1
|
Khan CA, Fitzpatrick PF. Phosphorylation of Phenylalanine Hydroxylase Increases the Rate Constant for Formation of the Activated Conformation of the Enzyme. Biochemistry 2018; 57:6274-6277. [PMID: 30346142 DOI: 10.1021/acs.biochem.8b00919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liver phenylalanine hydroxylase (PheH) is an allosteric enzyme that is activated by phenylalanine. The enzyme is also phosphorylated by protein kinase A, but the effects of phosphorylation are unclear. Recent structural studies ( Meisburger et al. ( 2016 ) J. Amer. Chem. Soc. 138 , 6506 - 6516 ) support a model in which activation of the enzyme involves dimerization of the regulatory domains, creating the allosteric site for phenylalanine at the dimer interface. This conformational change also results in a change in the fluorescence of the protein that can be used to monitor activation. The kinetics of activation of PheH are biphasic over a range of phenylalanine concentrations. These data are well-described by a model involving an initial equilibrium between the resting form and the activated conformation, with a value of the equilibrium constant for formation of the activated conformation, L, equal to 0.007, followed by binding of two molecules of phenylalanine. Phosphorylation increases L 10-fold by increasing the rate constant for conversion of the resting form to the activated form. The results provide functional support for the previous structural model, identify the specific effect of phosphorylation on the enzyme, and rationalize the lack of change in the protein structure upon phosphorylation.
Collapse
Affiliation(s)
- Crystal A Khan
- Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , Texas 78229 , United States
| | - Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , Texas 78229 , United States
| |
Collapse
|
2
|
Zhang S, Hinck AP, Fitzpatrick PF. The Amino Acid Specificity for Activation of Phenylalanine Hydroxylase Matches the Specificity for Stabilization of Regulatory Domain Dimers. Biochemistry 2015; 54:5167-74. [PMID: 26252467 PMCID: PMC4551101 DOI: 10.1021/acs.biochem.5b00616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Liver
phenylalanine hydroxylase is allosterically activated by
phenylalanine. The structural changes that accompany activation have
not been identified, but recent studies of the effects of phenylalanine
on the isolated regulatory domain of the enzyme support a model in
which phenylalanine binding promotes regulatory domain dimerization.
Such a model predicts that compounds that stabilize the regulatory
domain dimer will also activate the enzyme. Nuclear magnetic resonance
spectroscopy and analytical ultracentrifugation were used to determine
the ability of different amino acids and phenylalanine analogues to
stabilize the regulatory domain dimer. The abilities of these compounds
to activate the enzyme were analyzed by measuring their effects on
the fluorescence change that accompanies activation and on the activity
directly. At concentrations of 10–50 mM, d-phenylalanine, l-methionine, l-norleucine, and (S)-2-amino-3-phenyl-1-propanol were able to activate the enzyme to
the same extent as 1 mM l-phenylalanine. Lower levels of
activation were seen with l-4-aminophenylalanine, l-leucine, l-isoleucine, and 3-phenylpropionate. The ability
of these compounds to stabilize the regulatory domain dimer agreed
with their ability to activate the enzyme. These results support a
model in which allosteric activation of phenylalanine hydroxylase
is linked to dimerization of regulatory domains.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Biochemistry, University of Texas Health Science Center , San Antonio, Texas 78229, United States
| | - Andrew P Hinck
- Department of Biochemistry, University of Texas Health Science Center , San Antonio, Texas 78229, United States
| | - Paul F Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center , San Antonio, Texas 78229, United States
| |
Collapse
|
3
|
Regulation of phenylalanine hydroxylase: conformational changes upon phosphorylation detected by H/D exchange and mass spectrometry. Arch Biochem Biophys 2013; 535:115-9. [PMID: 23537590 DOI: 10.1016/j.abb.2013.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/20/2013] [Accepted: 03/17/2013] [Indexed: 02/06/2023]
Abstract
The enzyme phenylalanine hydroxylase catalyzes the hydroxylation of excess phenylalanine in the liver to tyrosine. The enzyme is regulated allosterically by phenylalanine and by phosphorylation of Ser16. Hydrogen/deuterium exchange monitored by mass spectrometry has been used to gain insight into any structural change upon phosphorylation. Peptides in both the catalytic and regulatory domains show increased deuterium incorporation into the phosphorylated protein. Deuterium is incorporated into fewer peptides than when the enzyme is activated by phenylalanine, and the incorporation is slower. This establishes that the conformational change upon phosphorylation of phenylalanine hydroxylase is different from and less extensive than that upon phenylalanine activation.
