1
|
Palepšienė R, Muralidharan A, Maciulevičius M, Ruzgys P, Chopra S, Boukany PE, Šatkauskas S. New insights into the mechanism of electrotransfer of small nucleic acids. Bioelectrochemistry 2024; 158:108696. [PMID: 38583283 DOI: 10.1016/j.bioelechem.2024.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
RNA interference (RNAi) is a powerful and rapidly developing technology that enables precise silencing of genes of interest. However, the clinical development of RNAi is hampered by the limited cellular uptake and stability of the transferred molecules. Electroporation (EP) is an efficient and versatile technique for the transfer of both RNA and DNA. Although the mechanism of electrotransfer of small nucleic acids has been studied previously, too little is known about the potential effects of significantly larger pDNA on this process. Here we present a fundamental study of the mechanism of electrotransfer of oligonucleotides and siRNA that occur independently and simultaneously with pDNA by employing confocal fluorescence microscopy. In contrast to the conditional understanding of the mechanism, we have shown that the electrotransfer of oligonucleotides and siRNA is driven by both electrophoretic forces and diffusion after EP, followed by subsequent entry into the nucleus within 5 min after treatment. The study also revealed that the efficiency of siRNA electrotransfer decreases in response to an increase in pDNA concentration. Overall, the study provides new insights into the mechanism of electrotransfer of small nucleic acids which may have broader implications for the future application of RNAi-based strategies.
Collapse
Affiliation(s)
- Rūta Palepšienė
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| | - Aswin Muralidharan
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, Netherlands; Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, Netherlands.
| | - Martynas Maciulevičius
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| | - Paulius Ruzgys
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| | - Sonam Chopra
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, Netherlands.
| | - Saulius Šatkauskas
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| |
Collapse
|
2
|
Xu M, Zhang X, Bai Y, Wang X, Yang J, Hu N. Mechanism study on the influences of buffer osmotic pressure on microfluidic chip-based cell electrofusion. APL Bioeng 2024; 8:026103. [PMID: 38638144 PMCID: PMC11026109 DOI: 10.1063/5.0205100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Cell electrofusion is a key process in many research fields, such as genetics, immunology, and cross-breeding. The electrofusion efficiency is highly dependent on the buffer osmotic pressure properties. However, the mechanism by which the buffer osmotic pressure affects cell electrofusion has not been theoretically or numerically understood. In order to explore the mechanism, the microfluidic structure with paired arc micro-cavities was first evaluated based on the numerical analysis of the transmembrane potential and the electroporation induced on biological cells when the electrofusion was performed on this structure. Then, the numerical model was used to analyze the effect of three buffer osmotic pressures on the on-chip electrofusion in terms of membrane tension and cell size. Compared to hypertonic and isotonic buffers, hypotonic buffer not only increased the reversible electroporation area in the cell-cell contact zone by 1.7 times by inducing a higher membrane tension, but also significantly reduced the applied voltage required for cell electroporation by increasing the cell size. Finally, the microfluidic chip with arc micro-cavities was fabricated and tested for electrofusion of SP2/0 cells. The results showed that no cell fusion occurred in the hypertonic buffer. The fusion efficiency in the isotonic buffer was about 7%. In the hypotonic buffer, the fusion efficiency was about 60%, which was significantly higher compared to hypertonic and isotonic buffers. The experimental results were in good agreement with the numerical analysis results.
Collapse
Affiliation(s)
- Mengli Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xiaoling Zhang
- School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, China
| | - Yaqi Bai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xuefeng Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Contraction of the rigor actomyosin complex drives bulk hemoglobin expulsion from hemolyzing erythrocytes. Biomech Model Mechanobiol 2022; 22:417-432. [PMID: 36357646 PMCID: PMC10097772 DOI: 10.1007/s10237-022-01654-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2022]
Abstract
Erythrocyte ghost formation via hemolysis is a key event in the physiological clearance of senescent red blood cells (RBCs) in the spleen. The turnover rate of millions of RBCs per second necessitates a rapid efflux of hemoglobin (Hb) from RBCs by a not yet identified mechanism. Using high-speed video-microscopy of isolated RBCs, we show that electroporation-induced efflux of cytosolic ATP and other small solutes leads to transient cell shrinkage and echinocytosis, followed by osmotic swelling to the critical hemolytic volume. The onset of hemolysis coincided with a sudden self-propelled cell motion, accompanied by cell contraction and Hb-jet ejection. Our biomechanical model, which relates the Hb-jet-driven cell motion to the cytosolic pressure generation via elastic contraction of the RBC membrane, showed that the contributions of the bilayer and the bilayer-anchored spectrin cytoskeleton to the hemolytic cell motion are negligible. Consistent with the biomechanical analysis, our biochemical experiments, involving extracellular ATP and the myosin inhibitor blebbistatin, identify the low abundant non-muscle myosin 2A (NM2A) as the key contributor to the Hb-jet emission and fast hemolytic cell motion. Thus, our data reveal a rapid myosin-based mechanism of hemolysis, as opposed to a much slower diffusive Hb efflux.
Collapse
|
4
|
Wang F, Lin S, Yu Z, Wang Y, Zhang D, Cao C, Wang Z, Cui D, Chen D. Recent advances in microfluidic-based electroporation techniques for cell membranes. LAB ON A CHIP 2022; 22:2624-2646. [PMID: 35775630 DOI: 10.1039/d2lc00122e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electroporation is a fundamental technique for applications in biotechnology. To date, the ongoing research on cell membrane electroporation has explored its mechanism, principles and potential applications. Therefore, in this review, we first discuss the primary electroporation mechanism to help establish a clear framework. Within the context of its principles, several critical terms are highlighted to present a better understanding of the theory of aqueous pores. Different degrees of electroporation can be used in different applications. Thus, we discuss the electric factors (shock strength, shock duration, and shock frequency) responsible for the degree of electroporation. In addition, finding an effective electroporation detection method is of great significance to optimize electroporation experiments. Accordingly, we summarize several primary electroporation detection methods in the following sections. Finally, given the development of micro- and nano-technology has greatly promoted the innovation of microfluidic-based electroporation devices, we also present the recent advances in microfluidic-based electroporation devices. Also, the challenges and outlook of the electroporation technique for cell membrane electroporation are presented.
Collapse
Affiliation(s)
- Fei Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Zixian Yu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Yanpu Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Di Zhang
- Centre for Advanced Electronic Materials and Devices (AEMD), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chengxi Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
| | - Zhigang Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| |
Collapse
|
5
|
Rems L, Tang X, Zhao F, Pérez-Conesa S, Testa I, Delemotte L. Identification of electroporation sites in the complex lipid organization of the plasma membrane. eLife 2022; 11:e74773. [PMID: 35195069 PMCID: PMC8912918 DOI: 10.7554/elife.74773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
The plasma membrane of a biological cell is a complex assembly of lipids and membrane proteins, which tightly regulate transmembrane transport. When a cell is exposed to strong electric field, the membrane integrity becomes transiently disrupted by formation of transmembrane pores. This phenomenon termed electroporation is already utilized in many rapidly developing applications in medicine including gene therapy, cancer treatment, and treatment of cardiac arrhythmias. However, the molecular mechanisms of electroporation are not yet sufficiently well understood; in particular, it is unclear where exactly pores form in the complex organization of the plasma membrane. In this study, we combine coarse-grained molecular dynamics simulations, machine learning methods, and Bayesian survival analysis to identify how formation of pores depends on the local lipid organization. We show that pores do not form homogeneously across the membrane, but colocalize with domains that have specific features, the most important being high density of polyunsaturated lipids. We further show that knowing the lipid organization is sufficient to reliably predict poration sites with machine learning. Additionally, by analysing poration kinetics with Bayesian survival analysis we show that poration does not depend solely on local lipid arrangement, but also on membrane mechanical properties and the polarity of the electric field. Finally, we discuss how the combination of atomistic and coarse-grained molecular dynamics simulations, machine learning methods, and Bayesian survival analysis can guide the design of future experiments and help us to develop an accurate description of plasma membrane electroporation on the whole-cell level. Achieving this will allow us to shift the optimization of electroporation applications from blind trial-and-error approaches to mechanistic-driven design.
