1
|
Garel E, Binet L, Gourier D. Mechanical ordering of pigment crystallites in oil binder: can electron paramagnetic resonance reveal the gesture of an artist? MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:211-220. [PMID: 37904865 PMCID: PMC10539773 DOI: 10.5194/mr-3-211-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/24/2022] [Indexed: 11/01/2023]
Abstract
Is it possible to reconstruct the gesture of an ancient artist applying a paint layer, considering that the orientation distribution of crystallites of an inorganic pigment remains definitively imprinted on the support after drying of the layer? If the pigment contains paramagnetic transition metal ions whose magnetic interactions are themselves anisotropic, then the shape of the electron paramagnetic resonance (EPR) spectrum should reflect the distribution of grain orientations. We have demonstrated this effect in the case of Egyptian blue CaCuSi4 O10 , a pigment used for at least 3 millennia in antiquity, by reconstructing the probability density of crystallite orientations under various modes of application, such as brush painting, dabbing and droplet deposition.
Collapse
Affiliation(s)
- Elise Garel
- Chimie-ParisTech, PSL University, CNRS, Institut de Recherche de
Chimie-Paris, 75005 Paris, France
| | - Laurent Binet
- Chimie-ParisTech, PSL University, CNRS, Institut de Recherche de
Chimie-Paris, 75005 Paris, France
| | - Didier Gourier
- Chimie-ParisTech, PSL University, CNRS, Institut de Recherche de
Chimie-Paris, 75005 Paris, France
| |
Collapse
|
2
|
Evidence for an Ordering Transition near 120 K in an Intrinsically Disordered Protein, Casein. Molecules 2021; 26:molecules26195971. [PMID: 34641515 PMCID: PMC8512290 DOI: 10.3390/molecules26195971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are proteins that possess large unstructured regions. Their importance is increasingly recognized in biology but their characterization remains a challenging task. We employed field swept Electron Spin Echoes in pulsed EPR to investigate low-temperature stochastic molecular librations in a spin-labeled IDP, casein (the main protein of milk). For comparison, a spin-labeled globular protein, hen egg white lysozyme, is also investigated. For casein these motions were found to start at 100 K while for lysozyme only above 130 K, which was ascribed to a denser and more ordered molecular packing in lysozyme. However, above 120 K, the motions in casein were found to depend on temperature much slower than those in lysozyme. This abrupt change in casein was assigned to an ordering transition in which peptide residues rearrange making the molecular packing more rigid and/or more cohesive. The found features of molecular motions in these two proteins turned out to be very similar to those known for gel-phase lipid bilayers composed of conformationally ordered and conformationally disordered lipids. This analogy with a simpler molecular system may appear helpful for elucidation properties of molecular packing in IDPs.
Collapse
|
3
|
Savich Y, Binder BP, Thompson AR, Thomas DD. Myosin lever arm orientation in muscle determined with high angular resolution using bifunctional spin labels. J Gen Physiol 2019; 151:1007-1016. [PMID: 31227551 PMCID: PMC6683674 DOI: 10.1085/jgp.201812210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 02/15/2019] [Accepted: 05/29/2019] [Indexed: 02/03/2023] Open
Abstract
High-resolution structural information is invaluable for understanding muscle function. Savich et al. use bifunctional spin labeling to determine the orientation of the myosin lever arm in muscle fibers at high resolution under ambient conditions, augmenting previous insights obtained from fluorescence and EM. Despite advances in x-ray crystallography, cryo-electron microscopy (cryo-EM), and fluorescence polarization, none of these techniques provide high-resolution structural information about the myosin light chain domain (LCD; lever arm) under ambient conditions in vertebrate muscle. Here, we measure the orientation of LCD elements in demembranated muscle fibers by electron paramagnetic resonance (EPR) using a bifunctional spin label (BSL) with an angular resolution of 4°. To achieve stereoselective site-directed labeling with BSL, we engineered a pair of cysteines in the myosin regulatory light chain (RLC), either on helix E or helix B, which are roughly parallel or perpendicular to the myosin lever arm, respectively. By exchanging BSL-labeled RLC onto oriented muscle fibers, we obtain EPR spectra from which the angular distributions of BSL, and thus the lever arm, can be determined with high resolution relative to the muscle fiber axis. In the absence of ATP (rigor), each of the two labeled helices exhibits both ordered (σ ∼9–11°) and disordered (σ > 38°) populations. Using these angles to determine the orientation of the lever arm (LCD combined with converter subdomain), we observe that the oriented population corresponds to a lever arm that is perpendicular to the muscle fiber axis and that the addition of ATP in the absence of Ca2+ (inducing relaxation) shifts the orientation to a much more disordered orientational distribution. Although the detected orientation of the myosin light chain lever arm is ∼33° different than predicted from a standard “lever arm down” model based on cryo-EM of actin decorated with isolated myosin heads, it is compatible with, and thus augments and clarifies, fluorescence polarization, x-ray interference, and EM data obtained from muscle fibers. These results establish feasibility for high-resolution detection of myosin LCD rotation during muscle contraction.
