1
|
Comparative structural insight into the unidirectional catalysis of ornithine carbamoyltransferases from Psychrobacter sp. PAMC 21119. PLoS One 2022; 17:e0274019. [PMID: 36149917 PMCID: PMC9506655 DOI: 10.1371/journal.pone.0274019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Ornithine carbamoyltransferases (OTCs) are involved in the arginine deiminase (ADI) pathway and in arginine biosynthesis. Two OTCs in a pair are named catalytic OTC (cOTC) and anabolic OTC (aOTC). The cOTC is responsible for catalyzing the third step of the ADI pathway to catabolize citrulline into carbamoyl phosphate (CP), as well as ornithine, and displays CP cooperativity. In contrast, aOTC catalyzes the biosynthesis of citrulline from CP and ornithine in vivo and is thus involved in arginine biosynthesis. Structural and biochemical analyses were employed to investigate the CP cooperativity and unidirectional function of two sequentially similar OTCs (32.4% identity) named Ps_cOTC and Ps_aOTC from Psychrobacter sp. PAMC 21119. Comparison of the trimeric structure of these two OTCs indicated that the 80s loop of Ps_cOTC has a unique conformation that may influence cooperativity by connecting the CP binding site and the center of the trimer. The corresponding 80s loop region of in Ps_aOTC was neither close to the CP binding site nor connected to the trimer center. In addition, results from the thermal shift assay indicate that each OTC prefers the substrate for the unidirectional process. The active site exhibited a blocked binding site for CP in the Ps_cOTC structure, whereas residues at the active site in Ps_aOTC established a binding site to facilitate CP binding. Our data provide novel insights into the unidirectional catalysis of OTCs and cooperativity, which are distinguishable features of two metabolically specialized proteins.
Collapse
|
2
|
Adaptive remodelling of blue pigmenting Pseudomonas fluorescens pf59 proteome in response to different environmental conditions. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Ngu L, Winters JN, Nguyen K, Ramos KE, DeLateur NA, Makowski L, Whitford PC, Ondrechen MJ, Beuning PJ. Probing remote residues important for catalysis in Escherichia coli ornithine transcarbamoylase. PLoS One 2020; 15:e0228487. [PMID: 32027716 PMCID: PMC7004355 DOI: 10.1371/journal.pone.0228487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding how enzymes achieve their tremendous catalytic power is a major question in biochemistry. Greater understanding is also needed for enzyme engineering applications. In many cases, enzyme efficiency and specificity depend on residues not in direct contact with the substrate, termed remote residues. This work focuses on Escherichia coli ornithine transcarbamoylase (OTC), which plays a central role in amino acid metabolism. OTC has been reported to undergo an induced-fit conformational change upon binding its first substrate, carbamoyl phosphate (CP), and several residues important for activity have been identified. Using computational methods based on the computed chemical properties from theoretical titration curves, sequence-based scores derived from evolutionary history, and protein surface topology, residues important for catalytic activity were predicted. The roles of these residues in OTC activity were tested by constructing mutations at predicted positions, followed by steady-state kinetics assays and substrate binding studies with the variants. First-layer mutations R57A and D231A, second-layer mutation H272L, and third-layer mutation E299Q, result in 57- to 450-fold reductions in kcat/KM with respect to CP and 44- to 580-fold reductions with respect to ornithine. Second-layer mutations D140N and Y160S also reduce activity with respect to ornithine. Most variants had decreased stability relative to wild-type OTC, with variants H272L, H272N, and E299Q having the greatest decreases. Variants H272L, E299Q, and R57A also show compromised CP binding. In addition to direct effects on catalytic activity, effects on overall protein stability and substrate binding were observed that reveal the intricacies of how these residues contribute to catalysis.
Collapse
Affiliation(s)
- Lisa Ngu
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Jenifer N. Winters
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Kien Nguyen
- Department of Physics, Northeastern University, Boston, MA, United States of America
| | - Kevin E. Ramos
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Nicholas A. DeLateur
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Lee Makowski
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, United States of America
- Department of Bioengineering, Northeastern University, Boston, MA, United States of America
| | - Paul C. Whitford
- Department of Physics, Northeastern University, Boston, MA, United States of America
| | - Mary Jo Ondrechen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, United States of America
- * E-mail: (MJO); (PJB)
| | - Penny J. Beuning
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, United States of America
- * E-mail: (MJO); (PJB)
| |
Collapse
|
4
|
Shi D, Caldovic L, Tuchman M. Sources and Fates of Carbamyl Phosphate: A Labile Energy-Rich Molecule with Multiple Facets. BIOLOGY 2018; 7:biology7020034. [PMID: 29895729 PMCID: PMC6022934 DOI: 10.3390/biology7020034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
Abstract
Carbamyl phosphate (CP) is well-known as an essential intermediate of pyrimidine and arginine/urea biosynthesis. Chemically, CP can be easily synthesized from dihydrogen phosphate and cyanate. Enzymatically, CP can be synthesized using three different classes of enzymes: (1) ATP-grasp fold protein based carbamyl phosphate synthetase (CPS); (2) Amino-acid kinase fold carbamate kinase (CK)-like CPS (anabolic CK or aCK); and (3) Catabolic transcarbamylase. The first class of CPS can be further divided into three different types of CPS as CPS I, CPS II, and CPS III depending on the usage of ammonium or glutamine as its nitrogen source, and whether N-acetyl-glutamate is its essential co-factor. CP can donate its carbamyl group to the amino nitrogen of many important molecules including the most well-known ornithine and aspartate in the arginine/urea and pyrimidine biosynthetic pathways. CP can also donate its carbamyl group to the hydroxyl oxygen of a variety of molecules, particularly in many antibiotic biosynthetic pathways. Transfer of the carbamyl group to the nitrogen group is catalyzed by the anabolic transcarbamylase using a direct attack mechanism, while transfer of the carbamyl group to the oxygen group is catalyzed by a different class of enzymes, CmcH/NodU CTase, using a different mechanism involving a three-step reaction, decomposition of CP to carbamate and phosphate, transfer of the carbamyl group from carbamate to ATP to form carbamyladenylate and pyrophosphate, and transfer of the carbamyl group from carbamyladenylate to the oxygen group of the substrate. CP is also involved in transferring its phosphate group to ADP to generate ATP in the fermentation of many microorganisms. The reaction is catalyzed by carbamate kinase, which may be termed as catabolic CK (cCK) in order to distinguish it from CP generating CK. CP is a thermally labile molecule, easily decomposed into phosphate and cyanate, or phosphate and carbamate depending on the pH of the solution, or the presence of enzyme. Biological systems have developed several mechanisms including channeling between enzymes, increased affinity of CP to enzymes, and keeping CP in a specific conformation to protect CP from decomposition. CP is highly important for our health as both a lack of, or decreased, CP production and CP accumulation results in many disease conditions.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
5
|
Abstract
Early investigations on arginine biosynthesis brought to light basic features of metabolic regulation. The most significant advances of the last 10 to 15 years concern the arginine repressor, its structure and mode of action in both E. coli and Salmonella typhimurium, the sequence analysis of all arg structural genes in E. coli and Salmonella typhimurium, the resulting evolutionary inferences, and the dual regulation of the carAB operon. This review provides an overall picture of the pathways, their interconnections, the regulatory circuits involved, and the resulting interferences between arginine and polyamine biosynthesis. Carbamoylphosphate is a precursor common to arginine and the pyrimidines. In both Escherichia coli and Salmonella enterica serovar Typhimurium, it is produced by a single synthetase, carbamoylphosphate synthetase (CPSase), with glutamine as the physiological amino group donor. This situation contrasts with the existence of separate enzymes specific for arginine and pyrimidine biosynthesis in Bacillus subtilis and fungi. Polyamine biosynthesis has been particularly well studied in E. coli, and the cognate genes have been identified in the Salmonella genome as well, including those involved in transport functions. The review summarizes what is known about the enzymes involved in the arginine pathway of E. coli and S. enterica serovar Typhimurium; homologous genes were identified in both organisms, except argF (encoding a supplementary OTCase), which is lacking in Salmonella. Several examples of putative enzyme recruitment (homologous enzymes performing analogous functions) are also presented.
Collapse
|
6
|
Sundaresan R, Ebihara A, Kuramitsu S, Yokoyama S, Kumarevel T, Ponnuraj K. Crystal structure analysis of ornithine transcarbamylase from Thermus thermophilus --HB8 provides insights on the plasticity of the active site. Biochem Biophys Res Commun 2015. [PMID: 26210451 DOI: 10.1016/j.bbrc.2015.07.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzymatic biosynthesis of L-arginine involves complex, sequential action of many enzymes and ornithine transcarbamylase (OTCase) is one of the essential enzymes in the pathway. In mammals OTCase is part of the urea cycle. Arginine is used in a variety of pharmaceutical and industrial applications and therefore engineering arginine biosynthesis pathway for overproduction of arginine has gained importance. On the other hand, it was found that detrimental mutations in the human OTCase gene resulted clinical hyperammonemia, with subsequent neurological damage. Therefore a better understanding of the structure-function relationship of this enzyme from various sources could be useful for modifying its enzymatic action. Here we report the structure of ornithine transcarbamylase of Thermus thermophilus HB8 (aTtOTCase) at 2.0 Å resolution. On comparison with its homologs, aTtOTCase showed maximum variation at the substrate binding loops namely 80s and SMG/240s loops. The active site geometry of aTtOTCase is unique among its homologs where the side chain of certain residues (Leu57, Arg58 and Arg288) is oriented differently. To study the structural insights of substrate binding in aTtOTCase, docking of carbamoyl phosphate (CP) and ornithine (Orn) was carried out sequentially. Both substrates were unable to bind in a proper orientation in the active site pocket and this could be due to the differently oriented side chains. This suggests that the active site geometry should also undergo fine tuning besides the large structural changes as the enzyme switches from completely open to a substrate bound closed state.