Collapse
Affiliation(s)
- Lea Rems
- KTH Royal Institute of Technology, Dept. Applied Physics, Science for Life LaboratorySolnaSweden
- University of Ljubljana, Faculty of Electrical EngineeringLjubljanaSlovenia
| | - Xinru Tang
- KTH Royal Institute of Technology, Dept. Applied Physics, Science for Life LaboratorySolnaSweden
- University of Chinese Academy of SciencesBeijingChina
| | - Fangwei Zhao
- KTH Royal Institute of Technology, Dept. Applied Physics, Science for Life LaboratorySolnaSweden
- University of Chinese Academy of SciencesBeijingChina
| | - Sergio Pérez-Conesa
- KTH Royal Institute of Technology, Dept. Applied Physics, Science for Life LaboratorySolnaSweden
| | - Ilaria Testa
- KTH Royal Institute of Technology, Dept. Applied Physics, Science for Life LaboratorySolnaSweden
| | - Lucie Delemotte
- KTH Royal Institute of Technology, Dept. Applied Physics, Science for Life LaboratorySolnaSweden
| |
Collapse
|
6
|
Pulse Duration Dependent Asymmetry in Molecular Transmembrane Transport Due to Electroporation in H9c2 Rat Cardiac Myoblast Cells In Vitro. Molecules 2021; 26:molecules26216571. [PMID: 34770979 PMCID: PMC8588460 DOI: 10.3390/molecules26216571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Electroporation (EP) is one of the successful physical methods for intracellular drug delivery, which temporarily permeabilizes plasma membrane by exposing cells to electric pulses. Orientation of cells in electric field is important for electroporation and, consequently, for transport of molecules through permeabilized plasma membrane. Uptake of molecules after electroporation are the greatest at poles of cells facing electrodes and is often asymmetrical. However, asymmetry reported was inconsistent and inconclusive-in different reports it was either preferentially anodal or cathodal. We investigated the asymmetry of polar uptake of calcium ions after electroporation with electric pulses of different durations, as the orientation of elongated cells affects electroporation to a different extent when using electric pulses of different durations in the range of 100 ns to 100 µs. The results show that with 1, 10, and 100 µs pulses, the uptake of calcium ions is greater at the pole closer to the cathode than at the pole closer to the anode. With shorter 100 ns pulses, the asymmetry is not observed. A different extent of electroporation at different parts of elongated cells, such as muscle or cardiac cells, may have an impact on electroporation-based treatments such as drug delivery, pulse-field ablation, and gene electrotransfection.
Collapse
|
7
|
Kiester AS, Ibey BL, Coker ZN, Pakhomov AG, Bixler JN. Strobe photography mapping of cell membrane potential with nanosecond resolution. Bioelectrochemistry 2021; 142:107929. [PMID: 34438186 DOI: 10.1016/j.bioelechem.2021.107929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
The ability to directly observe membrane potential charging dynamics across a full microscopic field of view is vital for understanding interactions between a biological system and a given electrical stimulus. Accurate empirical knowledge of cell membrane electrodynamics will enable validation of fundamental hypotheses posited by the single shell model, which includes the degree of voltage change across a membrane and cellular sensitivity to external electric field non-uniformity and directionality. To this end, we have developed a high-speed strobe microscopy system with a time resolution of ~ 6 ns that allows us to acquire time-sequential data for temporally repeatable events (non-injurious electrostimulation). The imagery from this system allows for direct comparison of membrane voltage change to both computationally simulated external electric fields and time-dependent membrane charging models. Acquisition of a full microscope field of view enables the selection of data from multiple cell locations experiencing different electrical fields in a single image sequence for analysis. Using this system, more realistic membrane parameters can be estimated from living cells to better inform predictive models. As a proof of concept, we present evidence that within the range of membrane conductivity used in simulation literature, higher values are likely more valid.
Collapse
Affiliation(s)
- Allen S Kiester
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, TX, USA
| | - Bennett L Ibey
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, TX, USA
| | | | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Joel N Bixler
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, TX, USA.
| |
Collapse
|
8
|
Mi Y, Xu J, Liu Q, Wu X, Zhang Q, Tang J. Single-cell electroporation with high-frequency nanosecond pulse bursts: Simulation considering the irreversible electroporation effect and experimental validation. Bioelectrochemistry 2021; 140:107822. [PMID: 33915340 DOI: 10.1016/j.bioelechem.2021.107822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
To study the electroporation characteristics of cells under high-frequency nanosecond pulse bursts (HFnsPBs), the original electroporation mathematical model was improved. By setting a threshold value for irreversible electroporation (IRE) and considering the effect of an electric field on the surface tension of a cell membrane, a mathematical model of electroporation considering the effect of IRE is proposed for the first time. A typical two-dimensional cell system was discretized into nodes using MATLAB, and a mesh transport network method (MTNM) model was established for simulation. The dynamic processes of single-cell electroporation and molecular transport under the application of 50 unipolar HFnsPBs with field intensities of 9 kV cm-1 and different frequencies (10 kHz, 100 kHz and 500 kHz) to the target system was simulated with a 300 s simulation time. The IRE characteristics and molecular transport were evaluated. In addition, a PI fluorescent dye assay was designed to verify the correctness of the model by providing time-domain and spatial results that were compared with the simulation results. The simulation achieved IRE and demonstrated the cumulative effects of multipulse bursts and intraburst frequency on irreversible pores. The model can also reflect the cumulative effect of multipulse bursts on reversible pores by introducing an assumption of stable reversible pores. The experimental results agreed qualitatively with the simulation results. A relative calibration of the fluorescence data gave time-domain molecular transport results that were quantitatively similar to the simulation results. This article reveals the cell electroporation characteristics under HFnsPBs from a mechanism perspective and has important guidance for fields involving the IRE of cells.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.
| | - Jin Xu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Quan Liu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Xiao Wu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Zhang
- First Affiliated Hospital of Chongqing Medical Science University, Chongqing 400016, China
| | - Junying Tang
- First Affiliated Hospital of Chongqing Medical Science University, Chongqing 400016, China
| |
Collapse
|
9
|
Graybill PM, Jana A, Kapania RK, Nain AS, Davalos RV. Single Cell Forces after Electroporation. ACS NANO 2021; 15:2554-2568. [PMID: 33236888 PMCID: PMC10949415 DOI: 10.1021/acsnano.0c07020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exogenous high-voltage pulses increase cell membrane permeability through a phenomenon known as electroporation. This process may also disrupt the cell cytoskeleton causing changes in cell contractility; however, the contractile signature of cell force after electroporation remains unknown. Here, single-cell forces post-electroporation are measured using suspended extracellular matrix-mimicking nanofibers that act as force sensors. Ten, 100 μs pulses are delivered at three voltage magnitudes (500, 1000, and 1500 V) and two directions (parallel and perpendicular to cell orientation), exposing glioblastoma cells to electric fields between 441 V cm-1 and 1366 V cm-1. Cytoskeletal-driven force loss and recovery post-electroporation involves three distinct stages. Low electric field magnitudes do not cause disruption, but higher fields nearly eliminate contractility 2-10 min post-electroporation as cells round following calcium-mediated retraction (stage 1). Following rounding, a majority of analyzed cells enter an unusual and unexpected biphasic stage (stage 2) characterized by increased contractility tens of minutes post-electroporation, followed by force relaxation. The biphasic stage is concurrent with actin disruption-driven blebbing. Finally, cells elongate and regain their pre-electroporation morphology and contractility in 1-3 h (stage 3). With increasing voltages applied perpendicular to cell orientation, we observe a significant drop in cell viability. Experiments with multiple healthy and cancerous cell lines demonstrate that contractile force is a more dynamic and sensitive metric than cell shape to electroporation. A mechanobiological understanding of cell contractility post-electroporation will deepen our understanding of the mechanisms that drive recovery and may have implications for molecular medicine, genetic engineering, and cellular biophysics.
Collapse
Affiliation(s)
- Philip M Graybill
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Aniket Jana
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Rakesh K Kapania
- Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| | - Rafael V Davalos
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
10
|
Sözer EB, Haldar S, Blank PS, Castellani F, Vernier PT, Zimmerberg J. Dye Transport through Bilayers Agrees with Lipid Electropore Molecular Dynamics. Biophys J 2020; 119:1724-1734. [PMID: 33096018 DOI: 10.1016/j.bpj.2020.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Although transport of molecules into cells via electroporation is a common biomedical procedure, its protocols are often based on trial and error. Despite a long history of theoretical effort, the underlying mechanisms of cell membrane electroporation are not sufficiently elucidated, in part, because of the number of independent fitting parameters needed to link theory to experiment. Here, we ask if the electroporation behavior of a reduced cell membrane is consistent with time-resolved, atomistic, molecular dynamics (MD) simulations of phospholipid bilayers responding to electric fields. To avoid solvent and tension effects, giant unilamellar vesicles (GUVs) were used, and transport kinetics were measured by the entry of the impermeant fluorescent dye calcein. Because the timescale of electrical pulses needed to restructure bilayers into pores is much shorter than the time resolution of current techniques for membrane transport kinetics measurements, the lifetimes of lipid bilayer electropores were measured using systematic variation of the initial MD simulation conditions, whereas GUV transport kinetics were detected in response to a nanosecond timescale variation in the applied electric pulse lifetimes and interpulse intervals. Molecular transport after GUV permeabilization induced by multiple pulses is additive for interpulse intervals as short as 50 ns but not 5-ns intervals, consistent with the 10-50-ns lifetimes of electropores in MD simulations. Although the results were mostly consistent between GUV and MD simulations, the kinetics of ultrashort, electric-field-induced permeabilization of GUVs were significantly different from published results in cells exposed to ultrashort (6 and 2 ns) electric fields, suggesting that cellular electroporation involves additional structures and processes.