Collapse
Affiliation(s)
- Yahor Savich
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN.,School of Physics and Astronomy, University of Minnesota, Minneapolis, MN
| | - Benjamin P Binder
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN.,Department of Chemistry, Augsburg University, Minneapolis, MN
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
4
|
de Vera IMS, Blackburn ME, Galiano L, Fanucci GE. Pulsed EPR distance measurements in soluble proteins by site-directed spin labeling (SDSL). ACTA ACUST UNITED AC 2013; 74:17.17.1-17.17.29. [PMID: 24510645 DOI: 10.1002/0471140864.ps1717s74] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The resurgence of pulsed electron paramagnetic resonance (EPR) in structural biology centers on recent improvements in distance measurements using the double electron-electron resonance (DEER) technique. This unit focuses on EPR-based distance measurements by site-directed spin labeling (SDSL) of engineered cysteine residues in soluble proteins, with HIV-1 protease used as a model. To elucidate conformational changes in proteins, experimental protocols were optimized and existing data analysis programs were employed to derive distance-distribution profiles. Experimental considerations, sample preparation, and error analysis for artifact suppression are also outlined herein.
Collapse
Affiliation(s)
| | - Mandy E Blackburn
- Department of Chemistry, University of Florida, Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Luis Galiano
- Department of Chemistry, University of Florida, Gainesville, Florida.,Syngenta Crop Protection, Minnetonka, Minnesota
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, Gainesville, Florida
| |
Collapse
|
5
|
Probing the orientational distribution of dyes in membranes through multiphoton microscopy. Biophys J 2013; 103:907-17. [PMID: 23009840 DOI: 10.1016/j.bpj.2012.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/23/2012] [Accepted: 08/01/2012] [Indexed: 11/21/2022] Open
Abstract
Numerous dyes are available or under development for probing the structural and functional properties of biological membranes. Exogenous chromophores adopt a range of orientations when bound to membranes, which have a drastic effect on their biophysical behavior. Here, we present a method that employs optical anisotropy data from three polarization-imaging techniques to establish the distribution of orientations adopted by molecules in monolayers and bilayers. The resulting probability density functions, which contain the preferred molecular tilt μ and distribution breadth γ, are more informative than an average tilt angle [φ]. We describe a methodology for the extraction of anisotropy data through an image-processing technology that decreases the error in polarization measurements by about a factor of four. We use this technique to compare di-4-ANEPPS and di-8-ANEPPS, both dipolar dyes, using data from polarized 1-photon, 2-photon fluorescence and second-harmonic generation imaging. We find that di-8-ANEPPS has a lower tilt but the same distributional width. We find the distribution of tilts taken by di-4-ANEPPS in two phospholipid membrane models: giant unilamellar vesicles and water-in-oil droplet monolayers. Both models result in similar distribution functions with average tilts of 52° and 47°, respectively.
