1
|
Zhou K, Wu F, Deng L, Xiao Y, Yang W, Zhao J, Wang Q, Chang Z, Zhai H, Sun C, Han H, Du M, Chen Q, Yan J, Xin P, Chu J, Han Z, Chai J, Howe GA, Li CB, Li C. Antagonistic systemin receptors integrate the activation and attenuation of systemic wound signaling in tomato. Dev Cell 2025; 60:535-550.e8. [PMID: 39631391 DOI: 10.1016/j.devcel.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Pattern recognition receptor (PRR)-mediated perception of damage-associated molecular patterns (DAMPs) triggers the first line of inducible defenses in both plants and animals. Compared with animals, plants are sessile and regularly encounter physical damage by biotic and abiotic factors. A longstanding problem concerns how plants achieve a balance between wound defense response and normal growth, avoiding overcommitment to catastrophic defense. Here, we report that two antagonistic systemin receptors, SYR1 and SYR2, of the wound peptide hormone systemin in tomato act in a ligand-concentration-dependent manner to regulate immune homeostasis. Whereas SYR1 acts as a high-affinity receptor to initiate systemin signaling, SYR2 functions as a low-affinity receptor to attenuate systemin signaling. The expression of systemin and SYR2, but not SYR1, is upregulated upon SYR1 activation. Our findings provide a mechanistic explanation for how plants appropriately respond to tissue damage based on PRR-mediated perception of DAMP concentrations and have implications for uncoupling defense-growth trade-offs.
Collapse
Affiliation(s)
- Ke Zhou
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Fangming Wu
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Yu Xiao
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wentao Yang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhai Zhao
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Qinyang Wang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeqian Chang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huawei Zhai
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chuanlong Sun
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Hongyu Han
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Minmin Du
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qian Chen
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jijun Yan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyong Xin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhifu Han
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Jijie Chai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Chang-Bao Li
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Chuanyou Li
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
2
|
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, Li C, Li C, Liu CM. Peptide hormones in plants. MOLECULAR HORTICULTURE 2025; 5:7. [PMID: 39849641 PMCID: PMC11756074 DOI: 10.1186/s43897-024-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses. Since the discovery of the first plant peptide hormone, systemin, in tomato in 1991, putative peptide hormones have continuously been identified in different plant species, showing their importance in both short- and long-range signal transductions. The roles of peptide hormones are implicated in, but not limited to, processes such as self-incompatibility, pollination, fertilization, embryogenesis, endosperm development, stem cell regulation, plant architecture, tissue differentiation, organogenesis, dehiscence, senescence, plant-pathogen and plant-insect interactions, and stress responses. This article, collectively written by researchers in this field, aims to provide a general overview for the discoveries, functions, chemical natures, transcriptional regulations, and post-translational modifications of peptide hormones in plants. We also updated recent discoveries in receptor kinases underlying the peptide hormone sensing and down-stream signal pathways. Future prospective and challenges will also be discussed at the end of the article.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junpeng Niu
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Guodong Wang
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
3
|
Castaldi V, Langella E, Buonanno M, Di Lelio I, Aprile AM, Molisso D, Criscuolo MC, D'Andrea LD, Romanelli A, Amoresano A, Pinto G, Illiano A, Chiaiese P, Becchimanzi A, Pennacchio F, Rao R, Monti SM. Intrinsically disordered Prosystemin discloses biologically active repeat motifs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111969. [PMID: 38159610 DOI: 10.1016/j.plantsci.2023.111969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The in-depth studies over the years on the defence barriers by tomato plants have shown that the Systemin peptide controls the response to a wealth of environmental stress agents. This multifaceted stress reaction seems to be related to the intrinsic disorder of its precursor protein, Prosystemin (ProSys). Since latest findings show that ProSys has biological functions besides Systemin sequence, here we wanted to assess if this precursor includes peptide motifs able to trigger stress-related pathways. Candidate peptides were identified in silico and synthesized to test their capacity to trigger defence responses in tomato plants against different biotic stressors. Our results demonstrated that ProSys harbours several repeat motifs which triggered plant immune reactions against pathogens and pest insects. Three of these peptides were detected by mass spectrometry in plants expressing ProSys, demonstrating their effective presence in vivo. These experimental data shed light on unrecognized functions of ProSys, mediated by multiple biologically active sequences which may partly account for the capacity of ProSys to induce defense responses to different stress agents.
Collapse
Affiliation(s)
- Valeria Castaldi
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging, National Research Council (IBB, CNR), via Pietro Castellino 111, Naples 80131, Italy.
| | - Martina Buonanno
- Institute of Biostructures and Bioimaging, National Research Council (IBB, CNR), via Pietro Castellino 111, Naples 80131, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, via Università 100, Portici, 80055 Naples, Italy
| | - Anna Maria Aprile
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Martina Chiara Criscuolo
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Luca Domenico D'Andrea
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), via Alfonso Corti 12, 20131 Milano, Italy
| | | | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, via Cynthia 8, Napoli and Interuniversitary Consortium "Istituto Nazionale Biostrutture e Biosistemi, 80126 Roma, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, via Cynthia 8, Napoli and Interuniversitary Consortium "Istituto Nazionale Biostrutture e Biosistemi, 80126 Roma, Italy
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, via Cynthia 8, Napoli and Interuniversitary Consortium "Istituto Nazionale Biostrutture e Biosistemi, 80126 Roma, Italy
| | - Pasquale Chiaiese
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, via Università 100, Portici, 80055 Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, via Università 100, Portici, 80055 Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, via Università 100, Portici, 80055 Naples, Italy.
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, National Research Council (IBB, CNR), via Pietro Castellino 111, Naples 80131, Italy.
| |
Collapse
|
4
|
D’Esposito D, Guadagno A, Amoroso CG, Cascone P, Cencetti G, Michelozzi M, Guerrieri E, Ercolano MR. Genomic and metabolic profiling of two tomato contrasting cultivars for tolerance to Tuta absoluta. PLANTA 2023; 257:47. [PMID: 36708391 PMCID: PMC9884263 DOI: 10.1007/s00425-023-04073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Dissimilar patterns of variants affecting genes involved in response to herbivory, including those leading to difference in VOC production, were identified in tomato lines with contrasting response to Tuta absoluta. Tuta absoluta is one of the most destructive insect pest affecting tomato production, causing important yield losses both in open field and greenhouse. The selection of tolerant varieties to T. absoluta is one of the sustainable approaches to control this invasive leafminer. In this study, the genomic diversity of two tomato varieties, one tolerant and the other susceptible to T. absoluta infestation was explored, allowing us to identify chromosome regions with highly dissimilar pattern. Genes affected by potential functional variants were involved in several processes, including response to herbivory and secondary metabolism. A metabolic analysis for volatile organic compounds (VOCs) was also performed, highlighting a difference in several classes of chemicals in the two genotypes. Taken together, these findings can aid tomato breeding programs aiming to develop tolerant plants to T. absoluta.
Collapse
Affiliation(s)
- Daniela D’Esposito
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA Italy
| | - Anna Guadagno
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA Italy
| | - Ciro Gianmaria Amoroso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA Italy
| | - Pasquale Cascone
- Institute for Sustainable Plant Protection, National Research Council of Italy, 80055 Portici, NA Italy
| | - Gabriele Cencetti
- Institute of Biosciences and Bioresources, National Research Council of Italy, 50019 Sesto Fiorentino, FI Italy
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources, National Research Council of Italy, 50019 Sesto Fiorentino, FI Italy
| | - Emilio Guerrieri
- Institute for Sustainable Plant Protection, National Research Council of Italy, 80055 Portici, NA Italy
| | | |
Collapse
|
5
|
Natale R, Coppola M, D'Agostino N, Zhang Y, Fernie AR, Castaldi V, Rao R. In silico and in vitro approaches allow the identification of the Prosystemin molecular network. Comput Struct Biotechnol J 2022; 21:212-223. [PMID: 36544481 PMCID: PMC9755248 DOI: 10.1016/j.csbj.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Tomato Prosystemin (ProSys), the precursor of Systemin, a small peptidic hormone, is produced at very low concentration in unchallenged plants, while its expression greatly increases in response to several different stressors triggering an array of defence responses. The molecular mechanisms that underpin such a wide array of defence barriers are not fully understood and are likely correlated with the intrinsically disordered (ID) structure of the protein. ID proteins interact with different protein partners forming complexes involved in the modulation of different biological mechanisms. Here we describe the ProSys-protein network that shed light on the molecular mechanisms underpinning ProSys associated defence responses. Three different approaches were used. In silico prediction resulted in 98 direct interactors, most clustering in phytohormone biosynthesis, transcription factors and signal transduction gene classes. The network shows the central role of ProSys during defence responses, that reflects its role as central hub. In vitro ProSys interactors, identified by Affinity Purification-Mass Spectrometry (AP-MS), revealed over three hundred protein partners, while Bimolecular Fluorescent Complementation (BiFC) experiments validated in vivo some interactors predicted in silico and in vitro. Our results demonstrate that ProSys interacts with several proteins and reveal new key molecular events in the ProSys-dependent defence response of tomato plant.
Collapse
Affiliation(s)
- Roberto Natale
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
| | - Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Alisdair Robert Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Valeria Castaldi
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Portici 80055, Italy
| |
Collapse
|
6
|
Molisso D, Coppola M, Buonanno M, Di Lelio I, Aprile AM, Langella E, Rigano MM, Francesca S, Chiaiese P, Palmieri G, Tatè R, Sinno M, Barra E, Becchimanzi A, Monti SM, Pennacchio F, Rao R. Not Only Systemin: Prosystemin Harbors Other Active Regions Able to Protect Tomato Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:887674. [PMID: 35685017 PMCID: PMC9173717 DOI: 10.3389/fpls.2022.887674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Prosystemin is a 200-amino acid precursor expressed in Solanaceae plants which releases at the C-terminal part a peptidic hormone called Systemin in response to wounding and herbivore attack. We recently showed that Prosystemin is not only a mere scaffold of Systemin but, even when deprived of Systemin, is biologically active. These results, combined with recent discoveries that Prosystemin is an intrinsically disordered protein containing disordered regions within its sequence, prompted us to investigate the N-terminal portions of the precursor, which contribute to the greatest disorder within the sequence. To this aim, PS1-70 and PS1-120 were designed, produced, and structurally and functionally characterized. Both the fragments, which maintained their intrinsic disorder, were able to induce defense-related genes and to protect tomato plants against Botrytis cinerea and Spodoptera littoralis larvae. Intriguingly, the biological activity of each of the two N-terminal fragments and of Systemin is similar but not quite the same and does not show any toxicity on experimental non-targets considered. These regions account for different anti-stress activities conferred to tomato plants by their overexpression. The two N-terminal fragments identified in this study may represent new promising tools for sustainable crop protection.
