1
|
Rühle T, Leister D, Pasch V. Chloroplast ATP synthase: From structure to engineering. THE PLANT CELL 2024; 36:3974-3996. [PMID: 38484126 PMCID: PMC11449085 DOI: 10.1093/plcell/koae081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 10/05/2024]
Abstract
F-type ATP synthases are extensively researched protein complexes because of their widespread and central role in energy metabolism. Progress in structural biology, proteomics, and molecular biology has also greatly advanced our understanding of the catalytic mechanism, post-translational modifications, and biogenesis of chloroplast ATP synthases. Given their critical role in light-driven ATP generation, tailoring the activity of chloroplast ATP synthases and modeling approaches can be applied to modulate photosynthesis. In the future, advances in genetic manipulation and protein design tools will significantly expand the scope for testing new strategies in engineering light-driven nanomotors.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Viviana Pasch
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Yi S, Guo X, Lou W, Mao S, Luan G, Lu X. Structure, Regulation, and Significance of Cyanobacterial and Chloroplast Adenosine Triphosphate Synthase in the Adaptability of Oxygenic Photosynthetic Organisms. Microorganisms 2024; 12:940. [PMID: 38792770 PMCID: PMC11124002 DOI: 10.3390/microorganisms12050940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
In cyanobacteria and chloroplasts (in algae and plants), ATP synthase plays a pivotal role as a photosynthetic membrane complex responsible for producing ATP from adenosine diphosphate and inorganic phosphate, utilizing a proton motive force gradient induced by photosynthesis. These two ATP synthases exhibit similarities in gene organization, amino acid sequences of subunits, structure, and functional mechanisms, suggesting that cyanobacterial ATP synthase is probably the evolutionary precursor to chloroplast ATP synthase. In this review, we explore the precise synthesis and assembly of ATP synthase subunits to address the uneven stoichiometry within the complex during transcription, translation, and assembly processes. We also compare the regulatory strategies governing ATP synthase activity to meet varying energy demands in cyanobacteria and chloroplasts amid fluctuating natural environments. Furthermore, we delve into the role of ATP synthase in stress tolerance and photosynthetic carbon fixation efficiency in oxygenic photosynthetic organisms (OPsOs), along with the current researches on modifying ATP synthase to enhance carbon fixation efficiency under stress conditions. This review aims to offer theoretical insights and serve as a reference for understanding the functional mechanisms of ATP synthase, sparking innovative ideas for enhancing photosynthetic carbon fixation efficiency by utilizing ATP synthase as an effective module in OPsOs.
Collapse
Affiliation(s)
- Siyan Yi
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China;
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
| | - Xin Guo
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
- College of Live Science, Henan University, Kaifeng 450001, China
| | - Wenjing Lou
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Shaoming Mao
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China;
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
| | - Guodong Luan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
3
|
Machida A, Kondo K, Wakabayashi KI, Tanaka K, Hisabori T. Molecular Bulkiness of a Single Amino Acid in the F1 α-Subunit Determines the Robustness of Cyanobacterial ATP Synthase. PLANT & CELL PHYSIOLOGY 2023; 64:1590-1600. [PMID: 37706547 DOI: 10.1093/pcp/pcad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/18/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
Cyanobacteria are promising photosynthetic organisms owing to their ease of genetic manipulation. Among them, Synechococcus elongatus UTEX 2973 exhibits faster growth, higher biomass production efficiency and more robust stress tolerance compared with S. elongatus PCC 7942. This is due to specific genetic differences, including four single-nucleotide polymorphisms (SNPs) in three genes. One of these SNPs alters an amino acid at position 252 of the FoF1 ATP synthase α-subunit from Tyr to Cys (αY252C) in S. elongatus 7942. This change has been shown to significantly affect growth rate and stress tolerance, specifically in S. elongatus. Furthermore, experimental substitutions with several other amino acids have been shown to alter the ATP synthesis rate in the cell. In the present study, we introduced identical amino acid substitutions into Synechocystis sp. PCC 6803 at position 252 to elucidate the amino acid's significance and generality across cyanobacteria. We investigated the resulting impact on growth, intracellular enzyme complex levels, intracellular ATP levels and enzyme activity. The results showed that the αY252C substitution decreased growth rate and high-light tolerance. This indicates that a specific bulkiness of this amino acid's side chain is important for maintaining cell growth. Additionally, a remarkable decrease in the membrane-bound enzyme complex level was observed. However, the αY252C substitution did not affect enzyme activity or intracellular ATP levels. Although the mechanism of growth suppression remains unknown, the amino acid at position 252 is expected to play an important role in enzyme complex formation.
Collapse
Affiliation(s)
- Akito Machida
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501 Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1, Midori-Ku, Yokohama, 226-8501 Japan
| | - Kumiko Kondo
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1, Midori-Ku, Yokohama, 226-8501 Japan
| | | | - Kan Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501 Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1, Midori-Ku, Yokohama, 226-8501 Japan
| | - Toru Hisabori
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501 Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1, Midori-Ku, Yokohama, 226-8501 Japan
- International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501 Japan
| |
Collapse
|
4
|
Ries F, Weil HL, Herkt C, Mühlhaus T, Sommer F, Schroda M, Willmund F. Competition co-immunoprecipitation reveals the interactors of the chloroplast CPN60 chaperonin machinery. PLANT, CELL & ENVIRONMENT 2023; 46:3371-3391. [PMID: 37606545 DOI: 10.1111/pce.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
The functionality of all metabolic processes in chloroplasts depends on a balanced integration of nuclear- and chloroplast-encoded polypeptides into the plastid's proteome. The chloroplast chaperonin machinery is an essential player in chloroplast protein folding under ambient and stressful conditions, with a more intricate structure and subunit composition compared to the orthologous GroEL/ES chaperonin of Escherichia coli. However, its exact role in chloroplasts remains obscure, mainly because of very limited knowledge about the interactors. We employed the competition immunoprecipitation method for the identification of the chaperonin's interactors in Chlamydomonas reinhardtii. Co-immunoprecipitation of the target complex in the presence of increasing amounts of isotope-labelled competitor epitope and subsequent mass spectrometry analysis specifically allowed to distinguish true interactors from unspecifically co-precipitated proteins. Besides known substrates such as RbcL and the expected complex partners, we revealed numerous new interactors with high confidence. Proteins that qualify as putative substrate proteins differ from bulk chloroplast proteins by a higher content of beta-sheets, lower alpha-helical conformation and increased aggregation propensity. Immunoprecipitations targeted against a subunit of the co-chaperonin lid revealed the ClpP protease as a specific partner complex, pointing to a close collaboration of these machineries to maintain protein homeostasis in the chloroplast.