Collapse
Affiliation(s)
- Ramya Sundaresan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Akio Ebihara
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Seiki Kuramitsu
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Thirumananseri Kumarevel
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; RIKEN Structural Biology Laboratory, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
7
|
Shi D, Allewell NM, Tuchman M. From Genome to Structure and Back Again: A Family Portrait of the Transcarbamylases. Int J Mol Sci 2015; 16:18836-64. [PMID: 26274952 PMCID: PMC4581275 DOI: 10.3390/ijms160818836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022] Open
Abstract
Enzymes in the transcarbamylase family catalyze the transfer of a carbamyl group from carbamyl phosphate (CP) to an amino group of a second substrate. The two best-characterized members, aspartate transcarbamylase (ATCase) and ornithine transcarbamylase (OTCase), are present in most organisms from bacteria to humans. Recently, structures of four new transcarbamylase members, N-acetyl-l-ornithine transcarbamylase (AOTCase), N-succinyl-l-ornithine transcarbamylase (SOTCase), ygeW encoded transcarbamylase (YTCase) and putrescine transcarbamylase (PTCase) have also been determined. Crystal structures of these enzymes have shown that they have a common overall fold with a trimer as their basic biological unit. The monomer structures share a common CP binding site in their N-terminal domain, but have different second substrate binding sites in their C-terminal domain. The discovery of three new transcarbamylases, l-2,3-diaminopropionate transcarbamylase (DPTCase), l-2,4-diaminobutyrate transcarbamylase (DBTCase) and ureidoglycine transcarbamylase (UGTCase), demonstrates that our knowledge and understanding of the spectrum of the transcarbamylase family is still incomplete. In this review, we summarize studies on the structures and function of transcarbamylases demonstrating how structural information helps to define biological function and how small structural differences govern enzyme specificity. Such information is important for correctly annotating transcarbamylase sequences in the genome databases and for identifying new members of the transcarbamylase family.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
- Department of Integrative Systems Biology, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
| | - Norma M Allewell
- Department of Cell Biology and Molecular Genetics, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA.
- Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA.
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
- Department of Integrative Systems Biology, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
8
|
Ornithine Transcarbamylase ArgK Plays a Dual role for the Self-defense of Phaseolotoxin Producing Pseudomonas syringae pv. phaseolicola. Sci Rep 2015; 5:12892. [PMID: 26256666 PMCID: PMC4530439 DOI: 10.1038/srep12892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/14/2015] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas syringae is a phytopathogenic bacterium widely spread on terrestrial plants. Sulfodiaminophosphinyl tripeptide Phaseolotoxins (PHTs), produced by P. syringae pv. phaseolicola and P. syringae pv. actinidiae, represent a kind of antimetabolic phytotoxins. PHTs inhibit host cell Ornithine transcarbamylase (OTCase) activity and induce Arginine auxotrophic phenotype. The biosynthesis of PHT is temperature dependent, being optically produced at around 18 °C, while blocked above 28 °C. PHT resistant OTCase ArgK acts as a functional replacement of housekeeping OTCase ArgF, which is the acting target of PHT, to confer PHT producers with self-resistance. It was postulated that argK might be regulated directly by a PHT biosynthetic precursor and indirectly by temperature with an unknown manner. Neither transcriptional regulator nor thermal regulation related protein encoding gene was detected from PHT biosynthetic gene cluster. The tripeptide, Cit-Ala-hArg, was identified to be a by-product of PHT biosynthetic pathway in this report. Formation of Cit-Ala-hArg was catalyzed by ArgK with tripeptide Orn-Ala-hArg and carbamyl phosphate as substrates. It showed that ArgK not only provided alternative Arginine source as reported previously, but also controlled the production of PHTs by converting PHT biosynthetic precursors to nontoxic Cit-Ala-hArg reservoir for producers’ self-defense.
Collapse
|
9
|
Stuart DI, Abrescia NGA. From lows to highs: using low-resolution models to phase X-ray data. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2257-65. [PMID: 24189238 PMCID: PMC3817700 DOI: 10.1107/s0907444913022336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/08/2013] [Indexed: 11/11/2022]
Abstract
The study of virus structures has contributed to methodological advances in structural biology that are generally applicable (molecular replacement and noncrystallographic symmetry are just two of the best known examples). Moreover, structural virology has been instrumental in forging the more general concept of exploiting phase information derived from multiple structural techniques. This hybridization of structural methods, primarily electron microscopy (EM) and X-ray crystallography, but also small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy, is central to integrative structural biology. Here, the interplay of X-ray crystallography and EM is illustrated through the example of the structural determination of the marine lipid-containing bacteriophage PM2. Molecular replacement starting from an ~13 Å cryo-EM reconstruction, followed by cycling density averaging, phase extension and solvent flattening, gave the X-ray structure of the intact virus at 7 Å resolution This in turn served as a bridge to phase, to 2.5 Å resolution, data from twinned crystals of the major coat protein (P2), ultimately yielding a quasi-atomic model of the particle, which provided significant insights into virus evolution and viral membrane biogenesis.
Collapse
Affiliation(s)
- David I. Stuart
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, England
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, England
| | - Nicola G. A. Abrescia
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Bld 800, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
10
|
Badia-Martinez D, Oksanen HM, Stuart DI, Abrescia NGA. Combined approaches to study virus structures. Subcell Biochem 2013; 68:203-246. [PMID: 23737053 DOI: 10.1007/978-94-007-6552-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A virus particle must work as a safe box for protecting its genome, but at the same time it has to undergo dramatic conformational changes in order to preserve itself by propagating in a cell infection. Thus, viruses are miniaturized wonders whose structural complexity requires them to be investigated by a combination of different techniques that can tackle both static and dynamic processes. In this chapter we will illustrate how major structural techniques such as X-ray crystallography and electron microscopy have been and can be combined with other techniques to determine the structure of complex viruses. The power of these hybrid method approaches are revealed through the various examples provided.
Collapse
Affiliation(s)
- Daniel Badia-Martinez
- Structural Biology Unit, CICbioGUNE, CIBERehd, Bizkaia Technology Park, 48160, Derio, Spain
| | | | | | | |
Collapse
|
11
|
Gallego P, Planell R, Benach J, Querol E, Perez-Pons JA, Reverter D. Structural characterization of the enzymes composing the arginine deiminase pathway in Mycoplasma penetrans. PLoS One 2012; 7:e47886. [PMID: 23082227 PMCID: PMC3474736 DOI: 10.1371/journal.pone.0047886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/24/2012] [Indexed: 11/19/2022] Open
Abstract
The metabolism of arginine towards ATP synthesis has been considered a major source of energy for microorganisms such as Mycoplasma penetrans in anaerobic conditions. Additionally, this pathway has also been implicated in pathogenic and virulence mechanism of certain microorganisms, i.e. protection from acidic stress during infection. In this work we present the crystal structures of the three enzymes composing the gene cluster of the arginine deiminase pathway from M. penetrans: arginine deiminase (ADI), ornithine carbamoyltransferase (OTC) and carbamate kinase (CK). The arginine deiminase (ADI) structure has been refined to 2.3 Å resolution in its apo-form, displaying an "open" conformation of the active site of the enzyme in comparison to previous complex structures with substrate intermediates. The active site pocket of ADI is empty, with some of the catalytic and binding residues far from their active positions, suggesting major conformational changes upon substrate binding. Ornithine carbamoyltransferase (OTC) has been refined in two crystal forms at 2.5 Å and 2.6 Å resolution, respectively, both displaying an identical dodecameric structure with a 23-point symmetry. The dodecameric structure of OTC represents the highest level of organization in this protein family and in M.penetrans it is constituted by a novel interface between the four catalytic homotrimers. Carbamate kinase (CK) has been refined to 2.5 Å resolution and its structure is characterized by the presence of two ion sulfates in the active site, one in the carbamoyl phosphate binding site and the other in the β-phosphate ADP binding pocket of the enzyme. The CK structure also shows variations in some of the elements that regulate the catalytic activity of the enzyme. The relatively low number of metabolic pathways and the relevance in human pathogenesis of Mycoplasma penetrans places the arginine deiminase pathway enzymes as potential targets to design specific inhibitors against this human parasite.
Collapse
Affiliation(s)
- Pablo Gallego
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raquel Planell
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Benach
- Experiments Division, ALBA Synchrotron Light Source, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep A. Perez-Pons
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Shabalin IG, Porebski PJ, Cooper DR, Grabowski M, Onopriyenko O, Grimshaw S, Savchenko A, Chruszcz M, Minor W. Structure of anabolic ornithine carbamoyltransferase from Campylobacter jejuni at 2.7 Å resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1018-24. [PMID: 22949186 PMCID: PMC3433189 DOI: 10.1107/s1744309112031259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/09/2012] [Indexed: 11/10/2022]
Abstract
Anabolic ornithine transcarbamoylase (aOTC) catalyzes the reaction between carbamoyl phosphate (CP) and L-ornithine (ORN) to form L-citrulline and phosphate in the urea cycle and L-arginine biosynthesis. The crystal structure of unliganded aOTC from Campylobacter jejuni (Cje aOTC) was determined at 2.7 Å resolution and refined to an R(work) of 20.3% and an R(free) of 24.0%. Cje aOTC is a trimer that forms a head-to-head pseudohexamer in the asymmetric unit. Each monomer is composed of an N-terminal CP-binding domain and a C-terminal ORN-binding domain joined by two interdomain helices. The Cje aOTC structure presents an open conformation of the enzyme with a relatively flexible orientation of the ORN-binding domain respective to the CP-binding domain. The conformation of the B2-H3 loop (residues 68-78), which is involved in binding CP in an adjacent subunit of the trimer, differs from that seen in homologous proteins with CP bound. The loop containing the ORN-binding motif (DxxxSMG, residues 223-230) has a conformation that is different from those observed in unliganded OTC structures from other species, but is similar to those in structures with bound ORN analogs. The major differences in tertiary structure between Cje aOTC and human aOTC are described.
