheses range from the (essentially untreatable) amplified-chromosomal-instability explanation, to potential actions of individual supernumerary chromosome-21 genes. The latter explanation could open a route to therapeutic amelioration if the specific over-acting genes could be identified and their action toned-down. METHODS Biological age was estimated through patterns of sugar molecules attached to plasma immunoglobulin-G (IgG-glycans, an established "biological-ageing-clock") in n = 246 individuals with DS from three European populations, clinically characterised for the presence of co-morbidities, and compared to n = 256 age-, sex- and demography-matched healthy controls. Isogenic human induced pluripotent stem cell (hiPSCs) models of full and partial trisomy-21 with CRISPR-Cas9 gene editing and two kinase inhibitors were studied prior and after differentiation to cerebral organoids. FINDINGS Biological age in adults with DS is (on average) 18.4-19.1 years older than in chronological-age-matched controls independent of co-morbidities, and this shift remains constant throughout lifespan. Changes are detectable from early childhood, and do not require a supernumerary chromosome, but are seen in segmental duplication of only 31 genes, along with increased DNA damage and decreased levels of LaminB1 in nucleated blood cells. We demonstrate that these cell-autonomous phenotypes can be gene-dose-modelled and pharmacologically corrected in hiPSCs and derived cerebral organoids. Using isogenic hiPSC models we show that chromosome-21 gene DYRK1A overdose is sufficient and necessary to cause excess unrepaired DNA damage. INTERPRETATION Explanation of hitherto observed accelerated ageing in DS as a developmental progeroid syndrome driven by DYRK1A overdose provides a target for early pharmacological preventative intervention strategies. FUNDING Main funding came from the "Research Cooperability" Program of the Croatian Science Foundation funded by the European Union from the European Social Fund under the Operational Programme Efficient Human Resources 2014-2020, Project PZS-2019-02-4277, and the Wellcome Trust Grants 098330/Z/12/Z and 217199/Z/19/Z (UK). All other funding is described in details in the "Acknowledgements".
Collapse
Affiliation(s)
- Aoife Murray
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK; The London Down Syndrome Consortium (LonDownS), London, UK.
| | - Gillian Gough
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Ana Cindrić
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Frano Vučković
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - David Koschut
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Disease Intervention Technology Laboratory (DITL), Institute of Molecular and Cellular Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Vincenzo Borelli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Dražen J Petrović
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia; Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Bekavac
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ante Plećaš
- Faculty of Veterinary Medicine, Department of Anatomy, Histology and Embryology, University of Zagreb, Zagreb, Croatia
| | - Valentina Hribljan
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Reinhard Brunmeir
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Julija Jurić
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | | | - Anita Slana
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Helena Deriš
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Azra Frkatović
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Jűrgen Groet
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK; The London Down Syndrome Consortium (LonDownS), London, UK
| | - Niamh L O'Brien
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK; The London Down Syndrome Consortium (LonDownS), London, UK
| | - Hong Yu Chen
- Institute of Molecular and Cell Biology (IMCB), A∗STAR, Singapore
| | - Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Frederic Delom
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Steven Havlicek
- Laboratory of Neurogenetics, Genome Institute of Singapore, A∗STAR, Singapore
| | - Luke Gammon
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Sarah Hamburg
- The London Down Syndrome Consortium (LonDownS), London, UK
| | - Carla Startin
- The London Down Syndrome Consortium (LonDownS), London, UK; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Division of Psychiatry, University College London, London, UK; School of Psychology, University of Roehampton, London, UK
| | - Hana D'Souza
- The London Down Syndrome Consortium (LonDownS), London, UK; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Dinko Mitrečić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mijana Kero
- Department of Medical Genetics, Children's Hospital Zagreb, Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ljubica Odak
- Department of Medical Genetics, Children's Hospital Zagreb, Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Božo Krušlin
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Laboratory of Neurogenetics, Genome Institute of Singapore, A∗STAR, Singapore
| | - Yuin-Han Loh
- Institute of Molecular and Cell Biology (IMCB), A∗STAR, Singapore
| | - Norris Ray Dunn
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology (IMCB), A∗STAR, Singapore
| | - Susana de la Luna
- ICREA, Genome Biology Programme (CRG), Universitat Pompeu Fabra (UPF), CIBER of Rare Diseases, Barcelona, Spain
| | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Ingeborg Barišić
- Department of Medical Genetics, Children's Hospital Zagreb, Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Michael S C Thomas
- The London Down Syndrome Consortium (LonDownS), London, UK; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Andre Strydom
- The London Down Syndrome Consortium (LonDownS), London, UK; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Division of Psychiatry, University College London, London, UK
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy; Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| | - Gordan Lauc
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia; Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Ivan Alić
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK; Faculty of Veterinary Medicine, Department of Anatomy, Histology and Embryology, University of Zagreb, Zagreb, Croatia.
| | - Dean Nižetić
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK; The London Down Syndrome Consortium (LonDownS), London, UK; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
21
|
Santoro SL, Haugen K, Donelan K, Skotko BG. Global health measures from a National Down Syndrome Registry. Am J Med Genet A 2023; 191:2092-2099. [PMID: 37183579 PMCID: PMC10526626 DOI: 10.1002/ajmg.a.63243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
People with Down syndrome (DS) have a unique medical profile which may impact views of health. We aimed to study the use of global health measures for DS in a national cohort. We prospectively surveyed parents of individuals with DS from the DS-Connect® registry with validated Patient Reported Outcomes Measurement Information System (PROMIS)® instruments of global health. Analyses included use of scoring manuals and the PROMIS® scoring service, descriptive statistics, and t-tests. We received completed surveys from 223 parents of individuals with DS; previously published limitations of the instrument in this population were shown again. T-scores differed from the available comparative standardized scores to these measures from PROMIS® reference population on Fatigue (p < 0.001) and Global Health (p < 0.001), but not on Pain Interference (p = 0.41).
Collapse
Affiliation(s)
- Stephanie L. Santoro
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kelsey Haugen
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Karen Donelan
- Health Policy Research Center, The Mongan Institute, Survey Research Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Institute of Healthcare Systems, Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
| | - Brian G. Skotko
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Santoro SL, Baker S, Blake JM, Cabrera MJ, Caughman K, Chung J, Cullen S, Gallagher M, Haugen K, Hoke-Chandler R, Krell K, Maina J, McLuckie D, Merker VL, Michael C, O’Neill K, Peña A, Pless A, Royal D, Slape M, Spinazzi NA, Torres A, Torres CG, Skotko BG. Views on the impact of the COVID-19 pandemic on health in people with Down syndrome from diverse backgrounds. Am J Med Genet A 2023; 191:2045-2056. [PMID: 37264986 PMCID: PMC10524618 DOI: 10.1002/ajmg.a.63233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023]
Abstract
Down syndrome (DS) has a unique medical and psychological profile. To date, few studies have asked individuals with DS about their views of health, and fewer have explored the impact of COVID-19 on the health of individuals with DS and their families. We used a mixed methods approach including two studies on the health of individuals with DS and their parents conducted during the COVID-19 pandemic: (1) eight virtual focus groups, comprised of 20 parents and 8 individuals with DS to obtain participants' views of health, and (2) a 20-item questionnaire on health care experience of patients with DS who are African American or come from primarily Spanish-speaking homes. Focus group transcripts were coded using a hybrid inductive/deductive framework and thematically analyzed using the Framework Method. This questionnaire included questions regarding the impact of COVID-19 on caregivers and their loved ones with DS; responses to these questions were summarized using descriptive statistics. Individuals with DS discussed the impact of the COVID-19 pandemic on their physical and social health including masking, online learning, and online communication with friends and family. Parents of individuals with DS discussed how the COVID-19 pandemic negatively impacted their child's physical, social, and mental health, as a result of virtual schooling and decreased socialization. There were unexpected positives of the pandemic such as improved hygiene and eased scheduling with telehealth visits. Caregivers noted COVID-19 impacted their own anxiety, employment, and other domains that have potential ripple effects on the health of their children. The COVID-19 pandemic had a pervasive impact on the mental health and wellness of caregivers as well as the physical, social, and mental health of individuals with DS.