Collapse
|
4
|
Fitzpatrick PF. Allosteric regulation of phenylalanine hydroxylase. Arch Biochem Biophys 2012; 519:194-201. [PMID: 22005392 PMCID: PMC3271142 DOI: 10.1016/j.abb.2011.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 10/16/2022]
Abstract
The liver enzyme phenylalanine hydroxylase is responsible for conversion of excess phenylalanine in the diet to tyrosine. Phenylalanine hydroxylase is activated by phenylalanine; this activation is inhibited by the physiological reducing substrate tetrahydrobiopterin. Phosphorylation of Ser16 lowers the concentration of phenylalanine for activation. This review discusses the present understanding of the molecular details of the allosteric regulation of the enzyme.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, TX 78229-3900, USA.
| |
Collapse
|
5
|
Coleman CM, Neckameyer WS. Substrate regulation of serotonin and dopamine synthesis in Drosophila. INVERTEBRATE NEUROSCIENCE : IN 2004; 5:85-96. [PMID: 15480914 DOI: 10.1007/s10158-004-0031-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/11/2004] [Indexed: 11/24/2022]
Abstract
In Drosophila melanogaster, serotonin (5-hydroxytryptamine, 5-HT) is required for both very early non-neuronal developmental events, and in the CNS as a neurotransmitter to modulate behavior. 5-HT is synthesized, at least in part, by the actions of Drosophila tryptophan-phenylalanine hydroxylase (DTPH), a dual function enzyme that hydroxylates both phenylalanine and tryptophan. DTPH is expressed in numerous tissues as well as dopaminergic and serotonergic neurons, but it does not necessarily function as both enzymes in these tissues. Deficiencies in DTPH could affect the production of dopamine and serotonin, and thus dopaminergic and serotonergic signaling pathways. In this paper, we show that DTPH exhibits differential hydroxylase activity based solely on substrate. When DTPH uses phenylalanine as a substrate, regulatory control (end product inhibition, decreased PAH activity following phosphorylation, catecholamine inhibition) is observed that is not seen when the enzyme uses tryptophan as a substrate. These studies suggest that regulation of DTPH enzymatic activity occurs, at least in part, through the actions of its substrate.
Collapse
Affiliation(s)
- Chandra M Coleman
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO 63104, USA
| | | |
Collapse
|
6
|
Uribe P, Wistuba II, González S. BRAF mutation: a frequent event in benign, atypical, and malignant melanocytic lesions of the skin. Am J Dermatopathol 2004; 25:365-70. [PMID: 14501284 DOI: 10.1097/00000372-200310000-00001] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BRAF mutations have recently been detected with a high frequency (66%) in cutaneous melanoma. All those mutations are activating, with a single substitution (T1796A) at codon 599 (V599E) accounting for over 90%. To investigate the stage in which those mutations occur in the currently proposed sequential malignant transformation of melanocytes, 22 benign melanocytic nevi, 23 melanocytic atypical nevi, and 25 primary cutaneous melanoma from 63 different patients were examined for BRAF mutations using DNA extracted from microdissected formalin-fixed and paraffin-embedded tissues, and a two-round PCR-RFLP-based strategy. A subset of samples was sequenced for mutation confirmation. Sixteen benign (73%) and eleven atypical (52%) melanocytic nevi, and thirteen melanoma (56%) demonstrated BRAF mutations at codon 599, and no statistically significant differences were detected among all three types of lesions. No mutations were demonstrated in microdissected epidermal keratinocytes adjacent to melanocytic lesions having BRAF mutations. No correlation was detected between BRAF mutational status and age, sun exposure, and Clark's level in malignant melanoma. However, comparing only atypical nevi and melanoma lesions the frequency of BRAF mutation is significantly greater in male (78%) than female (35%) patients (P = 0.0194). The previously described T1796A point mutation was detected in 17 of 18 mutated samples, and a novel mutation consisting of a substitution of valine for lysine (GT1795-96AA) was detected in one melanoma case. Our findings of a high frequency of BRAF mutations at codon 599 in benign melanocytic lesions of the skin indicate that this mutation is not sufficient by itself for malignant transformation.
