1
|
Klaver D, Thurnher M. P2Y 11/IL-1 receptor crosstalk controls macrophage inflammation: a novel target for anti-inflammatory strategies? Purinergic Signal 2023; 19:501-511. [PMID: 37016172 PMCID: PMC10073626 DOI: 10.1007/s11302-023-09932-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 04/06/2023] Open
Abstract
Although first cloning of the human ATP receptor P2Y11 was successful 25 years ago, the exact downstream signaling pathways of P2Y11 receptor, which can couple to Gq and Gs proteins, have remained unclear. Especially the lack of rodent models as well as the limited availability of antibodies and pharmacological tools have hampered examination of P2Y11 expression and function. Many meaningful observations related to P2Y11 have been made in primary immune cells, indicating that P2Y11 receptors are important regulators of inflammation and cell migration, also by controlling mitochondrial activity. Our recent studies have shown that P2Y11 is upregulated during macrophage development and activates signaling through IL-1 receptor, which is well known for its ability to direct inflammatory and migratory processes. This review summarizes the results of the first transcriptomic and secretomic analyses of both, ectopic and native P2Y11 receptors, and discusses how P2Y11 crosstalk with the IL-1 receptor may govern anti-inflammatory and pro-angiogenic processes in human M2 macrophages.
Collapse
Affiliation(s)
- Dominik Klaver
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innrain 66a, 6020 Innsbruck, Austria
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innrain 66a, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Jasmer KJ, Muñoz Forti K, Woods LT, Cha S, Weisman GA. Therapeutic potential for P2Y 2 receptor antagonism. Purinergic Signal 2022:10.1007/s11302-022-09900-3. [PMID: 36219327 DOI: 10.1007/s11302-022-09900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 10/17/2022] Open
Abstract
G protein-coupled receptors are the target of more than 30% of all FDA-approved drug therapies. Though the purinergic P2 receptors have been an attractive target for therapeutic intervention with successes such as the P2Y12 receptor antagonist, clopidogrel, P2Y2 receptor (P2Y2R) antagonism remains relatively unexplored as a therapeutic strategy. Due to a lack of selective antagonists to modify P2Y2R activity, studies using primarily genetic manipulation have revealed roles for P2Y2R in a multitude of diseases. These include inflammatory and autoimmune diseases, fibrotic diseases, renal diseases, cancer, and pathogenic infections. With the advent of AR-C118925, a selective and potent P2Y2R antagonist that became commercially available only a few years ago, new opportunities exist to gain a more robust understanding of P2Y2R function and assess therapeutic effects of P2Y2R antagonism. This review discusses the characteristics of P2Y2R that make it unique among P2 receptors, namely its involvement in five distinct signaling pathways including canonical Gαq protein signaling. We also discuss the effects of other P2Y2R antagonists and the pivotal development of AR-C118925. The remainder of this review concerns the mounting evidence implicating P2Y2Rs in disease pathogenesis, focusing on those studies that have evaluated AR-C118925 in pre-clinical disease models.
Collapse
Affiliation(s)
- Kimberly J Jasmer
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Lucas T Woods
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Sciences, Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Gary A Weisman
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
3
|
Ford AP, Dillon MP, Kitt MM, Gever JR. The discovery and development of gefapixant. Auton Neurosci 2021; 235:102859. [PMID: 34403981 DOI: 10.1016/j.autneu.2021.102859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Gefapixant is the approved generic name for a compound also known as MK-7264, and prior to that AF-219 and RO-4926219. It is the first-in-class clinically developed antagonist for the P2X3 subtype of trimeric ionotropic purinergic receptors, a family of ATP-gated excitatory ion channels, showing nanomolar potency for the human P2X3 homotrimeric channel and essentially no activity at related channels devoid of P2X3 subunits. As the first P2X3 antagonist to have progressed into clinical studies it has now progressed to the point of successful completion of Phase 3 investigations for the treatment of cough, and the NDA application is under review with US FDA for treatment of refractory chronic cough or unexplained chronic cough. The molecule was discovered in the laboratories of Roche Pharmaceuticals in Palo Alto, California, but clinical development then continued with the formation of Afferent Pharmaceuticals for the purpose of identifying the optimal therapeutic indication for this novel mechanism and establishing a clinical plan for development in the optimal patient populations selected. Geoff Burnstock was a close collaborator and advisor to the P2X3 program for close to two decades of discovery and development. Progression of gefapixant through later stage clinical studies has been conducted by the research laboratories of Merck & Co., Inc., Kenilworth, NJ, USA (MRL; following acquisition of Afferent in 2016), who may commercialize the product once authorization has been granted by regulatory authorities.
Collapse
Affiliation(s)
- Anthony P Ford
- CuraSen Therapeutics, 930 Brittan Avenue, Suite 306, San Carlos, CA 94070, USA.
| | - Michael P Dillon
- Ideaya Biosciences, 7000 Shoreline Court, Suite 350, South San Francisco, CA 94080, USA
| | - Michael M Kitt
- Axalbion LTD., C/O Medicines Evaluation Unit, The Langley Building, Southmoor Road, Wythenshawe, M23 9QZ Manchester, UK
| | - Joel R Gever
- CuraSen Therapeutics, 930 Brittan Avenue, Suite 306, San Carlos, CA 94070, USA
| |
Collapse
|
4
|
Lovászi M, Branco Haas C, Antonioli L, Pacher P, Haskó G. The role of P2Y receptors in regulating immunity and metabolism. Biochem Pharmacol 2021; 187:114419. [PMID: 33460626 DOI: 10.1016/j.bcp.2021.114419] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
P2Y receptors are G protein-coupled receptors whose physiological agonists are the nucleotides ATP, ADP, UTP, UDP and UDP-glucose. Eight P2Y receptors have been cloned in humans: P2Y1R, P2Y2R, P2Y4R, P2Y6R, P2Y11R, P2Y12R, P2Y13R and P2Y14R. P2Y receptors are expressed in lymphoid tissues such as thymus, spleen and bone marrow where they are expressed on lymphocytes, macrophages, dendritic cells, neutrophils, eosinophils, mast cells, and platelets. P2Y receptors regulate many aspects of immune cell function, including phagocytosis and killing of pathogens, antigen presentation, chemotaxis, degranulation, cytokine production, and lymphocyte activation. Consequently, P2Y receptors shape the course of a wide range of infectious, autoimmune, and inflammatory diseases. P2Y12R ligands have already found their way into the therapeutic arena, and we envision additional ligands as future drugs for the treatment of diseases caused by or associated with immune dysregulation.
Collapse
Affiliation(s)
- Marianna Lovászi
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | | | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Lazarowski ER, Boucher RC. Purinergic receptors in airway hydration. Biochem Pharmacol 2021; 187:114387. [PMID: 33358825 DOI: 10.1016/j.bcp.2020.114387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Airway epithelial purinergic receptors control key components of the mucociliary clearance (MCC), the dominant component of pulmonary host defense. In healthy airways, the periciliary liquid (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. When the hydration of the airway surface decreases, the mucus becomes hyperconcentrated, the PCL collapses, and the "thickened" mucus layer adheres to cell surfaces, causing plaque/plug formation. Mucus accumulation is a major contributing factor to the progression of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is regulated by finely tuned mechanisms of luminal Cl- secretion and Na+ absorption with concomitant osmotically driven water flow. These activities are regulated by airway surface liquid (ASL) concentrations of adenosine and ATP, acting on airway epithelial A2B and P2Y2 receptors, respectively. The goal of this article is to provide an overview of our understanding of the role of purinergic receptors in the regulation of airway epithelial ion/fluid transport and the mechanisms of nucleotide release and metabolic activities that contribute to airway surface hydration in healthy and chronically obstructed airways.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States.
| | - Richard C Boucher
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Woods LT, Forti KM, Shanbhag VC, Camden JM, Weisman GA. P2Y receptors for extracellular nucleotides: Contributions to cancer progression and therapeutic implications. Biochem Pharmacol 2021; 187:114406. [PMID: 33412103 DOI: 10.1016/j.bcp.2021.114406] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022]
Abstract
Purinergic receptors for extracellular nucleotides and nucleosides contribute to a vast array of cellular and tissue functions, including cell proliferation, intracellular and transmembrane ion flux, immunomodulation and thrombosis. In mammals, the purinergic receptor system is composed of G protein-coupled P1 receptors A1, A2A, A2B and A3 for extracellular adenosine, P2X1-7 receptors that are ATP-gated ion channels and G protein-coupled P2Y1,2,4,6,11,12,13 and 14 receptors for extracellular ATP, ADP, UTP, UDP and/or UDP-glucose. Recent studies have implicated specific P2Y receptor subtypes in numerous oncogenic processes, including cancer tumorigenesis, metastasis and chemotherapeutic drug resistance, where G protein-mediated signaling cascades modulate intracellular ion concentrations and activate downstream protein kinases, Src family kinases as well as numerous mitogen-activated protein kinases. We are honored to contribute to this special issue dedicated to the founder of the field of purinergic signaling, Dr. Geoffrey Burnstock, by reviewing the diverse roles of P2Y receptors in the initiation, progression and metastasis of specific cancers with an emphasis on pharmacological and genetic strategies employed to delineate cell-specific and P2Y receptor subtype-specific responses that have been investigated using in vitro and in vivo cancer models. We further highlight bioinformatic and empirical evidence on P2Y receptor expression in human clinical specimens and cover clinical perspectives where P2Y receptor-targeting interventions may have therapeutic relevance to cancer treatment.
Collapse
Affiliation(s)
- Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Kevin Muñoz Forti
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Vinit C Shanbhag
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
7
|
Woo SH, Trinh TN. P2 Receptors in Cardiac Myocyte Pathophysiology and Mechanotransduction. Int J Mol Sci 2020; 22:ijms22010251. [PMID: 33383710 PMCID: PMC7794727 DOI: 10.3390/ijms22010251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
ATP is a major energy source in the mammalian cells, but it is an extracellular chemical messenger acting on P2 purinergic receptors. A line of evidence has shown that ATP is released from many different types of cells including neurons, endothelial cells, and muscle cells. In this review, we described the distribution of P2 receptor subtypes in the cardiac cells and their physiological and pathological roles in the heart. So far, the effects of external application of ATP or its analogues, and those of UTP on cardiac contractility and rhythm have been reported. In addition, specific genetic alterations and pharmacological agonists and antagonists have been adopted to discover specific roles of P2 receptor subtypes including P2X4-, P2X7-, P2Y2- and P2Y6-receptors in cardiac cells under physiological and pathological conditions. Accumulated data suggest that P2X4 receptors may play a beneficial role in cardiac muscle function, and that P2Y2- and P2Y6-receptors can induce cardiac fibrosis. Recent evidence further demonstrates P2Y1 receptor and P2X4 receptor as important mechanical signaling molecules to alter membrane potential and Ca2+ signaling in atrial myocytes and their uneven expression profile between right and left atrium.