Collapse
Affiliation(s)
- Esin B Sözer
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Sourav Haldar
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Paul S Blank
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Federica Castellani
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia; Biomedical Engineering Institute, Frank Batten College of Engineering and Technology, Old Dominion University, Norfolk, Virginia
| | - P Thomas Vernier
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia.
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland.
| |
Collapse
|
11
|
Effects of electrically-induced constant tension on giant unilamellar vesicles using irreversible electroporation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:731-741. [PMID: 31552440 DOI: 10.1007/s00249-019-01398-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/12/2019] [Accepted: 09/16/2019] [Indexed: 01/16/2023]
Abstract
Stretching in membranes of cells and vesicles plays important roles in various physiological and physicochemical phenomena. Irreversible electroporation (IRE) is the irreversible permeabilization of the membrane through the application of a series of electrical field pulses of micro- to millisecond duration. IRE induces lateral tension due to stretching in the membranes of giant unilamellar vesicles (GUVs). However, the effects of electrically induced (i.e., IRE) constant tension in the membranes of GUVs have not been investigated yet in detail. To explore the effects of electrically induced tension on GUVs, firstly a microcontroller-based IRE technique is developed which produces electric field pulses (332 V/cm) with pulse width 200 µs. Then the electrodeformation, electrofusion and membrane rupture of GUVs are investigated at various constant tensions in which the membranes of GUVs are composed of dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylcholine (DOPC). Stochastic electropore formation is observed in the membranes at an electrically induced constant tension in which the probability of pore formation is increased with the increase of tension from 2.5 to 7.0 mN/m. The results of pore formation at different electrically-induced constant tensions are in agreement with those reported for mechanically-induced constant tension. The decrease in the energy barrier of the pre-pore state due to the increase of electrically-induced tension is the main factor increasing the probability of electropore formation. These investigations help to provide an understanding of the complex behavior of cells/vesicles in electric field pulses and can form the basis for practical applications in biomedical technology.
Collapse
|
12
|
Modulation of biological responses to 2 ns electrical stimuli by field reversal. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1228-1239. [DOI: 10.1016/j.bbamem.2019.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/05/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023]
|
13
|
Perrier DL, Vahid A, Kathavi V, Stam L, Rems L, Mulla Y, Muralidharan A, Koenderink GH, Kreutzer MT, Boukany PE. Response of an actin network in vesicles under electric pulses. Sci Rep 2019; 9:8151. [PMID: 31148577 PMCID: PMC6544639 DOI: 10.1038/s41598-019-44613-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
We study the role of a biomimetic actin network during the application of electric pulses that induce electroporation or electropermeabilization, using giant unilamellar vesicles (GUVs) as a model system. The actin cortex, a subjacently attached interconnected network of actin filaments, regulates the shape and mechanical properties of the plasma membrane of mammalian cells, and is a major factor influencing the mechanical response of the cell to external physical cues. We demonstrate that the presence of an actin shell inhibits the formation of macropores in the electroporated GUVs. Additionally, experiments on the uptake of dye molecules after electroporation show that the actin network slows down the resealing process of the permeabilized membrane. We further analyze the stability of the actin network inside the GUVs exposed to high electric pulses. We find disruption of the actin layer that is likely due to the electrophoretic forces acting on the actin filaments during the permeabilization of the GUVs. Our findings on the GUVs containing a biomimetic network provide a step towards understanding the discrepancies between the electroporation mechanism of a living cell and its simplified model of the empty GUV.
Collapse
Affiliation(s)
- Dayinta L Perrier
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Afshin Vahid
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Vaishnavi Kathavi
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Lotte Stam
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Lea Rems
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Yuval Mulla
- AMOLF, Department of Living Matter, Amsterdam, The Netherlands
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Aswin Muralidharan
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | | | - Michiel T Kreutzer
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
14
|
Kotnik T, Rems L, Tarek M, Miklavčič D. Membrane Electroporation and Electropermeabilization: Mechanisms and Models. Annu Rev Biophys 2019; 48:63-91. [PMID: 30786231 DOI: 10.1146/annurev-biophys-052118-115451] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exposure of biological cells to high-voltage, short-duration electric pulses causes a transient increase in their plasma membrane permeability, allowing transmembrane transport of otherwise impermeant molecules. In recent years, large steps were made in the understanding of underlying events. Formation of aqueous pores in the lipid bilayer is now a widely recognized mechanism, but evidence is growing that changes to individual membrane lipids and proteins also contribute, substantiating the need for terminological distinction between electroporation and electropermeabilization. We first revisit experimental evidence for electrically induced membrane permeability, its correlation with transmembrane voltage, and continuum models of electropermeabilization that disregard the molecular-level structure and events. We then present insights from molecular-level modeling, particularly atomistic simulations that enhance understanding of pore formation, and evidence of chemical modifications of membrane lipids and functional modulation of membrane proteins affecting membrane permeability. Finally, we discuss the remaining challenges to our full understanding of electroporation and electropermeabilization.
Collapse
Affiliation(s)
- Tadej Kotnik
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; ,
| | - Lea Rems
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17165 Solna, Sweden;
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France;
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; ,
| |
Collapse
|
15
|
Ruzgys P, Jakutavičiūtė M, Šatkauskienė I, Čepurnienė K, Šatkauskas S. Effect of electroporation medium conductivity on exogenous molecule transfer to cells in vitro. Sci Rep 2019; 9:1436. [PMID: 30723286 PMCID: PMC6363740 DOI: 10.1038/s41598-018-38287-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/21/2018] [Indexed: 12/02/2022] Open
Abstract
In this study we evaluated the influence of medium conductivity to propidium iodide (PI) and bleomycin (BLM) electroporation mediated transfer to cells. Inverse dependency between the extracellular conductivity and the efficiency of the transfer had been found. Using 1 high voltage (HV) pulse, the total molecule transfer efficiency decreased 4.67 times when external medium conductivity increased from 0.1 to 0.9 S/m. Similar results had been found using 2 HV and 3 HV pulses. The percentage of cells killed by BLM electroporation mediated transfer had also decreased with the conductivity increase, from 79% killed cells in 0.1 S/m conductivity medium to 28% killed cells in 0.9 S/m conductivity medium. We hypothesize that the effect of external medium conductivity on electroporation mediated transfer is triggered by cell deformation during electric field application. In high conductivity external medium cell assumes oblate shape, which causes a change of voltage distribution on the cell membrane, leading to lower electric field induced transmembrane potential. On the contrary, low conductivity external medium leads to prolate cell shape and increased transmembrane potential at the electrode facing cell poles.
Collapse
Affiliation(s)
- Paulius Ruzgys
- Vytautas Magnus University, Faculty of Natural Sciences, Vileikos 8, Kaunas, Lithuania
| | - Milda Jakutavičiūtė
- Vytautas Magnus University, Faculty of Natural Sciences, Vileikos 8, Kaunas, Lithuania
| | - Ingrida Šatkauskienė
- Vytautas Magnus University, Faculty of Natural Sciences, Vileikos 8, Kaunas, Lithuania
| | - Karolina Čepurnienė
- Vytautas Magnus University, Faculty of Natural Sciences, Vileikos 8, Kaunas, Lithuania
| | - Saulius Šatkauskas
- Vytautas Magnus University, Faculty of Natural Sciences, Vileikos 8, Kaunas, Lithuania.
| |
Collapse
|
16
|
Korem M, Goldberg NS, Cahan A, Cohen MJ, Nissenbaum I, Moses AE. Clinically applicable irreversible electroporation for eradication of micro-organisms. Lett Appl Microbiol 2018; 67:15-21. [PMID: 29679390 DOI: 10.1111/lam.12996] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
Irreversible electroporation (IRE) damages cell membranes and is used in medicine for nonthermal ablation of malignant tumours. Our aim was to evaluate the antimicrobial effect of IRE. The pathogenic micro-organisms, Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa and Candida albicans were subjected to IRE. Survival was measured as a function of voltage and the number of pulses applied. Combined use of IRE and oxacillin for eradication of Staph. aureus was also tested. Log10 reduction in micro-organisms positively correlated with the number of applied pulses. The colony count of Strep. pyogenes and E. coli declined by 3·38 and 3·05 orders of magnitude, respectively, using an electric field of 2000 V and 100 pulses. Killing of Staph. aureus and P. aeruginosa was achieved with a double cycle of IRE (2000, 1500 V and repeated 1250 V respectively) of 50-100 IRE pulses. The addition of subclinical inhibitory concentrations of oxacillin to the Staph. aureus suspension prior to IRE led to total bacterial death, demonstrating synergism between oxacillin and IRE. Our results demonstrate that using IRE with clinically established parameters has a marked in vitro effect on pathogenic micro-organisms and highlights the potential of IRE as a treatment modality for deep-seated infections, particularly when combined with low doses of antibiotics. SIGNIFICANCE AND IMPACT OF THE STUDY Irreversible electroporation (IRE) is utilized in interventional radiology to treat cancer patients. In this study we evaluated in vitro the antimicrobial effect of IRE. We demonstrated that using IRE with clinically established parameters has a marked effect on pathogenic micro-organisms and is synergistic to antimicrobials when both are combined. Our results point to the potential of IRE as a treatment modality for deep-seated infections.