Collapse
Affiliation(s)
- Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Martina Buonanno
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Anna Maria Aprile
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Silvana Francesca
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Pasquale Chiaiese
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Gianna Palmieri
- Institute of Biosciences and BioResources, National Research Council (IBBR-CNR), Naples, Italy
| | - Rosarita Tatè
- Institute of Genetics and Biophysics, National Research Council (IGB-CNR), Naples, Italy
| | - Martina Sinno
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Eleonora Barra
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Pandey A, Yadav R, Sanyal I. Evaluating the pesticidal impact of plant protease inhibitors: lethal weaponry in the co-evolutionary battle. PEST MANAGEMENT SCIENCE 2022; 78:855-868. [PMID: 34570437 DOI: 10.1002/ps.6659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
In the arsenal of plant defense, protease inhibitors (PIs) are well-designed defensive products to counter field pests. PIs are produced in plant tissues by means of 'stable defense metabolite' and triggered on demand as the perception of the signal and well established as a part of plant active defense. PIs have been utilized for approximately four decades, initially as a gene-alone approach that was later replaced by multiple gene pyramiding/gene stacking due to insect adaptability towards the PI alone. By considering the adaptive responses of the pest to the single insecticidal gene, the concept of gene pyramiding gained continuous appreciation for the development of transgenic crops to deal with co-evolving pests. Gene pyramiding approaches are executed to bypass the insect's adaptive responses against PIs. Stacking PIs with additional insecticidal proteins, plastid engineering, recombinant proteinase inhibitors, RNAi-based methods and CRISPR/Cas9-mediated genome editing are the advanced tools and methods for next-generation pest management. Undoubtedly, the domain associated with the mechanism of PIs in the course of plant-pest interactions will occupy a central role for the advancement of more efficient and sustainable pest control strategies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ankesh Pandey
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reena Yadav
- CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Kumaun University, Nainital, India
| | - Indraneel Sanyal
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Molisso D, Coppola M, Buonanno M, Di Lelio I, Monti SM, Melchiorre C, Amoresano A, Corrado G, Delano-Frier JP, Becchimanzi A, Pennacchio F, Rao R. Tomato Prosystemin Is Much More than a Simple Systemin Precursor. BIOLOGY 2022; 11:biology11010124. [PMID: 35053122 PMCID: PMC8772835 DOI: 10.3390/biology11010124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 02/04/2023]
Abstract
Simple Summary Prosystemin is a 200 amino acid precursor that releases, upon wounding and biotic attacks, an 18 amino acid peptide called Systemin. This peptide was traditionally considered as the principal actor of the resistance of tomato plants induced by triggering multiple defense pathways in response to a wide range of biotic/abiotic stress agents. Recent findings from our group discovered the disordered structure of Prosystemin that promotes the binding of different molecular partners and the possible activation of multiple stress-related pathways. All of our recent findings suggest that Prosystemin could be more than a simple precursor of Systemin peptide. Indeed, we hypothesized that it contains other sequences able to activate multiple stress-related responses. To verify this hypothesis, we produced a truncated Prosystemin protein deprived of the Systemin peptide and the relative deleted gene. Experiments with transgenic tomato plants overexpressing the truncated Prosystemin and with plants exogenously treated with the recombinant truncated protein demonstrated that both transgenic and treated plants modulated the expression of defense-related genes and were protected against a noctuid moth and a fungal pathogen. Taken together, our results demonstrated that Prosystemin is not a mere scaffold of Systemin, but itself contains other biologically active regions. Abstract Systemin (Sys) is an octadecapeptide, which upon wounding, is released from the carboxy terminus of its precursor, Prosystemin (ProSys), to promote plant defenses. Recent findings on the disordered structure of ProSys prompted us to investigate a putative biological role of the whole precursor deprived of the Sys peptide. We produced transgenic tomato plants expressing a truncated ProSys gene in which the exon coding for Sys was removed and compared their defense response with that induced by the exogenous application of the recombinant truncated ProSys (ProSys(1-178), the Prosystemin sequence devoid of Sys region). By combining protein structure analyses, transcriptomic analysis, gene expression profiling and bioassays with different pests, we demonstrate that truncated ProSys promotes defense barriers in tomato plants through a hormone-independent defense pathway, likely associated with the production of oligogalacturonides (OGs). Both transgenic and plants treated with the recombinant protein showed the modulation of the expression of genes linked with defense responses and resulted in protection against the lepidopteran pest Spodoptera littoralis and the fungus Botrytis cinerea. Our results suggest that the overall function of the wild-type ProSys is more complex than previously shown, as it might activate at least two tomato defense pathways: the well-known Sys-dependent pathway connected with the induction of jasmonic acid biosynthesis and the successive activation of a set of defense-related genes, and the ProSys(1-178)-dependent pathway associated with OGs production leading to the OGs mediate plant immunity.
Collapse
Affiliation(s)
- Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
- Materias s.r.l., Corso N. Protopisani 50, 80146 Naples, Italy
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - Martina Buonanno
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Naples, Italy;
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Naples, Italy;
- Correspondence: (S.M.M.); (R.R.)
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 4, 80126 Naples, Italy; (C.M.); (A.A.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 4, 80126 Naples, Italy; (C.M.); (A.A.)
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - John Paul Delano-Frier
- Center for Research and Advanced Studies (CINVESTAV) Irapuato, Department of Biochemistry and Biotechnology, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato 36500, Mexico;
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Via Università 100, 80055 Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Via Università 100, 80055 Naples, Italy
- Correspondence: (S.M.M.); (R.R.)
| |
Collapse
|
9
|
Costa JL, Paschoal D, da Silva EM, Silva JS, do Carmo RM, Carrera E, López-Díaz I, Rossi ML, Freschi L, Mieczkowski P, Peres LEP, Teixeira PJPL, Figueira A. Moniliophthora perniciosa, the causal agent of witches' broom disease of cacao, interferes with cytokinin metabolism during infection of Micro-Tom tomato and promotes symptom development. THE NEW PHYTOLOGIST 2021; 231:365-381. [PMID: 33826751 DOI: 10.1111/nph.17386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Moniliophthora perniciosa causes witches' broom disease of cacao and inflicts symptoms suggestive of hormonal imbalance. We investigated whether infection of the tomato (Solanum lycopersicum) model system Micro-Tom (MT) by the Solanaceae (S)-biotype of Moniliophthora perniciosa, which causes stem swelling and hypertrophic growth of axillary shoots, results from changes in host cytokinin metabolism. Inoculation of an MT-transgenic line that overexpresses the Arabidopsis CYTOKININ OXIDASE-2 gene (35S::AtCKX2) resulted in a reduction in disease incidence and stem diameter. RNA-sequencing analysis of infected MT and 35S::AtCKX2 revealed the activation of cytokinin-responsive marker genes when symptoms were conspicuous. The expression of an Moniliophthora perniciosa tRNA-ISOPENTENYL-TRANSFERASE suggests the production of isopentenyladenine (iP), detected in mycelia grown in vitro. Inoculated MT stems showed higher levels of dihydrozeatin and trans-zeatin but not iP. The application of benzyladenine induced symptoms similar to infection, whereas applying the cytokinin receptor inhibitors LGR-991 and PI55 decreased symptoms. Moniliophthora perniciosa produces iP that might contribute to cytokinin synthesis by the host, which results in vascular and cortex enlargement, axillary shoot outgrowth, reduction in root biomass and an increase in fruit locule number. This strategy may be associated with the manipulation of sink establishment to favour infection by the fungus.
Collapse
Affiliation(s)
- Juliana L Costa
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, Piracicaba, SP, 13400-970, Brazil
| | - Daniele Paschoal
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, Piracicaba, SP, 13400-970, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 9, Piracicaba, SP, 13418-900, Brazil
| | - Eder M da Silva
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, Piracicaba, SP, 13400-970, Brazil
| | - Jamille S Silva
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, Piracicaba, SP, 13400-970, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 9, Piracicaba, SP, 13418-900, Brazil
| | - Rafael M do Carmo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, Piracicaba, SP, 13400-970, Brazil
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elío s/n, Valencia, 46022, Spain
| | - Isabel López-Díaz
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elío s/n, Valencia, 46022, Spain
| | - Mônica L Rossi
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, Piracicaba, SP, 13400-970, Brazil
| | - Luciano Freschi
- Instituto de Biociências, Universidade de São Paulo, R. do Matão 321, São Paulo, SP, 05508-090, Brazil
| | - Piotr Mieczkowski
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA
| | - Lazaro E P Peres
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 9, Piracicaba, SP, 13418-900, Brazil
| | - Paulo J P L Teixeira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 9, Piracicaba, SP, 13418-900, Brazil
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, Piracicaba, SP, 13400-970, Brazil
| |
Collapse
|
10
|
Li Z, Peng R, Yao Q. SlMYB14 promotes flavonoids accumulation and confers higher tolerance to 2,4,6-trichlorophenol in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110796. [PMID: 33487333 DOI: 10.1016/j.plantsci.2020.110796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Flavonoids are small molecular secondary metabolites, which have a variety of biological functions. Transcriptional regulations of key enzyme genes play critical roles in the flavonoid biosynthesis. In this study, an R2R3-MYB transcription factor gene, SlMYB14, was isolated from tomato and characterized. The nucleus-localized SlMYB14 functions as a transcriptional activator in yeast. The expression of SlMYB14 could be induced by methyl jasmonic acid, wounding and ABA. SlMYB14 works downstream of SlMYC2 in the jasmonate signaling pathway. Overexpression of SlMYB14 under the control of CaMV35S promoter in tomato led to increased accumulation of flavonoids. RNA-sequencing analysis revealed that the transcript levels of several structural genes associated with flavonoid biosynthesis were up-regulated in transgenic tomato plants. Gel-shift assays confirmed that SlMYB14 protein could bind to the promoter regions of SlPAL genes. It was also found that overexpression of SlMYB14 improved the tolerance of transgenic plants to 2,4,6-trichlorophenol (2,4,6-TCP), an environmental organic pollutant which could cause serious oxidative damage to plant. These results suggest that SlMYB14 participates in the regulation of flavonoid biosynthesis and might play a role in maintaining reactive oxygen species homeostasis in plant. SlMYB14 gene also has the potential to contribute to the phytoremediation of 2,4,6-TCP-contaminated soils.