Collapse
|
8
|
Molecular pharmacology of P2Y receptor subtypes. Biochem Pharmacol 2020; 187:114361. [PMID: 33309519 DOI: 10.1016/j.bcp.2020.114361] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Professor Geoffrey Burnstock proposed the concept of purinergic signaling via P1 and P2 receptors. P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular adenine and uracil nucleotides. Eight mammalian P2Y receptor subtypes have been identified. They are divided into two subgroups (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) and (P2Y12, P2Y13, and P2Y14). P2Y receptors are found in almost all cells and mediate responses in physiology and pathophysiology including pain and inflammation. The antagonism of platelet P2Y12 receptors by cangrelor, ticagrelor or active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel reduces the ADP-induced platelet aggregation in patients with thrombotic complications of vascular diseases. The nucleotide agonist diquafosol acting at P2Y2 receptors is used for the treatment of the dry eye syndrome. Structural information obtained by crystallography of the human P2Y1 and P2Y12 receptor proteins, site-directed mutagenesis and molecular modeling will facilitate the rational design of novel selective drugs.
Collapse
|
9
|
Mazzarda F, D'Elia A, Massari R, De Ninno A, Bertani FR, Businaro L, Ziraldo G, Zorzi V, Nardin C, Peres C, Chiani F, Tettey-Matey A, Raspa M, Scavizzi F, Soluri A, Salvatore AM, Yang J, Mammano F. Organ-on-chip model shows that ATP release through connexin hemichannels drives spontaneous Ca 2+ signaling in non-sensory cells of the greater epithelial ridge in the developing cochlea. LAB ON A CHIP 2020; 20:3011-3023. [PMID: 32700707 DOI: 10.1039/d0lc00427h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Prior work supports the hypothesis that ATP release through connexin hemichannels drives spontaneous Ca2+ signaling in non-sensory cells of the greater epithelial ridge (GER) in the developing cochlea; however, direct proof is lacking. To address this issue, we plated cochlear organotypic cultures (COCs) and whole cell-based biosensors with nM ATP sensitivity (ATP-WCBs) at the bottom and top of an ad hoc designed transparent microfluidic chamber, respectively. By performing dual multiphoton Ca2+ imaging, we monitored the propagation of intercellular Ca2+ waves in the GER of COCs and ATP-dependent Ca2+ responses in overlying ATP-WCBs. Ca2+ signals in both COCs and ATP-WCBs were inhibited by supplementing the extracellular medium with ATP diphosphohydrolase (apyrase). Spontaneous Ca2+ signals were strongly depressed in the presence of Gjb6-/- COCs, in which connexin 30 (Cx30) is absent and connexin 26 (Cx26) is strongly downregulated. In contrast, spontaneous Ca2+ signals were not affected by replacement of Panx1-/- with Panx1+/+ COCs in the microfluidic chamber. Similar results were obtained by estimating ATP release from COCs using a classical luciferin-luciferase bioluminescence assay. Therefore, connexin hemichannels and not pannexin 1 channels mediate the release of ATP that is responsible for Ca2+ wave propagation in the developing mouse cochlea. The technological advances presented here have the potential to shed light on a plethora of unrelated open issues that involve paracrine signaling in physiology and pathology and cannot be addressed with standard methods.
Collapse
Affiliation(s)
- Flavia Mazzarda
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Science, Università degli Studi di Roma3, Rome, Italy
| | - Annunziata D'Elia
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Science, Università degli Studi di Roma3, Rome, Italy
| | - Roberto Massari
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Adele De Ninno
- CNR Institute for Photonics and Nanotechnology, Rome, Italy.
| | | | - Luca Businaro
- CNR Institute for Photonics and Nanotechnology, Rome, Italy.
| | - Gaia Ziraldo
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Nardin
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Chiara Peres
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Francesco Chiani
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Alessandro Soluri
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Jun Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. and Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Physics and Astronomy "G. Galilei", University of Padova, Padua, Italy.
| |
Collapse
|
10
|
Khalafalla MG, Woods LT, Jasmer KJ, Forti KM, Camden JM, Jensen JL, Limesand KH, Galtung HK, Weisman GA. P2 Receptors as Therapeutic Targets in the Salivary Gland: From Physiology to Dysfunction. Front Pharmacol 2020; 11:222. [PMID: 32231563 PMCID: PMC7082426 DOI: 10.3389/fphar.2020.00222] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Although often overlooked in our daily lives, saliva performs a host of necessary physiological functions, including lubricating and protecting the oral cavity, facilitating taste sensation and digestion and maintaining tooth enamel. Therefore, salivary gland dysfunction and hyposalivation, often resulting from pathogenesis of the autoimmune disease Sjögren's syndrome or from radiotherapy of the head and neck region during cancer treatment, severely reduce the quality of life of afflicted patients and can lead to dental caries, periodontitis, digestive disorders, loss of taste and difficulty speaking. Since their initial discovery in the 1970s, P2 purinergic receptors for extracellular nucleotides, including ATP-gated ion channel P2X and G protein-coupled P2Y receptors, have been shown to mediate physiological processes in numerous tissues, including the salivary glands where P2 receptors represent a link between canonical and non-canonical saliva secretion. Additionally, extracellular nucleotides released during periods of cellular stress and inflammation act as a tissue alarmin to coordinate immunological and tissue repair responses through P2 receptor activation. Accordingly, P2 receptors have gained widespread clinical interest with agonists and antagonists either currently undergoing clinical trials or already approved for human use. Here, we review the contributions of P2 receptors to salivary gland function and describe their role in salivary gland dysfunction. We further consider their potential as therapeutic targets to promote physiological saliva flow, prevent salivary gland inflammation and enhance tissue regeneration.
Collapse
Affiliation(s)
- Mahmoud G. Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lucas T. Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kimberly J. Jasmer
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kevin Muñoz Forti
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Jean M. Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Janicke L. Jensen
- Institute of Clinical Dentistry, Section of Oral Surgery and Oral Medicine, University of Oslo, Oslo, Norway
| | - Kirsten H. Limesand
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Hilde K. Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gary A. Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
11
|
Gruenbacher G, Gander H, Rahm A, Dobler G, Drasche A, Troppmair J, Nussbaumer W, Thurnher M. The Human G Protein-Coupled ATP Receptor P2Y 11 Is Associated With IL-10 Driven Macrophage Differentiation. Front Immunol 2019; 10:1870. [PMID: 31447857 PMCID: PMC6695557 DOI: 10.3389/fimmu.2019.01870] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/24/2019] [Indexed: 01/05/2023] Open
Abstract
The G protein-coupled P2Y11 receptor is known to sense extracellular ATP during inflammatory and immune responses. The dinucleotide NAD+ has also been proposed to be a P2Y11 receptor ligand but its role is less clear. Here, we have examined for the first time human P2Y11 receptor protein levels and show that the receptor was upregulated during polarization of M2 macrophages. IL-10 reinforced P2Y11 receptor expression during differentiation of M2c macrophages expressing CD163, CD16, and CD274 (PD-L1). Nutlin-3a mediated p53 stabilization further increased P2Y11 receptor, CD16, and PD-L1 expression. AMP-activated kinase (AMPK), which mediates anti-inflammatory effects of IL-10, and nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the NAD+ salvage pathway, which is under the control of AMPK, were also required for P2Y11 receptor expression. The P2Y11 receptor agonist ATPγS and NAD+ could independently stimulate the production of IL-8 in M2 macrophages, however, only the ATPγS-induced response was mediated by P2Y11 receptor. Both in a recombinant system and in macrophages, P2Y11 receptor-driven IL-8 production predominantly depended on IkB kinase (IKK), and extracellular signal–regulated kinase (ERK). In conclusion, our data indicate that an AMPK-NAMPT-NAD+ signaling axis promotes P2Y11 receptor expression during M2 polarization of human macrophages in response to IL-10. PD-L1 expressing M2c macrophages that secrete the cancer-promoting chemokine IL-8 in response to P2Y11 receptor stimulation may represent an important target in checkpoint blockade immunotherapy.
Collapse
Affiliation(s)
- Georg Gruenbacher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Gander
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Rahm
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriele Dobler
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Astrid Drasche
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Walter Nussbaumer
- Central Institute for Blood Transfusion and Immunology, Medical University Hospital Innsbruck, Innsbruck, Austria
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Olotu C, Lehmensiek F, Koch B, Kiefmann M, Riegel AK, Hammerschmidt S, Kiefmann R. Streptococcus pneumoniae inhibits purinergic signaling and promotes purinergic receptor P2Y 2 internalization in alveolar epithelial cells. J Biol Chem 2019; 294:12795-12806. [PMID: 31289122 DOI: 10.1074/jbc.ra118.007236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Bacterial pneumonia is a global health challenge that causes up to 2 million deaths each year. Purinergic signaling plays a pivotal role in healthy alveolar epithelium. Here, we used fluorophore-based analysis and live-cell calcium imaging to address the question of whether the bacterial pathogen Streptococcus pneumoniae directly interferes with purinergic signaling in alveolar epithelial cells. Disturbed purinergic signaling might result in pathophysiologic changes like edema formation and atelectasis, which are commonly seen in bacterial pneumonia. Purine receptors are mainly activated by ATP, mediating a cytosolic calcium response. We found that this purinergic receptor P2Y2-mediated response is suppressed in the presence of S. pneumoniae in A549 and isolated primary alveolar cells in a temperature-dependent manner. Downstream inositol 3-phosphate (IP3) signaling appeared to be unaffected, as calcium signaling via protease-activated receptor 2 remained unaltered. S. pneumoniae-induced suppression of the P2Y2-mediated calcium response depended on the P2Y2 phosphorylation sites Ser-243, Thr-344, and Ser-356, which are involved in receptor desensitization and internalization. Spinning-disk live-cell imaging revealed that S. pneumoniae induces P2Y2 translocation into the cytosol. In conclusion, our results show that S. pneumoniae directly inhibits purinergic signaling by inducing P2Y2 phosphorylation and internalization, resulting in the suppression of the calcium response of alveolar epithelial cells to ATP, thereby affecting cellular integrity and function.