Collapse
Affiliation(s)
- M Korem
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - N S Goldberg
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - A Cahan
- IBM Research, Yorktown, NY, USA
| | - M J Cohen
- Clalit Health Services, Jerusalem, Israel
| | - I Nissenbaum
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - A E Moses
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
17
|
Batista Napotnik T, Miklavčič D. In vitro electroporation detection methods – An overview. Bioelectrochemistry 2018; 120:166-182. [DOI: 10.1016/j.bioelechem.2017.12.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
|
18
|
Sözer EB, Pocetti CF, Vernier PT. Transport of charged small molecules after electropermeabilization - drift and diffusion. BMC BIOPHYSICS 2018; 11:4. [PMID: 29581879 PMCID: PMC5861730 DOI: 10.1186/s13628-018-0044-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/06/2018] [Indexed: 11/10/2022]
Abstract
Background Applications of electric-field-induced permeabilization of cells range from cancer therapy to wastewater treatment. A unified understanding of the underlying mechanisms of membrane electropermeabilization, however, has not been achieved. Protocols are empirical, and models are descriptive rather than predictive, which hampers the optimization and expansion of electroporation-based technologies. A common feature of existing models is the assumption that the permeabilized membrane is passive, and that transport through it is entirely diffusive. To demonstrate the necessity to go beyond that assumption, we present here a quantitative analysis of the post-permeabilization transport of three small molecules commonly used in electroporation research — YO-PRO-1, propidium, and calcein — after exposure of cells to minimally perturbing, 6 ns electric pulses. Results Influx of YO-PRO-1 from the external medium into the cell exceeds that of propidium, consistent with many published studies. Both are much greater than the influx of calcein. In contrast, the normalized molar efflux of calcein from pre-loaded cells into the medium after electropermeabilization is roughly equivalent to the influx of YO-PRO-1 and propidium. These relative transport rates are correlated not with molecular size or cross-section, but rather with molecular charge polarity. Conclusions This comparison of the kinetics of molecular transport of three small, charged molecules across electropermeabilized cell membranes reveals a component of the mechanism of electroporation that is customarily taken into account only for the time during electric pulse delivery. The large differences between the influx rates of propidium and YO-PRO-1 (cations) and calcein (anion), and between the influx and efflux of calcein, suggest a significant role for the post-pulse transmembrane potential in the migration of ions and charged small molecules across permeabilized cell membranes, which has been largely neglected in models of electroporation. Electronic supplementary material The online version of this article (10.1186/s13628-018-0044-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esin B Sözer
- 1Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Ste. 300, Norfolk, VA 23508 USA
| | - C Florencia Pocetti
- 2Department of Bioengineering, Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
| | - P Thomas Vernier
- 1Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Ste. 300, Norfolk, VA 23508 USA
| |
Collapse
|
19
|
Ciobanu F, Golzio M, Kovacs E, Teissié J. Control by Low Levels of Calcium of Mammalian Cell Membrane Electropermeabilization. J Membr Biol 2017; 251:221-228. [PMID: 28823021 DOI: 10.1007/s00232-017-9981-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/15/2017] [Indexed: 01/12/2023]
Abstract
Electric pulses, when applied to a cell suspension, induce a reversible permeabilization of the plasma membrane. This permeabilized state is a long-lived process (minutes). The biophysical molecular mechanisms supporting the membrane reorganization associated to its permeabilization remain poorly understood. Modeling the transmembrane structures as toroidal lipidic pores cannot explain why they are long-lived and why their resealing is under the control of the ATP level. Our results describe the effect of the level of free Calcium ions. Permeabilization induces a Ca2+ burst as previously shown by imaging of cells loaded with Fluo-3. But this sharp increase is reversible even when Calcium is present at a millimolar concentration. Viability is preserved to a larger extent when submillimolar concentrations are used. The effect of calcium ions is occurring during the resealing step not during the creation of permeabilization as the same effect is observed if Ca2+ is added in the few seconds following the pulses. The resealing time is faster when Ca2+ is present in a dose-dependent manner. Mg2+ is observed to play a competitive role. These observations suggest that Ca2+ is acting not on the external leaflet of the plasma membrane but due to its increased concentration in the cytoplasm. Exocytosis will be enhanced by this Ca2+ burst (but hindered by Mg2+) and occurs in the electropermeabilized part of the cell surface. This description is supported by previous theoretical and experimental results. The associated fusion of vesicles will be the support of resealing.
Collapse
Affiliation(s)
- Florin Ciobanu
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,University Carol Davila, Bucarest, Romania
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Justin Teissié
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
20
|
Physical Methods for Drug and Gene Delivery Through the Cell Plasma Membrane. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2017; 227:73-92. [DOI: 10.1007/978-3-319-56895-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Sözer EB, Pocetti CF, Vernier PT. Asymmetric Patterns of Small Molecule Transport After Nanosecond and Microsecond Electropermeabilization. J Membr Biol 2017; 251:197-210. [PMID: 28484798 PMCID: PMC5910485 DOI: 10.1007/s00232-017-9962-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/03/2017] [Indexed: 02/02/2023]
Abstract
Imaging of fluorescent small molecule transport into electropermeabilized cells reveals polarized patterns of entry, which must reflect in some way the mechanisms of the migration of these molecules across the compromised membrane barrier. In some reports, transport occurs primarily across the areas of the membrane nearest the positive electrode (anode), but in others cathode-facing entry dominates. Here we compare YO-PRO-1, propidium, and calcein uptake into U-937 cells after nanosecond (6 ns) and microsecond (220 µs) electric pulse exposures. Each of the three dyes exhibits a different pattern. Calcein shows no preference for anode- or cathode-facing entry that is detectable with our measurement system. Immediately after a microsecond pulse, YO-PRO-1 and propidium enter the cell roughly equally from the positive and negative poles, but transport through the cathode-facing side dominates in less than 1 s. After nanosecond pulse permeabilization, YO-PRO-1 and propidium enter primarily on the anode-facing side of the cell.
Collapse
Affiliation(s)
- Esin B Sözer
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Ste. 300, Norfolk, VA, 23508, USA
| | - C Florencia Pocetti
- Department of Bioengineering, Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
| | - P Thomas Vernier
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Ste. 300, Norfolk, VA, 23508, USA.
| |
Collapse
|
22
|
Jaeger D, Hübner W, Huser T, Mussgnug JH, Kruse O. Nuclear transformation and functional gene expression in the oleaginous microalga Monoraphidium neglectum. J Biotechnol 2017; 249:10-15. [DOI: 10.1016/j.jbiotec.2017.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/07/2017] [Accepted: 03/11/2017] [Indexed: 01/22/2023]
|
23
|
Dependence of Electroporation Detection Threshold on Cell Radius: An Explanation to Observations Non Compatible with Schwan's Equation Model. J Membr Biol 2016; 249:663-676. [PMID: 27170140 DOI: 10.1007/s00232-016-9907-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/02/2016] [Indexed: 01/19/2023]
Abstract
It is widely accepted that electroporation occurs when the cell transmembrane voltage induced by an external applied electric field reaches a threshold. Under this assumption, in order to trigger electroporation in a spherical cell, Schwan's equation leads to an inversely proportional relationship between the cell radius and the minimum magnitude of the applied electric field. And, indeed, several publications report experimental evidences of an inverse relationship between the cell size and the field required to achieve electroporation. However, this dependence is not always observed or is not as steep as predicted by Schwan's equation. The present numerical study attempts to explain these observations that do not fit Schwan's equation on the basis of the interplay between cell membrane conductivity, permeability, and transmembrane voltage. For that, a single cell in suspension was modeled and the electric field necessary to achieve electroporation with a single pulse was determined according to two effectiveness criteria: a specific permeabilization level, understood as the relative area occupied by the pores during the pulse, and a final intracellular concentration of a molecule due to uptake by diffusion after the pulse, during membrane resealing. The results indicate that plausible model parameters can lead to divergent dependencies of the electric field threshold on the cell radius. These divergent dependencies were obtained through both criteria and using two different permeabilization models. This suggests that the interplay between cell membrane conductivity, permeability, and transmembrane voltage might be the cause of results which are noncompatible with the Schwan's equation model.