Collapse
Affiliation(s)
- Pablo Uribe
- Department of Anatomic Pthology, Medical School, P.Universidad Catolica de Chile, Santiago, Chile
| | | | | |
Collapse
|
7
|
Miranda FF, Teigen K, Thórólfsson M, Svebak RM, Knappskog PM, Flatmark T, Martínez A. Phosphorylation and mutations of Ser(16) in human phenylalanine hydroxylase. Kinetic and structural effects. J Biol Chem 2002; 277:40937-43. [PMID: 12185072 DOI: 10.1074/jbc.m112197200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of phenylalanine hydroxylase (PAH) at Ser(16) by cyclic AMP-dependent protein kinase is a post-translational modification that increases its basal activity and facilitates its activation by the substrate l-Phe. So far there is no structural information on the flexible N-terminal tail (residues 1-18), including the phosphorylation site. To get further insight into the molecular basis for the effects of phosphorylation on the catalytic efficiency and enzyme stability, molecular modeling was performed using the crystal structure of the recombinant rat enzyme. The most probable conformation and orientation of the N-terminal tail thus obtained indicates that phosphorylation of Ser(16) induces a local conformational change as a result of an electrostatic interaction between the phosphate group and Arg(13) as well as a repulsion by Glu(280) in the loop at the entrance of the active site crevice structure. The modeled reorientation of the N-terminal tail residues (Met(1)-Leu(15)) on phosphorylation is in agreement with the observed conformational change and increased accessibility of the substrate to the active site, as indicated by circular dichroism spectroscopy and the enzyme kinetic data for the full-length phosphorylated and nonphosphorylated human PAH. To further validate the model we have prepared and characterized mutants substituting Ser(16) with a negatively charged residue and found that S16E largely mimics the effects of phosphorylation of human PAH. Both the phosphorylated enzyme and the mutants with acidic side chains instead of Ser(16) revealed an increased resistance toward limited tryptic proteolysis and, as indicated by circular dichroism spectroscopy, an increased content of alpha-helical structure. In agreement with the modeled structure, the formation of an Arg(13) to Ser(16) phosphate salt bridge and the conformational change of the N-terminal tail also explain the higher stability toward limited tryptic proteolysis of the phosphorylated enzyme. The results obtained with the mutant R13A and E381A further support the model proposed for the molecular mechanism for the activation of the enzyme by phosphorylation.
Collapse
Affiliation(s)
- Frederico Faria Miranda
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, 5009-Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
8
|
Horne J, Jennings IG, Teh T, Gooley PR, Kobe B. Structural characterization of the N-terminal autoregulatory sequence of phenylalanine hydroxylase. Protein Sci 2002; 11:2041-7. [PMID: 12142458 PMCID: PMC2373677 DOI: 10.1110/ps.4560102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phenylalanine hydroxylase (PAH) is activated by its substrate phenylalanine, and through phosphorylation by cAMP-dependent protein kinase at Ser16 in the N-terminal autoregulatory sequence of the enzyme. The crystal structures of phosphorylated and unphosphorylated forms of the enzyme showed that, in the absence of phenylalanine, in both cases the N-terminal 18 residues including the phosphorylation site contained no interpretable electron density. We used nuclear magnetic resonance (NMR) spectroscopy to characterize this N-terminal region of the molecule in different stages of the regulatory pathway. A number of sharp resonances are observed in PAH with an intact N-terminal region, but no sharp resonances are present in a truncation mutant lacking the N-terminal 29 residues. The N-terminal sequence therefore represents a mobile flexible region of the molecule. The resonances become weaker after the addition of phenylalanine, indicating a loss of mobility. The peptides corresponding to residues 2-20 of PAH have different structural characteristics in the phosphorylated and unphosphorylated forms, with the former showing increased secondary structure. Our results support the model whereby upon phenylalanine binding, the mobile N-terminal 18 residues of PAH associate with the folded core of the molecule; phosphorylation may facilitate this interaction.
Collapse
Affiliation(s)
- James Horne
- Structural Biology Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | | | | | | | | |
Collapse
|
9
|
Mutagenesis of the regulatory domain of phenylalanine hydroxylase. Proc Natl Acad Sci U S A 2001. [PMID: 11171986 PMCID: PMC29292 DOI: 10.1073/pnas.031561698] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulatory domain of phenylalanine hydroxylase (PAH, EC ) consists of more than 100 amino acids at the N terminus, the removal of which significantly activates the enzyme. To study the regulatory properties controlled by the N terminus, a series of truncations and site-specific mutations were made in this region of rat PAH. These enzymes were expressed highly in Escherichia coli and purified through a pterin-conjugated Sepharose affinity column. The removal of the first 26 amino acids of the N terminus increased the activity by about 20-fold, but removal of the first 15 amino acids increased the activity by only 2-fold. Replacing serine-29 of rat PAH with cysteine from the same site of human PAH increased the activity by more than 4-fold. Mutation of serine to other amino acids with varying side chains: alanine, methionine, leucine, aspartic acid, asparagine, and arginine also resulted in significant activation, indicating a serine-specific inhibitory effect. But these site-specific mutants showed 30--40% lower activity when assayed with 6-methyl-5,6,7,8-tetrahydropterin. Stimulation of hydroxylase activity by preincubation of the enzyme with phenylalanine was inversely proportional to the activation state of all these mutants. Combined with recent crystal structures of PAH [Kobe, B. et al. (1999) Nat. Struct. Biol. 6, 442-448; and Erlandsen, H., Bjorgo, E., Flatmark, T. & Stevens, R. C. (2000) Biochemistry 39, 2208-2217], these data suggest that residues 16-26 have a controlling regulatory effect on the activity by interaction with the dihydroxypropyl side chain of (6R)-5,6,7,8-tetrahydrobiopterin. The serine/cysteine switch explains the difference in regulatory properties between human and rat PAH. The N terminus as a whole is important for maintaining rat PAH in an optimum catalytic conformation.