Collapse
|
6
|
Oganesyan VS. A general approach for prediction of motional EPR spectra from Molecular Dynamics (MD) simulations: application to spin labelled protein. Phys Chem Chem Phys 2011; 13:4724-37. [PMID: 21279205 DOI: 10.1039/c0cp01068e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general approach for the prediction of EPR spectra directly and completely from single dynamical trajectories generated from Molecular Dynamics (MD) simulations is described. The approach is applicable to an arbitrary system of electron and nuclear spins described by a general form of the spin-Hamiltonian for the entire motional range. It is shown that for a reliable simulation of motional EPR spectra only a single truncated dynamical trajectory generated until the point when correlation functions of rotational dynamics are completely relaxed is required. The simulation algorithm is based on a combination of the propagation of the spin density matrix in the Liouville space for this initial time interval and the use of well defined parameters calculated entirely from the dynamical trajectory for prediction of the evolution of the spin density matrix at longer times. A new approach is illustrated with the application to a nitroxide spin label MTSL attached to the protein sperm whale myoglobin. It is shown that simulation of the EPR spectrum, which is in excellent agreement with experiment, can be achieved from a single MD trajectory. Calculations reveal the complex nature of the dynamics of a spin label which is a superposition of the fast librational motions within dihedral states, of slow rotameric dynamics among different conformational states of the nitroxide tether and of the slow rotational diffusion of the protein itself. The significance of the slow rotameric dynamics of the nitroxide tether on the overall shape of the EPR spectrum is analysed and discussed.
Collapse
|
7
|
Borbas KE, Kee HL, Holten D, Lindsey JS. A compact water-soluble porphyrin bearing an iodoacetamido bioconjugatable site. Org Biomol Chem 2008; 6:187-94. [DOI: 10.1039/b715072e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Baumann BAJ, Liang H, Sale K, Hambly BD, Fajer PG. Myosin regulatory domain orientation in skeletal muscle fibers: application of novel electron paramagnetic resonance spectral decomposition and molecular modeling methods. Biophys J 2004; 86:3030-41. [PMID: 15111417 PMCID: PMC1304169 DOI: 10.1016/s0006-3495(04)74352-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 01/20/2004] [Indexed: 10/21/2022] Open
Abstract
Reorientation of the regulatory domain of the myosin head is a feature of all current models of force generation in muscle. We have determined the orientation of the myosin regulatory light chain (RLC) using a spin-label bound rigidly and stereospecifically to the single Cys-154 of a mutant skeletal isoform. Labeled RLC was reconstituted into skeletal muscle fibers using a modified method that results in near-stoichiometric levels of RLC and fully functional muscle. Complex electron paramagnetic resonance spectra obtained in rigor necessitated the development of a novel decomposition technique. The strength of this method is that no specific model for a complex orientational distribution was presumed. The global analysis of a series of spectra, from fibers tilted with respect to the magnetic field, revealed two populations: one well-ordered (+/-15 degrees ) with the spin-label z axis parallel to actin, and a second population with a large distribution (+/-60 degrees ). A lack of order in relaxed or nonoverlap fibers demonstrated that regulatory domain ordering was defined by interaction with actin rather than the thick filament surface. No order was observed in the regulatory domain during isometric contraction, consistent with the substantial reorientation that occurs during force generation. For the first time, spin-label orientation has been interpreted in terms of the orientation of a labeled domain. A Monte Carlo conformational search technique was used to determine the orientation of the spin-label with respect to the protein. This in turn allows determination of the absolute orientation of the regulatory domain with respect to the actin axis. The comparison with the electron microscopy reconstructions verified the accuracy of the method; the electron paramagnetic resonance determined that axial orientation was within 10 degrees of the electron microscopy model.