Collapse
|
24
|
Šilkūnas M, Saulė R, Batiuškaitė D, Saulis G. The Electroporation as a Tool for Studying the Role of Plasma Membrane in the Mechanism of Cytotoxicity of Bisphosphonates and Menadione. J Membr Biol 2016; 249:611-621. [DOI: 10.1007/s00232-016-9895-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/28/2016] [Indexed: 12/21/2022]
|
25
|
Boyd B, Becker S. Macroscopic Modeling of In Vivo Drug Transport in Electroporated Tissue. J Biomech Eng 2016; 138:4032380. [DOI: 10.1115/1.4032380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Indexed: 11/08/2022]
Abstract
This study develops a macroscopic model of mass transport in electroporated biological tissue in order to predict the cellular drug uptake. The change in the macroscopic mass transport coefficient is related to the increase in electrical conductivity resulting from the applied electric field. Additionally, the model considers the influences of both irreversible electroporation (IRE) and the transient resealing of the cell membrane associated with reversible electroporation. Two case studies are conducted to illustrate the applicability of this model by comparing transport associated with two electrode arrangements: side-by-side arrangement and the clamp arrangement. The results show increased drug transmission to viable cells is possible using the clamp arrangement due to the more uniform electric field.
Collapse
Affiliation(s)
- Bradley Boyd
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8014, New Zealand e-mail:
| | - Sid Becker
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8014, New Zealand e-mail:
| |
Collapse
|
26
|
Rosazza C, Meglic SH, Zumbusch A, Rols MP, Miklavcic D. Gene Electrotransfer: A Mechanistic Perspective. Curr Gene Ther 2016; 16:98-129. [PMID: 27029943 PMCID: PMC5412002 DOI: 10.2174/1566523216666160331130040] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/22/2022]
Abstract
Gene electrotransfer is a powerful method of DNA delivery offering several medical applications, among the most promising of which are DNA vaccination and gene therapy for cancer treatment. Electroporation entails the application of electric fields to cells which then experience a local and transient change of membrane permeability. Although gene electrotransfer has been extensively studied in in vitro and in vivo environments, the mechanisms by which DNA enters and navigates through cells are not fully understood. Here we present a comprehensive review of the body of knowledge concerning gene electrotransfer that has been accumulated over the last three decades. For that purpose, after briefly reviewing the medical applications that gene electrotransfer can provide, we outline membrane electropermeabilization, a key process for the delivery of DNA and smaller molecules. Since gene electrotransfer is a multipart process, we proceed our review in describing step by step our current understanding, with particular emphasis on DNA internalization and intracellular trafficking. Finally, we turn our attention to in vivo testing and methodology for gene electrotransfer.
Collapse
Affiliation(s)
| | | | | | - Marie-Pierre Rols
- Institute of Pharmacology and Structural Biology (IPBS), CNRS UMR5089, 205 route de Narbonne, 31077 Toulouse, France.
| | | |
Collapse
|
27
|
Luft C, Ketteler R. Electroporation Knows No Boundaries: The Use of Electrostimulation for siRNA Delivery in Cells and Tissues. JOURNAL OF BIOMOLECULAR SCREENING 2015; 20:932-42. [PMID: 25851034 PMCID: PMC4543902 DOI: 10.1177/1087057115579638] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/04/2014] [Accepted: 03/10/2015] [Indexed: 12/15/2022]
Abstract
The discovery of RNA interference (RNAi) has enabled several breakthrough discoveries in the area of functional genomics. The RNAi technology has emerged as one of the major tools for drug target identification and has been steadily improved to allow gene manipulation in cell lines, tissues, and whole organisms. One of the major hurdles for the use of RNAi in high-throughput screening has been delivery to cells and tissues. Some cell types are refractory to high-efficiency transfection with standard methods such as lipofection or calcium phosphate precipitation and require different means. Electroporation is a powerful and versatile method for delivery of RNA, DNA, peptides, and small molecules into cell lines and primary cells, as well as whole tissues and organisms. Of particular interest is the use of electroporation for delivery of small interfering RNA oligonucleotides and clustered regularly interspaced short palindromic repeats/Cas9 plasmid vectors in high-throughput screening and for therapeutic applications. Here, we will review the use of electroporation in high-throughput screening in cell lines and tissues.
Collapse
Affiliation(s)
- Christin Luft
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
28
|
Semenov I, Zemlin C, Pakhomova ON, Xiao S, Pakhomov AG. Diffuse, non-polar electropermeabilization and reduced propidium uptake distinguish the effect of nanosecond electric pulses. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2118-25. [PMID: 26112464 DOI: 10.1016/j.bbamem.2015.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/31/2015] [Accepted: 06/15/2015] [Indexed: 12/11/2022]
Abstract
Ca2+ activation and membrane electroporation by 10-ns and 4-ms electric pulses (nsEP and msEP) were compared in rat embryonic cardiomyocytes. The lowest electric field which triggered Ca2+ transients was expectedly higher for nsEP (36 kV/cm) than for msEP (0.09 kV/cm) but the respective doses were similar (190 and 460 mJ/g). At higher intensities, both stimuli triggered prolonged firing in quiescent cells. An increase of basal Ca2+ level by >10 nM in cells with blocked voltage-gated Ca2+ channels and depleted Ca2+ depot occurred at 63 kV/cm (nsEP) or 0.14 kV/cm (msEP) and was regarded as electroporation threshold. These electric field values were at 150-230% of stimulation thresholds for both msEP and nsEP, notwithstanding a 400,000-fold difference in pulse duration. For comparable levels of electroporative Ca2+ uptake, msEP caused at least 10-fold greater uptake of propidium than nsEP, suggesting increased yield of larger pores. Electroporation by msEP started Ca2+ entry abruptly and locally at the electrode-facing poles of cell, followed by a slow diffusion to the center. In a stark contrast, nsEP evoked a "supra-electroporation" pattern of slower but spatially uniform Ca2+ entry. Thus nsEP and msEP had comparable dose efficiency, but differed profoundly in the size and localization of electropores.
Collapse
Affiliation(s)
- Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Christian Zemlin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23508, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Shu Xiao
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23508, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| |
Collapse
|
29
|
Venslauskas MS, Šatkauskas S. Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:277-89. [PMID: 25939984 DOI: 10.1007/s00249-015-1025-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 01/19/2023]
Abstract
A short review of biophysical mechanisms for electrotransfer of bioactive molecules through the cell membrane by using electroporation is presented. The concept of transient hydrophilic aqueous pores and membrane electroporation mechanisms of single cells and cells in suspension models are analyzed. Alongside the theoretical approach, some peculiarities of drug and gene electrotransfer into cells and applications in clinical trials are discussed.
Collapse
Affiliation(s)
- Mindaugas S Venslauskas
- Biophysical Research Group, Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, 44404, Kaunas, Lithuania,
| | | |
Collapse
|
30
|
Pakhomov AG, Gianulis E, Vernier PT, Semenov I, Xiao S, Pakhomova ON. Multiple nanosecond electric pulses increase the number but not the size of long-lived nanopores in the cell membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:958-66. [PMID: 25585279 DOI: 10.1016/j.bbamem.2014.12.026] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/04/2014] [Accepted: 12/29/2014] [Indexed: 11/19/2022]
Abstract
Exposure to intense, nanosecond-duration electric pulses (nsEP) opens small but long-lived pores in the plasma membrane. We quantified the cell uptake of two membrane integrity marker dyes, YO-PRO-1 (YP) and propidium (Pr) in order to test whether the pore size is affected by the number of nsEP. The fluorescence of the dyes was calibrated against their concentrations by confocal imaging of stained homogenates of the cells. The calibrations revealed a two-phase dependence of Pr emission on the concentration (with a slower rise at<4μM) and a linear dependence for YP. CHO cells were exposed to nsEP trains (1 to 100 pulses, 60ns, 13.2kV/cm, 10Hz) with Pr and YP in the medium, and the uptake of the dyes was monitored by time-lapse imaging for 3min. Even a single nsEP triggered a modest but detectable entry of both dyes, which increased linearly when more pulses were applied. The influx of Pr per pulse was constant and independent of the pulse number. The influx of YP per pulse was highest with 1- and 2-pulse exposures, decreasing to about twice the Pr level for trains from 5 to 100 pulses. The constant YP/Pr influx ratio for trains of 5 to 100 pulses suggests that increasing the number of pulses permeabilizes cells to a greater extent by increasing the pore number and not the pore diameter.