Collapse
|
10
|
Wang GA, Gu P, Kaufman S. Mutagenesis of the regulatory domain of phenylalanine hydroxylase. Proc Natl Acad Sci U S A 2001; 98:1537-42. [PMID: 11171986 PMCID: PMC29292 DOI: 10.1073/pnas.98.4.1537] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2000] [Indexed: 11/18/2022] Open
Abstract
The regulatory domain of phenylalanine hydroxylase (PAH, EC ) consists of more than 100 amino acids at the N terminus, the removal of which significantly activates the enzyme. To study the regulatory properties controlled by the N terminus, a series of truncations and site-specific mutations were made in this region of rat PAH. These enzymes were expressed highly in Escherichia coli and purified through a pterin-conjugated Sepharose affinity column. The removal of the first 26 amino acids of the N terminus increased the activity by about 20-fold, but removal of the first 15 amino acids increased the activity by only 2-fold. Replacing serine-29 of rat PAH with cysteine from the same site of human PAH increased the activity by more than 4-fold. Mutation of serine to other amino acids with varying side chains: alanine, methionine, leucine, aspartic acid, asparagine, and arginine also resulted in significant activation, indicating a serine-specific inhibitory effect. But these site-specific mutants showed 30--40% lower activity when assayed with 6-methyl-5,6,7,8-tetrahydropterin. Stimulation of hydroxylase activity by preincubation of the enzyme with phenylalanine was inversely proportional to the activation state of all these mutants. Combined with recent crystal structures of PAH [Kobe, B. et al. (1999) Nat. Struct. Biol. 6, 442-448; and Erlandsen, H., Bjorgo, E., Flatmark, T. & Stevens, R. C. (2000) Biochemistry 39, 2208-2217], these data suggest that residues 16-26 have a controlling regulatory effect on the activity by interaction with the dihydroxypropyl side chain of (6R)-5,6,7,8-tetrahydrobiopterin. The serine/cysteine switch explains the difference in regulatory properties between human and rat PAH. The N terminus as a whole is important for maintaining rat PAH in an optimum catalytic conformation.
Collapse
Affiliation(s)
- G A Wang
- Laboratory of Neurochemistry, National Institute of Mental Health, Building 36, Room 3D30, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
11
|
Kamsteeg EJ, Heijnen I, van Os CH, Deen PM. The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol 2000; 151:919-30. [PMID: 11076974 PMCID: PMC2169442 DOI: 10.1083/jcb.151.4.919] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In renal principal cells, vasopressin regulates the shuttling of the aquaporin (AQP)2 water channel between intracellular vesicles and the apical plasma membrane. Vasopressin-induced phosphorylation of AQP2 at serine 256 (S256) by protein kinase A (PKA) is essential for its localization in the membrane. However, phosphorylated AQP2 (p-AQP2) has also been detected in intracellular vesicles of noninduced principal cells. As AQP2 is expressed as homotetramers, we hypothesized that the number of p-AQP2 monomers in a tetramer might be critical for the its steady state distribution. Expressed in oocytes, AQP2-S256D and AQP2-S256A mimicked p-AQP2 and non-p-AQP2, respectively, as routing and function of AQP2-S256D and wild-type AQP2 (wt-AQP2) were identical, whereas AQP2-S256A was retained intracellularly. In coinjection experiments, AQP2-S256A and AQP2-S256D formed heterotetramers. Coinjection of different ratios of AQP2-S256A and AQP2-S256D cRNAs revealed that minimally three AQP2-S256D monomers in an AQP2 tetramer were essential for its plasma membrane localization. Therefore, our results suggest that in principal cells, minimally three monomers per AQP2 tetramer have to be phosphorylated for its steady state localization in the apical membrane. As other multisubunit channels are also regulated by phosphorylation, it is anticipated that the stoichiometry of their phosphorylated and nonphosphorylated subunits may fine-tune the activity or subcellular localization of these complexes.