Collapse
Affiliation(s)
- Stephanie L. Santoro
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | | | - Jasmine M. Blake
- Departments of Internal Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria J. Cabrera
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA
| | | | - Jeanhee Chung
- Laboratory of Computer Science, Massachusetts General Hospital, Boston, MA
| | - Sarah Cullen
- Massachusetts Down Syndrome Congress, Burlington, MA
| | | | - Kelsey Haugen
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA
| | | | - Kavita Krell
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA
| | | | | | - Vanessa L. Merker
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Carie Michael
- Mongan Institute, Massachusetts General Hospital, Boston, MA
| | - Kate O’Neill
- LuMind IDSC Down Syndrome Foundation, Burlington, MA
| | - Angeles Peña
- Department of Pediatrics, Oregon Health & Science University, Portland, OR
| | - Albert Pless
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA
| | | | | | - Noemi Alice Spinazzi
- Division of Primary Care, Department of Pediatrics, University of California San Francisco Benioff Children’s Hospital Oakland, Oakland, CA
| | - Amy Torres
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA
| | | | - Brian G. Skotko
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
23
|
Sarver DC, Xu C, Rodriguez S, Aja S, Jaffe AE, Gao FJ, Delannoy M, Periasamy M, Kazuki Y, Oshimura M, Reeves RH, Wong GW. Hypermetabolism in mice carrying a near-complete human chromosome 21. eLife 2023; 12:e86023. [PMID: 37249575 PMCID: PMC10229126 DOI: 10.7554/elife.86023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near-complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are likely due to a combination of increased activity level and sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle and hyperactivity. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Mental Health, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
- The Lieber Institute for Brain DevelopmentBaltimoreUnited States
- Center for Computational Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Feng J Gao
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Michael Delannoy
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State UniversityColumbusUnited States
- Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlandoUnited States
| | - Yasuhiro Kazuki
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori UniversityTottoriJapan
- Chromosome Engineering Research Center, Tottori UniversityTottoriJapan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori UniversityTottoriJapan
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
24
|
Inguscio CR, Lacavalla MA, Cisterna B, Zancanaro C, Malatesta M. Physical Training Chronically Stimulates the Motor Neuron Cell Nucleus in the Ts65Dn Mouse, a Model of Down Syndrome. Cells 2023; 12:1488. [PMID: 37296609 PMCID: PMC10252427 DOI: 10.3390/cells12111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Down syndrome (DS) is a genetically-based disease based on the trisomy of chromosome 21 (Hsa21). DS is characterized by intellectual disability in association with several pathological traits among which early aging and altered motor coordination are prominent. Physical training or passive exercise were found to be useful in counteracting motor impairment in DS subjects. In this study we used the Ts65Dn mouse, a widely accepted animal model of DS, to investigate the ultrastructural architecture of the medullary motor neuron cell nucleus taken as marker of the cell functional state. Using transmission electron microscopy, ultrastructural morphometry, and immunocytochemistry we carried out a detailed investigation of possible trisomy-related alteration(s) of nuclear constituents, which are known to vary their amount and distribution as a function of nuclear activity, as well as the effect of adapted physical training upon them. Results demonstrated that trisomy per se affects nuclear constituents to a limited extent; however, adapted physical training is able to chronically stimulate pre-mRNA transcription and processing activity in motor neuron nuclei of trisomic mice, although to a lesser extent than in their euploid mates. These findings are a step towards understanding the mechanisms underlying the positive effect of physical activity in DS.
Collapse
Affiliation(s)
| | | | | | - Carlo Zancanaro
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (C.R.I.); (M.A.L.); (B.C.); (M.M.)
| | | |
Collapse
|
25
|
Redhead Y, Gibbins D, Lana-Elola E, Watson-Scales S, Dobson L, Krause M, Liu KJ, Fisher EMC, Green JBA, Tybulewicz VLJ. Craniofacial dysmorphology in Down syndrome is caused by increased dosage of Dyrk1a and at least three other genes. Development 2023; 150:dev201077. [PMID: 37102702 PMCID: PMC10163349 DOI: 10.1242/dev.201077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/21/2023] [Indexed: 04/28/2023]
Abstract
Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), occurs in 1 in 800 live births and is the most common human aneuploidy. DS results in multiple phenotypes, including craniofacial dysmorphology, which is characterised by midfacial hypoplasia, brachycephaly and micrognathia. The genetic and developmental causes of this are poorly understood. Using morphometric analysis of the Dp1Tyb mouse model of DS and an associated mouse genetic mapping panel, we demonstrate that four Hsa21-orthologous regions of mouse chromosome 16 contain dosage-sensitive genes that cause the DS craniofacial phenotype, and identify one of these causative genes as Dyrk1a. We show that the earliest and most severe defects in Dp1Tyb skulls are in bones of neural crest (NC) origin, and that mineralisation of the Dp1Tyb skull base synchondroses is aberrant. Furthermore, we show that increased dosage of Dyrk1a results in decreased NC cell proliferation and a decrease in size and cellularity of the NC-derived frontal bone primordia. Thus, DS craniofacial dysmorphology is caused by an increased dosage of Dyrk1a and at least three other genes.
Collapse
Affiliation(s)
- Yushi Redhead
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | | | | | | | - Lisa Dobson
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Karen J. Liu
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
| | | | - Jeremy B. A. Green
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
| | | |
Collapse
|
26
|
Santoro SL, Cabrera MJ, Co JPT, Constantine M, Haugen K, Krell K, Skotko BG, Winickoff JP, Donelan K. Health in Down syndrome: creating a conceptual model. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2023; 67:323-351. [PMID: 36650105 PMCID: PMC9992291 DOI: 10.1111/jir.13007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/14/2022] [Accepted: 12/07/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Down syndrome (DS) has a unique medical and psychological profile that could impact how health is defined on three dimensions: physical, social and mental well-being. METHODS In 2021, we presented our proposed conceptual model to three expert panels, four focus groups of parents of individuals with DS age 0-21 years and four focus groups of individuals with DS age 13-21 years through videoconferencing technology. Participants gave feedback and discussed the concept of health in DS. RESULTS Feedback from participants resulted in iterative refinement of our model, retaining the three dimensions of health, and modifying constructs within those dimensions. Experts and parents agreed that individuals with DS have unique health concerns that necessitate the creation and validation of a syndrome-specific health model. We present key themes that we identified and a final conceptual model of health for individuals with DS. CONCLUSION Health in DS is a multi-dimensional, multi-construct model focused on relevant constructs of causal and effect indicators. This conceptual model can be used in future research to develop a syndrome-specific measure of health status.
Collapse
Affiliation(s)
- S L Santoro
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - M J Cabrera
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - J P T Co
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of General Academic Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - M Constantine
- Patient-Centered Research, Evidera, Bethesda, MD, USA
| | - K Haugen
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - K Krell
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - B G Skotko
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - J P Winickoff
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of General Academic Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - K Donelan
- Health Policy Research Center, The Mongan Institute, Survey Research Unit, Massachusetts General Hospital, Boston, MA, USA
- Institute of Healthcare Systems, Heller School for Social Policy and Management, Brandeis University, Waltham, MA, USA
| |
Collapse
|
27
|
Genetics and Molecular Basis of Congenital Heart Defects in Down Syndrome: Role of Extracellular Matrix Regulation. Int J Mol Sci 2023; 24:ijms24032918. [PMID: 36769235 PMCID: PMC9918028 DOI: 10.3390/ijms24032918] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Down syndrome (DS), a complex disorder that is caused by the trisomy of chromosome 21 (Hsa21), is a major cause of congenital heart defects (CHD). Interestingly, only about 50% of individuals with Hsa21 trisomy manifest CHD. Here we review the genetic basis of CHD in DS, focusing on genes that regulate extracellular matrix (ECM) organization. The overexpression of Hsa21 genes likely underlies the molecular mechanisms that contribute to CHD, even though the genes responsible for CHD could only be located in a critical region of Hsa21. A role in causing CHD has been attributed not only to protein-coding Hsa21 genes, but also to genes on other chromosomes, as well as miRNAs and lncRNAs. It is likely that the contribution of more than one gene is required, and that the overexpression of Hsa21 genes acts in combination with other genetic events, such as specific mutations or polymorphisms, amplifying their effect. Moreover, a key function in determining alterations in cardiac morphogenesis might be played by ECM. A large number of genes encoding ECM proteins are overexpressed in trisomic human fetal hearts, and many of them appear to be under the control of a Hsa21 gene, the RUNX1 transcription factor.