Collapse
Affiliation(s)
- Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.
| | - Elena Gianulis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - P Thomas Vernier
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Shu Xiao
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
31
|
Abstract
Electroporation has been used extensively to transfer DNA to bacteria, yeast, and mammalian cells in culture for the past 30 years. Over this time, numerous advances have been made, from using fields to facilitate cell fusion, delivery of chemotherapeutic drugs to cells and tissues, and most importantly, gene and drug delivery in living tissues from rodents to man. Electroporation uses electrical fields to transiently destabilize the membrane allowing the entry of normally impermeable macromolecules into the cytoplasm. Surprisingly, at the appropriate field strengths, the application of these fields to tissues results in little, if any, damage or trauma. Indeed, electroporation has even been used successfully in human trials for gene delivery for the treatment of tumors and for vaccine development. Electroporation can lead to between 100 and 1000-fold increases in gene delivery and expression and can also increase both the distribution of cells taking up and expressing the DNA as well as the absolute amount of gene product per cell (likely due to increased delivery of plasmids into each cell). Effective electroporation depends on electric field parameters, electrode design, the tissues and cells being targeted, and the plasmids that are being transferred themselves. Most importantly, there is no single combination of these variables that leads to greatest efficacy in every situation; optimization is required in every new setting. Electroporation-mediated in vivo gene delivery has proven highly effective in vaccine production, transgene expression, enzyme replacement, and control of a variety of cancers. Almost any tissue can be targeted with electroporation, including muscle, skin, heart, liver, lung, and vasculature. This chapter will provide an overview of the theory of electroporation for the delivery of DNA both in individual cells and in tissues and its application for in vivo gene delivery in a number of animal models.
Collapse
Affiliation(s)
- Jennifer L Young
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - David A Dean
- Departments of Pediatrics and Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
32
|
Beier HT, Tolstykh GP, Musick JD, Thomas RJ, Ibey BL. Plasma membrane nanoporation as a possible mechanism behind infrared excitation of cells. J Neural Eng 2014; 11:066006. [DOI: 10.1088/1741-2560/11/6/066006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Henslee BE, Morss A, Hu X, Lafyatis GP, James Lee L. Cell-cell proximity effects in multi-cell electroporation. BIOMICROFLUIDICS 2014; 8:052002. [PMID: 25332726 PMCID: PMC4189395 DOI: 10.1063/1.4893918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/13/2014] [Indexed: 06/04/2023]
Abstract
We report a fundamental study of how the electropermeabilization of a cell is affected by nearby cells. Previous researchers studying electroporation of dense suspensions of cells have observed, both theoretically and experimentally, that such samples cannot be treated simply as collections of independent cells. However, the complexity of those systems makes quantitative modeling difficult. We studied the change in the minimum applied electric field, the threshold field, required to affect electropermeabilization of a cell due to the presence of a second cell. Experimentally, we used optical tweezers to accurately position two cells in a custom fluidic electroporation device and measured the threshold field for electropermeabilization. We also captured video of the process. In parallel, finite element simulations of the electrostatic potential distributions in our systems were generated using the 3-layer model and the contact resistance methods. Reasonably good agreement with measurements was found assuming a model in which changes in a cell's threshold field were predicted from the calculated changes in the maximum voltage across the cell's membrane induced by the presence of a second cell. The threshold field required to electroporate a cell is changed ∼5%-10% by a nearby, nearly touching second cell. Cells aligned parallel to the porating field shield one another. Those oriented perpendicular to the field enhance the applied field's effect. In addition, we found that the dynamics of the electropermeabilization process are important in explaining observations for even our simple two-cell system.
Collapse
Affiliation(s)
- Brian E Henslee
- Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio 43210, USA
| | - Andrew Morss
- Department of Physics, The Ohio State University , Columbus, Ohio 43210, USA
| | - Xin Hu
- NSF Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymer Biomedical Devices, The Ohio State University , Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
34
|
Evidence for electro-induced membrane defects assessed by lateral mobility measurement of a GPi anchored protein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:277-86. [PMID: 24781652 DOI: 10.1007/s00249-014-0961-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/25/2014] [Accepted: 04/05/2014] [Indexed: 01/05/2023]
Abstract
Electrotransfer is a method by which molecules can be introduced into living cells via plasma membrane electropermeabilization. Here, we show that electropermeabilization affects the lateral mobility of Rae-1, a GPi anchored protein. Our results suggest that 10-20 % of the membrane surface is occupied by defects or pores and that these structures propagate rapidly (<1 min) over the cell surface. Electrotransfer of plasmid DNA (pDNA) also affects the lateral mobility of Rae-1. Furthermore, we clearly show that, once inserted into the plasma membrane, pDNA is completely immobile and excludes Rae-1; this indicates that the pDNA molecules are tightly packed together to form aggregates occupying at least the outer leaflet of the plasma membrane.
Collapse
|
35
|
Escoffre JM, Bellard E, Faurie C, Sébaï SC, Golzio M, Teissié J, Rols MP. Membrane disorder and phospholipid scrambling in electropermeabilized and viable cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1701-9. [PMID: 24583083 DOI: 10.1016/j.bbamem.2014.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/11/2014] [Accepted: 02/19/2014] [Indexed: 11/25/2022]
Abstract
Membrane electropermeabilization relies on the transient permeabilization of the plasma membrane of cells submitted to electric pulses. This method is widely used in cell biology and medicine due to its efficiency to transfer molecules while limiting loss of cell viability. However, very little is known about the consequences of membrane electropermeabilization at the molecular and cellular levels. Progress in the knowledge of the involved mechanisms is a biophysical challenge. As a transient loss of membrane cohesion is associated with membrane permeabilization, our main objective was to detect and visualize at the single-cell level the incidence of phospholipid scrambling and changes in membrane order. We performed studies using fluorescence microscopy with C6-NBD-PC and FM1-43 to monitor phospholipid scrambling and membrane order of mammalian cells. Millisecond permeabilizing pulses induced membrane disorganization by increasing the translocation of phosphatidylcholines according to an ATP-independent process. The pulses induced the formation of long-lived permeant structures that were present during membrane resealing, but were not associated with phosphatidylcholine internalization. These pulses resulted in a rapid phospholipid flip/flop within less than 1s and were exclusively restricted to the regions of the permeabilized membrane. Under such electrical conditions, phosphatidylserine externalization was not detected. Moreover, this electrically-mediated membrane disorganization was not correlated with loss of cell viability. Our results could support the existence of direct interactions between the movement of membrane zwitterionic phospholipids and the electric field.
Collapse
Affiliation(s)
- Jean-Michel Escoffre
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077, Toulouse, France; Université de Toulouse, UPS, IPBS, F-31077, Toulouse, France
| | - Elisabeth Bellard
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077, Toulouse, France; Université de Toulouse, UPS, IPBS, F-31077, Toulouse, France
| | - Cécile Faurie
- Matwin-Institut Bergonié, 229 cours de l'Argonne, 33076 Bordeaux cedex, France
| | - Sarra C Sébaï
- Eviagenics, Immeuble Villejuif Biopark, 1 Mail du Professeur Georges Mathé, 94800 Villejuif, France
| | - Muriel Golzio
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077, Toulouse, France; Université de Toulouse, UPS, IPBS, F-31077, Toulouse, France
| | - Justin Teissié
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077, Toulouse, France; Université de Toulouse, UPS, IPBS, F-31077, Toulouse, France.
| | - Marie-Pierre Rols
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077, Toulouse, France; Université de Toulouse, UPS, IPBS, F-31077, Toulouse, France.
| |
Collapse
|
36
|
siRNA delivery via electropulsation: a review of the basic processes. Methods Mol Biol 2014; 1121:81-98. [PMID: 24510814 DOI: 10.1007/978-1-4614-9632-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Due to their capacity for inducing strong and sequence specific gene silencing in cells, small interfering RNAs (siRNAs) are now recognized not only as powerful experimental tools for basic research in Molecular biology but with promising potentials in therapeutic development. Delivery is a bottleneck in many studies. There is a common opinion that full potential of siRNA as therapeutic agent will not be attained until better methodologies for its targeted intracellular delivery to cells and tissues are developed. Electropulsation (EP) is one of the physical methods successfully used to transfer siRNA into living cells in vitro and in vivo. This review will describe how siRNA electrotransfer obeys characterized biophysical processes (cell-size-dependent electropermeabilization, electrophoretic drag) with a strong control of a low loss of viability. Protocols can be easily adjusted by a proper setting of the electrical parameters and pulsing buffers. EP can be easily directly applied on animals. Preclinical studies showed that electropermeabilization brings a direct cytoplasmic distribution of siRNA and an efficient silencing of the targeted protein expression. EP appears as a promising tool for clinical applications of gene silencing. A panel of successful trials will be given.