Collapse
Affiliation(s)
- Fabian Ries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Heinrich Lukas Weil
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Claudia Herkt
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
- Plant Physiology/Synmikro, University of Marburg, Marburg, Germany
| |
Collapse
|
5
|
Reiter B, Rosenhammer L, Marino G, Geimer S, Leister D, Rühle T. CGL160-mediated recruitment of the coupling factor CF1 is required for efficient thylakoid ATP synthase assembly, photosynthesis, and chloroplast development in Arabidopsis. THE PLANT CELL 2023; 35:488-509. [PMID: 36250886 PMCID: PMC9806626 DOI: 10.1093/plcell/koac306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Chloroplast ATP synthases consist of a membrane-spanning coupling factor (CFO) and a soluble coupling factor (CF1). It was previously demonstrated that CONSERVED ONLY IN THE GREEN LINEAGE160 (CGL160) promotes the formation of plant CFO and performs a similar function in the assembly of its c-ring to that of the distantly related bacterial Atp1/UncI protein. Here, we show that in Arabidopsis (Arabidopsis thaliana) the N-terminal portion of CGL160 (AtCGL160N) is required for late steps in CF1-CFO assembly. In plants that lacked AtCGL160N, CF1-CFO content, photosynthesis, and chloroplast development were impaired. Loss of AtCGL160N did not perturb c-ring formation, but led to a 10-fold increase in the numbers of stromal CF1 subcomplexes relative to that in the wild type. Co-immunoprecipitation and protein crosslinking assays revealed an association of AtCGL160 with CF1 subunits. Yeast two-hybrid assays localized the interaction to a stretch of AtCGL160N that binds to the DELSEED-containing CF1-β subdomain. Since Atp1 of Synechocystis (Synechocystis sp. PCC 6803) could functionally replace the membrane domain of AtCGL160 in Arabidopsis, we propose that CGL160 evolved from a cyanobacterial ancestor and acquired an additional function in the recruitment of a soluble CF1 subcomplex, which is critical for the modulation of CF1-CFO activity and photosynthesis.
Collapse
Affiliation(s)
- Bennet Reiter
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität Munich, D-82152 Planegg-Martinsried, Germany
| | - Lea Rosenhammer
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität Munich, D-82152 Planegg-Martinsried, Germany
| | - Giada Marino
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität Munich, D-82152 Planegg-Martinsried, Germany
| | - Stefan Geimer
- Zellbiologie/Elektronenmikroskopie NW I/B1, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Dario Leister
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität Munich, D-82152 Planegg-Martinsried, Germany
| | | |
Collapse
|
6
|
Klasek L, Inoue K, Theg SM. Chloroplast Chaperonin-Mediated Targeting of a Thylakoid Membrane Protein. THE PLANT CELL 2020; 32:3884-3901. [PMID: 33093145 PMCID: PMC7721336 DOI: 10.1105/tpc.20.00309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/11/2020] [Accepted: 10/21/2020] [Indexed: 05/08/2023]
Abstract
Posttranslational protein targeting requires chaperone assistance to direct insertion-competent proteins to integration pathways. Chloroplasts integrate nearly all thylakoid transmembrane proteins posttranslationally, but mechanisms in the stroma that assist their insertion remain largely undefined. Here, we investigated how the chloroplast chaperonin (Cpn60) facilitated the thylakoid integration of Plastidic type I signal peptidase 1 (Plsp1) using in vitro targeting assays. Cpn60 bound Plsp1 in the stroma. In isolated chloroplasts, the membrane integration of imported Plsp1 correlated with its dissociation from Cpn60. When the Plsp1 residues that interacted with Cpn60 were removed, Plsp1 did not integrate into the membrane. These results suggested Cpn60 was an intermediate in thylakoid targeting of Plsp1. In isolated thylakoids, the integration of Plsp1 decreased when Cpn60 was present in excess of cpSecA1, the stromal motor of the cpSec1 translocon that inserts unfolded Plsp1 into the thylakoid. An excess of cpSecA1 favored integration. Introducing Cpn60's obligate substrate RbcL displaced Cpn60-bound Plsp1; then, the released Plsp1 exhibited increased accessibility to cpSec1. These in vitro targeting experiments support a model in which Cpn60 captures and then releases insertion-competent Plsp1, whereas cpSecA1 recognizes free Plsp1 for integration. Thylakoid transmembrane proteins in the stroma can interact with Cpn60 to shield themselves from the aqueous environment.
Collapse
Affiliation(s)
- Laura Klasek
- Department of Plant Biology, University of California Davis, Davis, California 95616
| | - Kentaro Inoue
- Department of Plant Sciences, University of California Davis, Davis, California 95616
| | - Steven M Theg
- Department of Plant Biology, University of California Davis, Davis, California 95616
| |
Collapse
|
7
|
Zhang L, Pu H, Duan Z, Li Y, Liu B, Zhang Q, Li W, Rochaix JD, Liu L, Peng L. Nucleus-Encoded Protein BFA1 Promotes Efficient Assembly of the Chloroplast ATP Synthase Coupling Factor 1. THE PLANT CELL 2018; 30:1770-1788. [PMID: 30012777 PMCID: PMC6139693 DOI: 10.1105/tpc.18.00075] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/19/2018] [Accepted: 07/16/2018] [Indexed: 05/04/2023]
Abstract
F-type ATP synthases produce nearly all of the ATP found in cells. The catalytic module F1 commonly comprises an α3β3 hexamer surrounding a γ/ε stalk. However, it is unclear how these subunits assemble to form a catalytic motor. In this work, we identified and characterized a chloroplast protein that interacts with the CF1β, γ, and ε subunits of the chloroplast ATP synthase and is required for assembly of its F1 module. We named this protein BIOGENESIS FACTOR REQUIRED FOR ATP SYNTHASE1 (BFA1) and determined its crystal structure at 2.8-Å resolution. BFA1 is comprised primarily of two interacting β-barrels that are oriented nearly perpendicularly to each other. The contact region between BFA1 and the CF1β and γ subunits was further mapped by yeast two-hybrid assays. An in silico molecular docking analysis was performed and revealed close fitting contact sites without steric conflicts between BFA1 and CF1β/γ. We propose that BFA1 acts mainly as a scaffold protein promoting the association of a CF1α/β heterodimer with CF1γ. The subsequent assembly of other CF1α/β heterodimers may shift the position of the CF1γ subunit to complete assembly of the CF1 module. This CF1 assembly process is likely to be valid for other F-type ATP synthases, as their structures are highly conserved.