Collapse
Affiliation(s)
- I. G. Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
- Center for Structural Genomics of Infectious Diseases, USA
| | - P. J. Porebski
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
- Center for Structural Genomics of Infectious Diseases, USA
| | - D. R. Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
- Center for Structural Genomics of Infectious Diseases, USA
| | - M. Grabowski
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
- Center for Structural Genomics of Infectious Diseases, USA
| | - O. Onopriyenko
- Center for Structural Genomics of Infectious Diseases, USA
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, ON M5G 1L6, Canada
| | - S. Grimshaw
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - A. Savchenko
- Center for Structural Genomics of Infectious Diseases, USA
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, ON M5G 1L6, Canada
| | - M. Chruszcz
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
- Center for Structural Genomics of Infectious Diseases, USA
| | - W. Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
- Center for Structural Genomics of Infectious Diseases, USA
| |
Collapse
|
13
|
New insight into the transcarbamylase family: the structure of putrescine transcarbamylase, a key catalyst for fermentative utilization of agmatine. PLoS One 2012; 7:e31528. [PMID: 22363663 PMCID: PMC3282769 DOI: 10.1371/journal.pone.0031528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/09/2012] [Indexed: 02/05/2023] Open
Abstract
Transcarbamylases reversibly transfer a carbamyl group from carbamylphosphate (CP) to an amine. Although aspartate transcarbamylase and ornithine transcarbamylase (OTC) are well characterized, little was known about putrescine transcarbamylase (PTC), the enzyme that generates CP for ATP production in the fermentative catabolism of agmatine. We demonstrate that PTC (from Enterococcus faecalis), in addition to using putrescine, can utilize L-ornithine as a poor substrate. Crystal structures at 2.5 Å and 2.0 Å resolutions of PTC bound to its respective bisubstrate analog inhibitors for putrescine and ornithine use, N-(phosphonoacetyl)-putrescine and δ-N-(phosphonoacetyl)-L-ornithine, shed light on PTC preference for putrescine. Except for a highly prominent C-terminal helix that projects away and embraces an adjacent subunit, PTC closely resembles OTCs, suggesting recent divergence of the two enzymes. Since differences between the respective 230 and SMG loops of PTC and OTC appeared to account for the differential preference of these enzymes for putrescine and ornithine, we engineered the 230-loop of PTC to make it to resemble the SMG loop of OTCs, increasing the activity with ornithine and greatly decreasing the activity with putrescine. We also examined the role of the C-terminal helix that appears a constant and exclusive PTC trait. The enzyme lacking this helix remained active but the PTC trimer stability appeared decreased, since some of the enzyme eluted as monomers from a gel filtration column. In addition, truncated PTC tended to aggregate to hexamers, as shown both chromatographically and by X-ray crystallography. Therefore, the extra C-terminal helix plays a dual role: it stabilizes the PTC trimer and, by shielding helix 1 of an adjacent subunit, it prevents the supratrimeric oligomerizations of obscure significance observed with some OTCs. Guided by the structural data we identify signature traits that permit easy and unambiguous annotation of PTC sequences.
Collapse
|
14
|
Shi D, Yu X, Zhao G, Ho J, Lu S, Allewell NM, Tuchman M. Crystal structure and biochemical properties of putrescine carbamoyltransferase from Enterococcus faecalis: Assembly, active site, and allosteric regulation. Proteins 2012; 80:1436-47. [PMID: 22328207 DOI: 10.1002/prot.24042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/03/2012] [Accepted: 01/11/2012] [Indexed: 11/09/2022]
Abstract
Putrescine carbamoyltransferase (PTCase) catalyzes the conversion of carbamoylputrescine to putrescine and carbamoyl phosphate (CP), a substrate of carbamate kinase (CK). The crystal structure of PTCase has been determined and refined at 3.2 Å resolution. The trimeric molecular structure of PTCase is similar to other carbamoyltransferases, including the catalytic subunit of aspartate carbamoyltransferase (ATCase) and ornithine carbamoyltransferase (OTCase). However, in contrast to other trimeric carbamoyltransferases, PTCase binds both CP and putrescine with Hill coefficients at saturating concentrations of the other substrate of 1.53 ± 0.03 and 1.80 ± 0.06, respectively. PTCase also has a unique structural feature: a long C-terminal helix that interacts with the adjacent subunit to enhance intersubunit interactions in the molecular trimer. The C-terminal helix appears to be essential for both formation of the functional trimer and catalytic activity, since truncated PTCase without the C-terminal helix aggregates and has only 3% of native catalytic activity. The active sites of PTCase and OTCase are similar, with the exception of the 240's loop. PTCase lacks the proline-rich sequence found in knotted carbamoyltransferases and is unknotted. A Blast search of all available genomes indicates that 35 bacteria, most of which are Gram-positive, have an agcB gene encoding PTCase located near the genes that encode agmatine deiminase and CK, consistent with the catabolic role of PTCase in the agmatine degradation pathway. Sequence comparisons indicate that the C-terminal helix identified in this PTCase structure will be found in all other PTCases identified, suggesting that it is the signature feature of the PTCase family of enzymes.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research and Department of Integrative Systems Biology, Children's National Medical Center, The George Washington University, Washington, District of Columbia 20010, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Islam Sikdar S, Kim JS. Characterization of a gene encoding ornithine carbamoyltransferase from rice. ACTA ACUST UNITED AC 2009. [DOI: 10.5010/jpb.2009.36.4.397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Crystal structure of the hexameric catabolic ornithine transcarbamylase from Lactobacillus hilgardii: Structural insights into the oligomeric assembly and metal binding. J Mol Biol 2009; 393:425-34. [PMID: 19666033 DOI: 10.1016/j.jmb.2009.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/30/2009] [Accepted: 08/01/2009] [Indexed: 11/22/2022]
Abstract
Catabolic ornithine transcarbamylase (cOTC; EC 2.1.3.3) catalyzes the formation of ornithine (ORN) and carbamoyl phosphate from citrulline, which constitutes the second step of the degradation of arginine via the arginine deiminase pathway. Here, we report the crystal structure of cOTC from the lactic acid bacteria Lactobacillus hilgardii (Lh-cOTC) refined to 2.1 A resolution. The structure reveals that Lh-cOTC forms a hexameric assembly, which was also confirmed by gel-filtration chromatography and analytical ultracentrifugation. The homohexamer, with 32 point group symmetry, represents a new oligomeric state within the members of the ornithine transcarbamylase family that are typically homotrimeric or homododecameric. The C-terminal end from each subunit constitutes a key structural element for the stabilization of the hexameric assembly in solution. Additionally, the structure reveals, for the first time in the ornithine transcarbamylase family, a metal-binding site located at the 3-fold molecular symmetry axis of each trimer.
Collapse
|
17
|
Structure, Assembly, and Mechanism of a PLP-Dependent Dodecameric l-Aspartate β-Decarboxylase. Structure 2009; 17:517-29. [DOI: 10.1016/j.str.2009.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 02/05/2009] [Accepted: 02/18/2009] [Indexed: 11/17/2022]
|
18
|
Sankaranarayanan R, Cherney MM, Cherney LT, Garen CR, Moradian F, James MNG. The crystal structures of ornithine carbamoyltransferase from Mycobacterium tuberculosis and its ternary complex with carbamoyl phosphate and L-norvaline reveal the enzyme's catalytic mechanism. J Mol Biol 2007; 375:1052-63. [PMID: 18062991 DOI: 10.1016/j.jmb.2007.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/06/2007] [Accepted: 11/09/2007] [Indexed: 11/27/2022]
Abstract
Mycobacterium tuberculosis ornithine carbamoyltransferase (Mtb OTC) catalyzes the sixth step in arginine biosynthesis; it produces citrulline from carbamoyl phosphate (CP) and ornithine (ORN). Here, we report the crystal structures of Mtb OTC in orthorhombic (form I) and hexagonal (form II) space groups. The molecules in form II are complexed with CP and l-norvaline (NVA); the latter is a competitive inhibitor of OTC. The asymmetric unit in form I contains a pseudo hexamer with 32 point group symmetry. The CP and NVA in form II induce a remarkable conformational change in the 80s and the 240s loops with the displacement of these loops towards the active site. The displacement of these loops is strikingly different from that seen in other OTC structures. In addition, the ligands induce a domain closure of 4.4 degrees in form II. Sequence comparison of active-site residues of Mtb OTC with several other OTCs of known structure reveals that they are virtually identical. The interactions involving the active-site residues of Mtb OTC with CP and NVA and a modeling study of ORN in the form II structure strongly rule out an earlier proposed mechanistic role of Cys264 in catalysis and suggest a possible mechanism for OTC. Our results strongly support the view that ORN with an already deprotonated N(epsilon) atom is the species that binds to the enzyme and that one of the phosphate oxygen atoms of CP is likely to be involved in accepting a proton from the doubly protonated N(epsilon) atom of ORN. We have interpreted this deprotonation as part of the collapse of the transition state of the reaction.