Collapse
Affiliation(s)
- Cynthia Olotu
- Center for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22051 Hamburg, Germany
| | - Felix Lehmensiek
- Center for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22051 Hamburg, Germany
| | - Bastian Koch
- Center for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22051 Hamburg, Germany
| | - Martina Kiefmann
- Center for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22051 Hamburg, Germany
| | - Ann-Kathrin Riegel
- Center for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22051 Hamburg, Germany
| | - Sven Hammerschmidt
- Institute of Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Rainer Kiefmann
- Center for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22051 Hamburg, Germany
| |
Collapse
|
13
|
Muoboghare MO, Drummond RM, Kennedy C. Characterisation of P2Y 2 receptors in human vascular endothelial cells using AR-C118925XX, a competitive and selective P2Y 2 antagonist. Br J Pharmacol 2019; 176:2894-2904. [PMID: 31116875 DOI: 10.1111/bph.14715] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE There is a lack of potent, selective antagonists at most subtypes of P2Y receptor. The aims of this study were to characterise the pharmacological properties of the proposed P2Y2 receptor antagonist, AR-C118925XX, and then to use it to determine the role of P2Y2 receptors in the action of the P2Y2 agonist, UTP, in human vascular endothelial cells. EXPERIMENTAL APPROACH Cell lines expressing native or recombinant P2Y receptors were superfused constantly, and agonist-induced changes in intracellular Ca2+ levels monitored using the Ca2+ -sensitive fluorescent indicator, Cal-520. This set-up enabled full agonist concentration-response curves to be constructed on a single population of cells. KEY RESULTS UTP evoked a concentration-dependent rise in intracellular Ca2+ in 1321N1-hP2Y2 cells. AR-C118925XX (10 nM to 1 μM) had no effect per se on intracellular Ca2+ but shifted the UTP concentration-response curve progressively rightwards, with no change in maximum. The inhibition was fully reversible on washout. AR-C118925XX (1 μM) had no effect at native or recombinant hP2Y1 , hP2Y4 , rP2Y6 , or hP2Y11 receptors. Finally, in EAhy926 immortalised human vascular endothelial cells, AR-C118925XX (30 nM) shifted the UTP concentration-response curve rightwards, with no decrease in maximum. CONCLUSIONS AND IMPLICATIONS AR-C118925XX is a potent, selective and reversible, competitive P2Y2 receptor antagonist, which inhibited responses mediated by endogenous P2Y2 receptors in human vascular endothelial cells. As the only P2Y2 -selective antagonist currently available, it will greatly enhance our ability to identify the functions of native P2Y2 receptors and their contribution to disease and dysfunction.
Collapse
Affiliation(s)
- Markie O Muoboghare
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Robert M Drummond
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
14
|
von Kügelgen I. Pharmacology of P2Y receptors. Brain Res Bull 2019; 151:12-24. [PMID: 30922852 DOI: 10.1016/j.brainresbull.2019.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 01/17/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes divided into two subgroups (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) and (P2Y12, P2Y13, and P2Y14). The P2Y receptors are expressed in various cell types and play important roles in physiology and pathophysiology including inflammatory responses and neuropathic pain. The antagonism of P2Y12 receptors is used in pharmacotherapy for the prevention and therapy of cardiovascular events. The nucleoside analogue ticagrelor and active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel inhibit platelet P2Y12 receptors and reduce thereby platelet aggregation. The P2Y2 receptor agonist diquafosol is used for the treatment of the dry eye syndrome. The P2Y receptor subtypes differ in their amino acid sequences, their pharmacological profiles and their signaling transduction pathways. Recently, selective receptor ligands have been developed for all subtypes. The published crystal structures of the human P2Y1 and P2Y12 receptors as well as receptor models will facilitate the development of novel drugs for pharmacotherapy.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.
| |
Collapse
|
15
|
Yuan LY, He ZY, Li L, Wang YZ. Association of G-protein coupled purinergic receptor P2Y2 with ischemic stroke in a Han Chinese population of North China. Neural Regen Res 2018; 14:506-512. [PMID: 30539820 PMCID: PMC6334602 DOI: 10.4103/1673-5374.245472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The G-protein-coupled purinergic receptor P2Y2 (P2RY2) plays an important role in the mechanism of atherosclerosis, which is relevant to ischemic stroke. This retrospective case-control study aimed to assess the relationship between P2RY2 gene polymorphisms and ischemic stroke risk in the northern Han Chinese population. In this study, clinical data and peripheral blood specimens were collected from 378 ischemic stroke patients and 344 controls. The ischemic stroke participants were recruited from the First Affiliated Hospital of China Medical University and the First Affiliated Hospital of Liaoning Medical University. The controls were recruited from the Health Check Center at the First Affiliated Hospital of China Medical University. Ischemic stroke patients were divided into two subgroups according to the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) classification: large-artery atherosclerosis (n = 178) and small-artery occlusion (n = 200) strokes. All subjects were genotyped for three single nucleotide polymorphisms (rs4944831, rs1783596, and rs4944832) in the P2RY2 gene using peripheral venous blood samples. The distribution of the dominant rs4944832 phenotype (GG vs. GA+AA) differed significantly between small-artery occlusion patients and control subjects (odds ratio (OR) = 1.720, 95% confidence interval (CI): 1.203–2.458, P < 0.01). Multivariable logistic regression analysis revealed that the GG genotype of rs4944832 was significantly more prevalent in small-artery occlusion patients than in control subjects (OR = 1.807, 95% CI: 1.215–2.687, P < 0.01). The overall distribution of the haplotype established by rs4944831-rs1783596-rs4944832 was significantly different between ischemic stroke patients and controls (P < 0.01). In ischemic stroke patients, the frequency of the G-C-G haplotype was significantly higher than in control subjects (P = 0.028), whereas the frequency of the T-C-A haplotype was lower than in control subjects (P = 0.047). These results indicate that the G-C-G haplotype of P2RY2 is a susceptibility haplotype for ischemic stroke. In addition, the GG genotype of rs4944832 may be associated with the development of small-artery occlusion in the northern Han Chinese population. The study protocol was approved by the Ethics Committee of the First Affiliated Hospital of China Medical University on February 20, 2012 (No. 2012-38-1) and the First Affiliated Hospital of Liaoning Medical University, China, on March 1, 2013 (No. 2013-03-1). All participants gave their informed consent. This trial was registered with the ISRCTN Registry (ISRCTN11439124) on October 24, 2018. Protocol version (1.0).
Collapse
Affiliation(s)
- Li-Ying Yuan
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi-Yi He
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lei Li
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yan-Zhe Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
16
|
P2Y 2 and P2Y 6 receptor activation elicits intracellular calcium responses in human adipose-derived mesenchymal stromal cells. Purinergic Signal 2018; 14:371-384. [PMID: 30088129 PMCID: PMC6298923 DOI: 10.1007/s11302-018-9618-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/29/2018] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue contains self-renewing multipotent cells termed mesenchymal stromal cells. In situ, these cells serve to expand adipose tissue by adipogenesis, but their multipotency has gained interest for use in tissue regeneration. Little is known regarding the repertoire of receptors expressed by adipose-derived mesenchymal stromal cells (AD-MSCs). The purpose of this study was to undertake a comprehensive analysis of purinergic receptor expression. Mesenchymal stromal cells were isolated from human subcutaneous adipose tissue and confirmed by flow cytometry. The expression profile of purinergic receptors was determined by quantitative real-time PCR and immunocytochemistry. The molecular basis for adenine and uracil nucleotide-evoked intracellular calcium responses was determined using Fura-2 measurements. All the known subtypes of P2X and P2Y receptors, excluding P2X2, P2X3 and P2Y12 receptors, were detected at the mRNA and protein level. ATP, ADP and UTP elicited concentration-dependent calcium responses in mesenchymal cells (N = 7–9 donors), with a potency ranking ADP (EC50 1.3 ± 1.0 μM) > ATP (EC50 2.2 ± 1.1 μM) = UTP (3.2 ± 2.8 μM). Cells were unresponsive to UDP (< 30 μM) and UDP-glucose (< 30 μM). ATP responses were attenuated by selective P2Y2 receptor antagonism (AR-C118925XX; IC50 1.1 ± 0.8 μM, 73.0 ± 8.5% max inhibition; N = 7 donors), and UTP responses were abolished. ADP responses were attenuated by the selective P2Y6 receptor antagonist, MRS2587 (IC50 437 ± 133nM, 81.0 ± 8.4% max inhibition; N = 6 donors). These data demonstrate that adenine and uracil nucleotides elicit intracellular calcium responses in human AD-MSCs with a predominant role for P2Y2 and P2Y6 receptor activation. This study furthers understanding about how human adipose-derived mesenchymal stromal cells can respond to external signalling cues.
Collapse
|
17
|
Abstract
P2Y receptors (P2YRs) are a family of G protein-coupled receptors activated by extracellular nucleotides. Physiological P2YR agonists include purine and pyrimidine nucleoside di- and triphosphates, such as ATP, ADP, UTP, UDP, nucleotide sugars, and dinucleotides. Eight subtypes exist, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14, which represent current or potential future drug targets. Here we provide a comprehensive overview of ligands for the subgroup of the P2YR family that is activated by uracil nucleotides: P2Y2 (UTP, also ATP and dinucleotides), P2Y4 (UTP), P2Y6 (UDP), and P2Y14 (UDP, UDP-glucose, UDP-galactose). The physiological agonists are metabolically unstable due to their fast hydrolysis by ectonucleotidases. A number of agonists with increased potency, subtype-selectivity and/or enzymatic stability have been developed in recent years. Useful P2Y2R agonists include MRS2698 (6-01, highly selective) and PSB-1114 (6-05, increased metabolic stability). A potent and selective P2Y2R antagonist is AR-C118925 (10-01). For studies of the P2Y4R, MRS4062 (3-15) may be used as a selective agonist, while PSB-16133 (10-06) is a selective antagonist. Several potent P2Y6R agonists have been developed including 5-methoxyuridine 5'-O-((Rp)α-boranodiphosphate) (6-12), PSB-0474 (3-11), and MRS2693 (3-26). The isocyanate MRS2578 (10-08) is used as a selective P2Y6R antagonist, although its reactivity and low water-solubility are limiting. With MRS2905 (6-08), a potent and metabolically stable P2Y14R agonist is available, while PPTN (10-14) represents a potent and selective P2Y14R antagonist. The radioligand [3H]UDP can be used to label P2Y14Rs. In addition, several fluorescent probes have been developed. Uracil nucleotide-activated P2YRs show great potential as drug targets, especially in inflammation, cancer, cardiovascular and neurodegenerative diseases.