Collapse
Affiliation(s)
- E J Kamsteeg
- Department of Cell Physiology, University Medical Center, St. Radboud, 6500HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
12
|
Abstract
Phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase constitute a small family of monooxygenases that utilize tetrahydropterins as substrates. When from eukaryotic sources, these enzymes are composed of a homologous catalytic domain to which are attached discrete N-terminal regulatory domains and short C-terminal tetramerization domains, whereas the bacterial enzymes lack the N-terminal and C-terminal domains. Each enzyme contains a single ferrous iron atom bound to two histidines and a glutamate. Recent mechanistic studies have begun to provide insights into the mechanisms of oxygen activation and hydroxylation. Although the hydroxylating intermediate in these enzymes has not been identified, the iron is likely to be involved. Reversible phosphorylation of serine residues in the regulatory domains affects the activities of all three enzymes. In addition, phenylalanine hydroxylase is allosterically regulated by its substrates, phenylalanine and tetrahydrobiopterin.
Collapse
Affiliation(s)
- P F Fitzpatrick
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-2128, USA.
| |
Collapse
|
13
|
Waters PJ, Parniak MA, Nowacki P, Scriver CR. In vitro expression analysis of mutations in phenylalanine hydroxylase: linking genotype to phenotype and structure to function. Hum Mutat 2000; 11:4-17. [PMID: 9450897 DOI: 10.1002/(sici)1098-1004(1998)11:1<4::aid-humu2>3.0.co;2-l] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mutations in the human phenylalanine hydroxylase gene (PAH) altering the expressed cDNA nucleotide sequence (GenBank U49897) can impair activity of the corresponding enzyme product (hepatic phenylalanine hydroxylase, PAH) and cause hyperphenylalaninemia (HPA), a metabolic phenotype for which the major disease form is phenylketonuria (PKU; OMIM 261600). In vitro expression analysis of inherited human mutations in eukaryotic, prokaryotic, and cell-free systems is informative about the mechanisms of mutation effects on enzymatic activity and their predicted effect on the metabolic phenotype. Corresponding analysis of site-directed mutations in rat Pah cDNA has assigned critical functional roles to individual amino acid residues within the best understood species of phenylalanine hydroxylase. Data on in vitro expression of 35 inherited human mutations and 22 created rat mutations are reviewed here. The core data are accessible at the PAH Mutation Analysis Consortium Web site (http://www.mcgill.ca/pahdb).
Collapse
Affiliation(s)
- P J Waters
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
14
|
Witteveen CF, Giovanelli J, Kaufman S. Reactivity of tetrahydrobiopterin bound to nitric-oxide synthase. J Biol Chem 1999; 274:29755-62. [PMID: 10514451 DOI: 10.1074/jbc.274.42.29755] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Levels of tetrahydrobiopterin (BH(4)) bound to nitric-oxide synthase (NOS) were examined during multiple turnovers of the enzyme in the presence of an NADPH-regenerating system. Our findings show that NOS-bound BH(4) does not remain in a static state but undergoes redox reactions. Under these experimental conditions, the redox state of BH(4) was determined by the balance between calcium/calmodulin (Ca(2+)/CaM)-dependent oxidation of BH(4) mediated by the uncoupled formation of superoxide/hydrogen peroxide on the one hand and by reductive regeneration of BH(4) on the other hand. BH(4) oxidation was appreciably increased in the presence of arginine. Levels of NOS-bound BH(4) were also examined under single turnover conditions in the absence of an NADPH-regenerating system and in the presence of added superoxide dismutase and catalase to suppress the accumulation of superoxide and hydrogen peroxide. BH(4) oxidation was again dependent on Ca(2+)/CaM. The insensitivity to superoxide dismutase and catalase suggested that the single turnover oxidation of BH(4) did not proceed through superoxide/peroxide, although the involvement of these oxidants could not be definitively excluded. The amount of BH(4) oxidized was highest in the presence of arginine, and this oxidation significantly exceeded that in the presence of N(G)-hydroxy-L-arginine. The findings that single turnover oxidation of BH(4) is stimulated by arginine in the presence of Ca(2+)/CaM and that BH(4) is regenerated are consistent with a role for the pterin as an electron donor in product formation; this role remains to be defined.