Collapse
Affiliation(s)
- Lin Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hua Pu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhikun Duan
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yonghong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Bei Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qiqi Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wenjing Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Lin Liu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Lianwei Peng
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
8
|
A Nucleus-Encoded Chloroplast Protein YL1 Is Involved in Chloroplast Development and Efficient Biogenesis of Chloroplast ATP Synthase in Rice. Sci Rep 2016; 6:32295. [PMID: 27585744 PMCID: PMC5009372 DOI: 10.1038/srep32295] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/04/2016] [Indexed: 11/16/2022] Open
Abstract
Chloroplast ATP synthase (cpATPase) is an importance thylakoid membrane-associated photosynthetic complex involved in the light-dependent reactions of photosynthesis. In this study, we isolated and characterized a rice (Oryza sativa) mutant yellow leaf 1 (yl1), which exhibits chlorotic leaves throughout developmental stages. The YL1 mutation showed reduced chlorophyll contents, abnormal chloroplast morphology, and decreased photochemical efficiency. Moreover, YL1 deficiency disrupts the expression of genes associated with chloroplast development and photosynthesis. Molecular and genetic analyses revealed that YL1 is a nucleus-encoded protein with a predicted transmembrane domain in its carboxyl-terminus that is conserved in the higher plant kingdom. YL1 localizes to chloroplasts and is preferentially expressed in green tissues containing chloroplasts. Immunoblot analyses showed that inactivation of YL1 leads to drastically reduced accumulation of AtpA (α) and AtpB (β), two core subunits of CF1αβ subcomplex of cpATPase, meanwhile, a severe decrease (ca. 41.7%) in cpATPase activity was observed in the yl1-1 mutant compared with the wild type. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation assays revealed a specific interaction between YL1 and AtpB subunit of cpATPase. Taken together, our results suggest that YL1 is a plant lineage-specific auxiliary factor involved in the biogenesis of the cpATPase complex, possibly via interacting with the β-subunit.
Collapse
|
9
|
Zhu X, Yu F, Yang Z, Liu S, Dai C, Lu X, Liu C, Yu W, Li N. In plantachemical cross-linking and mass spectrometry analysis of protein structure and interaction in Arabidopsis. Proteomics 2016; 16:1915-27. [DOI: 10.1002/pmic.201500310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Xinliang Zhu
- Division of Life Science; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province P. R. China
| | - Fengchao Yu
- Division of Biomedical Engineering; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
| | - Zhu Yang
- Division of Life Science; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
| | - Shichang Liu
- Division of Life Science; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
| | - Chen Dai
- Proteomics Center; Nanjing Agriculture University; Nanjing P. R. China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province P. R. China
| | - Chenyu Liu
- Division of Life Science; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
| | - Weichuan Yu
- Division of Biomedical Engineering; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
- Department of Electronic and Computer Engineering; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
| | - Ning Li
- Division of Life Science; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
- Division of Biomedical Engineering; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
- HKUST Shenzhen Research Institute; Shenzhen P. R. China
| |
Collapse
|
10
|
Grahl S, Reiter B, Gügel IL, Vamvaka E, Gandini C, Jahns P, Soll J, Leister D, Rühle T. The Arabidopsis Protein CGLD11 Is Required for Chloroplast ATP Synthase Accumulation. MOLECULAR PLANT 2016; 9:885-99. [PMID: 26979383 DOI: 10.1016/j.molp.2016.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/29/2016] [Accepted: 03/07/2016] [Indexed: 05/15/2023]
Abstract
ATP synthases in chloroplasts (cpATPase) and mitochondria (mtATPase) are responsible for ATP production during photosynthesis and oxidative phosphorylation, respectively. Both enzymes consist of two multisubunit complexes, the membrane-bound coupling factor O and the soluble coupling factor 1. During cpATPase biosynthesis, several accessory factors facilitate subunit production and orchestrate complex assembly. Here, we describe a new auxiliary protein in Arabidopsis thaliana, which is required for cpATPase accumulation. AtCGLD11 (CONSERVED IN THE GREEN LINEAGE AND DIATOMS 11) is a protein without any known functional domain and shows dual localization to chloroplasts and mitochondria. Loss of AtCGLD11 function results in reduced levels of cpATPase and impaired photosynthetic performance with lower rates of ATP synthesis. In yeast two-hybrid experiments, AtCGLD11 interacts with the β subunits of the cpATPase and mtATPase. Our results suggest that AtCGLD11 functions in F1 assembly during cpATPase biogenesis, while its role in mtATPase biosynthesis may not, or not yet, be essential.
Collapse
Affiliation(s)
- Sabine Grahl
- Lehrstuhl für Biochemie und Physiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Munich Centre for Integrated Protein Science CiPSM, Ludwig-Maximilians Universität München, Butenandtstr. 5 - 13, 81377 Munich, Germany
| | - Bennet Reiter
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Irene Luise Gügel
- Lehrstuhl für Biochemie und Physiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Munich Centre for Integrated Protein Science CiPSM, Ludwig-Maximilians Universität München, Butenandtstr. 5 - 13, 81377 Munich, Germany
| | - Evgenia Vamvaka
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Chiara Gandini
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Jürgen Soll
- Lehrstuhl für Biochemie und Physiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Munich Centre for Integrated Protein Science CiPSM, Ludwig-Maximilians Universität München, Butenandtstr. 5 - 13, 81377 Munich, Germany
| | - Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | - Thilo Rühle
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
11
|
Zhang L, Duan Z, Zhang J, Peng L. BIOGENESIS FACTOR REQUIRED FOR ATP SYNTHASE 3 Facilitates Assembly of the Chloroplast ATP Synthase Complex. PLANT PHYSIOLOGY 2016; 171:1291-306. [PMID: 27208269 PMCID: PMC4902607 DOI: 10.1104/pp.16.00248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/12/2016] [Indexed: 05/04/2023]
Abstract
Thylakoid membrane-localized chloroplast ATP synthases use the proton motive force generated by photosynthetic electron transport to produce ATP from ADP. Although it is well known that the chloroplast ATP synthase is composed of more than 20 proteins with α3β3γ1ε1δ1I1II1III14IV1 stoichiometry, its biogenesis process is currently unclear. To unravel the molecular mechanisms underlying the biogenesis of chloroplast ATP synthase, we performed extensive screening for isolating ATP synthase mutants in Arabidopsis (Arabidopsis thaliana). In the recently identified bfa3 (biogenesis factors required for ATP synthase 3) mutant, the levels of chloroplast ATP synthase subunits were reduced to approximately 25% of wild-type levels. In vivo labeling analysis showed that assembly of the CF1 component of chloroplast ATP synthase was less efficient in bfa3 than in the wild type, indicating that BFA3 is required for CF1 assembly. BFA3 encodes a chloroplast stromal protein that is conserved in higher plants, green algae, and a few species of other eukaryotic algae, and specifically interacts with the CF1β subunit. The BFA3 binding site was mapped to a region in the catalytic site of CF1β. Several residues highly conserved in eukaryotic CF1β are crucial for the BFA3-CF1β interaction, suggesting a coevolutionary relationship between BFA3 and CF1β. BFA3 appears to function as a molecular chaperone that transiently associates with unassembled CF1β at its catalytic site and facilitates subsequent association with CF1α during assembly of the CF1 subcomplex of chloroplast ATP synthase.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Z., Z.D., J.Z., L.P.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (L.Z., Z.D.)
