1
|
Baljinnyam T, Sowers ML, Hsu CW, Conrad JW, Herring JL, Hackfeld LC, Sowers LC. Chemical and enzymatic modifications of 5-methylcytosine at the intersection of DNA damage, repair, and epigenetic reprogramming. PLoS One 2022; 17:e0273509. [PMID: 36037209 PMCID: PMC9423628 DOI: 10.1371/journal.pone.0273509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
The DNA of all living organisms is persistently damaged by endogenous reactions including deamination and oxidation. Such damage, if not repaired correctly, can result in mutations that drive tumor development. In addition to chemical damage, recent studies have established that DNA bases can be enzymatically modified, generating many of the same modified bases. Irrespective of the mechanism of formation, modified bases can alter DNA-protein interactions and therefore modulate epigenetic control of gene transcription. The simultaneous presence of both chemically and enzymatically modified bases in DNA suggests a potential intersection, or collision, between DNA repair and epigenetic reprogramming. In this paper, we have prepared defined sequence oligonucleotides containing the complete set of oxidized and deaminated bases that could arise from 5-methylcytosine. We have probed these substrates with human glycosylases implicated in DNA repair and epigenetic reprogramming. New observations reported here include: SMUG1 excises 5-carboxyuracil (5caU) when paired with A or G. Both TDG and MBD4 cleave 5-formyluracil and 5caU when mispaired with G. Further, TDG not only removes 5-formylcytosine and 5-carboxycytosine when paired with G, but also when mispaired with A. Surprisingly, 5caU is one of the best substrates for human TDG, SMUG1 and MBD4, and a much better substrate than T. The data presented here introduces some unexpected findings that pose new questions on the interactions between endogenous DNA damage, repair, and epigenetic reprogramming pathways.
Collapse
Affiliation(s)
- Tuvshintugs Baljinnyam
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chia Wei Hsu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - James W. Conrad
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jason L. Herring
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Linda C. Hackfeld
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lawrence C. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
2
|
Chembazhi UV, Patil VV, Sah S, Reeve W, Tiwari RP, Woo E, Varshney U. Uracil DNA glycosylase (UDG) activities in Bradyrhizobium diazoefficiens: characterization of a new class of UDG with broad substrate specificity. Nucleic Acids Res 2017; 45:5863-5876. [PMID: 28369586 PMCID: PMC5449639 DOI: 10.1093/nar/gkx209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/27/2017] [Indexed: 01/01/2023] Open
Abstract
Repair of uracils in DNA is initiated by uracil DNA glycosylases (UDGs). Family 1 UDGs (Ung) are the most efficient and ubiquitous proteins having an exquisite specificity for uracils in DNA. Ung are characterized by motifs A (GQDPY) and B (HPSPLS) sequences. We report a novel dimeric UDG, Blr0248 (BdiUng) from Bradyrhizobium diazoefficiens. Although BdiUng contains the motif A (GQDPA), it has low sequence identity to known UDGs. BdiUng prefers single stranded DNA and excises uracil, 5-hydroxymethyl-uracil or xanthine from it. BdiUng is impervious to inhibition by AP DNA, and Ugi protein that specifically inhibits family 1 UDGs. Crystal structure of BdiUng shows similarity with the family 4 UDGs in its overall fold but with family 1 UDGs in key active site residues. However, instead of a classical motif B, BdiUng has a uniquely extended protrusion explaining the lack of Ugi inhibition. Structural and mutational analyses of BdiUng have revealed the basis for the accommodation of diverse substrates into its substrate binding pocket. Phylogenetically, BdiUng belongs to a new UDG family. Bradyrhizobium diazoefficiens presents a unique scenario where the presence of at least four families of UDGs may compensate for the absence of an efficient family 1 homologue.