Collapse
Affiliation(s)
- Bruce A J Baumann
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, USA
| | | | | | | | | |
Collapse
|
9
|
Naber N, Rice S, Matuska M, Vale RD, Cooke R, Pate E. EPR spectroscopy shows a microtubule-dependent conformational change in the kinesin switch 1 domain. Biophys J 2003; 84:3190-6. [PMID: 12719248 PMCID: PMC1302879 DOI: 10.1016/s0006-3495(03)70043-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Accepted: 01/15/2003] [Indexed: 01/08/2023] Open
Abstract
We have used site-directed spin-labeling and electron paramagnetic resonance spectroscopy to monitor a conformational change at the nucleotide site of kinesin. Cys-lite kinesin (K349 monomer) with the mutation S188C was spin labeled with MSL or MTSL. This residue is at the junction between the switch 1 region (which is a structure known to be sensitive to bound nucleotide in the G-proteins) and the alpha3-helix, adjacent to the nucleotide site. The spectra showed two or more components of mobility, which were independent of nucleotide in the absence of microtubules (MTs). The spectra of both labels showed a change of mobility upon binding to MTs. A more mobile spectral component became enhanced for all triphosphate analogs examined, AMPPNP, ADP.AlFx, or ADP.BeFx, in the presence of MTs, although the magnitude of the new component and the degree of mobility varied with nucleotide analog. The ADP state showed a much-reduced spectral change with a small shift to the more immobilized component in the presence of MTs. For kinesin.ADP.MT, a van't Hoff plot gave DeltaH degrees = -96 kJ/mol implying that the conformational change was extensive. We conclude there is a conformational change in the switch 1-alpha3-helix domain when kinesin binds to MTs.
Collapse
Affiliation(s)
- Nariman Naber
- Department of Biochemistry and Biophysics, Department of Cellular and Molecular Pharmacology, and Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
10
|
Sale K, Sár C, Sharp KA, Hideg K, Fajer PG. Structural determination of spin label immobilization and orientation: a Monte Carlo minimization approach. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 156:104-112. [PMID: 12081447 DOI: 10.1006/jmre.2002.2529] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Electron paramagnetic resonance (EPR) is often used in the study of the orientation and dynamics of proteins. However, there are two major obstacles in the interpretation of EPR signals: (a) most spin labels are not fully immobilized by the protein, hence it is difficult to distinguish the mobility of the label with respect to the protein from the reorientation of the protein itself; (b) even in cases where the label is fully immobilized its orientation with respect to the protein is not known, which prevents interpretation of probe reorientation in terms of protein reorientation. We have developed a computational strategy for determining whether or not a spin label is immobilized and, if immobilized, predicting its conformation within the protein. The method uses a Monte Carlo minimization algorithm to search the conformational space of labels within known atomic level structures of proteins. To validate the method a series of spin labels of varying size and geometry were docked to sites on the myosin head catalytic and regulatory domains. The predicted immobilization and conformation compared well with the experimentally determined mobility and orientation of the label. Thus, probes can now be targeted to report on various modes of molecular dynamics: immobilized probes to report on protein backbone and domain dynamics or floppy probes to report on the extent of steric restriction experienced by the side chain.
Collapse
Affiliation(s)
- Ken Sale
- The National High Magnetic Field Laboratory, Institute of Molecular Biophysics, and Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA
| | | | | | | | | |
Collapse
|
11
|
Hartvig N, Lõrinczy D, Farkas N, Belagyi J. Effect of adenosine 5'-[beta,gamma-imido]triphosphate on myosin head domain movements. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2168-77. [PMID: 11985595 DOI: 10.1046/j.1432-1033.2002.02872.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Conventional and saturation transfer electron paramagnetic resonance spectroscopy (EPR and ST EPR) was used to study the orientation of probe molecules in muscle fibers in different intermediate states of the ATP hydrolysis cycle. A separate procedure was used to obtain ST EPR spectra with precise phase settings even in the case of samples with low spectral intensity. Fibers prepared from rabbit psoas muscle were labeled with isothiocyanate spin labels at the reactive thiol sites of the catalytic domain of myosin. In comparison with rigor, a significant difference was detected in the orientation-dependence of spin labels in the ADP and adenosine 5'-[beta,gamma-imido]triphosphate (AdoPP[CH2]P) states, indicating changes in the internal dynamics and domain orientation of myosin. In the AdoPP[CH2]P state, approximately half of the myosin heads reflected the motional state of ADP-myosin, and the other half showed a different dynamic state with greater mobility.