Collapse
|
28
|
Sarver DC, Xu C, Velez LM, Aja S, Jaffe AE, Seldin MM, Reeves RH, Wong GW. Dysregulated systemic metabolism in a Down syndrome mouse model. Mol Metab 2023; 68:101666. [PMID: 36587842 PMCID: PMC9841171 DOI: 10.1016/j.molmet.2022.101666] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Trisomy 21 is one of the most complex genetic perturbations compatible with postnatal survival. Dosage imbalance arising from the triplication of genes on human chromosome 21 (Hsa21) affects multiple organ systems. Much of Down syndrome (DS) research, however, has focused on addressing how aneuploidy dysregulates CNS function leading to cognitive deficit. Although obesity, diabetes, and associated sequelae such as fatty liver and dyslipidemia are well documented in the DS population, only limited studies have been conducted to determine how gene dosage imbalance affects whole-body metabolism. Here, we conduct a comprehensive and systematic analysis of key metabolic parameters across different physiological states in the Ts65Dn trisomic mouse model of DS. METHODS Ts65Dn mice and euploid littermates were subjected to comprehensive metabolic phenotyping under basal (chow-fed) state and the pathophysiological state of obesity induced by a high-fat diet (HFD). RNA sequencing of liver, skeletal muscle, and two major fat depots were conducted to determine the impact of aneuploidy on tissue transcriptome. Pathway enrichments, gene-centrality, and key driver estimates were performed to provide insights into tissue autonomous and non-autonomous mechanisms contributing to the dysregulation of systemic metabolism. RESULTS Under the basal state, chow-fed Ts65Dn mice of both sexes had elevated locomotor activity and energy expenditure, reduced fasting serum cholesterol levels, and mild glucose intolerance. Sexually dimorphic deterioration in metabolic homeostasis became apparent when mice were challenged with a high-fat diet. While obese Ts65Dn mice of both sexes exhibited dyslipidemia, male mice also showed impaired systemic insulin sensitivity, reduced mitochondrial activity, and elevated fibrotic and inflammatory gene signatures in the liver and adipose tissue. Systems-level analysis highlighted conserved pathways and potential endocrine drivers of adipose-liver crosstalk that contribute to dysregulated glucose and lipid metabolism. CONCLUSIONS A combined alteration in the expression of trisomic and disomic genes in peripheral tissues contribute to metabolic dysregulations in Ts65Dn mice. These data lay the groundwork for understanding the impact of aneuploidy on in vivo metabolism.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leandro M Velez
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; The Lieber Institute for Brain Development, Baltimore, MD, USA; Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Sarver DC, Xu C, Rodriguez S, Aja S, Jaffe AE, Gao FJ, Delannoy M, Periasamy M, Kazuki Y, Oshimura M, Reeves RH, Wong GW. Hypermetabolism in mice carrying a near complete human chromosome 21. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526183. [PMID: 36778465 PMCID: PMC9915508 DOI: 10.1101/2023.01.30.526183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are due to sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca 2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.
Collapse
Affiliation(s)
- Dylan C. Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E. Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,The Lieber Institute for Brain Development, Baltimore, MD, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Feng J. Gao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Delannoy
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasuhiro Kazuki
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan,Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Roger H. Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Correspondence:
| |
Collapse
|
30
|
Tian M, Feng L, Li J, Zhang R. Focus on the frontier issue: progress in noninvasive prenatal screening for fetal trisomy from clinical perspectives. Crit Rev Clin Lab Sci 2023; 60:248-269. [PMID: 36647189 DOI: 10.1080/10408363.2022.2162843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The discovery of cell-free fetal DNA (cffDNA) in maternal blood and the rapid development of massively parallel sequencing have revolutionized prenatal testing from invasive to noninvasive. Noninvasive prenatal screening (NIPS) based on cffDNA enables the detection of fetal trisomy through sequencing, comparison, and bioassays. Its accuracy is better than that of traditional screening methods, and it is the most advanced clinical application of high-throughput sequencing technologies. However, the existing sequencing methods are limited by high costs and complex sequencing procedures. These limitations restrict the availability of NIPS for pregnant women. Many amplification methods have been developed to overcome the limitations of sequencing methods. The rapid development of non-sequencing methods has not been accompanied by reviews to summarize them. In this review, we initially describe the detection principles for sequencing-based NIPS. We summarize the rapidly evolving amplification technologies, focusing on the need to reduce costs and simplify the procedures. To ensure that the testing systems are feasible and that the testing processes are reliable, we expand our vision to the clinic. We evaluate the clinical validity of NIPS in terms of sensitivity, specificity, and positive predictive value. Finally, we summarize the application guidelines and discuss the corresponding quality control methods for NIPS. In addition to cffDNA, extracellular vesicle DNA, RNA, protein/peptide, and fetal cells can also be detected as biomarkers of NIPS. With the development of prenatal testing, NIPS has become increasingly important. Notably, NIPS is a screening test instead of a diagnostic test. The testing methods and procedures used in the NIPS process require standardization.