| | - Zhikun Duan
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Z., Z.D., J.Z., L.P.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (L.Z., Z.D.)
| | - Jiao Zhang
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Z., Z.D., J.Z., L.P.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (L.Z., Z.D.)
| | - Lianwei Peng
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Z., Z.D., J.Z., L.P.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (L.Z., Z.D.)
| |
Collapse
|
12
|
Endow JK, Singhal R, Fernandez DE, Inoue K. Chaperone-assisted Post-translational Transport of Plastidic Type I Signal Peptidase 1. J Biol Chem 2015; 290:28778-91. [PMID: 26446787 DOI: 10.1074/jbc.m115.684829] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 01/19/2023] Open
Abstract
Type I signal peptidase (SPase I) is an integral membrane Ser/Lys protease with one or two transmembrane domains (TMDs), cleaving transport signals off translocated precursor proteins. The catalytic domain of SPase I folds to form a hydrophobic surface and inserts into the lipid bilayers at the trans-side of the membrane. In bacteria, SPase I is targeted co-translationally, and the catalytic domain remains unfolded until it reaches the periplasm. By contrast, SPases I in eukaryotes are targeted post-translationally, requiring an alternative strategy to prevent premature folding. Here we demonstrate that two distinct stromal components are involved in post-translational transport of plastidic SPase I 1 (Plsp1) from Arabidopsis thaliana, which contains a single TMD. During import into isolated chloroplasts, Plsp1 was targeted to the membrane via a soluble intermediate in an ATP hydrolysis-dependent manner. Insertion of Plsp1 into isolated chloroplast membranes, by contrast, was found to occur by two distinct mechanisms. The first mechanism requires ATP hydrolysis and the protein conducting channel cpSecY1 and was strongly enhanced by exogenously added cpSecA1. The second mechanism was independent of nucleoside triphosphates and proteinaceous components but with a high frequency of mis-orientation. This unassisted insertion was inhibited by urea and stroma extract. During import-chase assays using intact chloroplasts, Plsp1 was incorporated into a soluble 700-kDa complex that co-migrated with the Cpn60 complex before inserting into the membrane. The TMD within Plsp1 was required for the cpSecA1-dependent insertion but was dispensable for association with the 700-kDa complex and also for unassisted membrane insertion. These results indicate cooperation of Cpn60 and cpSecA1 for proper membrane insertion of Plsp1 by cpSecY1.
Collapse
Affiliation(s)
- Joshua K Endow
- From the Department of Plant Sciences, University of California, Davis, California 95616 and
| | - Rajneesh Singhal
- the Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
| | - Donna E Fernandez
- the Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
| | - Kentaro Inoue
- From the Department of Plant Sciences, University of California, Davis, California 95616 and
| |
Collapse
|
13
|
Schöttler MA, Tóth SZ, Boulouis A, Kahlau S. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2373-400. [PMID: 25540437 DOI: 10.1093/jxb/eru495] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During plant development and in response to fluctuating environmental conditions, large changes in leaf assimilation capacity and in the metabolic consumption of ATP and NADPH produced by the photosynthetic apparatus can occur. To minimize cytotoxic side reactions, such as the production of reactive oxygen species, photosynthetic electron transport needs to be adjusted to the metabolic demand. The cytochrome b6f complex and chloroplast ATP synthase form the predominant sites of photosynthetic flux control. Accordingly, both respond strongly to changing environmental conditions and metabolic states. Usually, their contents are strictly co-regulated. Thereby, the capacity for proton influx into the lumen, which is controlled by electron flux through the cytochrome b6f complex, is balanced with proton efflux through ATP synthase, which drives ATP synthesis. We discuss the environmental, systemic, and metabolic signals triggering the stoichiometry adjustments of ATP synthase and the cytochrome b6f complex. The contribution of transcriptional and post-transcriptional regulation of subunit synthesis, and the importance of auxiliary proteins required for complex assembly in achieving the stoichiometry adjustments is described. Finally, current knowledge on the stability and turnover of both complexes is summarized.
Collapse
Affiliation(s)
- Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alix Boulouis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sabine Kahlau
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
14
|
PAB is an assembly chaperone that functions downstream of chaperonin 60 in the assembly of chloroplast ATP synthase coupling factor 1. Proc Natl Acad Sci U S A 2015; 112:4152-7. [PMID: 25775508 DOI: 10.1073/pnas.1413392111] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chloroplast ATP synthase, a multisubunit complex in the thylakoid membrane, catalyzes the light-driven synthesis of ATP, thereby supplying the energy for carbon fixation during photosynthesis. The chloroplast ATP synthase is composed of both nucleus- and chloroplast-encoded proteins that have required the evolution of novel mechanisms to coordinate the biosynthesis and assembly of chloroplast ATP synthase subunits temporally and spatially. Here we have elucidated the assembly mechanism of the α3β3γ core complex of the chloroplast ATP synthase by identification and functional characterization of a key assembly factor, PAB (protein in chloroplast atpase biogenesis). PAB directly interacts with the nucleus-encoded γ subunit and functions downstream of chaperonin 60 (Cpn60)-mediated CF1γ subunit folding to promote its assembly into the catalytic core. PAB does not have any recognizable motifs or domains but is conserved in photosynthetic eukaryotes. It is likely that PAB evolved together with the transfer of chloroplast genes into the nucleus to assist nucleus-encoded CF1γ assembly into the CF1 core. Such coordination might represent an evolutionarily conserved mechanism for folding and assembly of nucleus-encoded proteins to ensure proper assembly of multiprotein photosynthetic complexes.