Collapse
Affiliation(s)
- Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| |
Collapse
|
11
|
Singh S, Singh A, Kumar S, Mittal P, Singh IK. Protease inhibitors: recent advancement in its usage as a potential biocontrol agent for insect pest management. INSECT SCIENCE 2020; 27:186-201. [PMID: 30230264 DOI: 10.1111/1744-7917.12641] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/14/2018] [Accepted: 08/29/2018] [Indexed: 05/13/2023]
Abstract
Plant-derived protease inhibitors (PIs) are a promising defensin for crop improvement and insect pest management. Although agronomist made significant efforts in utilizing PIs for managing insect pests, the potentials of PIs are still obscured. Insect ability to compensate nutrient starvation induced by dietary PI feeding using different strategies, that is, overexpression of PI-sensitive protease, expression of PI-insensitive proteases, degradation of PI, has made this innumerable collection of PIs worthless. A practical challenge for agronomist is to identify potent PI candidates, to limit insect compensatory responses and to elucidate insect compensatory and resistance mechanisms activated upon herbivory. This knowledge could be further efficiently utilized to identify potential targets for RNAi-mediated pest control. These vital genes of insects could be functionally annotated using the advanced gene-editing technique, CRISPR/Cas9. Contemporary research is exploiting different in silico and modern molecular biology techniques to utilize PIs in controlling insect pests efficiently. This review is structured to update recent advancements in this field, along with its chronological background.
Collapse
Affiliation(s)
- Sujata Singh
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, India
| | - Archana Singh
- Department of Botany, Hans Raj College, University of Delhi, Delhi, India
| | - Sumit Kumar
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, India
| | - Pooja Mittal
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, India
| |
Collapse
|
12
|
Li Q, Wang C, Mou Z. Perception of Damaged Self in Plants. PLANT PHYSIOLOGY 2020; 182:1545-1565. [PMID: 31907298 PMCID: PMC7140957 DOI: 10.1104/pp.19.01242] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/16/2019] [Indexed: 05/04/2023]
Abstract
Plants use specific receptor proteins on the cell surface to detect host-derived danger signals released in response to attacks by pathogens or herbivores and activate immune responses against them.
Collapse
Affiliation(s)
- Qi Li
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
13
|
Grissett L, Ali A, Coble AM, Logan K, Washington B, Mateson A, McGee K, Nkrumah Y, Jacobus L, Abraham E, Hann C, Bequette CJ, Hind SR, Schmelz EA, Stratmann JW. Survey of Sensitivity to Fatty Acid-Amino Acid Conjugates in the Solanaceae. J Chem Ecol 2020; 46:330-343. [PMID: 31989490 DOI: 10.1007/s10886-020-01152-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/17/2022]
Abstract
Plants perceive insect herbivores via a sophisticated surveillance system that detects a range of alarm signals, including herbivore-associated molecular patterns (HAMPs). Fatty acid-amino acid conjugates (FACs) are HAMPs present in oral secretions (OS) of lepidopteran larvae that induce defense responses in many plant species. In contrast to eggplant (Solanum melongena), tomato (S. lycopersicum) does not respond to FACs present in OS from Manduca sexta (Lepidoptera). Since both plants are found in the same genus, we tested whether loss of sensitivity to FACs in tomato may be a domestication effect. Using highly sensitive MAP kinase (MAPK) phosphorylation assays, we demonstrate that four wild tomato species and the closely related potato (S. tuberosum) do not respond to the FACs N-linolenoyl-L-glutamine and N-linolenoyl-L-glutamic acid, excluding a domestication effect. Among other genera within the Solanaceae, we found that bell pepper (Capsicum annuum) is responsive to FACs, while there is a differential responsiveness to FACs among tobacco (Nicotiana) species, ranging from strong responsiveness in N. benthamiana to no responsiveness in N. knightiana. The Petunia lineage is one of the oldest lineages within the Solanaceae and P. hybrida was responsive to FACs. Collectively, we demonstrate that plant responsiveness to FACs does not follow simple phylogenetic relationships in the family Solanaceae. Instead, sensitivity to FACs is a dynamic ancestral trait present in monocots and eudicots that was repeatedly lost during the evolution of Solanaceae species. Although tomato is insensitive to FACs, we found that other unidentified factors in M. sexta OS induce defenses in tomato.
Collapse
Affiliation(s)
- Laquita Grissett
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,Fred Hutchinson Cancer Research Center, University of Washington School of Dentistry, Seattle, WA, USA
| | - Azka Ali
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Anne-Marie Coble
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Khalilah Logan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Brandon Washington
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Abigail Mateson
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Kelsey McGee
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Yaw Nkrumah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Leighton Jacobus
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Evelyn Abraham
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,Department of Plant Biology, Pennsylvania State University, University Park, PA, USA
| | - Claire Hann
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Carlton J Bequette
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,R.J. Reynolds Tobacco, Winston-Salem, NC, USA
| | - Sarah R Hind
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Johannes W Stratmann
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
14
|
Coppola M, Di Lelio I, Romanelli A, Gualtieri L, Molisso D, Ruocco M, Avitabile C, Natale R, Cascone P, Guerrieri E, Pennacchio F, Rao R. Tomato Plants Treated with Systemin Peptide Show Enhanced Levels of Direct and Indirect Defense Associated with Increased Expression of Defense-Related Genes. PLANTS 2019; 8:plants8100395. [PMID: 31623335 PMCID: PMC6843623 DOI: 10.3390/plants8100395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 01/11/2023]
Abstract
Plant defense peptides represent an important class of compounds active against pathogens and insects. These molecules controlling immune barriers can potentially be used as novel tools for plant protection, which mimic natural defense mechanisms against invaders. The constitutive expression in tomato plants of the precursor of the defense peptide systemin was previously demonstrated to increase tolerance against moth larvae and aphids and to hamper the colonization by phytopathogenic fungi, through the expression of a wealth of defense-related genes. In this work we studied the impact of the exogenous supply of systemin to tomato plants on pests to evaluate the use of the peptide as a tool for crop protection in non-transgenic approaches. By combining gene expression studies and bioassays with different pests we demonstrate that the exogenous supply of systemin to tomato plants enhances both direct and indirect defense barriers. Experimental plants, exposed to this peptide by foliar spotting or root uptake through hydroponic culture, impaired larval growth and development of the noctuid moth Spodoptera littoralis, even across generations, reduced the leaf colonization by the fungal pathogen Botrytis cinerea and were more attractive towards natural herbivore antagonists. The induction of these defense responses was found to be associated with molecular and biochemical changes under control of the systemin signalling cascade. Our results indicate that the direct delivery of systemin, likely characterized by a null effect on non-target organisms, represents an interesting tool for the sustainable protection of tomato plants.
Collapse
Affiliation(s)
- Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
| | - Ilaria Di Lelio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy;
| | | | - Donata Molisso
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
| | - Michelina Ruocco
- CNR-IPSP, Via Università 133, 80055 Portici, Italy; (L.G.); (M.R.)
| | | | - Roberto Natale
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
| | - Pasquale Cascone
- CNR-IPSP, Via Università 133, 80055 Portici, Italy; (L.G.); (M.R.)
| | - Emilio Guerrieri
- CNR-IPSP, Via Università 133, 80055 Portici, Italy; (L.G.); (M.R.)
| | - Francesco Pennacchio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
- Correspondence: ; Tel.: +39-081-2539204
| |
Collapse
|
15
|
Haj Ahmad F, Wu XN, Stintzi A, Schaller A, Schulze WX. The Systemin Signaling Cascade As Derived from Time Course Analyses of the Systemin-responsive Phosphoproteome. Mol Cell Proteomics 2019; 18:1526-1542. [PMID: 31138643 PMCID: PMC6683004 DOI: 10.1074/mcp.ra119.001367] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/20/2019] [Indexed: 11/06/2022] Open
Abstract
Systemin is a small peptide with important functions in plant wound response signaling. Although the transcriptional responses of systemin action are well described, the signaling cascades involved in systemin perception and signal transduction at the protein level are poorly understood. Here we used a tomato cell suspension culture system to profile phosphoproteomic responses induced by systemin and its inactive Thr17Ala analog, allowing us to reconstruct a systemin-specific kinase/phosphatase signaling network. Our time-course analysis revealed early phosphorylation events at the plasma membrane, such as dephosphorylation of H+-ATPase, rapid phosphorylation of NADPH-oxidase and Ca2+-ATPase. Later responses involved transient phosphorylation of small GTPases, vesicle trafficking proteins and transcription factors. Based on a correlation analysis of systemin-induced phosphorylation profiles, we predicted substrate candidates for 44 early systemin-responsive kinases, which includes receptor kinases and downstream kinases such as MAP kinases, as well as nine phosphatases. We propose a regulatory module in which H+-ATPase LHA1 is rapidly de-phosphorylated at its C-terminal regulatory residue T955 by phosphatase PLL5, resulting in the alkalization of the growth medium within 2 mins of systemin treatment. We found the MAP kinase MPK2 to have increased phosphorylation level at its activating TEY-motif at 15 min post-treatment. The predicted interaction of MPK2 with LHA1 was confirmed by in vitro kinase assays, suggesting that the H+-ATPase LHA1 is re-activated by MPK2 later in the systemin response. Our data set provides a resource of proteomic events involved in systemin signaling that will be valuable for further in-depth functional studies in elucidation of systemin signaling cascades.
Collapse
Affiliation(s)
- Fatima Haj Ahmad
- ‡University of Hohenheim, Institute of Molecular Plant Physiology, 70593 Stuttgart, Germany
| | - Xu Na Wu
- ‡University of Hohenheim, Institute of Molecular Plant Physiology, 70593 Stuttgart, Germany
| | - Annick Stintzi
- ‡University of Hohenheim, Institute of Molecular Plant Physiology, 70593 Stuttgart, Germany
| | - Andreas Schaller
- ‡University of Hohenheim, Institute of Molecular Plant Physiology, 70593 Stuttgart, Germany
| | - Waltraud X Schulze
- ‡University of Hohenheim, Institute of Molecular Plant Physiology, 70593 Stuttgart, Germany.
| |
Collapse
|
16
|
Constantin ME, de Lamo FJ, Vlieger BV, Rep M, Takken FLW. Endophyte-Mediated Resistance in Tomato to Fusarium oxysporum Is Independent of ET, JA, and SA. FRONTIERS IN PLANT SCIENCE 2019; 10:979. [PMID: 31417594 PMCID: PMC6685397 DOI: 10.3389/fpls.2019.00979] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/11/2019] [Indexed: 05/21/2023]
Abstract
Root endophytes can confer resistance against plant pathogens by direct antagonism or via the host by triggering induced resistance. The latter response typically relies on jasmonic acid (JA)/ethylene (ET)-depended signaling pathways, but can also be triggered via salicylic acid (SA)-dependent signaling pathways. Here, we set out to determine if endophyte-mediated resistance (EMR), conferred by the Fusarium endophyte Fo47, against Fusarium wilt disease in tomato is mediated via SA, ET or JA. To test the contribution of SA, ET, and JA in EMR we performed bioassays with Fo47 and Fusarium oxysporum f. sp. lycopersici in tomato plants impaired in SA accumulation (NahG), JA biosynthesis (def1) or ET-production (ACD) and -sensing (Nr). We observed that the colonization pattern of Fo47 in stems of wildtype plants was indistinguishable from that of the hormone mutants. Surprisingly, EMR was not compromised in the lines affected in JA, ET, or SA signaling. The independence of EMR on SA, JA, and ET implies that this induced resistance-response against Fusarium wilt disease is distinct from the classical Induced Systemic Resistance (ISR) response, providing exciting possibilities for control of wilt diseases independent of conventional defense pathways.