Collapse
Affiliation(s)
- Ramasamy Sankaranarayanan
- Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
19
|
de las Rivas B, Rodríguez H, Angulo I, Muñoz R, Mancheño JM. Overexpression, purification, crystallization and preliminary structural studies of catabolic ornithine transcarbamylase from Lactobacillus hilgardii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:563-7. [PMID: 17620711 PMCID: PMC2335135 DOI: 10.1107/s1744309107025195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 05/23/2007] [Indexed: 05/16/2023]
Abstract
The catabolic ornithine transcarbamylase (cOTC; EC 2.1.3.3) from the lactic acid bacteria Lactobacillus hilgardii is a key protein involved in the degradation of arginine during malolactic fermentation. cOTC containing an N-terminal His6 tag has been overexpressed in Escherichia coli, purified and crystallized under two different experimental conditions using the hanging-drop vapour-diffusion method. Crystals obtained from a solution containing 8% (w/v) PEG 4000, 75 mM sodium acetate pH 4.6 belong to the trigonal space group P321 and have unit-cell parameters a = b = 157.04, c = 79.28 A. Conversely, crystals grown in 20% (v/v) 2-methyl-2,4-pentanediol, 7.5% (w/v) PEG 4000, 100 mM HEPES pH 7.8 belong to the monoclinic space group C2 and have unit-cell parameters a = 80.06, b = 148.90, c = 91.67 A, beta = 100.25 degrees. Diffraction data were collected in-house to 3.00 and 2.91 A resolution for trigonal and monoclinic crystals, respectively. The estimated Matthews coefficient for the crystal forms were 2.36 and 2.24 A3 Da(-1), respectively, corresponding to 48% and 45% solvent content. In both cases, the results are consistent with the presence of three protein subunits in the asymmetric unit. The structure of cOTC has been determined by the molecular-replacement method using the atomic coordinates of cOTC from Pseudomonas aeruginosa (PDB code 1dxh) as the search model.
Collapse
Affiliation(s)
- Blanca de las Rivas
- Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Héctor Rodríguez
- Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Iván Angulo
- Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Rosario Muñoz
- Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - José M. Mancheño
- Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
20
|
Shi D, Morizono H, Cabrera-Luque J, Yu X, Roth L, Malamy MH, Allewell NM, Tuchman M. Structure and catalytic mechanism of a novel N-succinyl-L-ornithine transcarbamylase in arginine biosynthesis of Bacteroides fragilis. J Biol Chem 2006; 281:20623-31. [PMID: 16704984 DOI: 10.1074/jbc.m601229200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A Bacteroides fragilis gene (argF'(bf)), the disruption of which renders the bacterium auxotrophic for arginine, was expressed and its recombinant protein purified and studied. The novel protein catalyzes the carbamylation of N-succinyl-L-ornithine but not L-ornithine or N-acetyl-L-ornithine, forming N-succinyl-L-citrulline. Crystal structures of this novel transcarbamylase complexed with carbamyl phosphate and N-succinyl-L-norvaline, as well as sulfate and N-succinyl-L-norvaline have been determined and refined to 2.9 and 2.8 A resolution, respectively. They provide structural evidence that this protein is a novel N-succinyl-L-ornithine transcarbamylase. The data provided herein suggest that B. fragilis uses N-succinyl-L-ornithine rather than N-acetyl-L-ornithine for de novo arginine biosynthesis and therefore that this pathway in Bacteroides is different from the canonical arginine biosynthetic pathway of most organisms. Comparison of the structures of the new protein with those recently reported for N-acetyl-L-ornithine transcarbamylase indicates that amino acid residue 90 (B. fragilis numbering) plays an important role in conferring substrate specificity for N-succinyl-L-ornithine versus N-acetyl-L-ornithine. Movement of the 120 loop upon substrate binding occurs in N-succinyl-L-ornithine transcarbamylase, while movement of the 80 loop and significant domain closure take place as in other transcarbamylases. These findings provide new information on the putative role of succinylated intermediates in arginine biosynthesis and on the evolution of transcarbamylases.
Collapse
Affiliation(s)
- Dashuang Shi
- Children's Research Institute, Children's National Medical Center, George Washington University, Washington, D. C. 20010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Changeux JP, Edelstein SJ. Allosteric receptors after 30 years. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2006. [DOI: 10.1007/bf02904502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
El Alami M, Dubois E, Oudjama Y, Tricot C, Wouters J, Stalon V, Messenguy F. Yeast epiarginase regulation, an enzyme-enzyme activity control: identification of residues of ornithine carbamoyltransferase and arginase responsible for enzyme catalytic and regulatory activities. J Biol Chem 2003; 278:21550-8. [PMID: 12679340 DOI: 10.1074/jbc.m300383200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the presence of ornithine and arginine, ornithine carbamoyltransferase (OTCase) and arginase form a one-to-one enzyme complex in which the activity of OTCase is inhibited whereas arginase remains catalytically active. The mechanism by which these nonallosteric enzymes form a stable complex triggered by the binding of their respective substrates raises the question of how such a cooperative association is induced. Analyses of mutations in both enzymes identify residues that are required for their association, some of them being important for catalysis. In arginase, two cysteines at the C terminus of the protein are crucial for its epiarginase function but not for its catalytic activity and trimeric structure. In OTCase, mutations of putative ornithine binding residues, Asp-182, Asn-184, Asn-185, Cys-289, and Glu-256 greatly reduced the affinity for ornithine and impaired the interaction with arginase. The four lysine residues located in the SMG loop, Lys-260, Lys-263, Lys-265, and Lys-268, also play an important role in mediating the sensitivity of OTCase to ornithine and to arginase and appear to be involved in transducing and enhancing the signal given by ornithine for the closure of the catalytic domain.
Collapse
Affiliation(s)
- Mohamed El Alami
- Université Libre de Bruxelles, Laboratoire de Microbiologie and Institut de Recherches Microbiologiques J. M. Wiame, Ave. Emile Gryzon 1, Brussels 1070, Belgium
| | | | | | | | | | | | | |
Collapse
|
23
|
Xu Y, Feller G, Gerday C, Glansdorff N. Metabolic enzymes from psychrophilic bacteria: challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi. J Bacteriol 2003; 185:2161-8. [PMID: 12644485 PMCID: PMC151491 DOI: 10.1128/jb.185.7.2161-2168.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enzyme ornithine carbamoyltransferase (OTCase) of Moritella abyssi (OTCase(Mab)), a new, strictly psychrophilic and piezophilic bacterial species, was purified. OTCase(Mab) displays maximal activity at rather low temperatures (23 to 25 degrees C) compared to other cold-active enzymes and is much less thermoresistant than its homologues from Escherichia coli or thermophilic procaryotes. In vitro the enzyme is in equilibrium between a trimeric state and a dodecameric, more stable state. The melting point and denaturation enthalpy changes for the two forms are considerably lower than the corresponding values for the dodecameric Pyrococcus furiosus OTCase and for a thermolabile trimeric mutant thereof. OTCase(Mab) displays higher K(m) values for ornithine and carbamoyl phosphate than mesophilic and thermophilic OTCases and is only weakly inhibited by the bisubstrate analogue delta-N-phosphonoacetyl-L-ornithine (PALO). OTCase(Mab) differs from other, nonpsychrophilic OTCases by substitutions in the most conserved motifs, which probably contribute to the comparatively high K(m) values and the lower sensitivity to PALO. The K(m) for ornithine, however, is substantially lower at low temperatures. A survey of the catalytic efficiencies (k(cat)/K(m)) of OTCases adapted to different temperatures showed that OTCase(Mab) activity remains suboptimal at low temperature despite the 4.5-fold decrease in the K(m) value for ornithine observed when the temperature is brought from 20 to 5 degrees C. OTCase(Mab) adaptation to cold indicates a trade-off between affinity and catalytic velocity, suggesting that optimization of key metabolic enzymes at low temperatures may be constrained by natural limits.
Collapse
Affiliation(s)
- Ying Xu
- J. M. Wiame Research Institute, Microbiology, Free University of Brussels, B-1070 Brussels.
| | | | | | | |
Collapse
|
24
|
Ermler U, Hagemeier CH, Roth A, Demmer U, Grabarse W, Warkentin E, Vorholt JA. Structure of methylene-tetrahydromethanopterin dehydrogenase from methylobacterium extorquens AM1. Structure 2002; 10:1127-37. [PMID: 12176390 DOI: 10.1016/s0969-2126(02)00802-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
NADP-dependent methylene-H(4)MPT dehydrogenase, MtdA, from Methylobacterium extorquens AM1 catalyzes the dehydrogenation of methylene-tetrahydromethanopterin and methylene-tetrahydrofolate with NADP(+) as cosubstrate. The X-ray structure of MtdA with and without NADP bound was established at 1.9 A resolution. The enzyme is present as a homotrimer. The alpha,beta fold of the monomer is related to that of methylene-H(4)F dehydrogenases, suggesting a common evolutionary origin. The position of the active site is located within a large crevice built up by the two domains of one subunit and one domain of a second subunit. Methylene-H(4)MPT could be modeled into the cleft, and crucial active site residues such as Phe18, Lys256, His260, and Thr102 were identified. The molecular basis of the different substrate specificities and different catalytic demands of MtdA compared to methylene-H(4)F dehydrogenases are discussed.