Collapse
|
15
|
Rühle T, Leister D. Assembly of F1F0-ATP synthases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:849-60. [PMID: 25667968 DOI: 10.1016/j.bbabio.2015.02.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 12/31/2022]
Abstract
F1F0-ATP synthases are multimeric protein complexes and common prerequisites for their correct assembly are (i) provision of subunits in appropriate relative amounts, (ii) coordination of membrane insertion and (iii) avoidance of assembly intermediates that uncouple the proton gradient or wastefully hydrolyse ATP. Accessory factors facilitate these goals and assembly occurs in a modular fashion. Subcomplexes common to bacteria and mitochondria, but in part still elusive in chloroplasts, include a soluble F1 intermediate, a membrane-intrinsic, oligomeric c-ring, and a membrane-embedded subcomplex composed of stator subunits and subunit a. The final assembly step is thought to involve association of the preformed F1-c10-14 with the ab2 module (or the ab8-stator module in mitochondria)--mediated by binding of subunit δ in bacteria or OSCP in mitochondria, respectively. Despite the common evolutionary origin of F1F0-ATP synthases, the set of auxiliary factors required for their assembly in bacteria, mitochondria and chloroplasts shows clear signs of evolutionary divergence. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany.
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
16
|
Trösch R, Mühlhaus T, Schroda M, Willmund F. ATP-dependent molecular chaperones in plastids--More complex than expected. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:872-88. [PMID: 25596449 DOI: 10.1016/j.bbabio.2015.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/03/2015] [Accepted: 01/08/2015] [Indexed: 11/27/2022]
Abstract
Plastids are a class of essential plant cell organelles comprising photosynthetic chloroplasts of green tissues, starch-storing amyloplasts of roots and tubers or the colorful pigment-storing chromoplasts of petals and fruits. They express a few genes encoded on their organellar genome, called plastome, but import most of their proteins from the cytosol. The import into plastids, the folding of freshly-translated or imported proteins, the degradation or renaturation of denatured and entangled proteins, and the quality-control of newly folded proteins all require the action of molecular chaperones. Members of all four major families of ATP-dependent molecular chaperones (chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families) have been identified in plastids from unicellular algae to higher plants. This review aims not only at giving an overview of the most current insights into the general and conserved functions of these plastid chaperones, but also into their specific plastid functions. Given that chloroplasts harbor an extreme environment that cycles between reduced and oxidized states, that has to deal with reactive oxygen species and is highly reactive to environmental and developmental signals, it can be presumed that plastid chaperones have evolved a plethora of specific functions some of which are just about to be discovered. Here, the most urgent questions that remain unsolved are discussed, and guidance for future research on plastid chaperones is given. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Raphael Trösch
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany; HU Berlin, Institute of Biology, Chausseestraße 117, 10115 Berlin, Germany; TU Kaiserslautern, Molecular Genetics of Eukaryotes, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Timo Mühlhaus
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Michael Schroda
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Felix Willmund
- TU Kaiserslautern, Molecular Genetics of Eukaryotes, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| |
Collapse
|
17
|
Vitlin Gruber A, Nisemblat S, Azem A, Weiss C. The complexity of chloroplast chaperonins. TRENDS IN PLANT SCIENCE 2013; 18:688-94. [PMID: 24035661 DOI: 10.1016/j.tplants.2013.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/29/2013] [Accepted: 08/07/2013] [Indexed: 05/07/2023]
Abstract
Type I chaperonins are large oligomeric protein ensembles that are involved in the folding and assembly of other proteins. Chloroplast chaperonins and co-chaperonins exist in multiple copies of two distinct isoforms that can combine to form a range of labile oligomeric structures. This complex system increases the potential number of chaperonin substrates and possibilities for regulation. The incorporation of unique subunits into the oligomer can modify substrate specificity. Some subunits are upregulated in response to heat shock and some show organ-specific expression, whereas others possess additional functions that are unrelated to their role in protein folding. Accumulating evidence suggests that specific subunits have distinct roles in biogenesis of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco).
Collapse
Affiliation(s)
- Anna Vitlin Gruber
- The George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|
18
|
Abstract
Hsp70 chaperones are involved in multiple biological processes and are recruited to specific processes by designated J domain-containing cochaperones, or J proteins. To understand the evolution and functions of chloroplast Hsp70s and J proteins, we identified the Arabidopsis chloroplast J protein constituency using a combination of genomic and proteomic database searches and individual protein import assays. We show that Arabidopsis chloroplasts have at least 19 J proteins, the highest number of confirmed J proteins for any organelle. These 19 J proteins are classified into 11 clades, for which cyanobacteria and glaucophytes only have homologs for one clade, green algae have an additional three clades, and all the other 7 clades are specific to land plants. Each clade also possesses a clade-specific novel motif that is likely used to interact with different client proteins. Gene expression analyses indicate that most land plant-specific J proteins show highly variable expression in different tissues and are down regulated by low temperatures. These results show that duplication of chloroplast Hsp70 in land plants is accompanied by more than doubling of the number of its J protein cochaperones through adding new J proteins with novel motifs, not through duplications within existing families. These new J proteins likely recruit chloroplast Hsp70 to perform tissue specific functions related to biosynthesis rather than to stress resistance.
Collapse
|
19
|
Kolesiński P, Piechota J, Szczepaniak A. Initial characteristics of RbcX proteins from Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2011; 77:447-59. [PMID: 21922322 PMCID: PMC3195260 DOI: 10.1007/s11103-011-9823-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 08/24/2011] [Indexed: 05/03/2023]
Abstract
Form I of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) is composed of eight large (RbcL) and eight small (RbcS) subunits. Assembly of these subunits into a functional holoenzyme requires the assistance of additional assembly factors. One such factor is RbcX, which has been demonstrated to act as a chaperone in the assembly of most cyanobacterial Rubisco complexes expressed in heterologous system established in Escherichia coli cells. Analysis of Arabidopsis thaliana genomic sequence revealed the presence of two genes encoding putative homologues of cyanobacterial RbcX protein: AtRbcX1 (At4G04330) and AtRbcX2 (At5G19855). In general, both RbcX homologues seem to have the same function which is chaperone activity during Rubisco biogenesis. However, detailed analysis revealed slight differences between them. AtRbcX2 is localized in the stromal fraction of chloroplasts whereas AtRbcX1 was found in the insoluble fraction corresponding with thylakoid membranes. Search for putative "partners" using mass spectrometry analysis suggested that apart from binding to RbcL, AtRbcX1 may also interact with β subunit of chloroplast ATP synthase. Quantitative RT-PCR analysis of AtRbcX1 and AtRbcX2 expression under various stress conditions indicated that AtRbcX2 is transcribed at a relatively stable level, while the transcription level of AtRbcX1 varies significantly. In addition, we present the attempts to elucidate the secondary structure of AtRbcX proteins using CD spectroscopy. Presented results are the first known approach to elucidate the role of RbcX proteins in Rubisco assembly in higher plants.