Collapse
Affiliation(s)
- Meng Tian
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Peking University Fifth School of Clinical Medicine, Beijing, P. R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P. R. China
| | - Lei Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P. R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Peking University Fifth School of Clinical Medicine, Beijing, P. R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P. R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Peking University Fifth School of Clinical Medicine, Beijing, P. R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P. R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
| |
Collapse
|
31
|
Ishihara K, Takata K, Mizutani KI. Involvement of an Aberrant Vascular System in Neurodevelopmental, Neuropsychiatric, and Neuro-Degenerative Diseases. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010221. [PMID: 36676170 PMCID: PMC9866034 DOI: 10.3390/life13010221] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The vascular system of the prenatal brain is crucial for the development of the central nervous system. Communication between vessels and neural cells is bidirectional, and dysfunctional communication can lead to neurodevelopmental diseases. In the present review, we introduce neurodevelopmental and neuropsychiatric diseases potentially caused by disturbances in the neurovascular system and discuss candidate genes responsible for neurovascular system impairments. In contrast to diseases that can manifest during the developing stage, we have also summarized the disturbances of the neurovascular system in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Furthermore, we discussed the role of abnormal vascularization and dysfunctional vessels in the development of neurovascular-related diseases.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4656
| | - Kazuyuki Takata
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| |
Collapse
|
32
|
Younger DS. Neonatal and infantile hypotonia. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:401-423. [PMID: 37562880 DOI: 10.1016/b978-0-323-98818-6.00011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The underlying etiology of neonatal and infantile hypotonia can be divided into primary peripheral and central nervous system and acquired or genetic disorders. The approach to identifying the likeliest cause of hypotonia begins with a bedside assessment followed by a careful review of the birth history and early development and family pedigree and obtaining available genetic studies and age- and disease-appropriate laboratory investigations. Until about a decade ago, the main goal was to identify the clinical signs and a battery of basic investigations including electrophysiology to confirm or exclude a given neuromuscular disorder, however the availability of whole-exome sequencing and next generation sequencing and transcriptome sequencing has simplified the identification of specific underlying genetic defect and improved the accuracy of diagnosis in many related Mendelian disorders.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
33
|
Meguid NA, Hemimi M, Ghozlan SAS, Kandeel WA, Hashish AF, Gouda AS, Nazim WS, Mohamed MF. Differential expression of cystathionine beta synthase in adolescents with Down syndrome: impact on adiposity. J Diabetes Metab Disord 2022; 21:1491-1497. [PMID: 36404855 PMCID: PMC9672282 DOI: 10.1007/s40200-022-01087-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/05/2021] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
Purpose Obesity is more prevalent among people with Down Syndrome (DS) compared to general population. In this pilot study, we investigated the effect of cystathionine beta-synthase (CBS) overdosage on the regulation of transsulfuration pathway and the obesity phenotype in fifty adolescents (25 obese/overweight and 25 lean) with trisomy 21. Methods The transcriptional levels of CBS in leukocytes and its translational levels in plasma were quantified using real time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Meanwhile, ultra performance liquid chromatography tandem mass spectrometry was used to determine the plasma concentrations of methionine, homocysteine, cystathionine and cysteine. Fasting plasma lipid profiles were assessed by colorimetric assays. The anthropometric measurements and indices of all subjects were recorded. Results Both DS groups had comparable levels of CBS transcripts (p = 0.2734). The plasma levels of the enzyme were significantly higher in the lean DS cases (p = 0.0174) compared to the obese/overweight participants. Total cholesterol, triglycerides, high-density lipoprotein, low-density lipoprotein, methionine, homocysteine, cystathionine and cysteine showed similar plasma levels in both groups. However, the plasma cysteine levels exceeded the normal range in all DS cases. We reported a statistically significant inverse association between CBS enzyme levels and weight (r= - 0.3498, p = 0.0128), hip circumference (r= - 0.3584, p = 0.0106), body mass index (r= - 0.3719, p = 0.0078) and body adiposity index (r= - 0.3183, p = 0.0243). Conclusions Our data suggests that the high concentrations of CBS enzyme together with cysteine modulate the DS obesity presumably through increased hydrogen sulfide production which has recently showed anti-adiposity effects.
Collapse
Affiliation(s)
- Nagwa A. Meguid
- Department of Research on Children with Special Needs, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
- CONEM Egypt Child Brain Research Group, National Research Centre, Cairo, Egypt
| | - Maha Hemimi
- Department of Research on Children with Special Needs, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Said A. S. Ghozlan
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Wafaa A. Kandeel
- Department of Biological Anthropology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
- Theodor Bilharz Research Institute, Giza, Egypt
| | - Adel F. Hashish
- Department of Research on Children with Special Needs, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Amr S. Gouda
- Department of Biochemical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Walaa S. Nazim
- Department of Biochemical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Magda F. Mohamed
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, College of Science and Arts at Khulais, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
34
|
Fleming V, Hom CL, Clare ICH, Hurd-Thomas SL, Krinsky-McHale S, Handen B, Hartley SL. Cognitive outcome measures for tracking Alzheimer's disease in Down syndrome. INTERNATIONAL REVIEW OF RESEARCH IN DEVELOPMENTAL DISABILITIES 2022; 62:227-263. [PMID: 37396708 PMCID: PMC10312212 DOI: 10.1016/bs.irrdd.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Down syndrome (DS) is now viewed as a genetic type of Alzheimer's disease (AD), given the near-universal presence of AD pathology in middle adulthood and the elevated risk for developing clinical AD in DS. As the field of DS prepares for AD clinical intervention trials, there is a strong need to identify cognitive measures that are specific and sensitive to the transition from being cognitively stable to the prodromal (e.g., Mild Cognitive Impairment-Down syndrome) and clinical AD (e.g., Dementia) stages of the disease in DS. It is also important to determine cognitive measures that map onto biomarkers of early AD pathology during the transition from the preclinical to the prodromal stage of the disease, as this transition period is likely to be targeted and tracked in AD clinical trials. The present chapter discusses the current state of research on cognitive measures that could be used to screen/select study participants and as potential outcome measures in future AD clinical trials with adults with DS. In this chapter, we also identify key challenges that need to be overcome and questions that need to be addressed by the DS field as it prepares for AD clinical trials in the coming years.
Collapse
Affiliation(s)
- Victoria Fleming
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- School of Human Ecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Christy L Hom
- Department of Psychiatry and Human Behavior, University of California, Irvine School of Medicine, Orange, CA, United States
| | - Isabel C H Clare
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | - Sharon Krinsky-McHale
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Benjamin Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sigan L Hartley
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- School of Human Ecology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
35
|
Pérez-Villarreal JM, Aviña-Padilla K, Beltrán-López E, Guadrón-Llanos AM, López-Bayghen E, Magaña-Gómez J, Meraz-Ríos MA, Varela-Echavarría A, Angulo-Rojo C. Profiling of circulating chromosome 21-encoded microRNAs, miR-155, and let-7c, in down syndrome. Mol Genet Genomic Med 2022; 10:e1938. [PMID: 35411714 PMCID: PMC9184673 DOI: 10.1002/mgg3.1938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Down syndrome (DS) is the most common chromosomal survival aneuploidy. The increase in DS life expectancy further heightens the risk of dementia, principally early‐onset Alzheimer's disease (AD). AD risk in DS is higher, considering that this population may also develop metabolic diseases such as obesity, dyslipidemias, and diabetes mellitus. The extra genetic material that characterizes DS causes an imbalance in the genetic dosage, including over‐expression of AD's key pathophysiological molecules and the gene expression regulators, the microRNAs (miRNAs). Two miRNAs, chromosome 21‐encoded, miR‐155, and let‐7c, are associated with cognitive impairment and dementia in adults; but, expression dynamics and relationship with clinical variables during the DS's lifespan had remained hitherto unexplored. Methods The anthropometric, clinical, biochemical, and profile expression of circulating miR‐155 and let‐7c were analyzed in a population of 52 control and 50 DS subjects divided into the young group (Aged ≤20 years) and the adult group (Aged ≥21 years). Results The expression changes for miR‐155 were not significant; nevertheless, a negative correlation with HDL‐Cholesterol concentrations was observed. Notably, let‐7c was over‐expressed in DS from young and old ages. Conclusion Overall, our results suggest that let‐7c plays a role from the early stages of DS's cognitive impairment while overexpression of miR‐155 may be related to lipid metabolism changes. Further studies of both miRNAs will shed light on their potential as therapeutic targets to prevent or delay DS's cognitive impairment.