Collapse
Affiliation(s)
- Nóra Hartvig
- Central Research Laboratory and Institute of Biophysics, School of Medicine, University of Pécs, Hungary
| | | | | | | |
Collapse
|
12
|
van der Heide UA, Hopkins SC, Goldman YE. A maximum entropy analysis of protein orientations using fluorescence polarization data from multiple probes. Biophys J 2000; 78:2138-50. [PMID: 10733991 PMCID: PMC1300805 DOI: 10.1016/s0006-3495(00)76760-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Techniques have recently become available to label protein subunits with fluorescent probes at predetermined orientation relative to the protein coordinates. The known local orientation enables quantitative interpretation of fluorescence polarization experiments in terms of orientation and motions of the protein within a larger macromolecular assembly. Combining data obtained from probes placed at several distinct orientations relative to the protein structure reveals functionally relevant information about the axial and azimuthal orientation of the labeled protein segment relative to its surroundings. Here we present an analytical method to determine the protein orientational distribution from such data. The method produces the broadest distribution compatible with the data by maximizing its informational entropy. The key advantages of this approach are that no a priori assumptions are required about the shape of the distribution and that a unique, exact fit to the data is obtained. The relative orientations of the probes used for the experiments have great influence on information content of the maximum entropy distribution. Therefore, the choice of probe orientations is crucial. In particular, the probes must access independent aspects of the protein orientation, and two-fold rotational symmetries must be avoided. For a set of probes, a "figure of merit" is proposed, based on the independence among the probe orientations. With simulated fluorescence polarization data, we tested the capacity of maximum entropy analysis to recover specific protein orientational distributions and found that it is capable of recovering orientational distributions with one and two peaks. The similarity between the maximum entropy distribution and the test distribution improves gradually as the number of independent probe orientations increases. As a practical example, ME distributions were determined with experimental data from muscle fibers labeled with bifunctional rhodamine at known orientations with respect to the myosin regulatory light chain (RLC). These distributions show a complex relationship between the axial orientation of the RLC relative to the fiber axis and the azimuthal orientation of the RLC about its own axis. Maximum entropy analysis reveals limitations in available experimental data and supports the design of further probe angles to resolve details of the orientational distribution.
Collapse
Affiliation(s)
- U A van der Heide
- Pennsylvania Muscle Institute, D701 Richards Building, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6083, USA
| | | | | |
Collapse
|
13
|
Sienkiewicz A, Jaworski M, Smith BG, Fajer PG, Scholes CP. Dielectric resonator-based side-access probe for muscle fiber EPR study. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2000; 143:144-152. [PMID: 10698655 DOI: 10.1006/jmre.1999.1986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present a novel dielectric resonator (DR)-based resonant structure that accommodates aqueous sample capillaries in orientations that are either parallel (i.e., side-access) or perpendicular to the direction of an external (Zeeman) magnetic field, B(0). The resonant structure consists of two commercially available X-band DRs that are separated by a Rexolite spacer and resonate in the fundamental TE(01delta) mode. The separator between the DRs is used to tune the resonator to the desired frequency and, by appropriately drilled sample holes, to provide access for longitudinal samples, notably capillaries containing oriented, spin-labeled muscle fibers. In contrast to the topologically similar cylindrical TE(011) cavity, the DR-based structure has distinct microwave properties that favor its use for parallel orientation of lossy aqueous samples. For perpendicular orientation of a dilute (6.25 microM) aqueous solution of IASL spin label, the S/N ratio was at least one order of magnitude better for the side-access DR-based structure than for a standard TE(102) cavity. EPR spectra acquired for maleimide spin-labeled myosin filaments also revealed ca. 10 times better S/N ratio than those obtained with a standard TE(102) cavity. For the side-access DR with sample capillaries oriented either parallel or perpendicular to the external magnetic field, the Q- and filling factors are in good agreement with the theoretical estimates derived from the distribution of magnetic (H(1)) and electric (E(1)) components.