Collapse
|
17
|
Nazar RN, Castroverde CDM, Xu X, Kurosky A, Robb J. Wounding induces tomato Ve1 R-gene expression. PLANTA 2019; 249:1779-1797. [PMID: 30838445 DOI: 10.1007/s00425-019-03121-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
In tomato, Ve1 gene expression is induced specifically by physical damage or plant wounding, resulting in a defense/stress cascade that mimics responses during Verticillium colonization and wilt. In tomato, Verticillium resistance is determined by the Ve gene locus, which encodes two leucine-rich repeat-receptor-like proteins (Ve1, Ve2); the Ve1 gene is induced differentially while Ve2 is constitutively expressed throughout disease development. These profiles have been observed even during compatible Verticillium interactions, colonization by some bacterial pathogens, and growth of transgenic tomato plants expressing the fungal Ave1 effector, suggesting broader roles in disease and/or stress. Here, we have examined further Ve gene expression in resistant and susceptible plants under abiotic stress, including a water deficit, salinity and physical damage. Using both quantitative RT-PCR and label-free LC-MS methods, changes have been evaluated at both the mRNA and protein levels. The results indicate that Ve1 gene expression responds specifically to physical damage or plant wounding, resulting in a defense/stress cascade that resembles observations during Verticillium colonization. In addition, the elimination or reduction of Ve1 or Ve2 gene function also result in proteomic responses that occur with wilt pathogen and continue to be consistent with an antagonistic relationship between the two genes. Mutational analyses also indicate the plant wounding hormone, systemin, is not required, while jasmonic acid again appears to play a direct role in induction of the Ve1 gene.
Collapse
Affiliation(s)
- Ross N Nazar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | | | - Xin Xu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alexander Kurosky
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jane Robb
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
18
|
Kersch‐Becker MF, Thaler JS. Constitutive and herbivore‐induced plant defences regulate herbivore population processes. J Anim Ecol 2019; 88:1079-1088. [DOI: 10.1111/1365-2656.12993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/26/2019] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jennifer S. Thaler
- Department of Entomology and Department of Ecology and Evolutionary Biology Cornell University Ithaca New York
| |
Collapse
|
19
|
Mycorrhizal Fungi Enhance Resistance to Herbivores in Tomato Plants with Reduced Jasmonic Acid Production. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi favor plant growth by improving nutrient acquisition, but also by increasing their resistance against abiotic and biotic stressors, including herbivory. Mechanisms of AM fungal mediated increased resistance include a direct effect of AM fungi on plant vigor, but also a manipulation of the hormonal cascades, such as the systemic activation of jasmonic acid (JA) dependent defenses. However, how AM fungal inoculation and variation in the endogenous JA production interact to produce increased resistance against insect herbivores remains to be further elucidated. To address this question, three genotypes of Solanum lycopersicum L., a JA-biosynthesis deficient mutant, a JA over-accumulating mutant, and their wild-type were either inoculated with AM fungi or left un-inoculated. Plant growth-related traits and resistance against Spodoptera littoralis (Boisduval) caterpillars, a major crop pest, were measured. Overall, we found that deficiency in JA production reduced plant development and were the least resistant against S. littoralis. Moreover, AM fungi increased plant resistance against S. littoralis, but such beneficial effect was more pronounced in JA-deficient plant than on JA over-accumulating plants. These results highlight that AM fungi-driven increased plant resistance is negatively affected by the ability of plants to produce JA and that AM fungi complement JA-mediated endogenous plant defenses in this system.
Collapse
|
20
|
Montero-Vargas JM, Casarrubias-Castillo K, Martínez-Gallardo N, Ordaz-Ortiz JJ, Délano-Frier JP, Winkler R. Modulation of steroidal glycoalkaloid biosynthesis in tomato (Solanum lycopersicum) by jasmonic acid. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:155-165. [PMID: 30466581 DOI: 10.1016/j.plantsci.2018.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/03/2018] [Accepted: 08/29/2018] [Indexed: 06/09/2023]
Abstract
Jasmonic acid (JA) is a phytohormone involved in plant development and defense. A major role of JA is the enhancement of secondary metabolite production, such as response to herbivory. Systemin is a bioactive plant peptide of 18 amino acids that contributes to the induction of local and systemic defense responses in tomato (Solanum lycopersicum) through JA biosynthesis. The overexpression of systemin (PS-OE) results in constitutive JA accumulation and enhances pest resistance in plants. Conversely, mutant plants affected in linolenic acid synthesis (spr2) are negatively compromised in the production of JA which favors damage and oviposition by insect herbivores. With undirected mass fingerprinting analyses, we found global metabolic differences between genotypes with modified jasmonic acid production. The spr2 mutants were enriched in di-unsaturated fatty acids and generally showed more changes. The PS-OE genotype produced an unidentified compound with a mass-to-charge ratio of 695 (MZ695). Most strikingly, the steroidal glycoalkaloid biosynthesis was negatively affected in the spr2 genotype. Complementation with jasmonic acid could restore the tomatine pathway, which strongly suggests the control of steroidal glycoalkaloid biosynthesis by jasmonic acid. spr2 plants were more susceptible to fungal infection with Fusarium oxysporum f.sp. ciceris, but not to bacterial infection with Clavibacter michiganensis subsp. michiganensis which supports the involvement of steroidal glycoalkaloids in the plant response against fungi.
Collapse
Affiliation(s)
- Josaphat Miguel Montero-Vargas
- Center for Research and Advanced Studies (CINVESTAV) Irapuato, Department of Biochemistry and Biotechnology, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824 Irapuato Gto., Mexico
| | - Kena Casarrubias-Castillo
- Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Camino Ing., La Venta del Astillero, 44600 Zapopan, Jalisco, Mexico
| | - Norma Martínez-Gallardo
- Center for Research and Advanced Studies (CINVESTAV) Irapuato, Department of Biochemistry and Biotechnology, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824 Irapuato Gto., Mexico
| | - José Juan Ordaz-Ortiz
- Unidad de Genómica Avanzada (UGA) - Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824 Irapuato Gto., Mexico
| | - John Paul Délano-Frier
- Center for Research and Advanced Studies (CINVESTAV) Irapuato, Department of Biochemistry and Biotechnology, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824 Irapuato Gto., Mexico.
| | - Robert Winkler
- Center for Research and Advanced Studies (CINVESTAV) Irapuato, Department of Biochemistry and Biotechnology, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824 Irapuato Gto., Mexico.
| |
Collapse
|
21
|
Yang R, Li J, Zhang H, Yang F, Wu Z, Zhuo X, An X, Cheng Z, Zeng Q, Luo Q. Transcriptome Analysis and Functional Identification of Xa13 and Pi-ta Orthologs in Oryza granulata. THE PLANT GENOME 2018; 11:170097. [PMID: 30512031 DOI: 10.3835/plantgenome2017.11.0097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nees & Arn. ex Watt, a perennial wild rice species with a GG genome, preserves many important genes for cultivated rice ( L.) improvement. At present, however, no genetic resource is available for studying . Here, we report 91,562 high-quality transcripts of assembled de novo. Moreover, comparative transcriptome analysis revealed that 1311 single-copy orthologous pairs shared by and (Zoll. & Moritzi) Baill. that may have undergone adaptive evolution. We performed an analysis of the genes potentially involved in plant-pathogen interactions to explore the molecular basis of disease resistance, and isolated the full-length cDNAs of () and () orthologs from . The overexpression of in Nipponbare and functional characterization showed enhanced the resistance of transgenic Nipponbare to rice blast resulting from the presence of the gene. , an alternatively spliced transcript of the blast resistance gene in encodes a 1024-amino acid polypeptide with a C-terminal thioredoxin domain. This study provides an important resource for functional and evolutionary studies of the genus .
Collapse
|
22
|
Xu S, Liao CJ, Jaiswal N, Lee S, Yun DJ, Lee SY, Garvey M, Kaplan I, Mengiste T. Tomato PEPR1 ORTHOLOG RECEPTOR-LIKE KINASE1 Regulates Responses to Systemin, Necrotrophic Fungi, and Insect Herbivory. THE PLANT CELL 2018; 30:2214-2229. [PMID: 30131419 PMCID: PMC6181013 DOI: 10.1105/tpc.17.00908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 07/23/2018] [Accepted: 08/15/2018] [Indexed: 05/20/2023]
Abstract
Endogenous peptides regulate plant immunity and growth. Systemin, a peptide specific to the Solanaceae, is known for its functions in plant responses to insect herbivory and pathogen infections. Here, we describe the identification of the tomato (Solanum lycopersicum) PEPR1/2 ORTHOLOG RECEPTOR-LIKE KINASE1 (PORK1) as the TOMATO PROTEIN KINASE1b (TPK1b) interacting protein and demonstrate its biological functions in systemin signaling and tomato immune responses. Tomato PORK1 RNA interference (RNAi) plants with significantly reduced PORK1 expression showed increased susceptibility to tobacco hornworm (Manduca sexta), reduced seedling growth sensitivity to the systemin peptide, and compromised systemin-mediated resistance to Botrytis cinerea. Systemin-induced expression of Proteinase Inhibitor II (PI-II), a classical marker for systemin signaling, was abrogated in PORK1 RNAi plants. Similarly, in response to systemin and wounding, the expression of jasmonate pathway genes was attenuated in PORK1 RNAi plants. TPK1b, a key regulator of tomato defense against B. cinerea and M. sexta, was phosphorylated by PORK1. Interestingly, wounding- and systemin-induced phosphorylation of TPK1b was attenuated when PORK1 expression was suppressed. Our data suggest that resistance to B. cinerea and M. sexta is dependent on PORK1-mediated responses to systemin and subsequent phosphorylation of TPK1b. Altogether, PORK1 regulates tomato systemin, wounding, and immune responses.