Collapse
|
18
|
Bondu V, Wu C, Cao W, Simons PC, Gillette J, Zhu J, Erb L, Zhang XF, Buranda T. Low-affinity binding in cis to P2Y 2R mediates force-dependent integrin activation during hantavirus infection. Mol Biol Cell 2017; 28:2887-2903. [PMID: 28835374 PMCID: PMC5638590 DOI: 10.1091/mbc.e17-01-0082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022] Open
Abstract
Atomic force microscopy is used to establish that low-affinity integrins bind in cis to P2Y2R. Integrin activation is initiated by a membrane-normal switchblade motion triggered by integrin priming after the virus binds to the integrin PSI domain. Tensile force between the P2Y2R and unbending integrin stimulates outside-in signaling. Pathogenic hantaviruses bind to the plexin-semaphorin-integrin (PSI) domain of inactive, β3 integrins. Previous studies have implicated a cognate cis interaction between the bent conformation β5/β3 integrins and an arginine-glycine-aspartic acid (RGD) sequence in the first extracellular loop of P2Y2R. With single-molecule atomic force microscopy, we show a specific interaction between an atomic force microscopy tip decorated with recombinant αIIbβ3 integrins and (RGD)P2Y2R expressed on cell membranes. Mutation of the RGD sequence to RGE in the P2Y2R removes this interaction. Binding of inactivated and fluorescently labeled Sin Nombre virus (SNV) to the integrin PSI domain stimulates higher affinity for (RGD)P2Y2R on cells, as measured by an increase in the unbinding force. In CHO cells, stably expressing αIIbβ3 integrins, virus engagement at the integrin PSI domain, recapitulates physiologic activation of the integrin as indicated by staining with the activation-specific mAB PAC1. The data also show that blocking of the Gα13 protein from binding to the cytoplasmic domain of the β3 integrin prevents outside-in signaling and infection. We propose that the cis interaction with P2Y2R provides allosteric resistance to the membrane-normal motion associated with the switchblade model of integrin activation, where the development of tensile force yields physiological integrin activation.
Collapse
Affiliation(s)
- Virginie Bondu
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Chenyu Wu
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Wenpeng Cao
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Peter C Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Jennifer Gillette
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Jieqing Zhu
- Blood Research Institute, Bloodcenter of Wisconsin, Milwaukee, WI 53226
| | - Laurie Erb
- Department of Biochemistry, 540F Bond Life Sciences Center, Columbia, MO 65211
| | - X Frank Zhang
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131 .,Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
19
|
Villarejo-López L, Jiménez E, Bartolomé-Martín D, Zafra F, Lapunzina P, Aragón C, López-Corcuera B. P2X receptors up-regulate the cell-surface expression of the neuronal glycine transporter GlyT2. Neuropharmacology 2017; 125:99-116. [PMID: 28734869 DOI: 10.1016/j.neuropharm.2017.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 12/27/2022]
Abstract
Glycinergic inhibitory neurons of the spinal dorsal horn exert critical control over the conduction of nociceptive signals to higher brain areas. The neuronal glycine transporter 2 (GlyT2) is involved in the recycling of synaptic glycine from the inhibitory synaptic cleft and its activity modulates intra and extracellular glycine concentrations. In this report we show that the stimulation of P2X purinergic receptors with βγ-methylene adenosine 5'-triphosphate induces the up-regulation of GlyT2 transport activity by increasing total and plasma membrane expression and reducing transporter ubiquitination. We identified the receptor subtypes involved by combining pharmacological approaches, siRNA-mediated protein knockdown, and dorsal root ganglion cell enrichment in brainstem and spinal cord primary cultures. Up-regulation of GlyT2 required the combined stimulation of homomeric P2X3 and P2X2 receptors or heteromeric P2X2/3 receptors. We measured the spontaneous glycinergic currents, glycine release and GlyT2 uptake concurrently in response to P2X receptor agonists, and showed that the impact of P2X3 receptor activation on glycinergic neurotransmission involves the modulation of GlyT2 expression or activity. The recognized pro-nociceptive action of P2X3 receptors suggests that the fine-tuning of GlyT2 activity may have consequences in nociceptive signal conduction.
Collapse
Affiliation(s)
- Lucía Villarejo-López
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Esperanza Jiménez
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - David Bartolomé-Martín
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Francisco Zafra
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - Pablo Lapunzina
- Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; Instituto de Genética Médica y Molecular, IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid 28046, Spain
| | - Carmen Aragón
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - Beatriz López-Corcuera
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Madrid, Spain.
| |
Collapse
|
20
|
Cell culture: complications due to mechanical release of ATP and activation of purinoceptors. Cell Tissue Res 2017; 370:1-11. [PMID: 28434079 PMCID: PMC5610203 DOI: 10.1007/s00441-017-2618-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
There is abundant evidence that ATP (adenosine 5′-triphosphate) is released from a variety of cultured cells in response to mechanical stimulation. The release mechanism involved appears to be a combination of vesicular exocytosis and connexin and pannexin hemichannels. Purinergic receptors on cultured cells mediate both short-term purinergic signalling of secretion and long-term (trophic) signalling such as proliferation, migration, differentiation and apoptosis. We aim in this review to bring to the attention of non-purinergic researchers using tissue culture that the release of ATP in response to mechanical stress evoked by the unavoidable movement of the cells acting on functional purinergic receptors on the culture cells is likely to complicate the interpretation of their data.
Collapse
|
21
|
Dissmore T, Seye CI, Medeiros DM, Weisman GA, Bradford B, Mamedova L. The P2Y2 receptor mediates uptake of matrix-retained and aggregated low density lipoprotein in primary vascular smooth muscle cells. Atherosclerosis 2016; 252:128-135. [PMID: 27522265 PMCID: PMC5060008 DOI: 10.1016/j.atherosclerosis.2016.07.927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND AIMS The internalization of aggregated low-density lipoproteins (agLDL) mediated by low-density lipoprotein receptor related protein (LRP1) may involve the actin cytoskeleton in ways that differ from the endocytosis of soluble LDL by the LDL receptor (LDLR). This study aims to define novel mechanisms of agLDL uptake through modulation of the actin cytoskeleton, to identify molecular targets involved in foam cell formation in vascular smooth muscle cells (VSMCs). The critical observation that formed the basis for these studies is that under pathophysiological conditions, nucleotide release from blood-derived and vascular cells activates SMC P2Y2 receptors (P2Y2Rs) leading to rearrangement of the actin cytoskeleton and cell motility. Therefore, we tested the hypothesis that P2Y2R activation mediates agLDL uptake by VSMCs. METHODS Primary VSMCs were isolated from aortas of wild type (WT) C57BL/6 and.P2Y2R-/- mice to investigate whether P2Y2R activation modulates LRP1 expression. Cells were transiently transfected with cDNA encoding a hemagglutinin-tagged (HA-tagged) WT P2Y2R, or a mutant P2Y2R that unlike the WT P2Y2R does not bind the cytoskeletal actin-binding protein filamin-A (FLN-A). RESULTS P2Y2R activation significantly increased agLDL uptake, and LRP1 mRNA expression decreased in P2Y2R-/- VSMCs versus WT. SMCs, expressing P2Y2R defective in FLN-A binding, exhibit 3-fold lower LDLR expression levels than SMCs expressing WT P2Y2R, while cells transfected with WT P2Y2R show greater agLDL uptake in both WT and P2Y2R-/- VSMCs versus cells transfected with the mutant P2Y2R. CONCLUSIONS Together, these results show that both LRP1 and LDLR expression and agLDL uptake are regulated by P2Y2R in VSMCs, and that agLDL uptake due to P2Y2R activation is dependent upon cytoskeletal reorganization mediated by P2Y2R binding to FLN-A.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Aorta/metabolism
- Cell Movement
- Cells, Cultured
- Cytoskeleton/metabolism
- Dose-Response Relationship, Drug
- Endocytosis
- Filamins/metabolism
- Foam Cells/metabolism
- Humans
- Lipoproteins, LDL/blood
- Low Density Lipoprotein Receptor-Related Protein-1
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Receptors, LDL/metabolism
- Receptors, Purinergic P2Y2/metabolism
- Signal Transduction
- Tumor Suppressor Proteins/metabolism
- Uridine Triphosphate/chemistry
Collapse
Affiliation(s)
| | - Cheikh I Seye
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Denis M Medeiros
- School of Graduate Studies, University of Missouri, Kansas City, MO, United States
| | - Gary A Weisman
- Department of Biochemistry and Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Barry Bradford
- Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Laman Mamedova
- Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
22
|
von Kügelgen I, Hoffmann K. Pharmacology and structure of P2Y receptors. Neuropharmacology 2015; 104:50-61. [PMID: 26519900 DOI: 10.1016/j.neuropharm.2015.10.030] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/30/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14). P2Y receptors are widely expressed and play important roles in physiology and pathophysiology. One important example is the ADP-induced platelet aggregation mediated by P2Y1 and P2Y12 receptors. Active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel as well as the nucleoside analogue ticagrelor block P2Y12 receptors and thereby platelet aggregation. These drugs are used for the prevention and therapy of cardiovascular events. Moreover, P2Y receptors play important roles in the nervous system. Adenine nucleotides modulate neuronal activity and neuronal fibre outgrowth by activation of P2Y1 receptors and control migration of microglia by P2Y12 receptors. UDP stimulates microglial phagocytosis through activation of P2Y6 receptors. There is evidence for a role for P2Y2 receptors in Alzheimer's disease pathology. The P2Y receptor subtypes are highly diverse in both their amino acid sequences and their pharmacological profiles. Selective receptor ligands have been developed for the pharmacological characterization of the receptor subtypes. The recently published three-dimensional crystal structures of the human P2Y1 and P2Y12 receptors will facilitate the development of therapeutic agents that selectively target P2Y receptors. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127 Bonn, Germany.
| | - Kristina Hoffmann
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127 Bonn, Germany
| |
Collapse
|
23
|
Baseline Goblet Cell Mucin Secretion in the Airways Exceeds Stimulated Secretion over Extended Time Periods, and Is Sensitive to Shear Stress and Intracellular Mucin Stores. PLoS One 2015; 10:e0127267. [PMID: 26024524 PMCID: PMC4449158 DOI: 10.1371/journal.pone.0127267] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/13/2015] [Indexed: 12/22/2022] Open
Abstract
Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS). In human bronchial epithelial cell cultures (HBECCs), maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h), to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5–2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist-induced mucin secretion.