Collapse
Affiliation(s)
- Ulrich Ermler
- Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Strasse 7, D-60528 Frankfurt am Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Massant J, Verstreken P, Durbecq V, Kholti A, Legrain C, Beeckmans S, Cornelis P, Glansdorff N. Metabolic channeling of carbamoyl phosphate, a thermolabile intermediate: evidence for physical interaction between carbamate kinase-like carbamoyl-phosphate synthetase and ornithine carbamoyltransferase from the hyperthermophile Pyrococcus furiosus. J Biol Chem 2002; 277:18517-22. [PMID: 11893735 DOI: 10.1074/jbc.m111481200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two different approaches provided evidence for a physical interaction between the carbamate kinase-like carbamoyl-phosphate synthetase (CKase) and ornithine carbamoyltransferase (OTCase) from the hyperthermophilic archaeon Pyrococcus furiosus. Affinity electrophoresis indicated that CKase and OTCase associate into a multienzyme cluster. Further evidence for a biologically significant interaction between CKase and OTCase was obtained by co-immunoprecipitation combined with formaldehyde cross-linking experiments. These experiments support the hypothesis that CKase and OTCase form an efficient channeling cluster for carbamoyl phosphate, an extremely thermolabile and potentially toxic metabolic intermediate. Therefore, by physically interacting with each other, CKase and OTCase prevent the thermodenaturation of carbamoyl phosphate in the aqueous cytoplasmic environment.
Collapse
Affiliation(s)
- Jan Massant
- Department of Microbiology, Vrije Universiteit Brussel, Flanders Interuniversity Institute for Biotechnology, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Clantin B, Tricot C, Lonhienne T, Stalon V, Villeret V. Probing the role of oligomerization in the high thermal stability of Pyrococcus furiosus ornithine carbamoyltransferase by site-specific mutants. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3937-42. [PMID: 11453986 DOI: 10.1046/j.1432-1327.2001.02302.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Pyrococcus furiosus ornithine carbamoyltransferase (OTCase) is extremely heat stable and maintains 50% of its catalytic activity after 60 min at 100 degrees C. The enzyme has an unusual quaternary structure when compared to anabolic OTCases from mesophilic organisms. It is built up of four trimers arranged in a tetrahedral manner, while other anabolic enzymes are single trimers. Residues Trp21, Glu25, Met29 and Trp33 are located in the main interfaces that occur between the catalytic trimers within the dodecamer. They participate in either hydrophobic clusters or ionic interactions. In order to elucidate the role played by the oligomerization in the enzyme stability at very high temperatures, we performed mutagenesis studies of these residues. All the variants show similar catalytic activities and kinetic properties when compared to the wild-type enzyme, allowing the interpretation of the mutations solely on heat stability and quaternary structure. The W21A variant has only a slight decrease in its stability, and is a dodecamer. The variants E25Q, M29A, W33A, W21A/W33A and E25Q/W33A show that altering more drastically the interfaces results in a proportional decrease in heat stability, correlated with a gradual dissociation of dodecamers into trimers. Finally, the E25Q/M29A/W33A variant shows a very large decrease in heat stability and is a trimer. These results suggest that extreme thermal stabilization of this OTCase is achieved in part through oligomerization.
Collapse
Affiliation(s)
- B Clantin
- Laboratoire de Microbiologie, Université Libre de Bruxelles, Belgium
| | | | | | | | | |
Collapse
|
27
|
Shi D, Morizono H, Yu X, Tong L, Allewell NM, Tuchman M. Human ornithine transcarbamylase: crystallographic insights into substrate recognition and conformational changes. Biochem J 2001; 354:501-9. [PMID: 11237854 PMCID: PMC1221681 DOI: 10.1042/0264-6021:3540501] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two crystal structures of human ornithine transcarbamylase (OTCase) complexed with the substrate carbamoyl phosphate (CP) have been solved. One structure, whose crystals were prepared by substituting N-phosphonacetyl-L-ornithine (PALO) liganded crystals with CP, has been refined at 2.4 A (1 A=0.1 nm) resolution to a crystallographic R factor of 18.4%. The second structure, whose crystals were prepared by co-crystallization with CP, has been refined at 2.6 A resolution to a crystallographic R factor of 20.2%. These structures provide important new insights into substrate recognition and ligand-induced conformational changes. Comparison of these structures with the structures of OTCase complexed with the bisubstrate analogue PALO or CP and L-norvaline reveals that binding of the first substrate, CP, induces a global conformational change involving relative domain movement, whereas the binding of the second substrate brings the flexible SMG loop, which is equivalent to the 240s loop in aspartate transcarbamylase, into the active site. The model reveals structural features that define the substrate specificity of the enzyme and that regulate the order of binding and release of products.
Collapse
Affiliation(s)
- D Shi
- Children's National Medical Center, 111 Michigan Avenue, Washington, DC 20010, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Roovers M, Sanchez R, Legrain C, Glansdorff N. Experimental evolution of enzyme temperature activity profile: selection in vivo and characterization of low-temperature-adapted mutants of Pyrococcus furiosus ornithine carbamoyltransferase. J Bacteriol 2001; 183:1101-5. [PMID: 11208811 PMCID: PMC94980 DOI: 10.1128/jb.183.3.1101-1105.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2000] [Accepted: 10/25/2000] [Indexed: 11/20/2022] Open
Abstract
We have obtained mutants of Pyrococcus furiosus ornithine carbamoyltransferase active at low temperatures by selecting for complementation of an appropriate yeast mutant after in vivo mutagenesis. The mutants were double ones, still complementing at 15 degrees C, a temperature already in the psychrophilic range. Their kinetic analysis is reported.
Collapse
Affiliation(s)
- M Roovers
- Department of Microbiology, Flanders Interuniversity Institute for Biotechnology (VIB), B-1070 Brussels, Belgium
| | | | | | | |
Collapse
|
29
|
Langley DB, Templeton MD, Fields BA, Mitchell RE, Collyer CA. Mechanism of inactivation of ornithine transcarbamoylase by Ndelta -(N'-Sulfodiaminophosphinyl)-L-ornithine, a true transition state analogue? Crystal structure and implications for catalytic mechanism. J Biol Chem 2000; 275:20012-9. [PMID: 10747936 DOI: 10.1074/jbc.m000585200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure is reported at 1.8 A resolution of Escherichia coli ornithine transcarbamoylase in complex with the active derivative of phaseolotoxin from Pseudomonas syringae pv. phaseolicola, N(delta)-(N'-sulfodiaminophosphinyl)-l-ornithine. Electron density reveals that the complex is not a covalent adduct as previously thought. Kinetic data confirm that N(delta)-(N'-sulfodiaminophosphinyl)-l-ornithine exhibits reversible inhibition with a half-life in the order of approximately 22 h and a dissociation constant of K(D) = 1.6 x 10(-12) m at 37 degrees C and pH 8.0. Observed hydrogen bonding about the chiral tetrahedral phosphorus of the inhibitor is consistent only with the presence of the R enantiomer. A strong interaction is also observed between Arg(57) Nepsilon and the P-N-S bridging nitrogen indicating that imino tautomers of N(delta)-(N'-sulfodiaminophosphinyl)-l-ornithine are present in the bound state. An imino tautomer of N(delta)-(N'-sulfodiaminophosphinyl)-l-ornithine is structurally analogous to the proposed reaction transition state. Hence, we propose that N(delta)-(N'-sulfodiaminophosphinyl)-l-ornithine, with its three unique N-P bonds, represents a true transition state analogue for ornithine transcarbamoylases, consistent with the tight binding kinetics observed.
Collapse
Affiliation(s)
- D B Langley
- Department of Biochemistry, The University of Sydney, Sydney 2006, Australia and the Horticultural and Food Research Institute of New Zealand, Mt Albert Research Centre, Auckland 1003, New Zealand
| | | | | | | | | |
Collapse
|
30
|
Shi D, Morizono H, Aoyagi M, Tuchman M, Allewell NM. Crystal structure of human ornithine transcarbamylase complexed with carbamoyl phosphate and L-norvaline at 1.9 ? resolution. Proteins 2000. [DOI: 10.1002/(sici)1097-0134(20000601)39:4<271::aid-prot10>3.0.co;2-e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Seitz T, Berger B, Nguyen VT, Tricot C, Villeret V, Schmid S, Stalon V, Haas D. Linker insertion mutagenesis based on IS21 transposition: isolation of an AMP-insensitive variant of catabolic ornithine carbamoyltransferase from Pseudomonas aeruginosa. PROTEIN ENGINEERING 2000; 13:329-37. [PMID: 10835106 DOI: 10.1093/protein/13.5.329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The bacterial insertion sequence IS21 when repeated in tandem efficiently promotes non-replicative cointegrate formation in Escherichia coli. An IS21-IS21 junction region which had been engineered to contain unique SalI and BglII sites close to the IS21 termini was not affected in the ability to form cointegrates with target plasmids. Based on this finding, a novel procedure of random linker insertion mutagenesis was devised. Suicide plasmids containing the engineered junction region (pME5 and pME6) formed cointegrates with target plasmids in an E.coli host strain expressing the IS21 transposition proteins in trans. Cointegrates were resolved in vitro by restriction with SalI or BglII and ligation; thus, insertions of four or 11 codons, respectively, were created in the target DNA, practically at random. The cloned Pseudomonas aeruginosa arcB gene encoding catabolic ornithine carbamoyltransferase was used as a target. Of 20 different four-codon insertions in arcB, 11 inactivated the enzyme. Among the remaining nine insertion mutants which retained enzyme activity, three enzyme variants had reduced affinity for the substrate ornithine and one had lost recognition of the allosteric activator AMP. The linker insertions obtained illustrate the usefulness of the method in the analysis of structure-function relationships of proteins.