Collapse
Affiliation(s)
- Siming Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Namrata Jaiswal
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Gwangjin-gu, Seoul 05029, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK 21 Program), Gyeongsang National University, Jinju City 660-701, Korea
| | - Michael Garvey
- Department of Entomology, Smith Hall, Purdue University, West Lafayette, Indiana 47907-2089
| | - Ian Kaplan
- Department of Biomedical Science and Engineering, Konkuk University, Gwangjin-gu, Seoul 05029, South Korea
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
23
|
Yoo Y, Park JC, Cho MH, Yang J, Kim CY, Jung KH, Jeon JS, An G, Lee SW. Lack of a Cytoplasmic RLK, Required for ROS Homeostasis, Induces Strong Resistance to Bacterial Leaf Blight in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:577. [PMID: 29868050 PMCID: PMC5968223 DOI: 10.3389/fpls.2018.00577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/13/2018] [Indexed: 05/02/2023]
Abstract
Many scientific findings have been reported on the beneficial function of reactive oxygen species (ROS) in various cellular processes, showing that they are not just toxic byproducts. The double-edged role of ROS shows the importance of the regulation of ROS level. We report a gene, rrsRLK (required for ROS-scavenging receptor-like kinase), that encodes a cytoplasmic RLK belonging to the non-RD kinase family. The gene was identified by screening rice RLK mutant lines infected with Xanthomonas oryzae pv. oryzae (Xoo), an agent of bacterial leaf blight of rice. The mutant (ΔrrsRLK) lacking the Os01g02290 gene was strongly resistant to many Xoo strains, but not to the fungal pathogen Magnaporthe grisea. ΔrrsRLK showed significantly higher expression of OsPR1a, OsPR1b, OsLOX, RBBTI4, and jasmonic acid-related genes than wild type. We showed that rrsRLK protein interacts with OsVOZ1 (vascular one zinc-finger 1) and OsPEX11 (peroxisomal biogenesis factor 11). In the further experiments, abnormal biogenesis of peroxisomes, hydrogen peroxide (H2O2) accumulation, and reduction of activity of ROS-scavenging enzymes were investigated in ΔrrsRLK. These results suggest that the enhanced resistance in ΔrrsRLK is due to H2O2 accumulation caused by irregular ROS-scavenging mechanism, and rrsRLK is most likely a key regulator required for ROS homeostasis in rice.
Collapse
Affiliation(s)
- Youngchul Yoo
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jong-Chan Park
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Man-Ho Cho
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jungil Yang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Chi-Yeol Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Gynheung An
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Sang-Won Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
24
|
Santamaria ME, Arnaiz A, Gonzalez-Melendi P, Martinez M, Diaz I. Plant Perception and Short-Term Responses to Phytophagous Insects and Mites. Int J Mol Sci 2018; 19:E1356. [PMID: 29751577 PMCID: PMC5983831 DOI: 10.3390/ijms19051356] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/03/2022] Open
Abstract
Plant⁻pest relationships involve complex processes encompassing a network of molecules, signals, and regulators for overcoming defenses they develop against each other. Phytophagous arthropods identify plants mainly as a source of food. In turn, plants develop a variety of strategies to avoid damage and survive. The success of plant defenses depends on rapid and specific recognition of the phytophagous threat. Subsequently, plants trigger a cascade of short-term responses that eventually result in the production of a wide range of compounds with defense properties. This review deals with the main features involved in the interaction between plants and phytophagous insects and acari, focusing on early responses from the plant side. A general landscape of the diverse strategies employed by plants within the first hours after pest perception to block the capability of phytophagous insects to develop mechanisms of resistance is presented, with the potential of providing alternatives for pest control.
Collapse
Affiliation(s)
- M Estrella Santamaria
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| | - Ana Arnaiz
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| | - Pablo Gonzalez-Melendi
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| | - Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| | - Isabel Diaz
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| |
Collapse
|
25
|
Beloshistov RE, Dreizler K, Galiullina RA, Tuzhikov AI, Serebryakova MV, Reichardt S, Shaw J, Taliansky ME, Pfannstiel J, Chichkova NV, Stintzi A, Schaller A, Vartapetian AB. Phytaspase-mediated precursor processing and maturation of the wound hormone systemin. THE NEW PHYTOLOGIST 2018; 218:1167-1178. [PMID: 28407256 DOI: 10.1111/nph.14568] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/21/2017] [Indexed: 05/24/2023]
Abstract
Peptide hormones are implicated in many important aspects of plant life and are usually synthesized as precursor proteins. In contrast to animals, data for plant peptide hormone maturation are scarce and the specificity of processing enzyme(s) is largely unknown. Here we tested a hypothesis that processing of prosystemin, a precursor of tomato (Solanum lycopersicum) wound hormone systemin, is performed by phytaspases, aspartate-specific proteases of the subtilase family. Following the purification of phytaspase from tomato leaves, two tomato phytaspase genes were identified, the cDNAs were cloned and the recombinant enzymes were obtained after transient expression in Nicotiana benthamiana. The newly identified tomato phytaspases hydrolyzed prosystemin at two aspartate residues flanking the systemin sequence. Site-directed mutagenesis of the phytaspase cleavage sites in prosystemin abrogated not only the phytaspase-mediated processing of the prohormone in vitro, but also the ability of prosystemin to trigger the systemic wound response in vivo. The data show that the prohormone prosystemin requires processing for signal biogenesis and biological activity. The identification of phytaspases as the proteases involved in prosystemin maturation provides insight into the mechanisms of wound signaling in tomato. Our data also suggest a novel role for cell death-related proteases in mediating defense signaling in plants.
Collapse
Affiliation(s)
- Roman E Beloshistov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Konrad Dreizler
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Raisa A Galiullina
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Alexander I Tuzhikov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Sven Reichardt
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Jane Shaw
- The James Hutton Institute, Dundee, DD2 5DA, UK
| | | | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, Stuttgart, 70593, Germany
| | - Nina V Chichkova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Andrey B Vartapetian
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
26
|
Zhang H, Yu P, Zhao J, Jiang H, Wang H, Zhu Y, Botella MA, Šamaj J, Li C, Lin J. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance. THE NEW PHYTOLOGIST 2018; 217:799-812. [PMID: 29105094 DOI: 10.1111/nph.14858] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/19/2017] [Indexed: 05/07/2023]
Abstract
Systemin (SYS), an octadecapeptide hormone processed from a 200-amino-acid precursor (prosystemin, PS), plays a central role in the systemic activation of defense genes in tomato in response to herbivore and pathogen attacks. However, whether PS mRNA is transferable and its role in systemic defense responses remain unknown. We created the transgenic tomato PS gene tagged with the green fluorescent protein (PS-GFP) using a shoot- or root-specific promoter, and the constitutive 35S promoter in Arabidopsis. Subcellular localization of PS-/SYS-GFP was observed using confocal laser scanning microscopy and gene transcripts were determined using quantitative real-time PCR. In Arabidopsis, PS protein can be processed and SYS is secreted. Shoot-/root-specific expression of PS-GFP in Arabidopsis, and grafting experiments, revealed that the PS mRNA moves in a bi-directional manner. We also found that ectopic expression of PS improves Arabidopsis resistance to the necrotrophic fungus Botrytis cinerea, consistent with substantial upregulation of the transcript levels of specific pathogen-responsive genes. Our results provide novel insights into the multifaceted mechanism of SYS signaling transport and its potential application in genetic engineering for increasing pathogen resistance across diverse plant families.
Collapse
Affiliation(s)
- Haiyan Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Pengli Yu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jiuhai Zhao
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haiyang Wang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06411, USA
| | - Yingfang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Miguel A Botella
- Departamento de Biologia Molecular y Bioquimica, Instituto de Hortofruticultura Subtropical y Mediterranea 'La Mayora', Universidad de Malaga-Consejo Superior de Investigaciones Cientificas (IHSM-UMA-CSIC), Universidad de Malaga, Campus Teatinos, 29071, Malaga, Spain
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Olomouc, Czech Republic
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinxing Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Biological Sciences, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
27
|
Pastor V, Sánchez-Bel P, Gamir J, Pozo MJ, Flors V. Accurate and easy method for systemin quantification and examining metabolic changes under different endogenous levels. PLANT METHODS 2018; 14:33. [PMID: 29713366 PMCID: PMC5918566 DOI: 10.1186/s13007-018-0301-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/20/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Systemin has been extensively studied since it was discovered and is described as a peptidic hormone in tomato plants and other Solanaceae. Jasmonic acid and systemin are proposed to act through a positive feed-back loop with jasmonic acid, playing synergistic roles in response to both wounding and insect attack. Despite its biological relevance, most studies regarding the function of systemin in defence have been studied via PROSYSTEMIN (PROSYS) gene expression, which encodes the propeptide prosystemin that is later cleaved to systemin (SYS). Interestingly, hardly any studies have been based on quantification of the peptide. RESULTS In this study, a simple and accurate method for systemin quantification was developed to understand its impact on plant metabolism. The basal levels of systemin were found to be extremely low. To study the role of endogenous systemin on plant metabolism, systemin was quantified in a transgenic line overexpressing the PROSYS gene (PS+) and in a silenced antisense line (PS-). We evaluated the relevance of systemin in plant metabolism by analysing the metabolomic profiles of both lines compared to wildtype plants through untargeted metabolomic profiling. Compounds within the lignan biosynthesis and tyrosine metabolism pathways strongly accumulated in PS+ compared to wild-type plants and to plants from the PS- line. The exogenous treatments with SYS enhanced accumulation of lignans, which confirms the role of SYS in cell wall reinforcement. Unexpectedly, PS+ plants displayed wild-type levels of jasmonic acid (JA) but elevated accumulation of 12-oxo-phytodienoic acid (OPDA), suggesting that PS+ should not be used as an over-accumulator of JA in experimental setups. CONCLUSIONS A simple method, requiring notably little sample manipulation to quantify the peptide SYS, is described. Previous studies were based on genetic changes. In our study, SYS accumulated at extremely low levels in wild-type tomato leaves, showed slightly higher levels in the PROSYSTEMIN-overexpressing plants and was absent in the silenced lines. These small changes have a significant impact on plant metabolism. SA and OPDA, but not JA, were higher in the PROSYS-overexpressing plants.
Collapse
Affiliation(s)
- Victoria Pastor
- Associated Unit EEZ-UJI. Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Universitat Jaume I, Associated Unit to the CSIC, Castellón de la Plana, Castellón Spain
| | - Paloma Sánchez-Bel
- Associated Unit EEZ-UJI. Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Universitat Jaume I, Associated Unit to the CSIC, Castellón de la Plana, Castellón Spain
| | - Jordi Gamir
- Department of Soil Microbiology and Symbiotic Systems, Estacion Experimental del Zaidin (CSIC), Granada, Spain
| | - María J. Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estacion Experimental del Zaidin (CSIC), Granada, Spain
| | - Víctor Flors
- Associated Unit EEZ-UJI. Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Universitat Jaume I, Associated Unit to the CSIC, Castellón de la Plana, Castellón Spain
| |
Collapse
|
28
|
Buonanno M, Coppola M, Di Lelio I, Molisso D, Leone M, Pennacchio F, Langella E, Rao R, Monti SM. Prosystemin, a prohormone that modulates plant defense barriers, is an intrinsically disordered protein. Protein Sci 2017; 27:620-632. [PMID: 29168260 DOI: 10.1002/pro.3348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 11/09/2022]
Abstract
Prosystemin, originally isolated from Lycopersicon esculentum, is a tomato pro-hormone of 200 aminoacid residues which releases a bioactive peptide of 18 aminoacids called Systemin. This signaling peptide is involved in the activation of defense genes in solanaceous plants in response to herbivore feeding damage. Using biochemical, biophysical and bioinformatics approaches we characterized Prosystemin, showing that it is an intrinsically disordered protein possessing a few secondary structure elements within the sequence. Plant treatment with recombinant Prosystemin promotes early and late plant defense genes, which limit the development and survival of Spodoptera littoralis larvae fed with treated plants.