Collapse
Affiliation(s)
- Jesús Manuel Pérez-Villarreal
- Laboratorio de Neurociencias, Centro de Investigación Aplicada a la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Maestría en Ciencias Biomédicas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Laboratorio de Nutrición Molecular, Escuela de Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Katia Aviña-Padilla
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.,Laboratorio de Bioinformática y de Redes Complejas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IRAPUATO), Mexico
| | - Evangelina Beltrán-López
- Laboratorio Edificio Central, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Alma Marlene Guadrón-Llanos
- Laboratorio de Diabetes y comorbilidades, Centro de Investigación Aplicada a la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Esther López-Bayghen
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México City, Mexico
| | - Javier Magaña-Gómez
- Maestría en Ciencias Biomédicas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Laboratorio de Nutrición Molecular, Escuela de Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Marco Antonio Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México City, Mexico
| | | | - Carla Angulo-Rojo
- Laboratorio de Neurociencias, Centro de Investigación Aplicada a la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Centro de Investigación y Docencia en Ciencias de la Salud (CIDOCS), Universidad Autónoma de Sinaloa, Culiacán, Mexico
| |
Collapse
|
36
|
Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese-enhanced magnetic resonance imaging of neural projections and activity. NMR IN BIOMEDICINE 2022; 35:e4675. [PMID: 35253280 PMCID: PMC11064873 DOI: 10.1002/nbm.4675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) holds exceptional promise for preclinical studies of brain-wide physiology in awake-behaving animals. The objectives of this review are to update the current information regarding MEMRI and to inform new investigators as to its potential. Mn(II) is a powerful contrast agent for two main reasons: (1) high signal intensity at low doses; and (2) biological interactions, such as projection tracing and neural activity mapping via entry into electrically active neurons in the living brain. High-spin Mn(II) reduces the relaxation time of water protons: at Mn(II) concentrations typically encountered in MEMRI, robust hyperintensity is obtained without adverse effects. By selectively entering neurons through voltage-gated calcium channels, Mn(II) highlights active neurons. Safe doses may be repeated over weeks to allow for longitudinal imaging of brain-wide dynamics in the same individual across time. When delivered by stereotactic intracerebral injection, Mn(II) enters active neurons at the injection site and then travels inside axons for long distances, tracing neuronal projection anatomy. Rates of axonal transport within the brain were measured for the first time in "time-lapse" MEMRI. When delivered systemically, Mn(II) enters active neurons throughout the brain via voltage-sensitive calcium channels and clears slowly. Thus behavior can be monitored during Mn(II) uptake and hyperintense signals due to Mn(II) uptake captured retrospectively, allowing pairing of behavior with neural activity maps for the first time. Here we review critical information gained from MEMRI projection mapping about human neuropsychological disorders. We then discuss results from neural activity mapping from systemic Mn(II) imaged longitudinally that have illuminated development of the tonotopic map in the inferior colliculus as well as brain-wide responses to acute threat and how it evolves over time. MEMRI posed specific challenges for image data analysis that have recently been transcended. We predict a bright future for longitudinal MEMRI in pursuit of solutions to the brain-behavior mystery.
Collapse
Affiliation(s)
- Taylor W. Uselman
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elaine L. Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
37
|
De Rosa L, Fasano D, Zerillo L, Valente V, Izzo A, Mollo N, Amodio G, Polishchuk E, Polishchuk R, Melone MAB, Criscuolo C, Conti A, Nitsch L, Remondelli P, Pierantoni GM, Paladino S. Down Syndrome Fetal Fibroblasts Display Alterations of Endosomal Trafficking Possibly due to SYNJ1 Overexpression. Front Genet 2022; 13:867989. [PMID: 35646085 PMCID: PMC9136301 DOI: 10.3389/fgene.2022.867989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Endosomal trafficking is essential for cellular homeostasis. At the crossroads of distinct intracellular pathways, the endolysosomal system is crucial to maintain critical functions and adapt to the environment. Alterations of endosomal compartments were observed in cells from adult individuals with Down syndrome (DS), suggesting that the dysfunction of the endosomal pathway may contribute to the pathogenesis of DS. However, the nature and the degree of impairment, as well as the timing of onset, remain elusive. Here, by applying imaging and biochemical approaches, we demonstrate that the structure and dynamics of early endosomes are altered in DS cells. Furthermore, we found that recycling trafficking is markedly compromised in these cells. Remarkably, our results in 18–20 week-old human fetal fibroblasts indicate that alterations in the endolysosomal pathway are already present early in development. In addition, we show that overexpression of the polyphosphoinositide phosphatase synaptojanin 1 (Synj1) recapitulates the alterations observed in DS cells, suggesting a role for this lipid phosphatase in the pathogenesis of DS, likely already early in disease development. Overall, these data strengthen the link between the endolysosomal pathway and DS, highlighting a dangerous liaison among Synj1, endosomal trafficking and DS.
Collapse
Affiliation(s)
- Laura De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Dominga Fasano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucrezia Zerillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Valente
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nunzia Mollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | | | | | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Chiara Criscuolo
- Department of Neuroscience, Reproductive, and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore,” National Research Council, Naples, Italy
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- *Correspondence: Simona Paladino, ; Giovanna Maria Pierantoni,
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- *Correspondence: Simona Paladino, ; Giovanna Maria Pierantoni,
| |
Collapse
|
38
|
Molière A, Beer KB, Wehman AM. Dopey proteins are essential but overlooked regulators of membrane trafficking. J Cell Sci 2022; 135:274973. [PMID: 35388894 DOI: 10.1242/jcs.259628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Dopey family proteins play crucial roles in diverse processes from morphogenesis to neural function and are conserved from yeast to mammals. Understanding the mechanisms behind these critical functions could have major clinical significance, as dysregulation of Dopey proteins has been linked to the cognitive defects in Down syndrome, as well as neurological diseases. Dopey proteins form a complex with the non-essential GEF-like protein Mon2 and an essential lipid flippase from the P4-ATPase family. Different combinations of Dopey, Mon2 and flippases have been linked to regulating membrane remodeling, from endosomal recycling to extracellular vesicle formation, through their interactions with lipids and other membrane trafficking regulators, such as ARL1, SNX3 and the kinesin-1 light chain KLC2. Despite these important functions and their likely clinical significance, Dopey proteins remain understudied and their roles elusive. Here, we review the major scientific discoveries relating to Dopey proteins and detail key open questions regarding their function to draw attention to these fascinating enigmas.
Collapse
Affiliation(s)
- Adrian Molière
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Katharina B Beer
- Rudolf Virchow Center, Julius Maximilian University of Würzburg, D-97080, Würzburg, Germany
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.,Rudolf Virchow Center, Julius Maximilian University of Würzburg, D-97080, Würzburg, Germany
| |
Collapse
|
39
|
Kłosowska A, Kuchta A, Ćwiklińska A, Sałaga-Zaleska K, Jankowski M, Kłosowski P, Mański A, Zwiefka M, Anikiej-Wiczenbach P, Wierzba J. Relationship between growth and intelligence quotient in children with Down syndrome. Transl Pediatr 2022; 11:505-513. [PMID: 35558976 PMCID: PMC9085946 DOI: 10.21037/tp-21-424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/18/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The relationship between intelligence quotient (IQ) and somatic development, especially growth, has been demonstrated in various groups of children. Down syndrome (DS) is characterized by short stature, overweight, and cognitive impairment. The objective of our work was to assess whether anthropometric measurements [weight, height, body mass index (BMI)] of children with DS correlate with their IQ. The results of the study may be valuable for this population in the light of increasing access to growth hormone therapy (GHT) in various genetic syndromes with short stature. Based on previous studies on children, we hypothesized that a link exists between IQ and somatic development, particularly growth. METHODS This cross-sectional study included 40 children with DS, who were aged 9-18 years. The studied population was selected from the registry of the Genetic Clinic at the University Clinical Center in Gdańsk (Poland). Anthropometric measurements (weight and height) were taken for all the children, and their BMI was determined using these data. The obtained results were plotted on charts for children with DS. The IQ of the children was assessed using the Stanford Binet Intelligence Scale, Fifth Edition. The correlations between IQ and anthropometric data were analyzed using univariate correlation and multiple regression analyses. RESULTS The results showed that full-scale, verbal, and nonverbal IQ correlated with height percentile (P=0.03, P=0.02, and P=0.04, respectively), but not with weight (P=0.26, P=0.19, and P=0.61, respectively) or BMI (P=0.6, P=0.5, and P=0.72, respectively). In multiple linear regression analysis, height percentile remained as an independent determinant of the IQ results after adjusting for birth weight, hypothyroidism with L-thyroxine replacement therapy, and congenital cardiac defect (β=0.48, P=0.018). CONCLUSIONS The results of our study suggest an association between growth and IQ in children with DS. The presented findings may be valuable for improving access to GHT for populations with genetic syndromes characterized by short stature. However, these should be confirmed by further research with a longitudinal sample of children with DS.