Collapse
Affiliation(s)
- T Seitz
- Laboratoire de Biologie Microbienne, Universit¿e de Lausanne, CH-1015 Lausanne, Switzerland, Institut de Recherches Microbiologiques Jean-Marie Wiame, B-1070 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Price NC, Boam DJ, Kelly SM, Duncan D, Krell T, Gourley DG, Coggins JR, Virden R, Hawkins AR. The folding and assembly of the dodecameric type II dehydroquinases. Biochem J 1999; 338 ( Pt 1):195-202. [PMID: 9931316 PMCID: PMC1220042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The dodecameric type II dehydroquinases (DHQases) have an unusual quaternary structure in which four trimeric units are arranged with cubic 23 symmetry. The unfolding and refolding behaviour of the enzymes from Streptomyces coelicolor and Mycobacterium tuberculosis have been studied. Gel-permeation studies show that, at low concentrations (0.5 M) of guanidinium chloride (GdmCl), both enzymes dissociate into trimeric units, with little or no change in the secondary or tertiary structure and with a 15% loss (S. coelicolor) or a 55% increase (M. tuberculosis) in activity. At higher concentrations of GdmCl, both enzymes undergo sharp unfolding transitions over narrow ranges of the denaturant concentration, consistent with co-operative unfolding of the subunits. When the concentration of GdmCl is lowered by dilution from 6 M to 0.55 M, the enzyme from S. coelicolor refolds in an efficient manner to form trimeric units, with more than 75% regain of activity. Using a similar approach the M. tuberculosis enzyme regains less than 35% activity. From the time courses of the changes in CD, fluorescence and activity of the S. coelicolor enzyme, an outline model for the refolding of the enzyme has been proposed. The model involves a rapid refolding event in which approximately half the secondary structure is regained. A slower folding process follows within the monomer, resulting in acquisition of the full secondary structure. The major changes in fluorescence occur in a second-order process which involves the association of two folded monomers. Regain of activity is dependent on a further associative event, showing that the minimum active unit must be at least trimeric. Reassembly of the dodecameric S. coelicolor enzyme and essentially complete regain of activity can be accomplished if the denatured enzyme is dialysed extensively to remove GdmCl. These results are discussed in terms of the recently solved X-ray structures of type II DHQases from these sources.
Collapse
Affiliation(s)
- N C Price
- Department of Biological Sciences, University of Stirling, Scotland, U.K.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shi D, Morizono H, Ha Y, Aoyagi M, Tuchman M, Allewell NM. 1.85-A resolution crystal structure of human ornithine transcarbamoylase complexed with N-phosphonacetyl-L-ornithine. Catalytic mechanism and correlation with inherited deficiency. J Biol Chem 1998; 273:34247-54. [PMID: 9852088 DOI: 10.1074/jbc.273.51.34247] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of human ornithine transcarbamoylase complexed with the bisubstrate analog N-phosphonacetyl-L-ornithine has been solved at 1.85-A resolution by molecular replacement. Deleterious mutations produce clinical hyperammonia that, if untreated, results in neurological symptoms or death (ornithine transcarbamylase deficiency). The holoenzyme is trimeric, and as in other transcarbamoylases, each subunit contains an N-terminal domain that binds carbamoyl phosphate and a C-terminal domain that binds L-ornithine. The active site is located in the cleft between domains and contains additional residues from an adjacent subunit. Binding of N-phosphonacetyl-L-ornithine promotes domain closure. The resolution of the structure enables the role of active site residues in the catalytic mechanism to be critically examined. The side chain of Cys-303 is positioned so as to be able to interact with the delta-amino group of L-ornithine which attacks the carbonyl carbon of carbamoyl phosphate in the enzyme-catalyzed reaction. This sulfhydryl group forms a charge relay system with Asp-263 and the alpha-amino group of L-ornithine, instead of with His-302 and Glu-310, as previously proposed. In common with other ureotelic ornithine transcarbamoylases, the human enzyme lacks a loop of approximately 20 residues between helix H10 and beta-strand B10 which is present in prokaryotic ornithine transcarbamoylases but has a C-terminal extension of 10 residues that interacts with the body of the protein but is exposed. The sequence of this C-terminal extension is homologous to an interhelical loop found in several membrane proteins, including mitochondrial transport proteins, suggesting a possible mode of interaction with the inner mitochondrial membrane.
Collapse
Affiliation(s)
- D Shi
- Department of Biochemistry, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- J P Changeux
- Neurobiologie Moléculaire Institut Pasteur, Paris, France.
| | | |
Collapse
|
35
|
Tricot C, Villeret V, Sainz G, Dideberg O, Stalon V. Allosteric regulation in Pseudomonas aeruginosa catabolic ornithine carbamoyltransferase revisited: association of concerted homotropic cooperative interactions and local heterotropic effects. J Mol Biol 1998; 283:695-704. [PMID: 9784377 DOI: 10.1006/jmbi.1998.2133] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The allosteric catabolic ornithine carbamoyltransferase (OTCase) from Pseudomonas aeruginosa, a dodecamer build up of four trimers of identical subunits, shows strong carbamoylphosphate homotropic co-operativity. Its activity is allosterically inhibited by spermidine and activated by AMP. Modified forms of the enzyme exhibiting substantial alterations in both homotropic and heterotropic interactions were recently obtained. We report here the first detailed kinetic characterization of homotropic and heterotropic modulations in allosteric wild-type and in engineered OTCases. Homotropic co-operativity for the saturation either by citrulline or arsenate was also observed when arsenate was utilised as an alternate substrate of the reverse reaction. Amino acid substitution of glutamate 105 by a glycine produces an enzyme devoid of homotropic interactions between the catalytic sites for carbamoylphosphate. This mutant, which is blocked in an active conformation, is still sensitive to the allosteric effector AMP, which increases affinity with respect to the substrate, carbamoylphosphate. It is also observed that homotropic co-operative interactions do not reappear in the E105G enzyme upon strong inhibition by the allosteric inhibitor of the wild-type enzyme, spermidine.Replacement of residues 34 to 101 of the native enzyme by the homologous amino acids of anabolic Escherichia coli OTCase produces a trimeric enzyme which retains reduced homotropic co-operativity. Activation by AMP and inhibition by spermidine of this chimaeric OTCase do not affect carbamoylphosphate homotropic co-operativity. AMP acts by reducing the concentration of substrate at half maximum velocity while spermidine acts in the inverse way. These observations indicate that in the two mutant forms of OTCase, homotropic and heterotropic interactions can be uncoupled and therefore must involve different molecular mechanisms. Furthermore, the results of stimulation of enzyme activity by phosphate, arsenate, pyrophosphate and phosphonoacetyl-l-ornithine on wild-type and mutant OTCases suggest that the physiological substrate phosphate, besides acting at the catalytic site, may act at an allosteric site. On the other hand, pyrophosphate and phosphonoacetyl-l-ornithine activation results exclusively from interactions of this effector with the active site residues.
Collapse
Affiliation(s)
- C Tricot
- Institut de Recherches Microbiologiques Jean-Marie WIAME, 1, avenue Emile Gryson, Brussels, B-1070, Belgium
| | | | | | | | | |
Collapse
|
36
|
Villeret V, Clantin B, Tricot C, Legrain C, Roovers M, Stalon V, Glansdorff N, Van Beeumen J. The crystal structure of Pyrococcus furiosus ornithine carbamoyltransferase reveals a key role for oligomerization in enzyme stability at extremely high temperatures. Proc Natl Acad Sci U S A 1998; 95:2801-6. [PMID: 9501170 PMCID: PMC19649 DOI: 10.1073/pnas.95.6.2801] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1997] [Indexed: 02/06/2023] Open
Abstract
The Pyrococcus furiosus (PF) ornithine carbamoyltransferase (OTCase; EC 2.1.3.3) is an extremely heat-stable enzyme that maintains about 50% of its activity after heat treatment for 60 min at 100 degrees C. To understand the molecular basis of thermostability of this enzyme, we have determined its three-dimensional structure at a resolution of 2.7 A and compared it with the previously reported structures of OTCases isolated from mesophilic bacteria. Most OTCases investigated up to now are homotrimeric and devoid of allosteric properties. A striking exception is the catabolic OTCase from Pseudomonas aeruginosa, which is allosterically regulated and built up of four trimers disposed in a tetrahedral manner, an architecture that actually underlies the allostery of the enzyme. We now report that the thermostable PF OTCase (420 kDa) presents the same 23-point group symmetry. The enzyme displays Michaelis-Menten kinetics. A detailed comparison of the two enzymes suggests that, in OTCases, not only allostery but also thermophily was achieved through oligomerization of a trimer as a common catalytic motif. Thermal stabilization of the PF OTCase dodecamer is mainly the result of hydrophobic interfaces between trimers, at positions where allosteric binding sites have been identified in the allosteric enzyme. The present crystallographic analysis of PF OTCase provides a structural illustration that oligomerization can play a major role in extreme thermal stabilization.
Collapse
Affiliation(s)
- V Villeret
- Laboratorium voor Eiwitbiochemie en Eiwitengineering, Universiteit Gent, Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Parmentier LE, Kristensen JS. Studies on the urea cycle enzyme ornithine transcarbamylase using heavy atom isotope effects. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1382:333-8. [PMID: 9540805 DOI: 10.1016/s0167-4838(97)00177-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ornithine transcarbamylase (OTCase) catalyzes the reaction between L-ornithine and carbamyl phosphate in the first step of the urea cycle. 13C isotope effects were measured in carbamyl phosphate, using OTCase obtained from E. coli in a one-column purification which yielded 30 mg of very pure enzyme from 51 of cell culture. At near zero L-ornithine, the 13C kinetic isotope effect was 1.0095, at high levels of L-ornithine (86 mM) the 13C kinetic isotope effect was unity, and 0.83 mM ornithine was found to eliminate half the isotope effect. These results are indicative of an ordered kinetic mechanism in which carbamyl phosphate binds to the enzyme before L-ornithine. Similar experiments were performed using the slow substrate L-lysine in place of L-ornithine. At 90 mM L-lysine the 13C kinetic isotope effect was large, 1.076. This value is most likely the intrinsic kinetic isotope effect with this substrate, and the chemistry of the enzyme catalyzed reaction has become rate limiting.