Collapse
Affiliation(s)
| | - Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | - Ilaria Di Lelio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | - Donata Molisso
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Francesco Pennacchio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | | |
Collapse
|
29
|
Coppola M, Cascone P, Madonna V, Di Lelio I, Esposito F, Avitabile C, Romanelli A, Guerrieri E, Vitiello A, Pennacchio F, Rao R, Corrado G. Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato. Sci Rep 2017; 7:15522. [PMID: 29138416 PMCID: PMC5686165 DOI: 10.1038/s41598-017-15481-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
Plants actively respond to herbivory by inducing various defense mechanisms in both damaged (locally) and non-damaged tissues (systemically). In addition, it is currently widely accepted that plant-to-plant communication allows specific neighbors to be warned of likely incoming stress (defense priming). Systemin is a plant peptide hormone promoting the systemic response to herbivory in tomato. This 18-aa peptide is also able to induce the release of bioactive Volatile Organic Compounds, thus also promoting the interaction between the tomato and the third trophic level (e.g. predators and parasitoids of insect pests). In this work, using a combination of gene expression (RNA-Seq and qRT-PCR), behavioral and chemical approaches, we demonstrate that systemin triggers metabolic changes of the plant that are capable of inducing a primed state in neighboring unchallenged plants. At the molecular level, the primed state is mainly associated with an elevated transcription of pattern -recognition receptors, signaling enzymes and transcription factors. Compared to naïve plants, systemin-primed plants were significantly more resistant to herbivorous pests, more attractive to parasitoids and showed an increased response to wounding. Small peptides are nowadays considered fundamental signaling molecules in many plant processes and this work extends the range of downstream effects of this class of molecules to intraspecific plant-to-plant communication.
Collapse
Affiliation(s)
- Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Pasquale Cascone
- Istituto per la Protezione Sostenibile delle Piante, CNR, Via Università 133, Portici, NA, Italy
| | - Valentina Madonna
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Ilaria Di Lelio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Francesco Esposito
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Concetta Avitabile
- Istituto di Biostrutture e Bioimmagini (CNR), via Mezzocannone 16, 80134, Napoli, Italy
| | - Alessandra Romanelli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano, 49, 80131, Napoli, NA, Italy
| | - Emilio Guerrieri
- Istituto per la Protezione Sostenibile delle Piante, CNR, Via Università 133, Portici, NA, Italy
| | - Alessia Vitiello
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Francesco Pennacchio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy.
| | - Giandomenico Corrado
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy.
| |
Collapse
|
30
|
Zhang H, Hu Y. Long-Distance Transport of Prosystemin Messenger RNA in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:1894. [PMID: 29163614 PMCID: PMC5681517 DOI: 10.3389/fpls.2017.01894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/19/2017] [Indexed: 05/27/2023]
Abstract
Main conclusion: The transcripts of transgenic prosystemin (PS) gene are mobile and the PS mRNA can be translated into protein in tomato and tobacco plants. Systemin (SYS) and its precursor protein, prosystemin (PS), are upstream components of the wound-induced signaling pathway in tomato. Although the mobile signal(s) for wound responses has been the subject of considerable research, its identity remains controversial. Intensive studies have revealed the essential role of mRNA on plant systemic signaling. We hypothesize that PS mRNA can act as a transmissible signal in tomato. Herein, we demonstrated that transgenic PS mRNA occurs in leaves located at considerable distances from the initial site of its generation by a transient Agrobacterium-infiltration assay system. We also showed that PS protein is present in the vascular bundle of the distant leaves. Our results indicate that transgenic PS mRNA may be functional as a long-distance signal to modulate systemic defense responses in tomato, providing novel insights into the multifaceted systems by which SYS signaling transports.
Collapse
Affiliation(s)
- Haiyan Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yuanyuan Hu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
- College of Life Science, Shanxi Normal University, Linfen, China
| |
Collapse
|
31
|
Kersch-Becker MF, Kessler A, Thaler JS. Plant defences limit herbivore population growth by changing predator-prey interactions. Proc Biol Sci 2017; 284:20171120. [PMID: 28878062 PMCID: PMC5597831 DOI: 10.1098/rspb.2017.1120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/28/2017] [Indexed: 11/12/2022] Open
Abstract
Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates. On high-resistance plants, the predator community was less diverse and abundant, resulting in low predator consumption rate. Plant resistance only directly regulated aphid population growth on predator-excluded plants. When predators were present, plant resistance indirectly regulated herbivore population growth by changing the impact of predators on the herbivorous prey. A possible mechanism for the interaction between plant resistance and predation is that methyl salicylate, a herbivore-induced plant volatile attractive to predators, was more strongly induced in low-resistance plants. Increased plant resistance reduced predator attractant lures, preventing predators from locating their prey. Low-resistance plants may regulate herbivore populations via predators by providing reliable information on prey availability and increasing the effectiveness of predators.
Collapse
Affiliation(s)
- Mônica F Kersch-Becker
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Animal Biology, University of Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer S Thaler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
32
|
Di X, Gomila J, Takken FLW. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2017; 18:1024-1035. [PMID: 28390170 PMCID: PMC6638294 DOI: 10.1111/mpp.12559] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 05/05/2023]
Abstract
Phytohormones, such as salicylic acid (SA), ethylene (ET) and jasmonic acid (JA), play key roles in plant defence following pathogen attack. The involvement of these hormones in susceptibility following Fusarium oxysporum (Fo) infection has mostly been studied in Arabidopsis thaliana. However, Fo causes vascular wilt disease in a broad range of crops, including tomato (Solanum lycopersicum). Surprisingly little is known about the involvement of these phytohormones in the susceptibility of tomato towards Fo f. sp. lycopersici (Fol). Here, we investigate their involvement by the analysis of the expression of ET, JA and SA marker genes following Fol infection, and by bioassays of tomato mutants affected in either hormone production or perception. Fol inoculation triggered the expression of SA and ET marker genes, showing the activation of these pathways. NahG tomato, in which SA is degraded, became hypersusceptible to Fol infection and showed stronger disease symptoms than wild-type. In contrast, ACD and Never ripe (Nr) mutants, in which ET biosynthesis and perception, respectively, are impaired, showed decreased disease symptoms and reduced fungal colonization on infection. The susceptibility of the def1 tomato mutant, and a prosystemin over-expressing line, in which JA signalling is compromised or constitutively activated, respectively, was unaltered. Our results show that SA is a negative and ET a positive regulator of Fol susceptibility. The SA and ET signalling pathways appear to act synergistically, as an intact ET pathway is required for the induction of an SA marker gene, and vice versa.
Collapse
Affiliation(s)
- Xiaotang Di
- Molecular Plant Pathology, Faculty of ScienceSwammerdam Institute for Life Sciences, University of AmsterdamPO Box 94215, 1090GEAmsterdamthe Netherlands
| | - Jo Gomila
- Molecular Plant Pathology, Faculty of ScienceSwammerdam Institute for Life Sciences, University of AmsterdamPO Box 94215, 1090GEAmsterdamthe Netherlands
| | - Frank L. W. Takken
- Molecular Plant Pathology, Faculty of ScienceSwammerdam Institute for Life Sciences, University of AmsterdamPO Box 94215, 1090GEAmsterdamthe Netherlands
| |
Collapse
|
33
|
Bubici G, Carluccio AV, Stavolone L, Cillo F. Prosystemin overexpression induces transcriptional modifications of defense-related and receptor-like kinase genes and reduces the susceptibility to Cucumber mosaic virus and its satellite RNAs in transgenic tomato plants. PLoS One 2017; 12:e0171902. [PMID: 28182745 PMCID: PMC5300215 DOI: 10.1371/journal.pone.0171902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/27/2017] [Indexed: 01/06/2023] Open
Abstract
Systemin is a plant signal peptide hormone involved in the responses to wounding and insect damage in the Solanaceae family. It works in the same signaling pathway of jasmonic acid (JA) and enhances the expression of proteinase inhibitors. With the aim of studying a role for systemin in plant antiviral responses, a tomato (Solanum lycopersicum) transgenic line overexpressing the prosystemin cDNA, i.e. the systemin precursor, was inoculated with Cucumber mosaic virus (CMV) strain Fny supporting either a necrogenic or a non-necrogenic satellite RNA (satRNA) variant. Transgenic plants showed reduced susceptibility to both CMV/satRNA combinations. While symptoms of the non-necrogenic inoculum were completely suppressed, a delayed onset of lethal disease occurred in about half of plants challenged with the necrogenic inoculum. RT-qPCR analysis showed a correlation between the systemin-mediated reduced susceptibility and the JA biosynthetic and signaling pathways (e.g. transcriptional alteration of lipoxygenase D and proteinase inhibitor II). Moreover, transgenically overexpressed systemin modulated the expression of a selected set of receptor-like protein kinase (RLK) genes, including some playing a known role in plant innate immunity. A significant correlation was found between the expression profiles of some RLKs and the systemin-mediated reduced susceptibility to CMV/satRNA. These results show that systemin can increase plant defenses against CMV/satRNA through transcriptional reprogramming of diverse signaling pathways.
Collapse
Affiliation(s)
- Giovanni Bubici
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Anna Vittoria Carluccio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Livia Stavolone
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy.,International Institute of Tropical Agriculture, Ibadan, Oyo State, Nigeria
| | - Fabrizio Cillo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
34
|
Chen C, Zhang Y, Qiakefu K, Zhang X, Han LM, Hua WP, Yan YP, Wang ZZ. Overexpression of Tomato Prosystemin (LePS) Enhances Pest Resistance and the Production of Tanshinones in Salvia miltiorrhiza Bunge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7760-7769. [PMID: 27690419 DOI: 10.1021/acs.jafc.6b02844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tanshinones are a group of active diterpenes with pharmacological properties that are widely used in the treatment of cardiovascular diseases. Jasmonate (JA) acts as an elicitor to enhance tanshinone biosynthesis in Salvia miltiorrhiza. However, because of high labor costs and undesirable chemical characteristics, the use of JA elicitation is still in the experimental stage. In our experiments, the overexpression of Lycopersicon esculentum (tomato) Prosystemin (LePS) in transgenic plants of S. miltiorrhiza increased their JA concentrations, significantly enhanced the production of tanshinone, and activated the expression of key genes in the tanshinone biosynthesis pathway. Meanwhile, the relative levels of metabolites related to defense such as sterols, terpenes, and phenolic acids were also increased in our OEP lines. In addition, when the larvae of cotton bollworms (Heliothis armigera) were fed with leaves from transgenic lines, their mortality rates rose by nearly 4-fold when compared to that of larvae exposed to leaves from the nontransformed wild type. Our study provides a new strategy for genetic engineering by which tanshinone production and pest resistance can be improved in S. miltiorrhiza. This is accomplished by simulating the wounding signal that increases the endogenous levels of JA.