Collapse
Affiliation(s)
- Anna Kłosowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Przemysław Kłosowski
- Department of Endocrinology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Arkadiusz Mański
- Psychological Counselling Centre of Rare Genetic Diseases, University of Gdańsk, Gdańsk, Poland
| | - Michał Zwiefka
- Psychological Counselling Centre of Rare Genetic Diseases, University of Gdańsk, Gdańsk, Poland
| | | | - Jolanta Wierzba
- Department of Internal and Pediatric Nursing, Institute of Nursing and Midwifery, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
40
|
Cisterna B, Bontempi P, Sobolev AP, Costanzo M, Malatesta M, Zancanaro C. Quantitative magnetic resonance characterization of the effect of physical training on skeletal muscle of the Ts65Dn mice, a model of Down syndrome. Quant Imaging Med Surg 2022; 12:2066-2074. [PMID: 35284271 PMCID: PMC8899935 DOI: 10.21037/qims-21-729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/12/2021] [Indexed: 11/11/2024]
Abstract
Down syndrome (DS) is characterized by muscle hypotonia and low muscle strength associated with motor dysfunction. Elucidation of the determinants of muscle weakness in DS would be relevant for therapeutic approaches aimed at treating/mitigating a physical disability with a strong impact on the quality of life in persons with DS. The Ts65Dn mice is a recognized mouse model of DS, with trisomic mice presenting gross motor and muscle phenotypes. The aim of this work was to assess the effect of physical exercise, a well-known tool to improve skeletal muscle condition, in the hindlimbs of trisomic and euploid male mice using quantitative magnetic resonance imaging (MRI). Magnetic resonance spectroscopy (MRS) metabolomics and histological fiber typing were used to further characterize the post-exercise muscle. Quantitative MRI showed not significantly different amounts of skeletal muscle in proximal hindlimbs in trisomic and euploid mice both at baseline and after physical exercise (P>0.05). Similar results were obtained for hindlimbs subfascia adipose tissue, and subcutaneous adipose tissue (P>0.05). MRS showed lower amounts of exercise-related metabolites (valine, isoleucine, leucine) in euploid vs. trisomic mice after exercise (P≤0.05). The percentage of slow-twitch fibers was similar in the two genotypes (P>0.05). We conclude that in DS adapted physical exercise (one month of training) does not induce quantitative changes in skeletal muscle or fiber type composition therein; however, the metabolic response of skeletal muscle to exercise may be affected by trisomy. These findings prompt further research investigating the role of physical exercise as a cue to clarify the mechanisms of the muscular deficit found in DS.
Collapse
Affiliation(s)
- Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Pietro Bontempi
- Department of Computer Science, University of Verona, Verona, Italy
| | | | - Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carlo Zancanaro
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
41
|
Kazuki Y, Gao FJ, Yamakawa M, Hirabayashi M, Kazuki K, Kajitani N, Miyagawa-Tomita S, Abe S, Sanbo M, Hara H, Kuniishi H, Ichisaka S, Hata Y, Koshima M, Takayama H, Takehara S, Nakayama Y, Hiratsuka M, Iida Y, Matsukura S, Noda N, Li Y, Moyer AJ, Cheng B, Singh N, Richtsmeier JT, Oshimura M, Reeves RH. A transchromosomic rat model with human chromosome 21 shows robust Down syndrome features. Am J Hum Genet 2022; 109:328-344. [PMID: 35077668 DOI: 10.1016/j.ajhg.2021.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Progress in earlier detection and clinical management has increased life expectancy and quality of life in people with Down syndrome (DS). However, no drug has been approved to help individuals with DS live independently and fully. Although rat models could support more robust physiological, behavioral, and toxicology analysis than mouse models during preclinical validation, no DS rat model is available as a result of technical challenges. We developed a transchromosomic rat model of DS, TcHSA21rat, which contains a freely segregating, EGFP-inserted, human chromosome 21 (HSA21) with >93% of its protein-coding genes. RNA-seq of neonatal forebrains demonstrates that TcHSA21rat expresses HSA21 genes and has an imbalance in global gene expression. Using EGFP as a marker for trisomic cells, flow cytometry analyses of peripheral blood cells from 361 adult TcHSA21rat animals show that 81% of animals retain HSA21 in >80% of cells, the criterion for a "Down syndrome karyotype" in people. TcHSA21rat exhibits learning and memory deficits and shows increased anxiety and hyperactivity. TcHSA21rat recapitulates well-characterized DS brain morphology, including smaller brain volume and reduced cerebellar size. In addition, the rat model shows reduced cerebellar foliation, which is not observed in DS mouse models. Moreover, TcHSA21rat exhibits anomalies in craniofacial morphology, heart development, husbandry, and stature. TcHSA21rat is a robust DS animal model that can facilitate DS basic research and provide a unique tool for preclinical validation to accelerate DS drug development.
Collapse
|
42
|
Esquerda M, Lorenzo D, Torralba F. Certainties and Uncertainties in Genetic Information: Good Ethics Starts with Good Data. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2022; 22:48-50. [PMID: 35089836 DOI: 10.1080/15265161.2021.2013985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
| | - David Lorenzo
- Institut Borja de Bioetica-Universitat Ramon LLull
- Sant Joan de Deu University School of Nursing
| | - Francesc Torralba
- Institut Borja de Bioetica-Universitat Ramon LLull
- Catedra Ethos-Universitat ramon Llull
| |
Collapse
|
43
|
Kleschevnikov A. GIRK2 Channels in Down Syndrome and Alzheimer's Disease. Curr Alzheimer Res 2022; 19:819-829. [PMID: 36567290 DOI: 10.2174/1567205020666221223122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/27/2022]
Abstract
Cognitive impairment in Down syndrome (DS) results from the abnormal expression of hundreds of genes. However, the impact of KCNJ6, a gene located in the middle of the 'Down syndrome critical region' of chromosome 21, seems to stand out. KCNJ6 encodes GIRK2 (KIR3.2) subunits of G protein-gated inwardly rectifying potassium channels, which serve as effectors for GABAB, m2, 5HT1A, A1, and many other postsynaptic metabotropic receptors. GIRK2 subunits are heavily expressed in neocortex, cerebellum, and hippocampus. By controlling resting membrane potential and neuronal excitability, GIRK2 channels may thus affect both synaptic plasticity and stability of neural circuits in the brain regions important for learning and memory. Here, we discuss recent experimental data regarding the role of KCNJ6/GIRK2 in neuronal abnormalities and cognitive impairment in models of DS and Alzheimer's disease (AD). The results compellingly show that signaling through GIRK2 channels is abnormally enhanced in mouse genetic models of Down syndrome and that partial suppression of GIRK2 channels with pharmacological or genetic means can restore synaptic plasticity and improve impaired cognitive functions. On the other hand, signaling through GIRK2 channels is downregulated in AD models, such as models of early amyloidopathy. In these models, reduced GIRK2 channel signaling promotes neuronal hyperactivity, causing excitatory-inhibitory imbalance and neuronal death. Accordingly, activation of GABAB/GIRK2 signaling by GIRK channel activators or GABAB receptor agonists may reduce Aβ-induced hyperactivity and subsequent neuronal death, thereby exerting a neuroprotective effect in models of AD.
Collapse
|
44
|
Albayrak A. Classification of analyzable metaphase images using transfer learning and fine tuning. Med Biol Eng Comput 2021; 60:239-248. [PMID: 34822119 DOI: 10.1007/s11517-021-02474-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/06/2021] [Indexed: 01/03/2023]
Abstract
Chromosomes are bodies that contain human genetic information. Chromosomal disorders can cause structural and functional disorders in individuals. Detecting the metaphase stages of the cells accurately is a crucial step to detect possible defects in chromosomes. Thus, it is vital at this stage to identify the identical chromosome of each chromosome, to perform the pairing process, and to identify problems arising from this process. In this study, it was investigated whether the analyzable metaphase images can be analyzed by using the transfer learning and fine tuning approaches of deep learning models. The weights of VGG16 and InceptionV3 models trained with ImageNet data set were transferred to this problem and the classification process was carried out. True positive ratio values are 99%(± 0.9) and 99%(± 0.9) for VGG and Inception networks, respectively. The classification performances obtained depending on the changing training set ratios are presented comparatively in figures. F-measure, precision, and recall values obtained for the VGG and Inception networks were observed as 99%(± 1.0) and 99%(± 1.0), respectively. F-measure, precision, and recall values of VGG and Inceptionv3 networks are also presented with respect to the ratio of training size. The obtained results have compared with the state-of-the-art methods in the literature and supported with the tables and graphics. The training phase was also accelerated by using transfer learning and fine tuning methods. Transfer learning and fine tuning processes have almost similar performance as the models used in the literature and trained from scratch in metaphase Graphical Abstract The Flowchart of the proposed system for classifying metaphase candidates detection.