Collapse
|
38
|
Tuchman M, Morizono H, Rajagopal BS, Plante RJ, Allewell NM. The biochemical and molecular spectrum of ornithine transcarbamylase deficiency. J Inherit Metab Dis 1998; 21 Suppl 1:40-58. [PMID: 9686344 DOI: 10.1023/a:1005353407220] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ornithine transcarbamylase (OTCase) deficiency, the most common inherited urea cycle disorder, is transmitted as an X-linked trait. The clinical phenotype in affected males as well as heterozygous females shows a spectrum of severity ranging from neonatal hyperammonaemic coma to asymptomatic adults. The ornithine transcarbamylase enzyme is a trimer with three active sites per holoenzyme molecule, each of which is composed of an interdomain region of one polypeptide and a polar domain of the adjacent polypeptide. The OTC gene is located on the short arm of the X-chromosome and one of the two alleles undergoes inactivation in female cells. Approximately 140 mutations have been found in families affected with OTCase deficiency, most having their own 'private' mutation. Large deletions of one exon or more are seen in approximately 7% of patients, small deletions or insertions are seen in about 9%, and the remaining mutations are single base substitutions. Approximately 15% of mutations affect RNA splicing sites. The recurrent mutations are distributed equally among CpG dinucleotide hot spots. Generally, mutations causing neonatal disease affect amino acid residues that are 'buried' in the interior of the enzyme, especially around the active site, while those associated with late onset and milder phenotypes tend to be located on the surface of the protein. Very few mutations have been found in the sequence of the leader peptide, proportionally much fewer than in the sequence of the mature enzyme. Only few of the mutations have been expressed in bacteria or mammalian cells for the study of their deleterious mechanisms. Examples of expressed mutations include R277W and R277Q associated with late-onset disease, which markedly increase the Km for ornithine, shift the pH optimum to more alkaline and decrease the thermal stability of the purified mutant enzyme. R141Q (neonatal disease) disrupts the active site, whereas the purified R40H mutant has normal catalytic function and this mutation is likely to affect posttranslational processing such as mitochondrial targeting. It appears that most new mutations occur in male sperm and are then passed on to a transmitting heterozygous female. Uncommonly, mild mutations are transmitted by asymptomatic males to their daughters, subsequently resulting in clinical disease of males in future generations. The causes for variable expressivity of these mutations are currently unknown but are likely to involve a combination of environmental and genetic modifiers.
Collapse
Affiliation(s)
- M Tuchman
- Department of Pediatrics, Medical School, University of Minnesota, St. Paul, USA
| | | | | | | | | |
Collapse
|
39
|
D'Hooghe I, Vander Wauven C, Michiels J, Tricot C, de Wilde P, Vanderleyden J, Stalon V. The arginine deiminase pathway in Rhizobium etli: DNA sequence analysis and functional study of the arcABC genes. J Bacteriol 1997; 179:7403-9. [PMID: 9393705 PMCID: PMC179691 DOI: 10.1128/jb.179.23.7403-7409.1997] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sequence analysis upstream of the Rhizobium etli fixLJ homologous genes revealed the presence of three open reading frames homologous to the arcABC genes of Pseudomonas aeruginosa. The P. aeruginosa arcABC genes code for the enzymes of the arginine deiminase pathway: arginine deiminase, catabolic ornithine carbamoyltransferase (cOTCase), and carbamate kinase. OTCase activities were measured in free-living R. etli cells and in bacteroids isolated from bean nodules. OTCase activity in free-living cells was observed at a different pH optimum than OTCase activity in bacteroids, suggesting the presence of two enzymes with different characteristics and different expression patterns of the corresponding genes. The characteristics of the OTCase isolated from the bacteroids were studied in further detail and were shown to be similar to the properties of the cOTCase of P. aeruginosa. The enzyme has a pH optimum of 6.8 and a molecular mass of approximately 450 kDa, is characterized by a sigmoidal carbamoyl phosphate saturation curve, and exhibits a cooperativity for carbamoyl phosphate. R. etli arcA mutants, with polar effects on arcB and arcC, were constructed by insertion mutagenesis. Bean nodules induced by arcA mutants were still able to fix nitrogen but showed a significantly lower acetylene reduction activity than nodules induced by the wild type. No significant differences in nodule dry weight, plant dry weight, and number of nodules were found between the wild type and the mutants. Determination of the OTCase activity in extracts from bacteroids revealed a strong decrease in activity of this enzyme in the arcA mutant compared to the wild-type strain. Finally, we observed that expression of an R. etli arcA-gusA fusion was strongly induced under anaerobic conditions.
Collapse
Affiliation(s)
- I D'Hooghe
- F. A. Janssens Laboratory of Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
40
|
García-Pérez MA, Climent C, Briones P, Vilaseca MA, Rodés M, Rubio V. Missense mutations in codon 225 of ornithine transcarbamylase (OTC) result in decreased amounts of OTC protein: a hypothesis on the molecular mechanism of the OTC deficiency. J Inherit Metab Dis 1997; 20:769-77. [PMID: 9427144 DOI: 10.1023/a:1005363600268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mutations P225L and P225R were identified in codon 225 of the gene for ornithine transcarbamylase (OTC) in two patients with the neonatal form of OTC deficiency. The mutations occur at a CpG dinucleotide and eliminate a unique MspI restriction site in exon 7 of the OTC gene. They do not alter existing splice sites or create new sites, as judged from the nucleotide sequence. Both mutations are associated with undetectable levels of OTC antigen in liver homogenates, and with either complete lack of OTC activity (P225R mutation) or very small residual activity (0.15% of normal in the P225L mutation). The residual activity observed with P225L exhibits normal pH dependence, little or no increases in the Km values for ornithine and carbamoyl phosphate and normal stability at either 37 degrees C or, in the presence of 0.66 mol/L urea, at 0 degree C. The latter conditions were used to examine whether the P225L mutation favours dissociation of the active OTC trimer. Given the normal stability and lack of tendency to dissociation of the mutant enzyme, it appears likely that the dramatic reduction in the level of OTC protein is due to inefficient conversion of the mutant OTC precursor polypeptide (pOTC) into the correctly localized, appropriately folded, mature enzyme trimer, suggesting degradation of pOTC in transit to the mitochondria.
Collapse
Affiliation(s)
- M A García-Pérez
- Instituto de Investigaciones Citológicas, Fundación Valenciana de Investigaciones Biomédicas, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Ha Y, McCann MT, Tuchman M, Allewell NM. Substrate-induced conformational change in a trimeric ornithine transcarbamoylase. Proc Natl Acad Sci U S A 1997; 94:9550-5. [PMID: 9275160 PMCID: PMC23215 DOI: 10.1073/pnas.94.18.9550] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The crystal structure of Escherichia coli ornithine transcarbamoylase (OTCase, EC 2.1.3.3) complexed with the bisubstrate analog N-(phosphonacetyl)-L-ornithine (PALO) has been determined at 2.8-A resolution. This research on the structure of a transcarbamoylase catalytic trimer with a substrate analog bound provides new insights into the linkages between substrate binding, protein-protein interactions, and conformational change. The structure was solved by molecular replacement with the Pseudomonas aeruginosa catabolic OTCase catalytic trimer (Villeret, V., Tricot, C., Stalon, V. & Dideberg, O. (1995) Proc. Natl. Acad. Sci. USA 92, 10762-10766; Protein Data Bank reference pdb 1otc) as the model and refined to a crystallographic R value of 21.3%. Each polypeptide chain folds into two domains, a carbamoyl phosphate binding domain and an L-ornithine binding domain. The bound inhibitor interacts with the side chains and/or backbone atoms of Lys-53, Ser-55, Thr-56, Arg-57, Thr-58, Arg-106, His-133, Asn-167, Asp-231, Met-236, Leu-274, Arg-319 as well as Gln-82 and Lys-86 from an adjacent chain. Comparison with the unligated P. aeruginosa catabolic OTCase structure indicates that binding of the substrate analog results in closure of the two domains of each chain. As in E. coli aspartate transcarbamoylase, the 240s loop undergoes the largest conformational change upon substrate binding. The clinical implications for human OTCase deficiency are discussed.
Collapse
Affiliation(s)
- Y Ha
- Department of Biochemistry, College of Biological Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
42
|
Sanchez R, Baetens M, Van de Casteele M, Roovers M, Legrain C, Glansdorff N. Ornithine carbamoyltransferase from the extreme thermophile Thermus thermophilus--analysis of the gene and characterisation of the protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:466-74. [PMID: 9346304 DOI: 10.1111/j.1432-1033.1997.00466.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ornithine carbamoyltransferase (OTC) gene from Thermus thermophilus was cloned from a lambda-ZAP genomic library. An ORF of 903 bp was found coding for a protein of Mr 33,200. The coding region has a very high overall G+C content of 68.0%. T. thermophilus OTC displays 38-48% amino acid identity with other OTC, the most closely related proteins being OTC from the archaeon Pyrococcus furiosus and from Bacillus subtilis. The enzyme was expressed in Escherichia coli and purified to homogeneity using a thermoshock followed by affinity chromatography on delta-N-phosphonoacetyl-L-ornithine-Sepharose. The native enzyme has an Mr of about 110,000, suggesting a trimeric structure, as for most anabolic OTC from various organisms. T. thermophilus OTC exhibits Michaelis-Menten kinetics for carbamoyl phosphate and ornithine with a Km(app) of 0.10 mM for both substrates. The pH optimum was dependent on ornithine concentration with an optimum at pH 8 for ornithine concentrations around Km values. Higher concentrations shift the optimum towards lower pH. The optimal temperature was above 65 degrees C and the activation energy 39.1 kJ/mol. The enzyme is highly thermostable. In the presence of its substrates the half-life time was several hours at 85 degrees C. Ionic and hydrophobic interactions contribute to the stability. The expression of T. thermophilus OTC was negatively regulated by arginine.