Collapse
Affiliation(s)
- Chen Chen
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University , 710119, Xi'an, P. R. China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University , 710119, Xi'an, P. R. China
| | - Kuliman Qiakefu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University , 710119, Xi'an, P. R. China
| | - Xuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University , 710119, Xi'an, P. R. China
| | - Li-Min Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University , 710119, Xi'an, P. R. China
- College of Life Science and Food Engineering, Shaanxi Xueqian Normal University , 710110, Xi'an, P. R. China
| | - Wen-Ping Hua
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University , 710119, Xi'an, P. R. China
- College of Life Science and Food Engineering, Shaanxi Xueqian Normal University , 710110, Xi'an, P. R. China
| | - Ya-Ping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University , 710119, Xi'an, P. R. China
| | - Zhe-Zhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University , 710119, Xi'an, P. R. China
| |
Collapse
|
35
|
Li YC, Wan WL, Lin JS, Kuo YW, King YC, Chen YC, Jeng ST. Signal transduction and regulation of IbpreproHypSys in sweet potato. PLANT, CELL & ENVIRONMENT 2016; 39:1576-87. [PMID: 26924170 DOI: 10.1111/pce.12729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 05/28/2023]
Abstract
Hydroxyproline-rich glycopeptides (HypSys) are small signalling peptides containing 18-20 amino acids. The expression of IbpreproHypSys, encoding the precursor of IbHypSys, was induced in sweet potato (Ipomoea batatas cv. Tainung 57) through wounding and IbHypSys treatments by using jasmonate and H2 O2 . Transgenic sweet potatoes overexpressing (OE) and silencing [RNA interference (RNAi)] IbpreproHypSys were created. The expression of the wound-inducible gene for ipomoelin (IPO) in the local and systemic leaves of OE plants was stronger than the expression in wild-type (WT) and RNAi plants after wounding. Furthermore, grafting experiments indicated that IPO expression was considerably higher in WT stocks receiving wounding signals from OE than from RNAi scions. However, wounding WT scions highly induced IPO expression in OE stocks. These results indicated that IbpreproHypSys expression contributed towards sending and receiving the systemic signals that induced IPO expression. Analysing the genes involved in the phenylpropanoid pathway demonstrated that lignin biosynthesis was activated after synthetic IbHypSys treatment. IbpreproHypSys expression in sweet potato suppressed Spodoptera litura growth. In conclusion, wounding induced the expression of IbpreproHypSys, whose protein product was processed into IbHypSys. IbHypSys stimulated IbpreproHypSys and IPO expression and enhanced lignin biosynthesis, thus protecting plants from insects.
Collapse
Affiliation(s)
- Yu-Chi Li
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Wei-Lin Wan
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
- Department of Plant Biochemistry, Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, 72076, Germany
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yun-Wei Kuo
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Chi King
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 82444, Taiwan
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
36
|
Carrillo-Perdomo E, Jiménez-Arias D, Aller Á, Borges AA. Menadione Sodium Bisulphite (MSB) enhances the resistance response of tomato, leading to repel mollusc pests. PEST MANAGEMENT SCIENCE 2016; 72:950-960. [PMID: 26155989 DOI: 10.1002/ps.4074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/04/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Snails and slugs are terrestrial gastropods representing an important biotic stress that adversely affects crop yields. These pests are typically controlled with molluscicides, which produce pollution and toxicity and further induce the evolution of resistance mechanisms, making pest management even more challenging. In our work, we have assessed the efficacy of two different plant defence activators, menadione sodium bisulphite (MSB) and 1,2,3-benzothiadiazole-7-thiocarboxylic acid S-methyl ester (BTH), as inducers of resistance mechanisms of the model plant for defence, Solanum lycopersicum, against the generalist mollusc Theba grasseti (Helicidae). The study was designed to test the feeding behaviour and choice of snails, and also to analyse the expression profile of different genes specifically involved in defence against herbivores and wounds. RESULTS Our data suggest that, through the downregulation of the terpene volatile genes and the production of proteinase inhibitors, treated MSB plants may be less apparent to herbivores that use herbivore-induced plant volatiles for host location. By contrast, BTH was not effective in the treatment of the pest, probably owing to an antagonistic effect derived from the induction of both salicylic-acid-dependent and jasmonic-acid-dependent pathways. CONCLUSIONS This information is crucial to determine the genetic basis of the choice of terrestrial gastropod herbivores in tomato, providing valuable insight into how the plant defence activators could control herbivore pests in plants. Our work not only reports for the first time the interaction between tomato and a mollusc pest but also presents the action of two plant defence inductors that seems to produce opposed responses by inducing resistance mechanisms through different defence pathways.
Collapse
Affiliation(s)
- Estefanía Carrillo-Perdomo
- Instituto de Productos Naturales y Agrobiología-CSIC, La Laguna, Tenerife, Canary Islands, Spain
- Universidad Nacional de Chimborazo (UNACH), Faculty of Engineering, Agroindustrial Engineering, Riobamba, Chimborazo, Ecuador
| | - David Jiménez-Arias
- Instituto de Productos Naturales y Agrobiología-CSIC, La Laguna, Tenerife, Canary Islands, Spain
| | - Ángel Aller
- Instituto de Productos Naturales y Agrobiología-CSIC, La Laguna, Tenerife, Canary Islands, Spain
- Universidad Nacional de Chimborazo (UNACH), Faculty of Engineering, Agroindustrial Engineering, Riobamba, Chimborazo, Ecuador
| | - Andrés A Borges
- Instituto de Productos Naturales y Agrobiología-CSIC, La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
37
|
Coppola M, Corrado G, Coppola V, Cascone P, Martinelli R, Digilio MC, Pennacchio F, Rao R. Prosystemin Overexpression in Tomato Enhances Resistance to Different Biotic Stresses by Activating Genes of Multiple Signaling Pathways. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:1270-1285. [PMID: 26339120 PMCID: PMC4551541 DOI: 10.1007/s11105-014-0834-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Systemin is a signal peptide that promotes the response to wounding and herbivore attack in tomato. This 18-amino acid peptide is released from a larger precursor, prosystemin. To study the role of systemin as a modulator of defense signaling, we generated tomato (Solanum lycopersicum) transgenic plants that overexpress the prosystemin cDNA. We carried out a transcriptomic analysis comparing two different transgenic events with the untransformed control. The Gene Ontology categories of the 503 differentially expressed genes indicated that several biological functions were affected. Systemin promotes the expression of an array of defense genes that are dependent on different signaling pathways and it downregulates genes connected with carbon fixation and carbohydrate metabolism. These alterations present a degree of overlap with the response programs that are classically associated to pathogen defense or abiotic stress protection, implying that end products of the systemin signaling pathway may be more diverse than expected. We show also that the observed transcriptional modifications have a relevant functional outcome, since transgenic lines were more resistant against very different biotic stressors such as aphids (Macrosiphum euphorbiae), phytopathogenic fungi (Botrytis cinerea and Alternaria alternata) and phytophagous larvae (Spodoptera littoralis). Our work demonstrated that in tomato the modulation of a single gene is sufficient to provide a wide resistance against stress by boosting endogenous defense pathways. Overall, the data provided evidence that the systemin peptide might serve as DAMP signal in tomato, acting as a broad indicator of tissue integrity.
Collapse
Affiliation(s)
- Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | - Giandomenico Corrado
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | - Valentina Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | | | | | - Maria Cristina Digilio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | - Francesco Pennacchio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| |
Collapse
|
38
|
Kersch-Becker MF, Thaler JS. Plant resistance reduces the strength of consumptive and non-consumptive effects of predators on aphids. J Anim Ecol 2015; 84:1222-32. [DOI: 10.1111/1365-2656.12371] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/12/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Mônica F. Kersch-Becker
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853 USA
- Department of Entomology; Cornell University; Ithaca NY 14853 USA
| | - Jennifer S. Thaler
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853 USA
- Department of Entomology; Cornell University; Ithaca NY 14853 USA
| |
Collapse
|
39
|
Abstract
Tomato (Solanum lycopersicum), along with many other economically valuable species, belongs to the Solanaceae family. Understanding how plants in this family defend themselves against pathogens offers the opportunity of improving yield and quality of their edible products. The use of functional genomics has contributed to this purpose through both traditional and recently developed techniques that allow determination of changes in transcript abundance during pathogen attack. Such changes can implicate the affected gene as participating in plant defense. Testing the involvement of these candidate genes in defense has relied largely on posttranscriptional gene silencing, particularly virus-induced gene silencing. We discuss how functional genomics has played a key role in our current understanding of the defense response in tomato and related species and what are the challenges and opportunities for the future.
Collapse
|
40
|
Yan L, Zhai Q, Wei J, Li S, Wang B, Huang T, Du M, Sun J, Kang L, Li CB, Li C. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet 2013; 9:e1003964. [PMID: 24348260 PMCID: PMC3861047 DOI: 10.1371/journal.pgen.1003964] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/29/2013] [Indexed: 01/20/2023] Open
Abstract
In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and pathogens.
Collapse
Affiliation(s)
- Liuhua Yan
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianing Wei
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bao Wang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao, China
| | - Minmin Du
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiaqiang Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chang-Bao Li
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Santamaria ME, Martínez M, Cambra I, Grbic V, Diaz I. Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests. Transgenic Res 2013; 22:697-708. [PMID: 23793555 DOI: 10.1007/s11248-013-9725-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/10/2013] [Indexed: 11/25/2022]
Abstract
Plant-herbivore relationships are complex interactions encompassing elaborate networks of molecules, signals and strategies used to overcome defences developed by each other. Herbivores use multiple feeding strategies to obtain nutrients from host plants. In turn, plants respond by triggering defence mechanisms to inhibit, block or modify the metabolism of the pest. As part of these defences, herbivore-challenged plants emit volatiles to attract natural enemies and warn neighbouring plants of the imminent threat. In response, herbivores develop a variety of strategies to suppress plant-induced protection. Our understanding of the plant-herbivore interphase is limited, although recent molecular approaches have revealed the participation of a battery of genes, proteins and volatile metabolites in attack-defence processes. This review describes the intricate and dynamic defence systems governing plant-herbivore interactions by examining the diverse strategies plants employ to deny phytophagous arthropods the ability to breach newly developed mechanisms of plant resistance. A cornerstone of this understanding is the use of transgenic tools to unravel the complex networks that control these interactions.