Collapse
Affiliation(s)
- C F Witteveen
- Laboratory of Neurochemistry, National Institute of Mental Health, Bethesda, Maryland 20892-4096, USA
| | | | | |
Collapse
|
15
|
Abstract
The neurotransmitter serotonin has been implicated in numerous physiological functions and pathophysiological disorders. The hydroxylation of the aromatic amino acid tryptophan is rate-limiting in the synthesis of serotonin. Tryptophan hydroxylase (TPH), as the rate-limiting enzyme, determines the concentrations of serotonin in vivo. Relative serotonin concentrations are clearly important in neural transmission, but serotonin has also been reported to function as a local antioxidant. Identification of the mechanisms regulating TPH activity has been hindered by its low levels in tissues and the instability of the enzyme. Several TPH expression systems have been developed to circumvent these problems. In addition, eukaryotic expressions systems are currently being developed and represent a new avenue of research for identifying TPH regulatory mechanisms. Recombinant DNA technology has enabled the synthesis of TPH deletions, chimeras, and point mutations that have served as tools for identifying structural and functional domains within TPH. Notably, the experiments have proven long-held hypotheses that TPH is organized into N-terminal regulatory and C-terminal catalytic domains, that serine-58 is a site for PKA-mediated phosphorylation, and that a C-terminal leucine zipper is involved in formation of the tetrameric holoenzyme. Several new findings have also emerged regarding regulation of TPH activity by posttranslational phosphorylation, kinetic inhibition, and covalent modification. Inhibition of TPH by L-DOPA may have implications for depression in Parkinson's disease (PD) patients. In addition, TPH inactivation by nitric oxide may be involved in amphetamine-induced toxicity. These regulatory concepts, in conjunction with new systems for studying TPH activity, are the focus of this article.
Collapse
Affiliation(s)
- S M Mockus
- Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA
| | | |
Collapse
|
16
|
Dong J, Hung LH, Strome R, Krause HM. A phosphorylation site in the ftz homeodomain is required for activity. EMBO J 1998; 17:2308-18. [PMID: 9545243 PMCID: PMC1170574 DOI: 10.1093/emboj/17.8.2308] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Drosophila homeodomain-containing protein Fushi tarazu (Ftz) is expressed sequentially in the embryo, first in alternate segments, then in specific neuroblasts and neurons in the central nervous system, and finally in parts of the gut. During these different developmental stages, the protein is heavily phosphorylated on different subsets of Ser and Thr residues. This stage-specific phosphorylation suggests possible roles for signal transduction pathways in directing tissue-specific Ftz activities. Here we show that one of the Ftz phosphorylation sites, T263 in the N-terminus of the Ftz homeodomain, is phosphorylated in vitro by Drosophila embryo extracts and protein kinase A. In the embryo, mutagenesis of this site to the non-phosphorylatable residue Ala resulted in loss of ftz-dependent segments. Conversely, substitution of T263 with Asp, which is also non-phosphorylatable, but which successfully mimics phosphorylated residues in a number of proteins, rescued the mutant phenotype. This suggests that T263 is in the phosphorylated state when functioning normally in vivo. We also demonstrate that the T263 substitutions of Ala and Asp do not affect Ftz DNA-binding activity in vitro, nor do they affect stability or transcriptional activity in transfected S2 cells. This suggests that T263 phosphorylation is most likely required for a homeodomain-mediated interaction with an embryonically expressed protein.
Collapse
Affiliation(s)
- J Dong
- Banting and Best Department of Medical Research, University of Toronto, C.H.Best Institute, Toronto, Ontario, Canada M5G 1L6
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- P M Dewick
- School of Pharmaceutical Sciences, University of Nottingham, UK
| |
Collapse
|
18
|
Chehin R, Thorolfsson M, Knappskog PM, Martinez A, Flatmark T, Arrondo JL, Muga A. Domain structure and stability of human phenylalanine hydroxylase inferred from infrared spectroscopy. FEBS Lett 1998; 422:225-30. [PMID: 9490012 DOI: 10.1016/s0014-5793(97)01596-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have studied the conformation and thermal stability of recombinant human phenylalanine hydroxylase (hPAH) and selected truncated forms, corresponding to distinct functional domains, by infrared spectroscopy. The secondary structure of wild-type hPAH was estimated to be 48% alpha-helix, 28% extended structures, 12% beta-turns and 12% non-structured conformations. The catalytic C-terminal domain (residues 112-452) holds most of the regular secondary structure elements, whereas the regulatory N-terminal domain (residues 2-110) adopts mainly an extended and disordered, flexible conformation. Thermal stability studies of the enzyme forms indicate the existence of interactions between the two domains. Our results also demonstrate that the conformational events involved in the activation of hPAH by its substrate (L-Phe) are mainly related to changes in the tertiary/quaternary structure. The activating effect of phosphorylation, however, affects the secondary structure of the N-terminal domain of the protein.