Collapse
Affiliation(s)
- Piotr Kolesiński
- Laboratory of Biophysics, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Janusz Piechota
- Laboratory of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Andrzej Szczepaniak
- Laboratory of Biophysics, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| |
Collapse
|
20
|
Willmund F, Hinnenberger M, Nick S, Schulz-Raffelt M, Mühlhaus T, Schroda M. Assistance for a Chaperone. J Biol Chem 2008; 283:16363-73. [DOI: 10.1074/jbc.m708431200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
21
|
Yong ZH, Chen GY, Shi JN, Xu DQ. In vitro reassembly of tobacco ribulose-1,5-bisphosphate carboxylase/oxygenase from fully denatured subunits. Acta Biochim Biophys Sin (Shanghai) 2006; 38:737-45. [PMID: 17033721 DOI: 10.1111/j.1745-7270.2006.00221.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
It has been generally proved impossible to reassemble ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from fully denatured subunits in vitro in higher plant, because large subunit of fully denatured Rubisco is liable to precipitate when the denaturant is removed by common methods of direct dilution and one-step dialysis. In our experiment, the problem of precipitation was resolved by an improved gradual dialysis method, which gradually decreased the concentration of denaturant. However, fully denatured Rubisco subunits still could not be reassembled into holoenzyme using gradual dialysis unless chaperonin 60 was added. The restored activity of reassembled Rubisco was approximately 8% of natural enzyme. The quantity of reassembled Rubisco increased greatly when heat shock protein 70 was present in the reassembly process. ATP and Mg2+ were unnecessary for in vitro reassembly of Rubisco, and Mg2+ inhibited the reassembly process. The reassembly was weakened when ATP, Mg2+ and K+ existed together in the reassembly process.
Collapse
Affiliation(s)
- Zhen-Hua Yong
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | |
Collapse
|
22
|
Schroda M. The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. PHOTOSYNTHESIS RESEARCH 2004; 82:221-40. [PMID: 16143837 DOI: 10.1007/s11120-004-2216-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 06/11/2004] [Indexed: 05/04/2023]
Abstract
The first draft of the Chlamydomonas nuclear genome was searched for genes potentially encoding members of the five major chaperone families, Hsp100/Clp, Hsp90, Hsp70, Hsp60, the small heat shock proteins, and the Hsp70 and Cpn60 co-chaperones GrpE and Cpn10/20, respectively. This search yielded 34 potential (co-)chaperone genes, among them those 8 that have been reported earlier inChlamydomonas. These 34 genes encode all the (co-)chaperones that have been expected for the different compartments and organelles from genome searches in Arabidopsis, where 74 genes have been described to encode basically the same set of (co-)chaperones. Genome data from Arabidopsis and Chlamydomonas on the five major chaperone families are compared and discussed, with particular emphasis on chloroplast chaperones.
Collapse
Affiliation(s)
- Michael Schroda
- Institut für Biologie II/Biochemie, Universität Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany,
| |
Collapse
|
23
|
Proteins Involved in Biogenesis of the Thylakoid Membrane. REGULATION OF PHOTOSYNTHESIS 2001. [DOI: 10.1007/0-306-48148-0_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Yang T, Poovaiah BW. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein. Biochem Biophys Res Commun 2000; 275:601-7. [PMID: 10964710 DOI: 10.1006/bbrc.2000.3335] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis.
Collapse
Affiliation(s)
- T Yang
- Laboratory of Plant Molecular Biology and Physiology, Washington State University, Pullman, Washington 99164, USA
| | | |
Collapse
|
25
|
Dickson R, Weiss C, Howard RJ, Alldrick SP, Ellis RJ, Lorimer G, Azem A, Viitanen PV. Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. J Biol Chem 2000; 275:11829-35. [PMID: 10766808 DOI: 10.1074/jbc.275.16.11829] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unlike the GroEL homologs of eubacteria and mitochondria, oligomer preparations of the higher plant chloroplast chaperonin 60 (cpn60) consist of roughly equal amounts of two divergent subunits, alpha and beta. The functional significance of these isoforms, their structural organization into tetradecamers, and their interactions with the unique binary chloroplast chaperonin 10 (cpn10) have not been elucidated. Toward this goal, we have cloned the alpha and beta subunits of the ch-cpn60 of pea (Pisum sativum), expressed them individually in Escherichia coli, and subjected the purified monomers to in vitro reconstitution experiments. In the absence of other factors, neither subunit (alone or in combination) spontaneously assembles into a higher order structure. However, in the presence of MgATP, the beta subunits form tetradecamers in a cooperative reaction that is potentiated by cpn10. In contrast, alpha subunits only assemble in the presence of beta subunits. Although beta and alpha/beta 14-mers are indistinguishable by electron microscopy and can both assist protein folding, their specificities for cpn10 are entirely different. Similar to the authentic chloroplast protein, the reconstituted alpha/beta 14-mers are functionally compatible with bacterial, mitochondrial, and chloroplast cpn10. In contrast, the folding reaction mediated by the reconstituted beta 14-mers is only efficient with mitochondrial cpn10. The ability to reconstitute two types of functional oligomer in vitro provides a unique tool, which will allow us to investigate the mechanism of this unusual chaperonin system.
Collapse
Affiliation(s)
- R Dickson
- Molecular Biology Division, Central Research and Development Department, E. I. DuPont de Nemours and Company, Experimental Station, Wilmington, Delaware 19880-0402, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Du Z, Gromet-Elhanan Z. Refolding of recombinant alpha and beta subunits of the Rhodospirillum rubrum F(0)F(1) ATP synthase into functional monomers that reconstitute an active alpha(1)beta(1)-dimer. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:430-7. [PMID: 10406951 DOI: 10.1046/j.1432-1327.1999.00512.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The alpha subunit from the Rhodospirillum rubrum F(0)F(1) ATP synthase (RrF(1)alpha) was over-expressed in unc operon-deleted Escherichia coli strains under various growth conditions only in insoluble inclusion bodies. The functional refolding of urea-solubilized RrF(1)alpha was followed by measuring its ability to stimulate the restoration of ATP synthesis and hydrolysis in beta-less R. rubrum chromatophores reconstituted with pure native or recombinant RrF(1)beta [Nathanson, L. & Gromet-Elhanan, Z. (1998) J. Biol. Chem. 273, 10933-10938]. The refolding efficiency was found to increase with decreasing RrF(1)alpha concentrations and required high concentrations of MgATP, saturating approximately 60% when 50 microgram protein.mL(-1) were refolded in presence of 50 mM MgATP. Size-exclusion HPLC of such refolded RrF(1)alpha revealed a 50-60% decrease in its aggregated form and a parallel appearance of its monomeric peak. RrF(1)beta refolded under identical conditions appeared almost exclusively as a monomer. This procedure enabled the isolation of large amounts of a stable RrF(1)alpha monomer, which stimulated the restoration of ATP synthesis and hydrolysis much more efficiently than the refolded alpha mixture, and bound ATP and ADP in a Mg-dependent manner. Incubation of both RrF(1)alpha and beta monomers, which by themselves had no ATPase activity, resulted in a parallel appearance of activity and assembled alpha(1)beta(1)-dimers, but showed no formation of alpha(3)beta(3)-hexamers. The RrF(1)-alpha(1)beta(1)-ATPase activity was, however, very similar to the activity observed in isolated native chloroplast CF(1)-alpha(3)beta(3), indicating that these dimers contain only the catalytic nucleotide-binding site at their alpha/beta interface. Their inability to associate into an alpha(3)beta(3)-hexamer seems therefore to reflect a much lower stability of the noncatalytic RrF(1) alpha/beta interface.