Collapse
Affiliation(s)
- A Sienkiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw, 02-668, Poland
| | | | | | | | | |
Collapse
|
14
|
Hellen EH, Ajtai K, Burghardt TP. Myosin head rotation in muscle fibers measured using polarized fluorescence photobleaching recovery. J Fluoresc 1995; 5:355-67. [DOI: 10.1007/bf01152562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/1994] [Revised: 03/16/1995] [Accepted: 03/17/1995] [Indexed: 10/25/2022]
|
15
|
Roopnarine O, Thomas DD. Orientational dynamics of indane dione spin-labeled myosin heads in relaxed and contracting skeletal muscle fibers. Biophys J 1995; 68:1461-71. [PMID: 7787032 PMCID: PMC1282041 DOI: 10.1016/s0006-3495(95)80319-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have used electron paramagnetic resonance (EPR) spectroscopy to study the orientation and rotational motions of spin-labeled myosin heads during steady-state relaxation and contraction of skinned rabbit psoas muscle fibers. Using an indane-dione spin label, we obtained EPR spectra corresponding specifically to probes attached to Cys 707 (SH1) on the catalytic domain of myosin heads. The probe is rigidly immobilized, so that it reports the global rotation of the myosin head, and the probe's principal axis is aligned almost parallel with the fiber axis in rigor, making it directly sensitive to axial rotation of the head. Numerical simulations of EPR spectra showed that the labeled heads are highly oriented in rigor, but in relaxation they have at least 90 degrees (Gaussian full width) of axial disorder, centered at an angle approximately equal to that in rigor. Spectra obtained in isometric contraction are fit quite well by assuming that 79 +/- 2% of the myosin heads are disordered as in relaxation, whereas the remaining 21 +/- 2% have the same orientation as in rigor. Computer-simulated spectra confirm that there is no significant population (> 5%) of heads having a distinct orientation substantially different (> 10 degrees) from that in rigor, and even the large disordered population of heads has a mean orientation that is similar to that in rigor. Because this spin label reports axial head rotations directly, these results suggest strongly that the catalytic domain of myosin does not undergo a transition between two distinct axial orientations during force generation. Saturation transfer EPR shows that the rotational disorder is dynamic on the microsecond time scale in both relaxation and contraction. These results are consistent with models of contraction involving 1) a transition from a dynamically disordered preforce state to an ordered (rigorlike) force-generating state and/or 2) domain movements within the myosin head that do not change the axial orientation of the SH1-containing catalytic domain relative to actin.
Collapse
Affiliation(s)
- O Roopnarine
- Department of Biochemistry, University of Minnesota Medical School, Minneapolis 55455, USA
| | | |
Collapse
|
16
|
Abstract
Conventional EPR studies of muscle fibers labeled with a novel alpha-iodoketo spin label at Cys-707 of the myosin head revealed substantial internal domain reorganization on the addition of ADP to rigor fibers. The spin probes that are well-ordered in the rigor state become disordered and form two distinct populations. These orientational changes do not correspond to rotation of the myosin catalytic domain as a whole because other probes (maleimide and iodoacetamide nitroxides attached to the same Cys-707 of myosin head) report only a small (5-10 degrees) torsional rotation and little or no change in the tilt angle [Ajtai et al. (1992) Biochemistry 31, 207-17; Fajer (1994) Biophys. J. 66, 2039-50]. In the presence of ADP, the labeled domain becomes more flexible and executes large-amplitude microsecond motions, as measured by saturation-transfer EPR with rates (tau r = 150 microseconds) intermediate between the rotations of detached (tau r = 7 microseconds) and rigor heads (tau r = 2500 microseconds). This finding contrasts with an absence of global motion of the myosin head in ADP (tau r = 2200 microseconds) as reported by the maleimide spin label. Our results imply that the myosin head in a single chemical state (AM.ADP) is capable of attaining many internal configurations, some of which are dynamic. The presence of these slow structural fluctuations might be related to the slow release of the hydrolysis products of actomyosin ATPase.