Collapse
Affiliation(s)
- R Chehin
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Johnen G, Kaufman S. Studies on the enzymatic and transcriptional activity of the dimerization cofactor for hepatocyte nuclear factor 1. Proc Natl Acad Sci U S A 1997; 94:13469-74. [PMID: 9391049 PMCID: PMC28329 DOI: 10.1073/pnas.94.25.13469] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The relationship between the enzymatic and the transcriptional activity of the bifunctional protein pterin-4a-carbinolamine dehydratase/dimerization cofactor for hepatocyte nuclear factor 1 (DCoH) has been elucidated by site-directed mutagenesis. DCoH dimers harbor a binding site for hepatocyte nuclear factor 1 (HNF1), two active centers that bind pterins, and a saddle-shaped surface that resembles nucleic acid binding domains. Two domains of the protein have been selectively targeted to determine if a change in one activity affects the other. No strong correlation has been found, supporting the idea that carbinolamine dehydratase activity is not required for HNF1 binding in vitro or transcriptional coactivation in vivo. Double mutations in the active center, however, influence the in vivo transcriptional activity but not HNF1 binding. This finding suggests that some active center residues also are used during transcription, possibly for binding of another (macro)molecule. Several mutations in the saddle led to a surprising increase in transcription, therefore linking this domain to transcriptional regulation as well. The transcriptional function of DCoH therefore is composed of two parts, HNF1 binding and another contributing effect that involves the active site and, indirectly, the saddle.
Collapse
Affiliation(s)
- G Johnen
- Laboratory of Neurochemistry, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
20
|
Kayaalp E, Treacy E, Waters PJ, Byck S, Nowacki P, Scriver CR. Human phenylalanine hydroxylase mutations and hyperphenylalaninemia phenotypes: a metanalysis of genotype-phenotype correlations. Am J Hum Genet 1997; 61:1309-17. [PMID: 9399896 PMCID: PMC1716084 DOI: 10.1086/301638] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We analyzed correlations between mutant genotypes at the human phenylalanine hydroxylase locus (gene symbol PAH) and the corresponding hyperphenylalaninemia (HPA) phenotypes (notably, phenylketonuria [OMIM 261600]). We used reports, both published and in the PAH Mutation Analysis Consortium Database, on 365 patients harboring 73 different PAH mutations in 161 different genotypes. HPA phenotypes were classified as phenylketonuria (PKU), variant PKU, and non-PKU HPA. By analysis both of homoallelic mutant genotypes and of "functionally hemizygous" heteroallelic genotypes, we characterized the phenotypic effect of 48 of the 73 different, largely missense mutations. Among those with consistent in vivo expression, 24 caused PKU, 3 caused variant PKU, and 10 caused non-PKU HPA. However, 11 mutations were inconsistent in their effect: 9 appeared in two different phenotype classes, and 2 (I65T and Y414C) appeared in all three classes. Seven mutations were inconsistent in phenotypic effect when in vitro (unit-protein) expression was compared with the corresponding in vivo phenotype (an emergent property). We conclude that the majority of PAH mutations confer a consistent phenotype and that this is concordant with their effects, when known, predicted from in vitro expression analysis. However, significant inconsistencies, both between in vitro and in vivo phenotypes and between different individuals with similar PAH genotypes, reveal that the HPA-phenotype is more complex than that predicted by Mendelian inheritance of alleles at the PAH locus.
Collapse
Affiliation(s)
- E Kayaalp
- DeBelle Laboratory, McGill University-Montreal Children's Hospital Research Institute, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Kobe B, Jennings IG, House CM, Feil SC, Michell BJ, Tiganis T, Parker MW, Cotton RG, Kemp BE. Regulation and crystallization of phosphorylated and dephosphorylated forms of truncated dimeric phenylalanine hydroxylase. Protein Sci 1997; 6:1352-7. [PMID: 9194198 PMCID: PMC2143721 DOI: 10.1002/pro.5560060626] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phenylalanine hydroxylase is regulated in a complex manner, including activation by phosphorylation. It is normally found as an equilibrium of dimeric and tetrameric species, with the tetramer thought to be the active form. We converted the protein to the dimeric form by deleting the C-terminal 24 residues and show that the truncated protein remains active and regulated by phosphorylation. This indicates that changes in the tetrameric quaternary structure of phenylalanine hydroxylase are not required for enzyme activation. Truncation also facilitates crystallization of both phosphorylated and dephosphorylated forms of the enzyme.