Collapse
Affiliation(s)
- Z Du
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
28
|
Hiyama T, Nakamoto H. Heat-Shock Proteins and Temperature Stress. BOOKS IN SOILS, PLANTS, AND THE ENVIRONMENT 1999. [DOI: 10.1201/9780824746728.ch17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
The biogenesis and assembly of photosynthetic proteins in thylakoid membranes1. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:21-85. [PMID: 10216153 DOI: 10.1016/s0005-2728(99)00043-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Boston RS, Viitanen PV, Vierling E. Molecular chaperones and protein folding in plants. PLANT MOLECULAR BIOLOGY 1996; 32:191-222. [PMID: 8980480 DOI: 10.1007/bf00039383] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Protein folding in vivo is mediated by an array of proteins that act either as 'foldases' or 'molecular chaperones'. Foldases include protein disulfide isomerase and peptidyl prolyl isomerase, which catalyze the rearrangement of disulfide bonds or isomerization of peptide bonds around Pro residues, respectively. Molecular chaperones are a diverse group of proteins, but they share the property that they bind substrate proteins that are in unstable, non-native structural states. The best understood chaperone systems are HSP70/DnaK and HSP60/GroE, but considerable data support a chaperone role for other proteins, including HSP100, HSP90, small HSPs and calnexin. Recent research indicates that many, if not all, cellular proteins interact with chaperones and/or foldases during their lifetime in the cell. Different chaperone and foldase systems are required for synthesis, targeting, maturation and degradation of proteins in all cellular compartments. Thus, these diverse proteins affect an exceptionally broad array of cellular processes required for both normal cell function and survival of stress conditions. This review summarizes our current understanding of how these proteins function in plants, with a major focus on those systems where the most detailed mechanistic data are available, or where features of the chaperone/foldase system or substrate proteins are unique to plants.
Collapse
Affiliation(s)
- R S Boston
- Department of Botany, North Carolina State University, Raleigh 27695, USA
| | | | | |
Collapse
|
31
|
Boston RS, Viitanen PV, Vierling E. Molecular chaperones and protein folding in plants. PLANT MOLECULAR BIOLOGY 1996. [PMID: 8980480 DOI: 10.1007/978-94-009-0353-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Protein folding in vivo is mediated by an array of proteins that act either as 'foldases' or 'molecular chaperones'. Foldases include protein disulfide isomerase and peptidyl prolyl isomerase, which catalyze the rearrangement of disulfide bonds or isomerization of peptide bonds around Pro residues, respectively. Molecular chaperones are a diverse group of proteins, but they share the property that they bind substrate proteins that are in unstable, non-native structural states. The best understood chaperone systems are HSP70/DnaK and HSP60/GroE, but considerable data support a chaperone role for other proteins, including HSP100, HSP90, small HSPs and calnexin. Recent research indicates that many, if not all, cellular proteins interact with chaperones and/or foldases during their lifetime in the cell. Different chaperone and foldase systems are required for synthesis, targeting, maturation and degradation of proteins in all cellular compartments. Thus, these diverse proteins affect an exceptionally broad array of cellular processes required for both normal cell function and survival of stress conditions. This review summarizes our current understanding of how these proteins function in plants, with a major focus on those systems where the most detailed mechanistic data are available, or where features of the chaperone/foldase system or substrate proteins are unique to plants.
Collapse
Affiliation(s)
- R S Boston
- Department of Botany, North Carolina State University, Raleigh 27695, USA
| | | | | |
Collapse
|
32
|
Schmitz G, Schmidt M, Feierabend J. Comparison of the expression of a plastidic chaperonin 60 in different plant tissues and under photosynthetic and non-photosynthetic conditions. PLANTA 1996; 200:326-336. [PMID: 8983418 DOI: 10.1007/bf00200300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A partial cDNA which codes for the beta-subunit of a plastidic chaperonin 60 (cpn60-beta) from rye (Secale cereale L.) leaves was identified and sequenced, except for 46 amino acids of the N-terminus of the mature protein and the transit sequence. This is the first cpn60-beta sequence determined for a monocotyledonous plant. Specific antibodies against cpn60-beta were affinity-purified from an antiserum raised against the total soluble protein fraction of ribosome-deficient plastids. The localization of cpn60-beta in chloroplasts or non-green plastids was confirmed by immunodetection in Percoll gradient-purified organelles. The expression and occurrence of cpn60-beta was analysed by immunoblotting with the specific antibodies and Northern hybridization. The cpn60-beta protein was constitutively expressed in various green and non-green tissues. It was evenly distributed along the major part of a rye leaf, while highest transcript levels occurred in the youngest and oldest leaf sections. The expression of the cpn60-beta protein was not enhanced by a heat-shock treatment at 42 degrees C. The cpn60-beta transcript and protein were more strongly expressed in various non-green, for instance etiolated, 70S-ribosome-deficient 32 degree C-grown, or herbicide-bleached tissues, than in green leaves of rye. A rapid increase in the cpn60-beta transcript level was also observed when green leaves were transferred from light to darkness while the protein level was not affected. The dark-induced increase in the cpn60-beta transcript was totally suppressed in the presence of 2% sucrose. Inhibitor treatments suggested that the change in cpn60-beta transcript level was not related to changes of the ATP supply of the tissue. While the large subunit of the photosynthetic protein ribulose-1,5-bisphosphate carboxylase was largely degraded during ripening of tomato fruits, high levels of cpn60-beta were detected in tomato chromoplasts and in the yellow flower petals of Narcissus. Low levels of cpn60-beta were detected in root tissue.