Collapse
|
24
|
Yashima S, Shimazaki A, Mitoma J, Nakagawa T, Abe M, Yamada H, Higashi H. Close association of B2 bradykinin receptors with P2Y2 ATP receptors. J Biochem 2015; 158:155-63. [PMID: 25713410 DOI: 10.1093/jb/mvv022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/10/2015] [Indexed: 11/12/2022] Open
Abstract
Two G-protein-coupled receptors (GPCRs) that couple with Gαq/11, B2 bradykinin (BK) receptor (B2R) and ATP/UTP receptor P2Y2 (P2Y2R), are ubiquitously expressed and responsible for vascular tone, inflammation, and pain. We analysed the cellular signalling of P2Y2Rs in cells that express B2Rs. B2R desensitization induced by BK or B2R internalization-inducing glycans cross-desensitized the P2Y2R response to ATP/UTP. Fluorescence resonance energy transfer from P2Y2R-AcGFP to B2R-DsRed was detected in the cells and on the cell surfaces, showing the close association of these GPCRs. BK- and ATP-induced cross-internalization of P2Y2R and B2R, respectively, was shown in a β-galactosidase complementation assay using P2Y2R or B2R fused to the H31R substituted α donor peptide of a β-galactosidase reporter enzyme (P2Y2R-α or B2R-α) with coexpression of the FYVE domain of endofin, an early endosome protein, fused to the M15 acceptor deletion mutant of β-galactosidase (the ω peptide, FYVE-ω). Arrestin recruitment to the GPCRs by cross-activation was also shown with the similar way. Coimmunoprecipitation showed that B2R and P2Y2R were closely associated in the cotransfected cells. These results indicate that B2R couples with P2Y2R and that these GPCRs act together to fine-tune cellular responsiveness. The collaboration between these receptors may permit rapid onset and turning off of biological events.
Collapse
Affiliation(s)
- Sayo Yashima
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Ayaka Shimazaki
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Junya Mitoma
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Tetsuto Nakagawa
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Maya Abe
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Hiroyuki Yamada
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Hideyoshi Higashi
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| |
Collapse
|
25
|
Nucleotide signalling during inflammation. Nature 2014; 509:310-7. [PMID: 24828189 DOI: 10.1038/nature13085] [Citation(s) in RCA: 729] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/28/2014] [Indexed: 11/08/2022]
Abstract
Inflammatory conditions are associated with the extracellular release of nucleotides, particularly ATP. In the extracellular compartment, ATP predominantly functions as a signalling molecule through the activation of purinergic P2 receptors. Metabotropic P2Y receptors are G-protein-coupled, whereas ionotropic P2X receptors are ATP-gated ion channels. Here we discuss how signalling events through P2 receptors alter the outcomes of inflammatory or infectious diseases. Recent studies implicate a role for P2X/P2Y signalling in mounting appropriate inflammatory responses critical for host defence against invading pathogens or tumours. Conversely, P2X/P2Y signalling can promote chronic inflammation during ischaemia and reperfusion injury, inflammatory bowel disease or acute and chronic diseases of the lungs. Although nucleotide signalling has been used clinically in patients before, research indicates an expanding field of opportunities for specifically targeting individual P2 receptors for the treatment of inflammatory or infectious diseases.
Collapse
|
26
|
Nadel Y, Lecka J, Gilad Y, Ben-David G, Förster D, Reiser G, Kenigsberg S, Camden J, Weisman GA, Senderowitz H, Sévigny J, Fischer B. Highly potent and selective ectonucleotide pyrophosphatase/phosphodiesterase I inhibitors based on an adenosine 5'-(α or γ)-thio-(α,β- or β,γ)-methylenetriphosphate scaffold. J Med Chem 2014; 57:4677-91. [PMID: 24846781 DOI: 10.1021/jm500196c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aberrant nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) activity is associated with chondrocalcinosis, osteoarthritis, and type 2 diabetes. The potential of NPP1 inhibitors as therapeutic agents, and the scarceness of their structure-activity relationship, encouraged us to develop new NPP1 inhibitors. Specifically, we synthesized ATP-α-thio-β,γ-CH2 (1), ATP-α-thio-β,γ-CCl2 (2), ATP-α-CH2-γ-thio (3), and 8-SH-ATP (4) and established their resistance to hydrolysis by NPP1,3 and NTPDase1,2,3,8 (<5% hydrolysis) (NTPDase = ectonucleoside triphosphate diphosphohydrolase). Analogues 1-3 at 100 μM inhibited thymidine 5'-monophosphate p-nitrophenyl ester hydrolysis by NPP1 and NPP3 by >90% and 23-43%, respectively, and only slightly affected (0-40%) hydrolysis of ATP by NTPDase1,2,3,8. Analogue 3 is the most potent NPP1 inhibitor currently known, Ki = 20 nM and IC50 = 0.39 μM. Analogue 2a is a selective NPP1 inhibitor with Ki = 685 nM and IC50 = 0.57 μM. Analogues 1-3 were found mostly to be nonagonists of P2Y1/P2Y2/P2Y11 receptors. Docking analogues 1-3 into the NPP1 model suggested that activity correlates with the number of H-bonds with binding site residues. In conclusion, we propose analogues 2a and 3 as highly promising NPP1 inhibitors.
Collapse
Affiliation(s)
- Yael Nadel
- Department of Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hausmann R, Bahrenberg G, Kuhlmann D, Schumacher M, Braam U, Bieler D, Schlusche I, Schmalzing G. A hydrophobic residue in position 15 of the rP2X3 receptor slows desensitization and reveals properties beneficial for pharmacological analysis and high-throughput screening. Neuropharmacology 2014; 79:603-15. [PMID: 24452010 DOI: 10.1016/j.neuropharm.2014.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/24/2013] [Accepted: 01/09/2014] [Indexed: 11/19/2022]
Abstract
The homotrimeric P2X3 subtype, one of the seven members of the ATP-gated P2X receptor family, plays a role in sensory neurotransmission, including nociception. To overcome the bias resulting from fast desensitization of the P2X3 receptor in dose-response analyses, a non-desensitizing P2X2-X3 receptor chimera has been repeatedly used as a surrogate for the P2X3 receptor for functional analysis. Here, we show that only three of the P2X2-specific amino acid residues of the P2X2-X3 chimera, (19)P(21)V(22)I, are needed to confer a slowly desensitizing phenotype to the P2X3 receptor. The strongest delay in desensitization of the P2X3 receptor by a single residue was observed when (15)Ser was replaced by Val or another hydrophobic residue. Pharmacologically, the S(15)V-rP2X3 mutant behaved similarly to the wt-P2X3 receptor. Analysis of the S(15)V-rP2X3 receptor in 1321N1 astrocytoma cells by a common calcium-imaging-based assay showed 10-fold higher calcium transients relative to those of the wt-rP2X3 receptor. The S(15)V-rP2X3 cell line enabled reliable analysis of antagonistic potencies and correctly reported the mechanism of action of the P2X3 receptor antagonists A-317491 and TNP-ATP by a calcium-imaging assay. Together, these data suggest that the S(15)V-rP2X3 mutant may be suitable not only for automated fluorescence-based screening of molecule libraries for identification of lead compounds but also for facilitated pharmacological characterization of specific P2X3 receptor ligands. We suggest that the mechanism of desensitization of the P2X3 receptor may involve the movement of an N-terminal inactivation particle, in analogy to the "hinged-lid" or "ball and chain" mechanisms of voltage-gated NaV and Shaker KV channels, respectively.
Collapse
Affiliation(s)
- Ralf Hausmann
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Gregor Bahrenberg
- Grünenthal GmbH, Global Drug Discovery, Department of Molecular Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany
| | - Daniel Kuhlmann
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Michaela Schumacher
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Ursula Braam
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Dagmar Bieler
- Grünenthal GmbH, Global Drug Discovery, Department of Molecular Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany
| | - Ilka Schlusche
- Grünenthal GmbH, Global Drug Discovery, Department of Molecular Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany
| | - Günther Schmalzing
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
28
|
Burnstock G, Arnett TR, Orriss IR. Purinergic signalling in the musculoskeletal system. Purinergic Signal 2013; 9:541-72. [PMID: 23943493 PMCID: PMC3889393 DOI: 10.1007/s11302-013-9381-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022] Open
Abstract
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
29
|
Weisman GA, Woods LT, Erb L, Seye CI. P2Y receptors in the mammalian nervous system: pharmacology, ligands and therapeutic potential. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2013; 11:722-38. [PMID: 22963441 DOI: 10.2174/187152712803581047] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 11/22/2022]
Abstract
P2Y receptors for extracellular nucleotides are coupled to activation of a variety of G proteins and stimulate diverse intracellular signaling pathways that regulate functions of cell types that comprise the central nervous system (CNS). There are 8 different subtypes of P2Y receptor expressed in cells of the CNS that are activated by a select group of nucleotide agonists. Here, the agonist selectivity of these 8 P2Y receptor subtypes is reviewed with an emphasis on synthetic agonists with high potency and resistance to degradation by extracellular nucleotidases that have potential applications as therapeutic agents. In addition, the recent identification of a wide variety of subtype-selective antagonists is discussed, since these compounds are critical for discerning cellular responses mediated by activation of individual P2Y receptor subtypes. The functional expression of P2Y receptor subtypes in cells that comprise the CNS is also reviewed and the role of each subtype in the regulation of physiological and pathophysiological responses is considered. Other topics include the role of P2Y receptors in the regulation of blood-brain barrier integrity and potential interactions between different P2Y receptor subtypes that likely impact tissue responses to extracellular nucleotides in the CNS. Overall, current research suggests that P2Y receptors in the CNS regulate repair mechanisms that are triggered by tissue damage, inflammation and disease and thus P2Y receptors represent promising targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, 540E Life Sciences Center, 1201 Rollins Road, University of Missouri, Columbia, MO 65211-7310, USA.
| | | | | | | |
Collapse
|
30
|
Scott SA, Xiang Y, Mathews TP, Cho HP, Myers DS, Armstrong MD, Tallman KA, O'Reilly MC, Lindsley CW, Brown HA. Regulation of phospholipase D activity and phosphatidic acid production after purinergic (P2Y6) receptor stimulation. J Biol Chem 2013; 288:20477-87. [PMID: 23723068 DOI: 10.1074/jbc.m113.451708] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phosphatidic acid (PA) is a lipid second messenger located at the intersection of several lipid metabolism and cell signaling events including membrane trafficking, survival, and proliferation. Generation of signaling PA has long been primarily attributed to the activation of phospholipase D (PLD). PLD catalyzes the hydrolysis of phosphatidylcholine into PA. A variety of both receptor-tyrosine kinase and G-protein-coupled receptor stimulations have been shown to lead to PLD activation and PA generation. This study focuses on profiling the PA pool upon P2Y6 receptor signaling manipulation to determine the major PA producing enzymes. Here we show that PLD, although highly active, is not responsible for the majority of stable PA being produced upon UDP stimulation of the P2Y6 receptor and that PA levels are tightly regulated. By following PA flux in the cell we show that PLD is involved in an initial increase in PA upon receptor stimulation; however, when PLD is blocked, the cell compensates by increasing PA production from other sources. We further delineate the P2Y6 signaling pathway showing that phospholipase Cβ3 (PLCβ3), PLCδ1, DGKζ and PLD are all downstream of receptor activation. We also show that DGKζ is a novel negative regulator of PLD activity in this system that occurs through an inhibitory mechanism with PKCα. These results further define the downstream events resulting in PA production in the P2Y6 receptor signaling pathway.