Collapse
|
37
|
del Rosal B, Sun C, Loufakis DN, Lu C, Jaque D. Thermal loading in flow-through electroporation microfluidic devices. LAB ON A CHIP 2013; 13:3119-3127. [PMID: 23760021 DOI: 10.1039/c3lc50382h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Thermal loading effects in flow-through electroporation microfluidic devices have been systematically investigated by using dye-based ratiometric luminescence thermometry. Fluorescence measurements have revealed the crucial role played by both the applied electric field and flow rate on the induced temperature increments at the electroporation sections of the devices. It has been found that Joule heating could raise the intra-channel temperature up to cytotoxic levels (>45 °C) only when conditions of low flow rates and high applied voltages are applied. Nevertheless, when flow rates and electric fields are set to those used in real electroporation experiments we have found that local heating is not larger than a few degrees, i.e. temperature is kept within the safe range (<32 °C). We also provide thermal images of electroporation devices from which the heat affected area can be elucidated. Experimental data have been found to be in excellent agreement with numerical simulations that have also revealed the presence of a non-homogeneous temperature distribution along the electroporation channel whose magnitude is critically dependent on both applied electric field and flow rate. Results included in this work will allow for full control over the electroporation conditions in flow-through microfluidic devices.
Collapse
Affiliation(s)
- Blanca del Rosal
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Instituto Nicolás Cabrera Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
| | | | | | | | | |
Collapse
|
38
|
Deminsky M, Eletskii A, Kniznik A, Odinokov A, Pentkovskii V, Potapkin B. Molecular dynamic simulation of transmembrane pore growth. J Membr Biol 2013; 246:821-31. [PMID: 23660813 DOI: 10.1007/s00232-013-9552-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/19/2013] [Indexed: 01/19/2023]
Abstract
A molecular dynamic approach was applied for simulation of dynamics of pore formation and growth in a phospholipid bilayer in the presence of an external electric field. Processing the simulation results permitted recovery of the kinetic coefficients used in the Einstein-Smoluchowski equation describing the dynamics of pore evolution. Two different models of the bilayer membrane were considered: membrane consisting of POPC and POPE lipids. The simulations permitted us to find nonempirical values of the pore energy parameters, which are compared with empirical values. It was found that the parameters are sensitive to membrane type.
Collapse
Affiliation(s)
- M Deminsky
- Kintech Laboratory, Kurchatov Square 1, 123182, Moscow, Russia,
| | | | | | | | | | | |
Collapse
|
39
|
Geng T, Zhan Y, Lu C. Gene delivery by microfluidic flow-through electroporation based on constant DC and AC field. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:2579-82. [PMID: 23366452 DOI: 10.1109/embc.2012.6346491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Electroporation is one of the most widely used physical methods to deliver exogenous nucleic acids into cells with high efficiency and low toxicity. Conventional electroporation systems typically require expensive pulse generators to provide short electrical pulses at high voltage. In this work, we demonstrate a flow-through electroporation method for continuous transfection of cells based on disposable chips, a syringe pump, and a low-cost power supply that provides a constant voltage. We successfully transfect cells using either DC or AC voltage with high flow rates (ranging from 40 µl/min to 20 ml/min) and high efficiency (up to 75%). We also enable the entire cell membrane to be uniformly permeabilized and dramatically improve gene delivery by inducing complex migrations of cells during the flow.
Collapse
Affiliation(s)
- Tao Geng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906, USA. tgeng@ purdue.edu
| | | | | |
Collapse
|
40
|
Giant Vesicles. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/b978-0-12-396534-9.00001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
41
|
Dimova R. Membrane Electroporation in High Electric Fields. ADVANCES IN ELECTROCHEMICAL SCIENCES AND ENGINEERING 2011. [DOI: 10.1002/9783527644117.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
Roldughin V, Zhdanov V. Asymmetric gas mixture transport in composite membranes. Adv Colloid Interface Sci 2011; 168:223-46. [PMID: 21596363 DOI: 10.1016/j.cis.2011.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 11/24/2022]
Abstract
The asymmetry effects in gas and electrolyte transport through composite membranes are considered. The interrelation between the kinetic theory and non-equilibrium thermodynamics description of gas mixture transport in channels is discussed. The kinetic expressions for transport and slip coefficients are given. The effect of surface forces on gas transport is discussed. A set of general equations related to gas mixture flows in capillaries and porous media is deduced. The nano-size effects in gas flows are outlined. The theoretical analysis of one-way flow effect and asymmetric separation properties of a two-layer porous membrane is given.
Collapse
|
43
|
Ongaro A, Pellati A, Caruso A, Battista M, De Terlizzi F, De Mattei M, Fini M. Identification of In Vitro Electropermeabilization Equivalent Pulse Protocols. Technol Cancer Res Treat 2011; 10:465-73. [DOI: 10.7785/tcrt.2012.500223] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Exposure of cells to an external sufficiently strong electric field results in the formation of pores across the membrane. This phenomenon, termed electropermeabilization, permits the transport of poorly permeant molecules into cytosol. In clinical practice, cell membrane permeabilization for drug electrotransfer is achieved using the ESOPE pulse protocol (1000 V/cm, 8 pulses, 100 μs, 5 kHz). The aim of this study was to investigate several combinations of electric field amplitude and pulse number able to induce electropermeabilization as the one observed when the ESOPE protocol was applied. Decreasing electric field amplitudes (1000 to 300 V/cm) in combination with increasing number of pulses (8 to 320) were applied to in vitro MG63 cells. Propidium iodide and Calcein blue AM uptake were used to evaluate cell electropermeabilization and viability. Results showed that the threshold of local electric field needed to obtain electropermeabilization decreased exponentially with increasing the number of pulses delivered (r2 50.92, p < 0.0001). The absorbed dose threshold was dependent on the number of pulses for each voltage applied (r2 50.96, p < 0.0001). In conclusion, the possibility of applying an increased number of pulses rather than increasing the electric field amplitude to perform electropermeabilization, may become an important tool for electropermeabilization - related clinical applications.
Collapse
Affiliation(s)
- A. Ongaro
- Department of Morphology and Embryology, University of Ferrara, Via Fossato di Mortara 64/B, 44121 Ferrara, Italy
| | - A. Pellati
- Department of Morphology and Embryology, University of Ferrara, Via Fossato di Mortara 64/B, 44121 Ferrara, Italy
| | - A. Caruso
- Department of Morphology and Embryology, University of Ferrara, Via Fossato di Mortara 64/B, 44121 Ferrara, Italy
| | - M. Battista
- Laboratory of Clinical Biophysics, IGEA, Carpi, Italy
| | | | - M. De Mattei
- Department of Morphology and Embryology, University of Ferrara, Via Fossato di Mortara 64/B, 44121 Ferrara, Italy
| | - M. Fini
- Laboratory of Preclinical and Surgical Studies, Research Institute Codivilla Putti, Rizzoli Orthopaedic Institute Bologna, Italy
| |
Collapse
|
44
|
Abstract
Electroporation is a high-efficiency and low-toxicity physical gene transfer method. Classical electroporation protocols are limited by the small volume of cell samples processed (less than 10(7) cells per reaction) and low DNA uptake due to partial permeabilization of the cell membrane. Here we describe a flow-through electroporation protocol for continuous transfection of cells, using disposable devices, a syringe pump and a low-cost power supply that provides a constant voltage. We show transfection of cell samples with rates ranging from 40 μl min(-1) to 20 ml min(-1) with high efficiency. By inducing complex migrations of cells during the flow, we also show permeabilization of the entire cell membrane and markedly increased DNA uptake. The fabrication of the devices takes 1 d and the flow-through electroporation typically takes 1-2 h.
Collapse
|
45
|
Henslee BE, Morss A, Hu X, Lafyatis GP, Lee LJ. Electroporation dependence on cell size: optical tweezers study. Anal Chem 2011; 83:3998-4003. [PMID: 21473595 DOI: 10.1021/ac1019649] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electropermeabilization or electroporation is the electrical disruption of a cell's membrane to introduce drugs, DNA/RNA, proteins, or other therapies into the cell. Despite four decades of study, the fundamental science of the process remains poorly understood and controversial. We measured the minimum applied electric field required for permeabilization of suspended spherical cells as a function of the cell radius for three cell lines. Key to this work is our use of optical tweezers to precisely position individual cells and enable well-defined, repeatable measurements on cells in suspension. Our findings call into question fundamental assumptions common to all theoretical treatments that we know of. It is generally expected that, for individual cells from a particular cell line, large cells should be easier to electroporate than small ones: the minimum electric field to cause electropermeabilization should scale inversely with the cell diameter. We found instead that each cell line has its own characteristic field that will, on average, cause permeabilization in cells of that line. Electropermeabilization is a stochastic process: two cells which appear identical may have different permeabilization thresholds. However, for all three cell lines, we found that the minimum permeabilization field for any given cell does not depend on its size.