Collapse
Affiliation(s)
- M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Universidad Politécnica de Madrid, Campus Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | |
Collapse
|
42
|
Bhattacharya R, Koramutla MK, Negi M, Pearce G, Ryan CA. Hydroxyproline-rich glycopeptide signals in potato elicit signalling associated with defense against insects and pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 207:88-97. [PMID: 23602103 DOI: 10.1016/j.plantsci.2013.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/27/2013] [Accepted: 03/06/2013] [Indexed: 05/08/2023]
Abstract
HypSys peptides are 18-20 amino acids glycopeptide defense signal first discovered in tobacco and tomato that activate expression of defensive genes against insect-herbivores. Discovery of their orthologs in other Solanaceaous and nonsolanaceous plants demonstrated their possible ubiquitous nature and species specific functional diversity. In our continued search to establish the paradigm of defense signalling by HypSys peptides, we isolated a cDNA from potato leaves encoding putative analogs of tomato HypSys peptides flanked by conserved proteolytic cleavage sites. The gene encoding the cDNA was a member of a gene family in the tetraploid genome of potato and its expression was transcriptionally activated by wounding and methyl jasmonate. The deduced precursor protein contained a leader peptidase splice site and three putative HypSys peptides with conserved N- and C-termini along with central proline-rich motifs. In defense signalling, the three HypSys peptides elicit H₂O₂ generation in vivo and activate several antioxidant defensive enzymes in young potato leaves. Similar to potato systemin, the HypSys peptides activate the expression of octadecanoid pathway genes and protease inhibitors for insect defense. In addition, the HypSys peptides also activate the essential genes of the innate pathogen defense response in young potato leaves, acting as common elicitors of signalling associated with anti-herbivore and anti-pathogen defense in potato.
Collapse
Affiliation(s)
- Ramcharan Bhattacharya
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi 110012, India.
| | | | | | | | | |
Collapse
|
43
|
Delano-Frier JP, Pearce G, Huffaker A, Stratmann JW. Systemic Wound Signaling in Plants. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Martínez-Medina A, Fernández I, Sánchez-Guzmán MJ, Jung SC, Pascual JA, Pozo MJ. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. FRONTIERS IN PLANT SCIENCE 2013; 4:206. [PMID: 23805146 PMCID: PMC3690380 DOI: 10.3389/fpls.2013.00206] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/31/2013] [Indexed: 05/18/2023]
Abstract
Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development.
Collapse
Affiliation(s)
- Ainhoa Martínez-Medina
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence: Ainhoa Martínez-Medina, Plant-Microbe Interactions, Utrecht University, H.R. Kruyt Building, Padualaan 8, W303, 3584 CH Utrecht, Netherlands e-mail: ; María J. Pozo, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, 18008 Granada, Spain e-mail:
| | - Iván Fernández
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - María J. Sánchez-Guzmán
- Estación Experimental La Mayora, Consejo Superior de Investigaciones Científicas, MálagaSpain
| | - Sabine C. Jung
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Jose A. Pascual
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - María J. Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence: Ainhoa Martínez-Medina, Plant-Microbe Interactions, Utrecht University, H.R. Kruyt Building, Padualaan 8, W303, 3584 CH Utrecht, Netherlands e-mail: ; María J. Pozo, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, 18008 Granada, Spain e-mail:
| |
Collapse
|
45
|
|
46
|
Sun JQ, Jiang HL, Li CY. Systemin/Jasmonate-mediated systemic defense signaling in tomato. MOLECULAR PLANT 2011; 4:607-15. [PMID: 21357647 DOI: 10.1093/mp/ssr008] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Wound-inducible proteinase inhibitors (PIs) in tomato plants provide a useful model system to elucidate the signal transduction pathways that regulate systemic defense response. Among the proposed intercellular signals for wound-induced PIs expression are the peptide systemin and the oxylipin-derived phytohormone jasmonic acid (JA). An increasing body of evidence indicates that systemin and JA work in the same signaling pathway to activate the expression of PIs and other defense-related genes. However, relatively less is known about how these signals interact to promote cell-to-cell communication over long distances. Genetic analysis of the systemin/JA signaling pathway in tomato plants provides a unique opportunity to study, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate systemic expression of defense-related genes. Previously, it has been proposed that systemin is the long-distance mobile signal for defense gene expression. Recently, grafting experiments with tomato mutants defective in JA biosynthesis and signaling provide new evidence that JA, rather than systemin, functions as the systemic wound signal, and that the biosynthesis of JA is regulated by the peptide systemin. Further understanding of the systemin/JA signaling pathway promises to provide new insights into the basic mechanisms governing plant defense to biotic stress.
Collapse
Affiliation(s)
- Jia-Qiang Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| | | | | |
Collapse
|
47
|
Yamaguchi Y, Barona G, Ryan CA, Pearce G. GmPep914, an eight-amino acid peptide isolated from soybean leaves, activates defense-related genes. PLANT PHYSIOLOGY 2011; 156:932-42. [PMID: 21478368 PMCID: PMC3177287 DOI: 10.1104/pp.111.173096] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/07/2011] [Indexed: 05/14/2023]
Abstract
Only a handful of endogenous peptide defense signals have been isolated from plants. Herein, we report a novel peptide from soybean (Glycine max) leaves that is capable of alkalinizing the media of soybean suspension cells, a response that is generally associated with defense peptides. The peptide, DHPRGGNY, was synthesized and found to be active at 0.25 nM and requiring only 5 to 10 min to obtain a maximal pH change. The peptide is located on the carboxy-terminal end of a 52-amino acid precursor protein (Glyma12g00990) deduced from the soybean genome project. A search of the soybean databank revealed a homolog (Glyma09g36370) that contained a similar peptide, DLPRGGNY, which was synthesized and shown to have identical activity. The peptides, designated GmPep914 (DHPRGGNY) and GmPep890 (DLPRGGNY), were capable of inducing the expression of both Glyma12g00990 (GmPROPEP914) and Glyma09g36370 (GmPROPEP890) in cultured soybean suspension cells within 1 h. Both peptides induced the expression of defense genes, including CYP93A1, a cytochrome P450 gene involved in phytoalexin synthesis, chitinaseb1-1, a chitinase involved in pathogen defense, and Glycine max chalcone synthase1 (Gmachs1), chalcone synthase, involved in phytoalexin production. Both GmPROPEP914 and GmPROPEP890 were highly expressed in the roots, relative to the aerial portions of the plant. However, treatment of the aerial portion of soybean plants with hormones involved in elicitation of defense responses revealed a significant increase in expression levels of GmPROPEP914 and GmPROPEP890. A search of gene databases revealed homologous sequences in other members of the Fabales and also in the closely related Cucurbitales but not in any other order of plants.
Collapse
|
48
|
Degenhardt DC, Refi-Hind S, Stratmann JW, Lincoln DE. Systemin and jasmonic acid regulate constitutive and herbivore-induced systemic volatile emissions in tomato, Solanum lycopersicum. PHYTOCHEMISTRY 2010; 71:2024-37. [PMID: 20970815 DOI: 10.1016/j.phytochem.2010.09.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/01/2010] [Accepted: 09/21/2010] [Indexed: 05/20/2023]
Abstract
Transgenic tomato (Solanum lycopersicum) plants that overexpress the Prosystemin gene (35S::PS) and plants with a mutation in the JA biosynthetic pathway (def1) are known to exhibit a constitutive or reduced wound response, respectively. Here it is demonstrated that several independent 35S::PS lines emit high levels of specific volatiles in addition to increased accumulation of proteinase inhibitors (PIs). Furthermore, the temporal dynamics of systemically induced volatile compounds including green-leaf volatiles, terpenes, and shikimic acid-derivatives from 35S::PS and def1 plants in response to herbivore wounding and treatment with jasmonic acid (JA) are described. Application of JA induced defense protein accumulation and volatile emissions in wild type plants, but did not further increase systemic volatile emissions from 35S::PS plants. Wounding by Manduca sexta larvae induced synthesis of defense proteins and emission of volatiles in wild type plants, but not in def1 plants. Application of jasmonic acid restored the local and systemic accumulation of defense proteins in def1, as well as enhanced herbivore-induced volatile emissions. These results provide strong support for the role of prosystemin- and JA-signaling in the regulation of volatile emissions in tomato plants.
Collapse
Affiliation(s)
- David C Degenhardt
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | |
Collapse
|
49
|
Du F, Bai Y, Bai Y, Liu H. Quantitative Detection of Trace Systemins in Solanaceous Plants by Immunoaffinity Purification Combined with Liquid Chromatography/Electrospray Quadrupole Time-of-Flight Mass Spectrometry. Anal Chem 2010; 82:9374-83. [DOI: 10.1021/ac101983b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Fuyou Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
50
|
Puthoff DP, Holzer FM, Perring TM, Walling LL. Tomato pathogenesis-related protein genes are expressed in response to Trialeurodes vaporariorum and Bemisia tabaci biotype B feeding. J Chem Ecol 2010; 36:1271-85. [PMID: 20927641 PMCID: PMC2980633 DOI: 10.1007/s10886-010-9868-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/10/2010] [Accepted: 09/20/2010] [Indexed: 12/25/2022]
Abstract
The temporal and spatial expression of tomato wound- and defense-response genes to Bemisia tabaci biotype B (the silverleaf whitefly) and Trialeurodes vaporariorum (the greenhouse whitefly) feeding were characterized. Both species of whiteflies evoked similar changes in tomato gene expression. The levels of RNAs for the methyl jasmonic acid (MeJA)- or ethylene-regulated genes that encode the basic β-1,3-glucanase (GluB), basic chitinase (Chi9), and Pathogenesis-related protein-1 (PR-1) were monitored. GluB and Chi9 RNAs were abundant in infested leaves from the time nymphs initiated feeding (day 5). In addition, GluB RNAs accumulated in apical non-infested leaves. PR-1 RNAs also accumulated after whitefly feeding. In contrast, the ethylene- and salicylic acid (SA)-regulated Chi3 and PR-4 genes had RNAs that accumulated at low levels and GluAC RNAs that were undetectable in whitefly-infested tomato leaves. The changes in Phenylalanine ammonia lyase5 (PAL5) were variable; in some, but not all infestations, PAL5 RNAs increased in response to whitefly feeding. PAL5 RNA levels increased in response to MeJA, ethylene, and abscisic acid, and declined in response to SA. Transcripts from the wound-response genes, leucine aminopeptidase (LapA1) and proteinase inhibitor 2 (pin2), were not detected following whitefly feeding. Furthermore, whitefly infestation of transgenic LapA1:GUS tomato plants showed that whitefly feeding did not activate the LapA1 promoter, although crushing of the leaf lamina increased GUS activity up to 40 fold. These studies indicate that tomato plants perceive B. tabaci and T. vaporariorum in a manner similar to baterical pathogens and distinct from tissue-damaging insects.
Collapse
Affiliation(s)
- David P Puthoff
- Department of Biology, Frostburg State University, Frostburg, MD 21532, USA
| | | | | | | |
Collapse
|