Collapse
Affiliation(s)
- Sarah A Scott
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schmidt P, Ritscher L, Dong EN, Hermsdorf T, Cöster M, Wittkopf D, Meiler J, Schöneberg T. Identification of determinants required for agonistic and inverse agonistic ligand properties at the ADP receptor P2Y12. Mol Pharmacol 2013; 83:256-66. [PMID: 23093496 PMCID: PMC3533468 DOI: 10.1124/mol.112.082198] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/23/2012] [Indexed: 11/22/2022] Open
Abstract
The ADP receptor P2Y(12) belongs to the superfamily of G protein-coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y(12) displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y(12) have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y(12) and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y(12). The potency at P2Y(12) was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y(12,) with Y(105), E(188), R(256), Y(259), and K(280) playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3'-OH of the 2'-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y(12) and half of the constitutive active P2Y(12) mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y(12) but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands.
Collapse
Affiliation(s)
- Philipp Schmidt
- Institute of Biochemistry, Molecular Biochemistry, Johannisallee 30, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Evidence for a significant role and impact of purinergic signaling in normal and diseased airways is now beyond dispute. The present review intends to provide the current state of knowledge of the involvement of purinergic pathways in the upper and lower airways and lungs, thereby differentiating the involvement of different tissues, such as the epithelial lining, immune cells, airway smooth muscle, vasculature, peripheral and central innervation, and neuroendocrine system. In addition to the vast number of well illustrated functions for purinergic signaling in the healthy respiratory tract, increasing data pointing to enhanced levels of ATP and/or adenosine in airway secretions of patients with airway damage and respiratory diseases corroborates the emerging view that purines act as clinically important mediators resulting in either proinflammatory or protective responses. Purinergic signaling has been implicated in lung injury and in the pathogenesis of a wide range of respiratory disorders and diseases, including asthma, chronic obstructive pulmonary disease, inflammation, cystic fibrosis, lung cancer, and pulmonary hypertension. These ostensibly enigmatic actions are based on widely different mechanisms, which are influenced by the cellular microenvironment, but especially the subtypes of purine receptors involved and the activity of distinct members of the ectonucleotidase family, the latter being potential protein targets for therapeutic implementation.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Royal Free Campus, London, UK.
| | | | | | | |
Collapse
|
33
|
Yelovitch S, Barr HM, Camden J, Weisman GA, Shai E, Varon D, Fischer B. Identification of a promising drug candidate for the treatment of type 2 diabetes based on a P2Y(1) receptor agonist. J Med Chem 2012; 55:7623-35. [PMID: 22873688 PMCID: PMC4354947 DOI: 10.1021/jm3006355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The activation by extracellular nucleotides of pancreatic P2Y receptors, particularly, the P2Y(1)R subtype, increases insulin secretion. Therefore, we developed analogues of the P2Y(1)R receptor agonist 2-MeS-ADP, as potential antidiabetic drugs. Analogue 3A was found to be a potent P2Y(1)R agonist (EC(50) = 0.038 μM vs 0.0025 μM for 2-MeS-ADP) showing no activity at P2Y(2/4/6)Rs. Analogue 3A was stable at pH 1.4 (t(1/2) = 7.3 h) and resistant to hydrolysis vs 2-MeS-ADP by alkaline phosphatase (t(1/2) = 6 vs 4.5 h), human e-NPP1 (4% vs 16% hydrolysis after 20 min), and human blood serum (30% vs 50% hydrolysis after 24 h). Intravenous administration of 3A in naive rats decreased blood glucose from 155 mg/dL to normal values, ca. 87 mg/dL, unlike glibenclamide, leading to subnormal values (i.e., 63 mg/dL). Similar observations were made for streptozotocin (STZ)-treated and db(+)/db(-) mouse models. Furthermore, 3A inhibits platelet aggregation in vitro and elongates bleeding time in mice (iv administration of 30 mg of 3A/kg), increasing bleeding time to 16 vs 9 min for Prasugrel. Oral administration of 30 mg/kg 3A to rats increased tail bleeding volume, similar to aspirin. These findings suggest that 3A may be an effective treatment for type 2 diabetes by reducing both blood glucose levels and platelet aggregation.
Collapse
Affiliation(s)
- Shir Yelovitch
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Haim M. Barr
- BioLlneRx Ltd., 23 Hillel Street, Jerusalem 91450, Israel
| | - Jean Camden
- Biochemistry Department, 540E Bond Life Sciences Center, University of Nlissouri, Colwnbia, Nlissouri 65211, United States
| | - Gary A Weisman
- Biochemistry Department, 540E Bond Life Sciences Center, University of Nlissouri, Colwnbia, Nlissouri 65211, United States
| | - Ela Shai
- Department of Hematology, Hadassah University Hospital, Jerusalem 91120, Israel
| | - David Varon
- Department of Hematology, Hadassah University Hospital, Jerusalem 91120, Israel
| | - Bilha Fischer
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
34
|
Erb L, Weisman GA. Coupling of P2Y receptors to G proteins and other signaling pathways. ACTA ACUST UNITED AC 2012; 1:789-803. [PMID: 25774333 DOI: 10.1002/wmts.62] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
P2Y receptors are G protein-coupled receptors (GPCRs) that are activated by adenine and uridine nucleotides and nucleotide sugars. There are eight subtypes of P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14), which activate intracellular signaling cascades to regulate a variety of cellular processes, including proliferation, differentiation, phagocytosis, secretion, nociception, cell adhesion, and cell migration. These signaling cascades operate mainly by the sequential activation or deactivation of heterotrimeric and monomeric G proteins, phospholipases, adenylyl and guanylyl cyclases, protein kinases, and phosphodiesterases. In addition, there are numerous ion channels, cell adhesion molecules, and receptor tyrosine kinases that are modulated by P2Y receptors and operate to transmit an extracellular signal to an intracellular response.
Collapse
Affiliation(s)
- Laurie Erb
- Department of Biochemistry, Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Gary A Weisman
- Department of Biochemistry, Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
35
|
Sivaramakrishnan V, Bidula S, Campwala H, Katikaneni D, Fountain SJ. Constitutive lysosome exocytosis releases ATP and engages P2Y receptors in human monocytes. J Cell Sci 2012; 125:4567-75. [PMID: 22767503 DOI: 10.1242/jcs.107318] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Elucidating mechanisms by which Ca(2+) signals are generated by monocytes is important for understanding monocyte function in health and disease. We have investigated mechanisms underlying Ca(2+) signals generated following disruption of lysosomes by exposure to the cathepsin C substrate glycyl-L-phenylalanine-β-napthylamide (GPN). Exposure to 0.2 mM GPN resulted in robust increases in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in the absence of extracellular Ca(2+). The response was antagonised by thapsigargin and evoked capacitative Ca(2+) entry. Dantrolene-sensitive Ca(2+) responses were observed at higher concentrations of GPN (0.4 mM) but not at 0.2 mM. Strikingly, GPN-evoked Ca(2+) responses and β-hexosaminidase secretion were inhibited by the ATPase/ADPase apyrase. Simultaneous measurement of [Ca(2+)](i) and extracellular ATP revealed a concomitant secretion of ATP during GPN-evoked Ca(2+) signalling. Furthermore, the ability of GPN to raise [Ca(2+)](i) was inhibited by P2Y receptor antagonists or by inhibiting vesicular exocytosis with N-ethylmaleimide (NEM). NEM treatment was associated with an inability of GPN to trigger ATP secretion, a drop in baseline [Ca(2+)](i) and reduction in extracellular ATP concentration. Antagonism of purinergic signalling also caused a reduction in baseline [Ca(2+)](i). In summary, these data suggest that P2Y receptor activation contributes significantly to GPN-evoked Ca(2+) signalling, and that constitutive secretion of lysosomal ATP is a major determinant of Ca(2+) homeostasis in monocytes. Lysosomal Ca(2+) stores can communicate with ER Ca(2+) stores either directly through activation of ryanodine receptors, or indirectly through release of ATP and engagement of P2Y receptors.
Collapse
|
36
|
Van Poecke S, Barrett MO, Santhosh Kumar T, Sinnaeve D, Martins JC, Jacobson KA, Kendall Harden T, Van Calenbergh S. Synthesis and P2Y₂ receptor agonist activities of uridine 5'-phosphonate analogues. Bioorg Med Chem 2012; 20:2304-15. [PMID: 22386981 PMCID: PMC3303979 DOI: 10.1016/j.bmc.2012.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/27/2012] [Accepted: 02/04/2012] [Indexed: 02/06/2023]
Abstract
We explored the influence of modifications of uridine 5'-methylenephosphonate on biological activity at the human P2Y(2) receptor. Key steps in the synthesis of a series of 5-substituted uridine 5'-methylenephosphonates were the reaction of a suitably protected uridine 5'-aldehyde with [(diethoxyphosphinyl)methylidene]triphenylphosphorane, C-5 bromination and a Suzuki-Miyaura coupling. These analogues behaved as selective agonists at the P2Y(2) receptor, with three analogues exhibiting potencies in the submicromolar range. Although maximal activities observed with the phosphonate analogues were much less than observed with UTP, high concentrations of the phosphonates had no effect on the stimulatory effect of UTP. These results suggest that these phosphonates bind to an allosteric site of the P2Y(2) receptor.
Collapse
Affiliation(s)
- Sara Van Poecke
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Regulatory mechanisms underlying the modulation of GIRK1/GIRK4 heteromeric channels by P2Y receptors. Pflugers Arch 2012; 463:625-33. [PMID: 22362083 DOI: 10.1007/s00424-012-1082-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/05/2012] [Accepted: 02/06/2012] [Indexed: 01/10/2023]
Abstract
The muscarinic K(+) channel (I (K,ACh)) is a heterotetramer composed of GIRK1 (Kir3.1) and GIRK4 (Kir3.4) subunits of a G protein-coupled inwardly rectifying channel, and plays an important role in mediating electrical responses to the vagal stimulation in the heart. I (K,ACh) displays biphasic changes (activation followed by inhibition) through the stimulation of the purinergic P2Y receptors, but the regulatory mechanism involved in these modulation of I (K,ACh) by P2Y receptors remains to be fully elucidated. Various P2Y receptor subtypes and GIRK1/GIRK4 (I (GIRK)) were co-expressed in Chinese hamster ovary cells, and the effect of stimulation of P2Y receptor subtypes on I (GIRK) were examined using the whole-cell patch-clamp method. Extracellular application of 10 μM ATP induced a transient activation of I (GIRK) through the P2Y(1) receptor, which was completely abolished by pretreatment with pertussis toxin. ATP initially caused an additive transient increase in ACh-activated I (GIRK) (via M(2) receptor), which was followed by subsequent inhibition. This inhibition of I (GIRK) by ATP was attenuated by co-expression of regulator of G-protein signaling 2, or phosphatidylinositol-4-phosphate-5-kinase, or intracellular phosphatidylinositol 4,5-bisphosphate loading, but not by the exposure to protein kinase C inhibitors. P2Y(4) stimulation also persistently suppressed the ACh-activated I (GIRK). In addition, I (GIRK) evoked by the stimulation of the P2Y(4) receptor exhibited a transient activation, but that evoked by the stimulation of P2Y(2) or P2Y(12) receptor showed a rather persistent activation. These results reveal (1) that P2Y(1) and P2Y(4) are primarily coupled to the G(q)-phospholipase C-pathway, while being weakly linked to G(i/o), and (2) that P2Y(2) and P2Y(12) involve G(i/o) activation.