Collapse
Affiliation(s)
- Ullas Valiya Chembazhi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Vinod Vikas Patil
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-Ro, Yuseon-Gu, Daejeon 34141, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Shivjee Sah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Wayne Reeve
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Ravi P Tiwari
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Euijeon Woo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-Ro, Yuseon-Gu, Daejeon 34141, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
3
|
Theruvathu JA, Darwanto A, Hsu CW, Sowers LC. The effect of Pot1 binding on the repair of thymine analogs in a telomeric DNA sequence. Nucleic Acids Res 2014; 42:9063-73. [PMID: 25053838 PMCID: PMC4132724 DOI: 10.1093/nar/gku602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/05/2014] [Accepted: 06/23/2014] [Indexed: 12/31/2022] Open
Abstract
Telomeric DNA can form duplex regions or single-stranded loops that bind multiple proteins, preventing it from being processed as a DNA repair intermediate. The bases within these regions are susceptible to damage; however, mechanisms for the repair of telomere damage are as yet poorly understood. We have examined the effect of three thymine (T) analogs including uracil (U), 5-fluorouracil (5FU) and 5-hydroxymethyluracil (5hmU) on DNA-protein interactions and DNA repair within the GGTTAC telomeric sequence. The replacement of T with U or 5FU interferes with Pot1 (Pot1pN protein of Schizosaccharomyces pombe) binding. Surprisingly, 5hmU substitution only modestly diminishes Pot1 binding suggesting that hydrophobicity of the T-methyl group likely plays a minor role in protein binding. In the GGTTAC sequence, all three analogs can be cleaved by DNA glycosylases; however, glycosylase activity is blocked if Pot1 binds. An abasic site at the G or T positions is cleaved by the endonuclease APE1 when in a duplex but not when single-stranded. Abasic site formation thermally destabilizes the duplex that could push a damaged DNA segment into a single-stranded loop. The inability to enzymatically cleave abasic sites in single-stranded telomere regions would block completion of the base excision repair cycle potentially causing telomere attrition.
Collapse
Affiliation(s)
- Jacob A Theruvathu
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 3.330 Basic Science Building, 301 University Blvd, Galveston, TX 77555-0617, USA
| | - Agus Darwanto
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 3.330 Basic Science Building, 301 University Blvd, Galveston, TX 77555-0617, USA
| | - Chia Wei Hsu
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 3.330 Basic Science Building, 301 University Blvd, Galveston, TX 77555-0617, USA
| | - Lawrence C Sowers
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 3.330 Basic Science Building, 301 University Blvd, Galveston, TX 77555-0617, USA
| |
Collapse
|
4
|
Theruvathu JA, Kim CH, Rogstad DK, Neidigh JW, Sowers LC. Base pairing configuration and stability of an oligonucleotide duplex containing a 5-chlorouracil-adenine base pair. Biochemistry 2009; 48:7539-46. [PMID: 19618901 DOI: 10.1021/bi9007947] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inflammation-mediated reactive molecules can damage DNA by oxidation and chlorination. The biological consequences of this damage are as yet incompletely understood. In this paper, we have constructed oligonucleotides containing 5-chlorouracil (ClU), one of the known inflammation damage products. The thermodynamic stability, base pairing configuration, and duplex conformation of oligonucleotides containing ClU paired opposite adenine have been examined. NMR spectra reveal that the ClU-A base pair adopts a geometry similar to that of the T-A base pair, and the ClU-A base pair-containing duplex adopts a normal B-form conformation. The line width of the imino proton of the ClU residue is substantially greater than that of the corresponding T imino proton; however, this difference is not attributed to a reduced thermal or thermodynamic stability or to an increased level of proton exchange with solvent. While the NMR studies reveal an increased level of chemical exchange for the ClU imino proton of the ClU-A base pair, the ClU residue is not a target for removal by the Escherichia coli mispaired uracil glycosylase, which senses damage-related helix instability. The results of this study are consistent with previous reports indicating that the DNA of replicating cells can tolerate substantial substitution with ClU. The fraudulent, pseudo-Watson-Crick ClU-A base pair is sufficiently stable to avoid glycosylase removal and, therefore, might constitute a persistent form of cellular DNA damage.