Collapse
Affiliation(s)
- Brian E Henslee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
46
|
Zalvidea D, Claverol-Tinturé E. Second Harmonic Generation for time-resolved monitoring of membrane pore dynamics subserving electroporation of neurons. BIOMEDICAL OPTICS EXPRESS 2011; 2:305-314. [PMID: 21339876 PMCID: PMC3038446 DOI: 10.1364/boe.2.000305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/17/2010] [Accepted: 12/29/2010] [Indexed: 05/30/2023]
Abstract
Electroporation of neurons, i.e. electric-field induced generation of membrane nanopores to facilitate internalization of molecules, is a classic technique used in basic neuroscience research and recently has been proposed as a promising therapeutic strategy in the area of neuro-oncology. To optimize electroporation parameters, optical techniques capable of delivering time and spatially-resolved information on electroporation pore formation at the nanometer scale would be advantageous. For this purpose we describe here a novel optical method based on second harmonic generation (SHG) microscopy. Due to the nonlinear and coherent nature of SHG, the 3D radiation lobes from stained neuronal membranes are sensitive to the spatial distribution of scatterers in the illuminated patch, and in particular to nanopore formation.We used phase-array analysis to computationally study the SHG signal as a function of nanopore size and nanopore population density and confirmed experimentally, in accordance with previous work, the dependence of nanopore properties on membrane location with respect to the electroporation electric field; higher nanopore densities, lasting < 5 milliseconds, are observed at membrane patches perpendicular to the field whereas lower density is observed at partly tangent locations. Differences between near-anode and near-cathode cell poles are also measured, showing higher pore densities at the anodic pole compared to cathodic pole. This technique is promising for the study of nanopore dynamics in neurons and for the optimization of novel electroporation-based therapeutic approaches.
Collapse
Affiliation(s)
- Dobryna Zalvidea
- Neuroengineering Group, IBEC-Institut de Bioenginyeria de Catalunya, Baldiri Reixac 15-21, Barcelona 08028, Spain
| | - Enric Claverol-Tinturé
- Neuroengineering Group, IBEC-Institut de Bioenginyeria de Catalunya, Baldiri Reixac 15-21, Barcelona 08028, Spain
| |
Collapse
|
47
|
Flickinger B, Berghöfer T, Hohenberger P, Eing C, Frey W. Transmembrane potential measurements on plant cells using the voltage-sensitive dye ANNINE-6. PROTOPLASMA 2010; 247:3-12. [PMID: 20309592 DOI: 10.1007/s00709-010-0131-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 02/26/2010] [Indexed: 05/08/2023]
Abstract
The charging of the plasma membrane is a necessary condition for the generation of an electric-field-induced permeability increase of the plasmalemma, which is usually explained by the creation and the growth of aqueous pores. For cells suspended in physiological buffers, the time domain of membrane charging is in the submicrosecond range. Systematic measurements using Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) protoplasts stained with the fast voltage-sensitive fluorescence dye ANNINE-6 have been performed using a pulsed laser fluorescence microscopy setup with a time resolution of 5 ns. A clear saturation of the membrane voltage could be measured, caused by a strong membrane permeability increase, commonly explained by enhanced pore formation, which prevents further membrane charging by external electric field exposure. The field strength dependence of the protoplast's transmembrane potential V (M) shows strong asymmetric saturation characteristics due to the high resting potential of the plants plasmalemma. At the pole of the hyperpolarized hemisphere of the cell, saturation starts at an external field strength of 0.3 kV/cm, resulting in a measured transmembrane voltage shift of ∆V(M) = -150 mV, while on the cathodic (depolarized) cell pole, the threshold for enhanced pore formation is reached at a field strength of approximately 1.0 kV/cm and ∆V(M) = 450 mV, respectively. From this asymmetry of the measured maximum membrane voltage shifts, the resting potential of BY-2 protoplasts at the given experimental conditions can be determined to V(R) = -150 mV. Consequently, a strong membrane permeability increase occurs when the membrane voltage diverges |V(M)| = 300 mV from the resting potential of the protoplast. The largest membrane voltage change at a given external electric field occurs at the cell poles. The azimuthal dependence of the transmembrane potential, measured in angular intervals of 10° along the circumference of the cell, shows a flattening and a slight decrease at higher fields at the pole region due to enhanced pore formation. Additionally, at the hyperpolarized cell pole, a polarization reversal could be observed at an external field range around 1.0 kV/cm. This behavior might be attributed to a fast charge transfer through the membrane at the hyperpolarized pole, e.g., by voltage-gated channels.
Collapse
Affiliation(s)
- Bianca Flickinger
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Forschungszentrum Karlsruhe GmbH, Eggenstein-Leopoldshafen, Germany.
| | | | | | | | | |
Collapse
|
48
|
Mechanisms for the intracellular manipulation of organelles by conventional electroporation. Biophys J 2010; 98:2506-14. [PMID: 20513394 DOI: 10.1016/j.bpj.2010.02.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 01/22/2010] [Accepted: 02/12/2010] [Indexed: 01/04/2023] Open
Abstract
Conventional electroporation (EP) changes both the conductance and molecular permeability of the plasma membrane (PM) of cells and is a standard method for delivering both biologically active and probe molecules of a wide range of sizes into cells. However, the underlying mechanisms at the molecular and cellular levels remain controversial. Here we introduce a mathematical cell model that contains representative organelles (nucleus, endoplasmic reticulum, mitochondria) and includes a dynamic EP model, which describes formation, expansion, contraction, and destruction for the plasma and all organelle membranes. We show that conventional EP provides transient electrical pathways into the cell, sufficient to create significant intracellular fields. This emerging intracellular electrical field is a secondary effect due to EP and can cause transmembrane voltages at the organelles, which are large enough and long enough to gate organelle channels, and even sufficient, at some field strengths, for the poration of organelle membranes. This suggests an alternative to nanosecond pulsed electric fields for intracellular manipulations.
Collapse
|
49
|
Abstract
Electroporation is one of the most widely used methods to deliver exogenous DNA payloads into cells, but a major limitation is that only a small fraction of the total membrane surface is permeabilized. Here we show how this barrier can be easily overcome by harnessing hydrodynamic effects associated with Dean flows that occur along curved paths. Under these conditions, cells are subjected to a combination of transverse vortex motion and rotation that enables the entire membrane surface to become uniformly permeabilized. Greatly improved transfection efficiencies are achievable with only a simple modification to the design of existing continuous flow electroporation systems.
Collapse
Affiliation(s)
- Jun Wang
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
50
|
Bowman AM, Nesin OM, Pakhomova ON, Pakhomov AG. Analysis of plasma membrane integrity by fluorescent detection of Tl(+) uptake. J Membr Biol 2010; 236:15-26. [PMID: 20623351 DOI: 10.1007/s00232-010-9269-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/11/2010] [Indexed: 02/03/2023]
Abstract
The exclusion of polar dyes by healthy cells is widely employed as a simple and reliable test for cell membrane integrity. However, commonly used dyes (propidium, Yo-Pro-1, trypan blue) cannot detect membrane defects which are smaller than the dye molecule itself, such as nanopores that form by exposure to ultrashort electric pulses (USEPs). Instead, here we demonstrate that opening of nanopores can be efficiently detected and studied by fluorescent measurement of Tl(+) uptake. Various mammalian cells (CHO, GH3, NG108), loaded with a Tl(+)-sensitive fluorophore FluxOR and subjected to USEPs in a Tl(+)-containing bath buffer, displayed an immediate (within <100 ms), dose-dependent surge of fluorescence. In all tested cell lines, the threshold for membrane permeabilization to Tl(+) by 600-ns USEP was at 1-2 kV/cm, and the rate of Tl(+) uptake increased linearly with increasing the electric field. The lack of concurrent entry of larger dye molecules suggested that the size of nanopores is less than 1-1.5 nm. Tested ion channel inhibitors as well as removal of the extracellular Ca(2+) did not block the USEP effect. Addition of a Tl(+)-containing buffer within less than 10 min after USEP also caused a fluorescence surge, which confirms the minutes-long lifetime of nanopores. Overall, the technique of fluorescent detection of Tl(+) uptake proved highly effective, noninvasive and sensitive for visualization and analysis of membrane defects which are too small for conventional dye uptake detection methods.
Collapse
Affiliation(s)
- Angela M Bowman
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 320, Norfolk, VA 23508, USA
| | | | | | | |
Collapse
|