Collapse
|
38
|
Lazarowski ER, Sesma JI, Seminario-Vidal L, Kreda SM. Molecular mechanisms of purine and pyrimidine nucleotide release. ADVANCES IN PHARMACOLOGY 2011; 61:221-61. [PMID: 21586361 DOI: 10.1016/b978-0-12-385526-8.00008-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Given the widespread importance of purinergic receptor-evoked signaling, understanding how ATP and other nucleotides are released from cells in a regulated manner is an essential physiological question. Nonlytic release of ATP, UTP, UDP-glucose, and other nucleotides occurs in all cell types and tissues via both constitutive mechanisms, that is, in the absence of external stimuli, and to a greater extent in response to biochemical or mechanical/physical stimuli. However, a molecular understanding of the processes regulating nucleotide release has only recently begun to emerge. It is generally accepted that nucleotide release occurs in two different scenarios, exocytotic release from the secretory pathway or via conductive/transport mechanisms, and a critical review of our current understanding of these mechanisms is presented in this chapter.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- Cystic Fibrosis/Pulmonary Research & Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, USA
| | | | | | | |
Collapse
|
39
|
Raqeeb A, Sheng J, Ao N, Braun AP. Purinergic P2Y2 receptors mediate rapid Ca(2+) mobilization, membrane hyperpolarization and nitric oxide production in human vascular endothelial cells. Cell Calcium 2011; 49:240-8. [PMID: 21414662 DOI: 10.1016/j.ceca.2011.02.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 11/29/2022]
Abstract
In blood vessels, stimulation of the vascular endothelium by the Ca(2+)-mobilizing agonist ATP initiates a number of cellular events that cause relaxation of the adjacent smooth muscle layer. Although vascular endothelial cells are reported to express several subtypes of purinergic P2Y and P2X receptors, the major isoform(s) responsible for the ATP-induced generation of vasorelaxant signals in human endothelium has not been well characterized. To address this issue, ATP-evoked changes in cytosolic Ca(2+), membrane potential and acute nitric oxide production were measured in isolated human umbilical vein endothelial cells (HUVECs) and profiled using established P2X and P2Y receptor probes. Whereas selective P2X agonist (i.e. α,β-methyl ATP) and antagonists (i.e. TNP-ATP and PPADS) could neither mimic nor block the observed ATP-evoked cellular responses, the specific P2Y receptor agonist UTP functionally reproduced all the ATP-stimulated effects. Furthermore, both ATP and UTP induced intracellular Ca(2+) mobilization with comparable EC(50) values (i.e. 1-3μM). Collectively, these functional and pharmacological profiles strongly suggest that ATP acts primarily via a P2Y2 receptor sub-type in human endothelial cells. In support, P2Y2 receptor mRNA and protein were readily detected in isolated HUVECs, and siRNA-mediated knockdown of endogenous P2Y2 receptor protein significantly blunted the cytosolic Ca(2+) elevations in response to ATP and UTP, but did not affect the histamine-evoked response. In summary, these results identify the P2Y2 isoform as the major purinergic receptor in human vascular endothelial cells that mediates the cellular actions of ATP linked to vasorelaxation.
Collapse
Affiliation(s)
- Abdul Raqeeb
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary and Smooth Muscle Research Group, Libin Cardiovascular Institute, Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
40
|
Molecular pharmacology, physiology, and structure of the P2Y receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:373-415. [PMID: 21586365 DOI: 10.1016/b978-0-12-385526-8.00012-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The P2Y receptors are a widely expressed group of eight nucleotide-activated G protein-coupled receptors (GPCRs). The P2Y(1)(ADP), P2Y(2)(ATP/UTP), P2Y(4)(UTP), P2Y(6)(UDP), and P2Y(11)(ATP) receptors activate G(q) and therefore robustly promote inositol lipid signaling responses. The P2Y(12)(ADP), P2Y(13)(ADP), and P2Y(14)(UDP/UDP-glucose) receptors activate G(i) leading to inhibition of adenylyl cyclase and to Gβγ-mediated activation of a range of effector proteins including phosphoinositide 3-kinase-γ, inward rectifying K(+) (GIRK) channels, phospholipase C-β2 and -β3, and G protein-receptor kinases 2 and 3. A broad range of physiological responses occur downstream of activation of these receptors ranging from Cl(-) secretion by epithelia to aggregation of platelets to neurotransmission. Useful structural models of the P2Y receptors have evolved from extensive genetic analyses coupled with molecular modeling based on three-dimensional structures obtained for rhodopsin and several other GPCRs. Selective ligands have been synthesized for most of the P2Y receptors with the most prominent successes attained with highly selective agonist and antagonist molecules for the ADP-activated P2Y(1) and P2Y(12) receptors. The widely prescribed drug, clopidogrel, which results in irreversible blockade of the platelet P2Y(12) receptor, is the most important therapeutic agent that targets a P2Y receptor.
Collapse
|
41
|
Vanderstocken G, Bondue B, Horckmans M, Di Pietrantonio L, Robaye B, Boeynaems JM, Communi D. P2Y2 receptor regulates VCAM-1 membrane and soluble forms and eosinophil accumulation during lung inflammation. THE JOURNAL OF IMMUNOLOGY 2010; 185:3702-7. [PMID: 20720203 DOI: 10.4049/jimmunol.0903908] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ATP has been defined as a key mediator of asthma. In this study, we evaluated lung inflammation in mice deficient for the P2Y(2) purinergic receptor. We observed that eosinophil accumulation, a distinctive feature of lung allergic inflammation, was defective in OVA-treated P2Y(2)-deficient mice compared with OVA-treated wild type animals. Interestingly, the upregulation of VCAM-1 was lower on lung endothelial cells of OVA-treated P2Y(2)(-/-) mice compared with OVA-treated wild type animals. Adhesion assays demonstrated that the action of UTP on leukocyte adhesion through the regulation of endothelial VCAM-1 was abolished in P2Y(2)-deficient lung endothelial cells. Additionally, the level of soluble VCAM-1, reported as an inducer of eosinophil chemotaxis, was strongly reduced in the bronchoalveolar lavage fluid (BALF) of P2Y(2)-deficient mice. In contrast, we observed comparable infiltration of macrophages and neutrophils in the BALF of LPS-aerosolized P2Y(2)(+/+) and P2Y(2)(-/-) mice. This difference could be related to the much lower level of ATP in the BALF of LPS-treated mice compared with OVA-treated mice. Our data define P2Y(2) as a regulator of membrane and soluble forms of VCAM-1 and eosinophil accumulation during lung inflammation.
Collapse
Affiliation(s)
- Gilles Vanderstocken
- Institute of Interdisciplinary Research, Erasme Hospital, Free University of Brussels, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
42
|
Burnstock G, Fredholm BB, North RA, Verkhratsky A. The birth and postnatal development of purinergic signalling. Acta Physiol (Oxf) 2010; 199:93-147. [PMID: 20345419 DOI: 10.1111/j.1748-1716.2010.02114.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purinergic signalling system is one of the most ancient and arguably the most widespread intercellular signalling system in living tissues. In this review we present a detailed account of the early developments and current status of purinergic signalling. We summarize the current knowledge on purinoceptors, their distribution and role in signal transduction in various tissues in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | | | | | |
Collapse
|
43
|
Eliahu S, Barr HM, Camden J, Weisman GA, Fischer B. A novel insulin secretagogue based on a dinucleoside polyphosphate scaffold. J Med Chem 2010; 53:2472-81. [PMID: 20175517 DOI: 10.1021/jm901621h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dinucleoside polyphosphates exert their physiological effects via P2 receptors (P2Rs). They are attractive drug candidates, as they offer better stability and specificity compared to nucleotides, the most common P2 receptor ligands. The activation of pancreatic P2Y receptors by nucleotides increases insulin secretion. Therefore, in the current study, dinucleoside polyphosphate analogues (di-(2-MeS)-adenosine-5',5''-P(1),P(4),alpha,beta-methylene-tetraphosphate), 8, (di-(2-MeS)-adenosine-5',5''-P(1),P(4),beta,gamma-methylene-tetraphosphate), 9, and di-(2-MeS)-adenosine-5',5''-P(1),P(3),alpha,beta-methylene triphosphate, 10, were developed as potential insulin secretagogues. Analogues 8 and 9 were found to be agonists of the P2Y(1)R with EC(50) values of 0.42 and 0.46 microM, respectively, whereas analogue 10 had no activity. Analogues 8-10 were found to be completely resistant to hydrolysis by alkaline phosphatase over 3 h at 37 degrees C. Analogue 8 also was found to be 2.5-fold more stable in human blood serum than ATP, with a half-life of 12.1 h. Analogue 8 administration in rats caused a decrease in a blood glucose load from 155 mg/dL to ca. 100 mg/dL and increased blood insulin levels 4-fold as compared to basal levels. In addition, analogue 8 reduced a blood glucose load to normal values (80-110 mg/dL), unlike the commonly prescribed glibenclamide, which reduced glucose levels below normal values (60 mg/dL). These findings suggest that analogue 8 may prove to be an effective and safe treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Shay Eliahu
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
44
|
Eliahu S, Martín-Gil A, de Lara MJP, Pintor J, Camden J, Weisman GA, Lecka J, Sévigny J, Fischer B. 2-MeS-beta,gamma-CCl2-ATP is a potent agent for reducing intraocular pressure. J Med Chem 2010; 53:3305-19. [PMID: 20337495 PMCID: PMC4358770 DOI: 10.1021/jm100030u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extracellular nucleotides can modify the production or drainage of the aqueous humor via activation of P2 receptors and therefore affect the intraocular pressure (IOP). We have synthesized slowly hydrolyzable nucleoside di- and triphosphate analogues, 1, and 8-14. Analogues 8-14 were completely resistant to hydrolysis by alkaline phosphatase over 30 min at 37 degrees C. In human blood serum, analogues 8-14 exhibited high stability, e.g., analogues 9 and 10-14 were only 15% and 0% degraded after 24 h, respectively. Moreover, analogues 8-14 were highly stable at pH 1.4 (t(1/2) 1 h-30 days). Analogues 8-14 were agonists of the P2Y(1) receptor (EC(50) 0.57-9.54 muM). Ocular administration of most analogues into rabbits reduced IOP, e.g., analogue 9 reduced IOP by 32% (EC(50) 95.5 nM). Analogue 9 was more effective at reducing IOP than several common glaucoma drugs and represents a promising alternative to timolol maleate, which cannot be used for the treatment of patients suffering from asthma or cardiac problems.