Collapse
Affiliation(s)
- Abdulkadir Albayrak
- Department of Computer Engineering, Faculty of Engineering, Dicle University, Diyarbakir, Turkey.
| |
Collapse
|
45
|
Stensen W, Rothweiler U, Engh RA, Stasko MR, Bederman I, Costa ACS, Fugelli A, Svendsen JSM. Novel DYRK1A Inhibitor Rescues Learning and Memory Deficits in a Mouse Model of Down Syndrome. Pharmaceuticals (Basel) 2021; 14:ph14111170. [PMID: 34832952 PMCID: PMC8617627 DOI: 10.3390/ph14111170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 01/20/2023] Open
Abstract
Down syndrome (DS) is a complex genetic disorder associated with substantial physical, cognitive, and behavioral challenges. Due to better treatment options for the physical co-morbidities of DS, the life expectancy of individuals with DS is beginning to approach that of the general population. However, the cognitive deficits seen in individuals with DS still cannot be addressed pharmacologically. In young individuals with DS, the level of intellectual disability varies from mild to severe, but cognitive ability generally decreases with increasing age, and all individuals with DS have early onset Alzheimer’s disease (AD) pathology by the age of 40. The present study introduces a novel inhibitor for the protein kinase DYRK1A, a key controlling kinase whose encoding gene is located on chromosome 21. The novel inhibitor is well characterized for use in mouse models and thus represents a valuable tool compound for further DYRK1A research.
Collapse
Affiliation(s)
- Wenche Stensen
- Department of Chemistry, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (W.S.); (U.R.); (R.A.E.)
- Pharmasum Therapeutics AS, Gaustadalleen 21, 0349 Oslo, Norway;
| | - Ulli Rothweiler
- Department of Chemistry, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (W.S.); (U.R.); (R.A.E.)
- Pharmasum Therapeutics AS, Gaustadalleen 21, 0349 Oslo, Norway;
| | - Richard Alan Engh
- Department of Chemistry, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (W.S.); (U.R.); (R.A.E.)
| | - Melissa R. Stasko
- Departments of Pediatrics, Psychiatry, Macromolecular Science and Engineering, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA; (M.R.S.); (I.B.); (A.C.S.C.)
| | - Ilya Bederman
- Departments of Pediatrics, Psychiatry, Macromolecular Science and Engineering, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA; (M.R.S.); (I.B.); (A.C.S.C.)
| | - Alberto C. S. Costa
- Departments of Pediatrics, Psychiatry, Macromolecular Science and Engineering, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA; (M.R.S.); (I.B.); (A.C.S.C.)
| | - Anders Fugelli
- Pharmasum Therapeutics AS, Gaustadalleen 21, 0349 Oslo, Norway;
| | - John S. Mjøen Svendsen
- Department of Chemistry, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (W.S.); (U.R.); (R.A.E.)
- Pharmasum Therapeutics AS, Gaustadalleen 21, 0349 Oslo, Norway;
- Correspondence:
| |
Collapse
|
46
|
Wang Y, Li Z, Yang G, Cai L, Yang F, Zhang Y, Zeng Y, Ma Q, Zeng F. The Study of Alternative Splicing Events in Human Induced Pluripotent Stem Cells From a Down's Syndrome Patient. Front Cell Dev Biol 2021; 9:661381. [PMID: 34660567 PMCID: PMC8516071 DOI: 10.3389/fcell.2021.661381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/16/2021] [Indexed: 12/03/2022] Open
Abstract
Down's syndrome (DS) is one of the most commonly known disorders with multiple congenital disabilities. Besides severe cognitive impairment and intellectual disability, individuals with DS also exhibit additional phenotypes of variable penetrance and severity, with one or more comorbid conditions, including Alzheimer's disease, congenital heart disease, or leukemia. Various vital genes and regulatory networks had been studied to reveal the pathogenesis of the disease. Nevertheless, very few studies have examined alternative splicing. Alternative splicing (AS) is a regulatory mechanism of gene expression when making one multi-exon protein-coding gene produce more than one unique mature mRNA. We employed the GeneChip Human Transcriptome Array 2.0 (HTA 2.0) for the global gene analysis with hiPSCs from DS and healthy individuals. Examining differentially expressed genes (DEGs) in these groups and focusing on specific transcripts with AS, 466 up-regulated and 722 down-regulated genes with AS events were identified. These genes were significantly enriched in biological processes, such as cell adhesion, cardiac muscle contraction, and immune response, through gene ontology (GO) analysis of DEGs. Candidate genes, such as FN1 were further explored for potentially playing a key role in DS. This study provides important insights into the potential role that AS plays in DS.
Collapse
Affiliation(s)
- Yunjie Wang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Zexu Li
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Guanheng Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Linlin Cai
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Fan Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Yaqiong Zhang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Yitao Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Qingwen Ma
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Health Commission Key Laboratory of Embryo Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China.,Department of Histoembryology, Genetics & Development, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Lana-Elola E, Cater H, Watson-Scales S, Greenaway S, Müller-Winkler J, Gibbins D, Nemes M, Slender A, Hough T, Keskivali-Bond P, Scudamore CL, Herbert E, Banks GT, Mobbs H, Canonica T, Tosh J, Noy S, Llorian M, Nolan PM, Griffin JL, Good M, Simon M, Mallon AM, Wells S, Fisher EMC, Tybulewicz VLJ. Comprehensive phenotypic analysis of the Dp1Tyb mouse strain reveals a broad range of Down syndrome-related phenotypes. Dis Model Mech 2021; 14:dmm049157. [PMID: 34477842 PMCID: PMC8543064 DOI: 10.1242/dmm.049157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
Down syndrome (DS), trisomy 21, results in many complex phenotypes including cognitive deficits, heart defects and craniofacial alterations. Phenotypes arise from an extra copy of human chromosome 21 (Hsa21) genes. However, these dosage-sensitive causative genes remain unknown. Animal models enable identification of genes and pathological mechanisms. The Dp1Tyb mouse model of DS has an extra copy of 63% of Hsa21-orthologous mouse genes. In order to establish whether this model recapitulates DS phenotypes, we comprehensively phenotyped Dp1Tyb mice using 28 tests of different physiological systems and found that 468 out of 1800 parameters were significantly altered. We show that Dp1Tyb mice have wide-ranging DS-like phenotypes, including aberrant erythropoiesis and megakaryopoiesis, reduced bone density, craniofacial changes, altered cardiac function, a pre-diabetic state, and deficits in memory, locomotion, hearing and sleep. Thus, Dp1Tyb mice are an excellent model for investigating complex DS phenotype-genotype relationships for this common disorder.