Collapse
Affiliation(s)
- Jacob A Theruvathu
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA
| | | | | | | | | |
Collapse
|
5
|
Srinath T, Bharti SK, Varshney U. Substrate specificities and functional characterization of a thermo-tolerant uracil DNA glycosylase (UdgB) from Mycobacterium tuberculosis. DNA Repair (Amst) 2007; 6:1517-28. [PMID: 17588829 DOI: 10.1016/j.dnarep.2007.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/08/2007] [Accepted: 05/10/2007] [Indexed: 10/23/2022]
Abstract
Uracil DNA glycosylases (UDGs) excise uracil from DNA and initiate the base (uracil) excision repair pathway. Ung, a highly conserved protein, is the only UDG characterized so far in mycobacteria. Here, we show that Rv1259 from Mycobacterium tuberculosis codes for a double-stranded DNA (dsDNA) specific UDG (MtuUdgB). MtuUdgB is thermo-tolerant, contains Fe-S cluster and, in addition to uracil, it excises ethenocytosine and hypoxanthine from dsDNA. MtuUdgB is product inhibited by AP-site containing dsDNA but not by uracil. While MtuUdgB excises uracil present as a single-nucleotide bulge in dsDNA, it is insensitive to inhibition by dsDNA containing AP-site in the bulge. Interestingly, in the presence of cellular factors, the uracil excision activity of MtuUdgB is enhanced, and when introduced into E. coli (ung(-)), it rescues its mutator phenotype and prevents C to T mutations in DNA. Novel features of the mechanism of action of MtuUdgB and the physiological significance of the family 5 UDG in mycobacteria have been discussed.
Collapse
Affiliation(s)
- Thiruneelakantan Srinath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
6
|
van Leeuwen HC, Strating MJ, Cox M, Kaptein R, van der Vliet PC. Mutation of the Oct-1 POU-specific recognition helix leads to altered DNA binding and influences enhancement of adenovirus DNA replication. Nucleic Acids Res 1995; 23:3189-97. [PMID: 7667096 PMCID: PMC307177 DOI: 10.1093/nar/23.16.3189] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To assess which residues of Oct-1 POU-specific (POUs) are important for DNA recognition and stimulation of adenovirus DNA replication we have mutated 10 residues of the POUs helix-turn-helix motif implicated in DNA contact. Seven of these turned out to have reduced DNA binding affinity. Of these, three alanine substituted proteins were found to have a changed specificity using a binding site selection procedure. Mutation of the first residue in the recognition helix, Gln44, to alanine led to a loss of specificity for the first two bases, TA, of the wild-type recognition site TATGC(A/T)AAT. Instead of the A, a T was selected, suggesting a new contact and a novel specificity. A change in specificity was also observed for the T45A mutant, which could bind to TATAC(A/T)AAT, a site hardly recognized by the wild-type protein. Mutation of residue Arg49 led to a relaxed specificity for three consecutive bases, TGC. This residue, which is critical for high affinity binding, is absent from the structurally homologous lambdoid helix-turn-helix motifs. Employing a reconstituted system all but two mutants could stimulate adenovirus DNA replication upon saturation. Mutation of residues Gln27 and Arg49 impairs the ability of the Oct-1 POU domain protein to enhance replication, with a concomitant loss of DNA contacts. Since the POU domain binds the precursor terminal protein-DNA polymerase complex and guides it to the origin, lack of stimulation may be caused by incorrect targetting of the DNA polymerase due to loss of specificity.
Collapse
Affiliation(s)
- H C van Leeuwen
- Laboratory for Physiological Chemistry, Utrecht University, Stratenum, The Netherlands
| | | | | | | | | |
Collapse
|
7
|
Herr W, Cleary MA. The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev 1995; 9:1679-93. [PMID: 7622033 DOI: 10.1101/gad.9.14.1679] [Citation(s) in RCA: 296] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- W Herr
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
8
|
Cleary MA, Herr W. Mechanisms for flexibility in DNA sequence recognition and VP16-induced complex formation by the Oct-1 POU domain. Mol Cell Biol 1995; 15:2090-100. [PMID: 7891704 PMCID: PMC230436 DOI: 10.1128/mcb.15.4.2090] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA binding by the Oct-1 protein is directed by its POU domain, a bipartite DNA-binding domain made up of a POU-specific (POUS) domain and a POU-homeo (POUH) domain, two helix-turn-helix-containing DNA-binding modules that cooperate in DNA recognition. Although the best-characterized DNA target for Oct-1 binding is the octamer sequence ATGCAAAT, Oct-1 also binds a number of different DNA sequence elements. For example, Oct-1 recognizes a form of the herpes simplex virus VP16-responsive TAATGARAT element, called the (OCTA-)TAATGARAT site, that lacks octamer site similarity. Our studies suggest two mechanisms by which Oct-1 achieves flexible DNA sequence recognition. First, an important arginine found in the Oct-1 POUS domain tolerates substitutions of its base contacts within the octamer site. Second, on the (OCTA-)TAATGARAT site, the POUS domain is located on the side of the POUH domain opposite from where it is located on an octamer site. This flexibility of the Oct-1 POU domain in DNA binding also has an impact on its participation in a multiprotein-DNA complex with VP16. We show that Oct-1 POUS domain residues that contact DNA have different effects on VP16-induced complex formation depending on whether the VP16-responsive element involved has overlapping octamer similarity or not.