Collapse
Affiliation(s)
- G Schmitz
- Botanisches Institut, J.W. Goethe-Universität, Frankfurt am Main, Germany
| | | | | |
Collapse
|
33
|
Gromet-Elhanan Z, Sokolov M. The photosynthetic F1-α 3β 3 and α 1β 1 catalytic core complexes. PHOTOSYNTHESIS RESEARCH 1995; 46:79-86. [PMID: 24301570 DOI: 10.1007/bf00020418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/1995] [Accepted: 06/08/1995] [Indexed: 06/02/2023]
Abstract
Minimal photosynthetic catalytic F1(αβ) core complexes, containing equimolar ratios of the α and β subunits, were isolated from membrane-bound spinach chloroplast CF1 and Rhodospirillum rubrum chromatophore RrF1. A CF1-α3β3 hexamer and RrF1-α1β1 dimer, which were purified from the respective F1(αβ) complexes, exhibit lower rates and different properties from their parent F1-ATPases. Most interesting is their complete resistance to inhibition by the general F1 inhibitor azide and the specific CF1 inhibitor tentoxin. These inhibitors were earlier reported to inhibit multisite, but not unisite, catalysis in all sensitive F1-ATPases and were therefore suggested to block catalytic site cooperativity. The absence of this typical property of all F1-ATPases in the α1β1 dimer is consistant with the view that the dimer contains only a single catalytic site. The α3β3 hexamer contains however all F1 catalytic sites. Therefore the observation that CF1-α3β3 can bind tentoxin and is stimulated by it suggests that the F1γ subunit, which is required for obtaining inhibition by tentoxin as well as azide, plays an important role in the cooperative interactions between the F1-catalytic sites.
Collapse
Affiliation(s)
- Z Gromet-Elhanan
- Department of Biochemistry, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | | |
Collapse
|
34
|
Viitanen PV, Schmidt M, Buchner J, Suzuki T, Vierling E, Dickson R, Lorimer GH, Gatenby A, Soll J. Functional characterization of the higher plant chloroplast chaperonins. J Biol Chem 1995; 270:18158-64. [PMID: 7629128 DOI: 10.1074/jbc.270.30.18158] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The higher plant chloroplast chaperonins (ch-cpn60 and ch-cpn10) have been purified and their structural/functional properties examined. In all plants surveyed, both proteins were constitutively expressed, and only modest increases in their levels were detected upon heat shock. Like GroEL and GroES of Escherichia coli, the chloroplast chaperonins can physically interact with each other. The asymmetric complexes that form in the presence of ADP are "bullet-shaped" particles that likely consist of 1 mol each of ch-cpn60 and ch-cpn10. The purified ch-cpn60 is a functional molecular chaperone. Under "nonpermissive" conditions, where spontaneous folding was not observed, it was able to assist in the refolding of two different target proteins. In both cases, successful partitioning to the native state also required ATP hydrolysis and chaperonin 10. Surprisingly, however, the "double-domain" ch-cpn10, comprised of unique 21-kDa subunits, was not an obligatory co-chaperonin. Both GroES and a mammalian mitochondrial homolog were equally compatible with the ch-cpn60. Finally, the assisted-folding reaction mediated by the chloroplast chaperonins does not require K+ ions. Thus, the K(+)-dependent ATPase activity that is observed with other known groEL homologs is not a universal property of all chaperonin 60s.
Collapse
Affiliation(s)
- P V Viitanen
- Central Research and Development Department, E. I. DuPont de Nemours and Company, Wilmington, Delaware 19880-0402, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ketchner SL, Drapier D, Olive J, Gaudriault S, Girard-Bascou J, Wollman FA. Chloroplasts can accommodate inclusion bodies. Evidence from a mutant of Chlamydomonas reinhardtii defective in the assembly of the chloroplast ATP synthase. J Biol Chem 1995; 270:15299-306. [PMID: 7797517 DOI: 10.1074/jbc.270.25.15299] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We identified two neighboring missense mutations in the chloroplast atpA gene which are responsible for the defect of ATP synthase assembly in the FUD16 mutant from Chlamydomonas reinhardtii. The two corresponding amino acid substitutions, Ile184-->Asn and Asn186-->Tyr, occurred at strictly conserved sites among the alpha and beta subunits of (C)F1 complexes from bacteria, mitochondria, and chloroplasts. The altered region in the alpha polypeptide chain is located 7 amino acids downstream of the P-loop, which forms most of the conserved nucleotide binding site. Although the resulting chloroplast mutant fails to accumulate most of the ATP synthase subunits, it displays an increased intracellular content in both the alpha and beta subunits. We demonstrate that the two subunits do not bind to the thylakoid membranes but associate and overaccumulate in the chloroplast stroma as inclusion bodies. Increased rates of synthesis of the two subunits in the mutant point to an early interaction between the two subunits during their biogenesis.
Collapse
Affiliation(s)
- S L Ketchner
- Service de Photosynthèse, URA/CNRS 1187, Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | | | |
Collapse
|
36
|
Gao F, Lipscomb B, Wu I, Richter ML. In vitro assembly of the core catalytic complex of the chloroplast ATP synthase. J Biol Chem 1995; 270:9763-9. [PMID: 7730354 DOI: 10.1074/jbc.270.17.9763] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The regulatory gamma subunit and an alpha beta complex were isolated from the catalytic F1 portion of the chloroplast ATP synthase. The isolated gamma subunit was devoid of catalytic activity, whereas the alpha beta complex exhibited a very low ATPase activity (approximately 200 nmol/min/mg of protein). The alpha beta complex migrated as a hexameric alpha 3 beta 3 complex during ultracentrifugation and gel filtration but reversibly dissociated into alpha and beta monomers after freezing and thawing in the presence of ethylenediamine tetraacetic acid and in the absence of nucleotides. Conditions are described in which the gamma and alpha beta preparations were combined to rapidly and efficiently reconstitute a fully functional catalytic core enzyme complex. The reconstituted enzyme exhibited normal tight binding and sensitivity to the inhibitory epsilon subunit and to the allosteric inhibitor tentoxin. However, neither the alpha beta complex nor the isolated gamma subunit alone could bind the epsilon subunit or tentoxin with high affinity. Similarly, high affinity binding sites for ATP and ADP, which are characteristic of the core alpha 3 beta 3 gamma enzyme, were absent from the alpha beta complex. The results indicate that when the gamma subunit binds to the alpha beta complex, it induces a three-dimensional conformation in the enzyme, which is necessary for tight binding of the inhibitors and for high-affinity, asymmetric nucleotide binding.
Collapse
Affiliation(s)
- F Gao
- Department of Biochemistry, University of Kansas, Lawrence 66045, USA
| | | | | | | |
Collapse
|