Collapse
Affiliation(s)
- D Raucher
- Institute of Molecular Biophysics, Florida State University, Tallahassee 32306-3015
| | | | | | | |
Collapse
|
17
|
Li HC, Fajer PG. Orientational changes of troponin C associated with thin filament activation. Biochemistry 1994; 33:14324-32. [PMID: 7947842 DOI: 10.1021/bi00251a046] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have used electron paramagnetic resonance to describe the orientational changes of troponin C (TnC) accompanying muscle activation by Ca2+. Rabbit skeletal TnC was labeled with maleimide spin label (MSL) at Cys-98 and reconstituted into an oriented skinned muscle fiber. About 70% of endogenous troponin C was replaced with labeled TnC, with a concomitant recovery of 80-90% of muscle tension. The nanosecond domain mobility present in solution, as determined from the EPR spectra of randomized samples, is fully inhibited in the reconstituted fibers. The orientational analysis revealed a bimodal orientational distribution of TnC in the absence Ca2+ and attached myosin heads. One of the components is well-ordered with its probe axis inclined at 22 degrees to the fiber axis, while the other is more disordered and inclined at 58 degrees. Ca2+ and/or cross-bridge binding significantly disordered the labeled domain and increased the average probe axis angle by 20-30 degrees away from the fiber axis. The order for the magnitude of angular tilt was Ca2+ < myosin cross-bridges < Ca2+ and cross-bridges. Thus, TnC exists in many different orientational conformations depending on which ligand is bound. We believe that these conformations reflect different activation mechanisms by Ca2+ and cross-bridge binding.
Collapse
Affiliation(s)
- H C Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee 32306
| | | |
Collapse
|
18
|
Raucher D, Fajer PG. Orientation and dynamics of myosin heads in aluminum fluoride induced pre-power stroke states: an EPR study. Biochemistry 1994; 33:11993-9. [PMID: 7918418 DOI: 10.1021/bi00205a039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have determined the orientation and dynamics of the putative pre-power stroke crossbridges in skinned muscle fibers labeled with maleimide spin-label at Cys-707 of myosin. Orientation was measured using electron paramagnetic resonance (EPR) and mobility by saturation transfer EPR. The crossbridges are trapped in the pre-power stroke conformation in the presence of aluminum fluoride, Ca, and ATP. In agreement with data published for unlabeled fibers (Chase et al., 1994), spin-labeled muscle fibers display 42.5% of rigor stiffness, without the generation of force. The trapped crossbridges are as disordered as the relaxed heads, but their microsecond dynamics are significantly restricted. Modeling of the immobile fraction (35%), in terms of attached heads as estimated from stiffness, suggests that the bound heads rotate with a correlation time tau r = 150-400 microseconds, as compared to tau r = 3 microseconds for the heads in relaxed fibers. These "strongly" attached myosin heads, at orientations other than in rigor, are a candidate for the state from which head rotation generates force, as postulated by H. E. Huxley (1969). Ordering of the heads may well be the structural event driving the generation of force.
Collapse
Affiliation(s)
- D Raucher
- Institute of Molecular Biophysics, Florida State University, Tallahassee 32306
| | | |
Collapse
|
19
|
Abstract
The determination of the iodoacetamide spin label orientation in myosin heads (Fajer, 1994) allows us for the first time to determine directly protein orientation from EPR spectra. Computational simulations have been used to determine the sensitivity of EPR to both torsional and tilting motions of myosin heads. For rigor heads (no nucleotide), we can detect 0.2 degree changes in the tilt angle and 4 degrees in the torsion of the head. Sensitivity decreases with increasing head disorder, but even in the presence of +/- 30 degrees disorder as expected for detached heads, 10 degree changes in the center of the orientational distribution can be detected. We have combined these numerical simulations with a Simplex optimization to compare the orientation of intrinsic heads, with the orientation of labeled extrinsic heads that have been infused into unlabeled muscle fibers. The near identity (within 2 degrees) of the orientational distribution in the two instances can be attributed to myosin elasticity taking up the mechanical strain induced by the mismatch of myosin and actin filament periodicity. A similar analysis of the spectra of fibers with ADP bound to myosin revealed a small (approximately 5 degrees-10 degrees) torsional reorientation, without a substantial change of the tilt angle (< 2 degrees).
Collapse
Affiliation(s)
- P G Fajer
- Institute of Molecular Biophysics, Florida State University, Tallahassee 32300
| |
Collapse
|