Collapse
Affiliation(s)
- M A Cleary
- Cold Spring Harbor Laboratory, New York 11724
| | | |
Collapse
|
9
|
Botfield MC, Jancso A, Weiss MA. An invariant asparagine in the POU-specific homeodomain regulates the specificity of the Oct-2 POU motif. Biochemistry 1994; 33:8113-21. [PMID: 7912957 DOI: 10.1021/bi00192a016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The homeodomain defines a family of transcription factors broadly involved in the regulation of gene expression. DNA recognition, as observed in three representative complexes (Engrailed, Antennapedia, and MAT alpha 2), is mediated in the major groove by a helix-turn-helix (HTH) element and in the minor groove by an N-terminal arm. The three complexes share similar overall features, but they also exhibit significant differences in DNA interactions. Because these differences may distinguish the biological activities of different classes of homeodomains, we have investigated the contribution of the Oct-2 POU-specific homeodomain (POUHD) to the specificity of the bipartite POU motif. Comparative studies of variant protein-DNA complexes demonstrate the following. (i) Mutations in an invariant residue in the POUHD HTH (N347; residue 10 of the putative recognition alpha-helix) reduce octamer binding with the relaxation of specificity at one position (5'-ATGCAAAT). The inferred HTH side chain-base interaction, although not observed in the solution structure of the Antennapedia complex, is in accord with homologous contacts in the Engrailed and MAT alpha 2 cocrystal structures. (ii) Comparison of the DNA-binding properties of POU and POUHD demonstrates that POUs and POUHD independently regulate specificity at opposite ends of the DNA site (5'-TATGCAAAT). Both domains contact the two central bases (5'-TATGCAAAT) where coordinate binding of POUS in the major groove overrides the intrinsic specificity of POUHD in the minor groove. (iii) The differential sensitivity of POU and POUHD to 2'-deoxyinosine substitutions (a minor-groove modification) suggests that POUS binding repositions the POUHD N-terminal "arm".(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M C Botfield
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
10
|
Botfield MC, Jancso A, Weiss MA. Mapping critical residues in eukaryotic DNA-binding proteins: a plasmid-based genetic selection strategy with application to the Oct-2 POU motif. Biochemistry 1994; 33:6177-85. [PMID: 8193131 DOI: 10.1021/bi00186a017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Discrimination between allowed and disallowed amino acid substitutions provides a powerful method for analysis of protein structure and function. Site-directed mutagenesis allows specific hypotheses to be tested, but its systematic application to entire structural motifs is inefficient. This limitation may be overcome by genetic selection, which allows rapid scoring of thousands of randomly (or pseudorandomly) generated mutants. To facilitate structural dissection of DNA-binding proteins, we have designed two generally applicable bacterial selection systems: pPLUS selects for the ability of a protein to bind to a user-defined DNA sequence, whereas pMINUS selects against such binding. Complementary positive and negative selections allow rapid mapping of critical residues. To test and calibrate the systems, we have investigated the bipartite POU domain of the human B-cell-specific transcription factor Oct-2. (i) An invariant residue (Asn347) in the DNA-recognition helix of the POU-specific homeodomain (POUHD) was substituted by each of the 19 other possible amino acids. The mutant proteins each exhibited decreased specific DNA binding as defined in vivo by genetic selection and in vitro by gel retardation; relative affinities correlate with phenotypes in the positive and negative selection systems. An essential role for Asn347 in wild-type POUHD-DNA recognition is consistent with homologous Asn-adenine interactions in cocrystal structures of canonical homeodomains. (ii) Extension of pPLUS/pMINUS selection to the POU-specific subdomain (POUs) is demonstrated by analysis of mutations in its putative helix-turn-helix (HTH) element.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M C Botfield
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|