Collapse
Affiliation(s)
- B Kobe
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- T. Joseph Kappock
- Department of Chemistry, Yale University, P.O. Box 208107 New Haven, Connecticut 06520-8107
| | | |
Collapse
|
23
|
Witteveen CF, Giovanelli J, Kaufman S. Reduction of quinonoid dihydrobiopterin to tetrahydrobiopterin by nitric oxide synthase. J Biol Chem 1996; 271:4143-7. [PMID: 8626754 DOI: 10.1074/jbc.271.8.4143] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Rat cerebellar nitric oxide synthase (NOS) purified from transfected human kidney cells catalyzes an NADPHdependent reduction of quinonoid dihydrobiopterin (qBH2) to tetrahydrobiopterin (BH4). Reduction of qBH2 at 25 microM proceeds at a rate that is comparable with that of the overall reaction (citrulline synthesis) and requires calcium ions and calmodulin for optimal activity; NADH has only 10% of the activity of NADPH. The reduction rate with the quinonoid form of 6-methyldihydropterin is approximately twice that with qBH2. 7,8-Dihydrobiopterin had negligible activity. Neither 7,8-dihydrobiopterin nor BH4 affected the rate of qBH2 reduction. Reduction is inhibited by the flavoprotein inhibitor diphenyleneiodonium, whereas inhibitors of electron transfer through heme (7-nitroindazole and N-nitroarginine) stimulated the rate to a small extent. Methotrexate, which inhibits a variety of enzymes catalyzing dihydrobiopterin reduction, did not inhibit. These studies provide the first demonstration of the reduction of qBH2 to BH4 by NOS and indicate that the reduction is catalyzed by the flavoprotein "diaphorase" activity of NOS. This activity is located on the reductase (C-terminal) domain, whereas the high affinity BH4 site involved in NOS activation is located on the oxygenase (N-terminal) domain. The possible significance of this reduction of qBH2 to the essential role of BH4 in NOS is discussed.
Collapse
Affiliation(s)
- C F Witteveen
- Laboratory of Neurochemistry, National Institute of Mental Health, Bethesda, Maryland 20892-4096, USA
| | | | | |
Collapse
|
24
|
Daniel J. Detection of antagonistic cellular regulatory functions by the gene-gene interference method in yeast. Curr Genet 1996; 29:114-21. [PMID: 8821657 DOI: 10.1007/bf02221574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It was previously assumed that a new genetic method in yeast, termed gene-gene interference, leads to the selection of genes that antagonize, and/or are antagonized by, the particular reference gene used for their selection (Daniel 1993). In this paper two pieces of evidence are advanced in favour of this view. Firstly, the reconstitution of a system of known antagonistic genes was shown to be detectable by the gene-gene interference method. Secondly, since ART1, a new gene selected in reference to the protein kinase A gene, has been shown to contain in its deduced polypeptide a putative site for phosphorylation by protein kinase A, a mutagenesis study directed toward this putative site has been performed. Two phenotypes-in vivo filamenting activity and gene-gene interference relative to the protein kinase A gene-were tested with the various mutations thus obtained and found to be consistent with the hypothesis that, under physiological conditions, phosphorylation by protein kinase A exerts an inhibitory effect on Art1 activity. The relevance of these findings on the mechanisms and potential applications of the gene-gene interference phenomenon is discussed.
Collapse
Affiliation(s)
- J Daniel
- Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Gif-sur-Yvette, France
| |
Collapse
|
25
|
Johnen G, Kowlessur D, Citron BA, Kaufman S. Characterization of the wild-type form of 4a-carbinolamine dehydratase and two naturally occurring mutants associated with hyperphenylalaninemia. Proc Natl Acad Sci U S A 1995; 92:12384-8. [PMID: 8618906 PMCID: PMC40362 DOI: 10.1073/pnas.92.26.12384] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The characterization of 4a-carbinolamine dehydratase with the enzymatically synthesized natural substrate revealed non-Michaelis-Menten kinetics. A Hill coefficient of 1.8 indicates that the dehydratase exists as a multisubunit enzyme that shows cooperativity. A mild form of hyperphenylalaninemia with high 7-biopterin levels has been linked to mutations in the human 4a-carbinolamine dehydratase gene. We have now cloned and expressed two mutant forms of the protein based on a patient's DNA sequences. The kinetic parameters of the mutant C82R reveal a 60% decrease in Vmax but no change in Km (approximately 5 microM), suggesting that the cysteine residue is not involved in substrate binding. Its replacement by arginine possibly causes a conformational change in the active center. Like the wild-type enzyme, this mutant is heat stable and forms a tetramer. The susceptibility to proteolysis of C82R, however, is markedly increased in vitro compared with the wild-type protein. We have also observed a decrease in the expression levels of C82R protein in transfected mammalian cells, which could be due to proteolytic instability. The 18-amino acid-truncated mutant GLu-87--> termination could not be completely purified and characterized due to minute levels of expression and its extremely low solubility as a fusion protein. No dehydratase activity was detected in crude extracts from transformed bacteria or transfected mammalian cells. Considering the decrease in specific activity and stability of the mutants, we conclude that the patient probably has less than 10% residual dehydratase activity, which could be responsible for the mild hyperphenylalaninemia and the high 7-biopterin levels.
Collapse
Affiliation(s)
- G Johnen
- Laboratory of Neurochemistry, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|