Collapse
Affiliation(s)
- Shay Eliahu
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Alba Martín-Gil
- Dept. Bioquímica, E.U. Optica, Universidad Complutense de Madrid, c/Arcos de Jalon s/n, E-28037 Madrid, Spain
| | - María Jesús Perez de Lara
- Dept. Bioquímica, E.U. Optica, Universidad Complutense de Madrid, c/Arcos de Jalon s/n, E-28037 Madrid, Spain
| | - Jesús Pintor
- Dept. Bioquímica, E.U. Optica, Universidad Complutense de Madrid, c/Arcos de Jalon s/n, E-28037 Madrid, Spain
| | - Jean Camden
- Biochemistry Department, 540E Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Gary A. Weisman
- Biochemistry Department, 540E Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Joanna Lecka
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | - Bilha Fischer
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
45
|
Ratchford AM, Baker OJ, Camden JM, Rikka S, Petris MJ, Seye CI, Erb L, Weisman GA. P2Y2 nucleotide receptors mediate metalloprotease-dependent phosphorylation of epidermal growth factor receptor and ErbB3 in human salivary gland cells. J Biol Chem 2010; 285:7545-55. [PMID: 20064929 DOI: 10.1074/jbc.m109.078170] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The G protein-coupled receptor P2Y(2) nucleotide receptor (P2Y(2)R) has been shown to be up-regulated in a variety of tissues in response to stress or injury. Recent studies have suggested that P2Y(2)Rs may play a role in immune responses, wound healing, and tissue regeneration via their ability to activate multiple signaling pathways, including activation of growth factor receptors. Here, we demonstrate that in human salivary gland (HSG) cells, activation of the P2Y(2)R by its agonist induces phosphorylation of ERK1/2 via two distinct mechanisms, a rapid, protein kinase C-dependent pathway and a slower and prolonged, epidermal growth factor receptor (EGFR)-dependent pathway. The EGFR-dependent stimulation of UTP-induced ERK1/2 phosphorylation in HSG cells is inhibited by the adamalysin inhibitor tumor necrosis factor-alpha protease inhibitor or by small interfering RNA that selectively silences ADAM10 and ADAM17 expression, suggesting that ADAM metalloproteases are required for P2Y(2)R-mediated activation of the EGFR. G protein-coupled receptors have been shown to promote proteolytic release of EGFR ligands; however, neutralizing antibodies to known ligands of the EGFR did not inhibit UTP-induced EGFR phosphorylation. Immunoprecipitation experiments indicated that UTP causes association of the EGFR with another member of the EGF receptor family, ErbB3. Furthermore, stimulation of HSG cells with UTP induced phosphorylation of ErbB3, and silencing of ErbB3 expression inhibited UTP-induced phosphorylation of both ErbB3 and EGFR. UTP-induced phosphorylation of ErbB3 and EGFR was also inhibited by silencing the expression of the ErbB3 ligand neuregulin 1 (NRG1). These results suggest that P2Y(2)R activation in salivary gland cells promotes the formation of EGFR/ErbB3 heterodimers and metalloprotease-dependent neuregulin 1 release, resulting in the activation of both EGFR and ErbB3.
Collapse
Affiliation(s)
- Ann M Ratchford
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hu H, O'Mullane LM, Cummins MM, Campbell CR, Hosoda Y, Poronnik P, Dinudom A, Cook DI. Negative regulation of Ca(2+) influx during P2Y(2) purinergic receptor activation is mediated by Gbetagamma-subunits. Cell Calcium 2010; 47:55-64. [PMID: 20056275 DOI: 10.1016/j.ceca.2009.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/03/2009] [Accepted: 11/11/2009] [Indexed: 12/01/2022]
Abstract
We have previously reported that P2Y(2) purinoceptors and muscarinic M(3) receptors trigger Ca(2+) responses in HT-29 cells that differ in their timecourse, the Ca(2+) response to P2Y(2) receptor activation being marked by a more rapid decline of intracellular Ca(2+) concentration ([Ca(2+)](i)) after the peak response and that this rapid decline of [Ca(2+)](i) was slowed in cells expressing heterologous beta-adrenergic receptor kinase (betaARK). In the present study, we demonstrate that, during P2Y(2) receptor activation, betaARK expression increases the rate of Gd(3+)-sensitive Mn(2+) influx, a measure of the rate of store-operated Ca(2+) entry from the extracellular space, during P2Y(2) activation and that this effect of betaARK is mimicked by exogenous alpha-subunits of G(q), G(11) and G(i2). The effect of betaARK on the rate of Mn(2+) influx is thus attributable to its ability to scavenge G protein betagamma-subunits released during activation of P2Y(2) receptor. We further find that the effect of betaARK on the rate of Mn(2+) influx during P2Y(2) receptor activation can be overcome by arachidonic acid. In addition, the UTP-induced Mn(2+) influx rate was significantly increased by inhibitors of phospholipase A(2) (PLA(2)) and an siRNA directed against PLA(2)beta, but not by an siRNA directed against PLA(2)alpha or by inhibitors of arachidonic acid metabolism. These findings provide evidence for the existence of a P2Y(2) receptor-activated signalling system that acts in parallel with depletion of intracellular Ca(2+) stores to inhibit Ca(2+) influx across the cell membrane. This signalling process is mediated via Gbetagamma and involves PLA(2)beta and arachidonic acid.
Collapse
Affiliation(s)
- Haibi Hu
- The University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Buvinic S, Almarza G, Bustamante M, Casas M, López J, Riquelme M, Sáez JC, Huidobro-Toro JP, Jaimovich E. ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle. J Biol Chem 2009; 284:34490-505. [PMID: 19822518 DOI: 10.1074/jbc.m109.057315] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca(2+) concentration, with an EC(50) value of 7.8 +/- 3.1 microm. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 mum suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y(2) receptor and pannexin-1. As reported previously for electrical stimulation, 500 mum ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca(2+) homeostasis and muscle physiology.
Collapse
Affiliation(s)
- Sonja Buvinic
- Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Casilla 70005, Santiago 7, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang ZX, Nakayama T, Sato N, Izumi Y, Kasamaki Y, Ohta M, Soma M, Aoi N, Matsumoto K, Ozawa Y, Ma YT, Doba N, Hinohara S. Association of the purinergic receptor P2Y, G-protein coupled, 2 (P2RY2) gene with myocardial infarction in Japanese men. Circ J 2009; 73:2322-9. [PMID: 19797825 DOI: 10.1253/circj.cj-08-1198] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Atherosclerosis leads to myocardial infarction (MI) and P2RY2 plays an important role in this process. The aim of the present study was to investigate the association between human P2RY2 and MI via a haplotype-based case-control study that additionally analyzed the group by sex. METHODS AND RESULTS The 310 MI patients and 254 controls were genotyped for 5 single-nucleotide polymorphisms (SNPs) of the human P2RY2 gene (rs4944831, rs1783596, rs4944832, rs4382936, rs10898909). Data were separately analyzed for the total, male, and female subjects. For men, the GA+AA genotype of rs10898909 was significantly higher in MI patients as compared with controls (P=0.040). Logistic regression analysis found a significant difference for the genotype (P=0.016). As compared with controls, the frequencies of the C-A and T-C-A haplotypes were significantly higher (P=0.016, and P=0.045, respectively) in men, whereas the frequencies of the C-G and T-A-A haplotypes were significantly lower (P=0.023, and P=0.025, respectively) in MI patients. CONCLUSIONS The GA+AA genotype, as well as the C-A and T-C-A haplotypes, of human P2RY2 could be genetic markers for MI in Japanese men.
Collapse
Affiliation(s)
- Zhao Xia Wang
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang Z, Nakayama T, Sato N, Yamaguchi M, Izumi Y, Kasamaki Y, Ohta M, Soma M, Aoi N, Ozawa Y, Ma Y, Doba N, Hinohara S. Purinergic receptor P2Y, G-protein coupled, 2 (P2RY2) gene is associated with cerebral infarction in Japanese subjects. Hypertens Res 2009; 32:989-96. [DOI: 10.1038/hr.2009.136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Wang Z, Nakayama T, Sato N, Izumi Y, Kasamaki Y, Ohta M, Soma M, Aoi N, Ozawa Y, Ma Y. The purinergic receptor P2Y, G-protein coupled, 2 (P2RY2) gene associated with essential hypertension in Japanese men. J Hum Hypertens 2009; 24:327-35. [PMID: 19710694 DOI: 10.1038/jhh.2009.67] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
P2RY2 has an important function in the regulation of blood pressure by activating adenosine triphosphate (ATP). The aim of this study was to investigate the association between the human P2RY2 gene and essential hypertension (EH) through a haplotype-based case-control study that included two gender groups. The 273 EH patients and 255 age-matched controls were genotyped for five single-nucleotide polymorphisms (SNPs) of the human P2RY2 gene (rs4944831, rs1783596, rs4944832, rs4382936 and rs10898909). Data were analysed for men and women separately and then as a combined total group. For the total and the men only groups, the genotype distribution of the T allele of rs4944831 and the recessive model (GG vs TG+TT) of rs4944831 differed significantly between the EH patients and controls (P=0.028 and 0.019; P=0.009 and 0.008, respectively). Logistic regression showed that for the total and men groups, the TG+TT genotype of rs4944831 was more prevalent in EH patients than in the controls (P=0.026 and 0.011, respectively). For men, the overall distribution of the haplotype (SNP2-SNP4-SNP5) was significantly different between the EH patients and the controls (P=0.006). As compared with controls, the frequency of the T-A-G haplotype was significantly higher, whereas the T-C-G haplotype was significantly lower for the EH patients (P=0.001 and 0.014, respectively). In conclusion, the present results indicate that rs4944831 and the T-A-G haplotype of the human P2RY2 gene might be genetic markers for EH in Japanese men.
Collapse
Affiliation(s)
- Z Wang
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|