Collapse
Affiliation(s)
| | - Heather Cater
- MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | | | | | | | | | | | - Amy Slender
- The Francis Crick Institute, London NW1 1AT, UK
| | - Tertius Hough
- MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | | | | | | | | | - Helene Mobbs
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QW, UK
| | - Tara Canonica
- School of Psychology, Cardiff University, Cardiff CF10 3AT, UK
| | - Justin Tosh
- The Francis Crick Institute, London NW1 1AT, UK
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Suzanna Noy
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | | | | | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QW, UK
- Imperial College Dementia Research Institute, Imperial College London, London W12 7TA, UK
| | - Mark Good
- School of Psychology, Cardiff University, Cardiff CF10 3AT, UK
| | - Michelle Simon
- MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | | | - Sara Wells
- MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | | | - Victor L. J. Tybulewicz
- The Francis Crick Institute, London NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| |
Collapse
|
48
|
Ahmed MM, Block A, Busquet N, Gardiner KJ. Context Fear Conditioning in Down Syndrome Mouse Models: Effects of Trisomic Gene Content, Age, Sex and Genetic Background. Genes (Basel) 2021; 12:genes12101528. [PMID: 34680922 PMCID: PMC8535510 DOI: 10.3390/genes12101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 01/20/2023] Open
Abstract
Down syndrome (DS), trisomy of the long arm of human chromosome 21 (Hsa21), is the most common genetic cause of intellectual disability (ID). Currently, there are no effective pharmacotherapies. The success of clinical trials to improve cognition depends in part on the design of preclinical evaluations in mouse models. To broaden understanding of the common limitations of experiments in learning and memory, we report performance in context fear conditioning (CFC) in three mouse models of DS, the Dp(16)1Yey, Dp(17)1Yey and Dp(10)1Yey (abbreviated Dp16, Dp17 and Dp10), separately trisomic for the human Hsa21 orthologs mapping to mouse chromosomes 16, 17 and 10, respectively. We examined female and male mice of the three lines on the standard C57BL/6J background at 3 months of age and Dp17 and Dp10 at 18 months of age. We also examined female and male mice of Dp17 and Dp10 at 3 months of age as F1 hybrids obtained from a cross with the DBA/2J background. Results indicate that genotype, sex, age and genetic background affect CFC performance. These data support the need to use both female and male mice, trisomy of sets of all Hsa21 orthologs, and additional ages and genetic backgrounds to improve the reliability of preclinical evaluations of drugs for ID in DS.
Collapse
Affiliation(s)
- Md. Mahiuddin Ahmed
- Department of Neurology, Linda Crnic Institute for Down Syndrome, University of Colorado Alzheimer’s and Cognition Center, Aurora, CO 80045, USA;
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Aaron Block
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Nicolas Busquet
- Department of Neurology, Animal Behavior and In Vivo Neurophysiology Core, NeuroTechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Katheleen J. Gardiner
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Correspondence:
| |
Collapse
|
49
|
Santoro SL, Brenner-Miller D, Cottrell C, Bress J, Torres A, Skotko BG. Using a Communication Passport within a Multidisciplinary Genetics Clinic. Pediatr Qual Saf 2021; 6:e472. [PMID: 34589646 PMCID: PMC8476060 DOI: 10.1097/pq9.0000000000000472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/11/2021] [Indexed: 01/14/2023] Open
Abstract
Multiple clinic models for Down syndrome exist; one model is the multidisciplinary, specialty clinic, such as the Massachusetts General Hospital Down Syndrome Program (MGH DSP). METHODS Intrateam communication was identified as an area for improvement. Our team developed an intervention, the Passport, a paper-based communication tool passed by parents between clinical teams who evaluated the same patients in different locations. Metrics included an electronic survey of parents and clinicians and tracking the frequency of Passport use. The analysis included the use of Statistical Process Control charts and rules. RESULTS The parental suggestions for communication-based interactions improved from 54% (32/60) to 17% (3/18) (P < 0.01). Communication scores within the MGH DSP team and between the team and parents were high at 86% and 96%, respectively. Overall satisfaction with the MGH DSP remained consistently high during our project, with a mean score of 6.49 out of 7. The MGH DSP team members reported communication scores with a mean of 85 out of 100. CONCLUSIONS Implementation of a paper Passport tool incorporated parents in the real-time, intraclinic communication between our MGH DSP teams, leading to improved communication suggestions and high marks on the other metrics followed. Such a tool could be useful for other multidisciplinary clinics where team members evaluate the same patients at different locations on the same day.
Collapse
Affiliation(s)
- Stephanie L. Santoro
- From the Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Mass
- Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Diana Brenner-Miller
- Department of Speech, Language and Swallowing Disorders & Reading Disabilities, Massachusetts General Hospital, Boston, Mass
| | - Clorinda Cottrell
- From the Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Mass
| | - Joy Bress
- Department of Physical Therapy and Occupational Therapy, Massachusetts General Hospital, Boston, Mass
| | - Amy Torres
- From the Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Mass
| | - Brian G. Skotko
- From the Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Mass
- Department of Pediatrics, Harvard Medical School, Boston, Mass
| |
Collapse
|
50
|
Gao FJ, Klinedinst D, Fernandez FX, Cheng B, Savonenko A, Devenney B, Li Y, Wu D, Pomper MG, Reeves RH. Forebrain Shh overexpression improves cognitive function and locomotor hyperactivity in an aneuploid mouse model of Down syndrome and its euploid littermates. Acta Neuropathol Commun 2021; 9:137. [PMID: 34399854 PMCID: PMC8365939 DOI: 10.1186/s40478-021-01237-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/01/2021] [Indexed: 11/10/2022] Open
Abstract
Down syndrome (DS) is the leading genetic cause of intellectual disability and causes early-onset dementia and cerebellar hypoplasia. The prevalence of attention deficit hyperactivity disorder is elevated in children with DS. The aneuploid DS mouse model "Ts65Dn" shows prominent brain phenotypes, including learning and memory deficits, cerebellar hypoplasia, and locomotor hyperactivity. Previous studies indicate that impaired Sonic hedgehog (Shh) signaling contributes to neurological phenotypes associated with DS and neurodegenerative diseases. However, because of a lack of working inducible Shh knock-in mice, brain region-specific Shh overexpression and its effects on cognitive function have not been studied in vivo. Here, with Gli1-LacZ reporter mice, we demonstrated that Ts65Dn had reduced levels of Gli1, a sensitive readout of Shh signaling, in both hippocampus and cerebellum at postnatal day 6. Through site-specific transgenesis, we generated an inducible human Shh knock-in mouse, TRE-bi-hShh-Zsgreen1 (TRE-hShh), simultaneously expressing dually-lipidated Shh-Np and Zsgreen1 marker in the presence of transactivator (tTA). Double transgenic mice "Camk2a-tTA;TRE-hShh" and "Pcp2-tTA;TRE-hShh" induced Shh overexpression and activated Shh signaling in a forebrain and cerebellum, respectively, specific manner from the perinatal period. Camk2a-tTA;TRE-hShh normalized locomotor hyperactivity and improved learning and memory in 3-month-old Ts65Dn, mitigated early-onset severe cognitive impairment in 7-month-old Ts65Dn, and enhanced spatial cognition in euploid mice. Camk2a-tTA;TRE-hShh cohort maintained until 600days old showed that chronic overexpression of Shh in forebrain from the perinatal period had no effect on longevity of euploid or Ts65Dn. Pcp2-tTA;TRE-hShh did not affect cognition but mitigated the phenotype of cerebellar hypoplasia in Ts65Dn. Our study provides the first in vivo evidence that Shh overexpression from the perinatal period protects DS brain integrity and enhances learning and memory in normal mice, indicating the broad therapeutic potential of Shh ligand for other neurological conditions. Moreover, the first inducible hShh site-specific knock-in mouse could be widely used for spatiotemporal Shh signaling regulation.
Collapse
Affiliation(s)
- Feng J Gao
- Department of Physiology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Genetic Medicine, John Hopkins University, Baltimore, MD, 21205, USA.
| | - Donna Klinedinst
- Department of Physiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
- BIO5 and McKnight Brain Research Institutes, Tucson, AZ, USA
| | - Bei Cheng
- Department of Radiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alena Savonenko
- Department of Pathology and Neurology, John Hopkins University, Baltimore, MD, 21205, USA
| | - Benjamin Devenney
- Department of Physiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yicong Li
- Department of Physiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Dan Wu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Martin G Pomper
- Department of Radiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Genetic Medicine, John Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|