Collapse
Affiliation(s)
- R Sanchez
- Laboratorium voor erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
43
|
Legrain C, Villeret V, Roovers M, Gigot D, Dideberg O, Piérard A, Glansdorff N. Biochemical characterisation of ornithine carbamoyltransferase from Pyrococcus furiosus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:1046-55. [PMID: 9288930 DOI: 10.1111/j.1432-1033.1997.01046.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ornithine carbamoyltransferase (OTCase) was purified to homogeneity from the hyperthermophilic archaeon Pyrococcus furiosus. The enzyme is a 400 +/- 20-kDa polymer of a 35-kDa subunit, in keeping with the corresponding gene sequence [Roovers, M., Hethke, C., Legrain, C., Thomm, M. & Glansdorff, N. (1997) Isolation of the gene encoding Pyrococcus furiosus ornithine cabamoyltransferase and study of its expression profile in vivo and in vitro, Eur. J. Biochem. 247, 1038-1045]. In contrast with the dodecameric catabolic OTCase of Pseudomonas aeruginosa, P. furiosus OTCase exhibits no substrate cooperativity. In keeping with other data discussed in the text, this suggests that the enzyme serves an anabolic function. Half-life estimates for the purified enzyme ranged over 21-65 min at 100 degrees C according to the experimental conditions and reached several hours in the presence of ornithine and phosphate. The stability was not markedly influenced by the protein concentration. Whereas comparative examination of OTCase sequences did not point to any outstanding feature possibly related to thermophily, modelling the enzyme on the X-ray structure of P. aeruginosa OTCase (constituted by four trimers assembled in a tetrahedral manner) suggests that the molecule is stabilized, at least in part, by a set of hydrophobic interactions at the interfaces between the trimers. The comparison between P. aeruginosa and P. furiosus OTCases suggests that two different properties, allostery and thermostability, have been engineered starting from a similar quaternary structure of high internal symmetry. Recombinant P. furiosus OTCase synthesised by Escherichia coli proved less stable than the native enzyme. In Saccharomyces cerevisiae, however, an enzyme apparently identical to the native one could be obtained.
Collapse
Affiliation(s)
- C Legrain
- Institut de Recherches du Centre d'Enseignement et de Recherches des Industries Alimentaires, Commission de la Communauté Francaise, Bruxelles, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Jin L, Seaton BA, Head JF. Crystal structure at 2.8 A resolution of anabolic ornithine transcarbamylase from Escherichia coli. NATURE STRUCTURAL BIOLOGY 1997; 4:622-5. [PMID: 9253409 DOI: 10.1038/nsb0897-622] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Morizono H, Listrom CD, Rajagopal BS, Aoyagi M, McCann MT, Allewell NM, Tuchman M. 'Late onset' ornithine transcarbamylase deficiency: function of three purified recombinant mutant enzymes. Hum Mol Genet 1997; 6:963-8. [PMID: 9175746 DOI: 10.1093/hmg/6.6.963] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although many mutations in the ornithine transcarbamylase gene have been correlated with 'late onset' of hyperammonemia in patients, the effects of these mutations on enzyme function are largely unknown. Three recurrent mutations (R40H, R277W and R277Q) found in patients with 'late onset' disease were incorporated into 'mature' human ornithine transcarbamylase cDNA and overexpressed in Escherichia coli. The three recombinant mutant enzymes were purified to homogeneity on an affinity column and their biochemical characteristics were compared to the wild type enzyme. The R277W and R277Q mutants display markedly reduced affinity for L-ornithine, loss of substrate inhibition, alkaline shift of pH optimum, and reduced thermal stability compared to the wild type enzyme. These differences, particularly the reduced affinity for L-ornithine, are sufficient to account for their biochemical effects. In contrast, the 'mature' R40H mutant was biochemically indistinguishable from the wild type enzyme in vitro.
Collapse
Affiliation(s)
- H Morizono
- Department of Biochemistry, College of Biological Sciences, University of Minnesota, St Paul 55108, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Morizono H, Tuchman M, Rajagopal BS, McCann MT, Listrom CD, Yuan X, Venugopal D, Barany G, Allewell NM. Expression, purification and kinetic characterization of wild-type human ornithine transcarbamylase and a recurrent mutant that produces 'late onset' hyperammonaemia. Biochem J 1997; 322 ( Pt 2):625-31. [PMID: 9065786 PMCID: PMC1218235 DOI: 10.1042/bj3220625] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ornithine Transcarbamylase Deficiency, an X-linked disorder, is the most common cause of inherited urea cycle disorders. Approx. 90 mutations that produce reduced levels of ornithine transcarbamylase (OTCase) activity have been identified in patients [Tuchman (1993) Hum. Mutat. 2, 174-178; Tuchman and Plante (1995) Hum. Mutat. 5, 293-295]. A model of the three-dimensional structure of OTCase, developed on the basis of its homology to the catalytic subunit of Escherichia coli aspartate transcarbamylase (ATCase) [Tuchman, Morizono, Reish, Yuan and Allewell (1995) J. Med. Genet. 32, 680-688], and in good agreement with the crystal structure of Pseudomonas aeruginosa OTCase [Villeret, Tricot, Stalon and Dideberg (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 10762-10766], indicates that many mutations that produce severe clinical symptoms are at the active site or buried in the interior of the protein. However, one of the few recurrent mutations, R277W, an alteration that produces a milder phenotype of ornithine transcarbamylase deficiency, is located in the model in a loop remote from the active site that is analogous to a similar loop (the 240's loop, a flexible loop of the catalytic chain of Escherichia coli aspartate transcarbamylase, comprised of residues 230-250) of ATCase. Human wild-type OTCase and the R277W mutant have been cloned and overexpressed in E. coli and a rapid and efficient purification method utilizing the bisubstrate analogue, Ndelta-(phosphonacetyl)-L-ornithine, has been developed and used to purify both proteins. Gel chromatography indicates both are trimeric. The pH dependence of the kinetic parameters of the wild-type enzyme is similar to that of E. coli OTCase [Kuo, Herzberg and Lipscomb (1985) Biochemistry 24, 4754-4761], suggesting that its catalytic mechanism is similar, although its maximal activity is approx. 10-fold less. Compared with the wild-type, the R277W mutant has nearly 70-fold lower affinity for L-ornithine, shows no substrate inhibition, and its thermal stability is reduced by 5 degrees C. Its reduced affinity for L-ornithine, which in turn results in lower activity at physiological concentrations of ornithine, as well as its reduced stability, may contribute to the clinical effects that it produces.
Collapse
Affiliation(s)
- H Morizono
- Department of Biochemistry, College of Biological Sciences, University of Minnesota, St. Paul 55108, U.S.A
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- William N. Lipscomb
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | | |
Collapse
|
48
|
Mouz N, Tricot C, Ebel C, Petillot Y, Stalon V, Dideberg O. Use of a designed fusion protein dissociates allosteric properties from the dodecameric state of Pseudomonas aeruginosa catabolic ornithine carbamoyltransferase. Proc Natl Acad Sci U S A 1996; 93:9414-9. [PMID: 8790344 PMCID: PMC38442 DOI: 10.1073/pnas.93.18.9414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The catabolic ornithine carbamoyltransferase from Pseudomonas aeruginosa, an enzyme consisting of 12 identical 38-kDa subunits, displays allosteric properties, namely carbamoylphosphate homotropic cooperativity and heterotropic activation by AMP and other nucleoside monophosphates and inhibition by polyamines. To shed light on the effect of the oligomeric organization on the enzyme's activity and/or allosteric behavior, a hybrid ornithine carbamoyltransferase/glutathione S-transferase (OTCase-GST) molecule was constructed by fusing the 3' end of the P. aeruginosa arcB gene (OTCase) to the 5' end of the cDNA encoding Musca domestica GST by using a polyglycine encoding sequence as a linker. The fusion protein was overexpressed in Escherichia coli and purified from cell extracts by affinity chromatography, making use of the GST domain. It was found to exist as a trimer and to retain both the homotropic and heterotropic characteristic interactions of the wild-type catabolic OTCase but to a lower extent as compared with the wild-type OTCase. The dodecameric organization of catabolic P. aeruginosa OTCase may therefore be related to an enhancement of the substrate cooperativity already present in its trimers (and perhaps also to the thermostability of the enzyme).
Collapse
Affiliation(s)
- N Mouz
- Laboratoire de Cristallographie Macromoléculaire, Institut de Biologie Structurale Jean-Pierre EBEL, Commissariat à l'Energie Atomique-Centre National de la Recherche Scientifique, Grenoble, France
| | | | | | | | | | | |
Collapse
|
49
|
Murata LB, Schachman HK. Structural similarity between ornithine and aspartate transcarbamoylases of Escherichia coli: characterization of the active site and evidence for an interdomain carboxy-terminal helix in ornithine transcarbamoylase. Protein Sci 1996; 5:709-18. [PMID: 8845761 PMCID: PMC2143393 DOI: 10.1002/pro.5560050416] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Predictions of tertiary structures of proteins from their amino acid sequences are facilitated greatly when the structures of homologous proteins are known. On this basis, structural features of Escherichia coli ornithine transcarbamoylase (OTCase) were investigated by site-directed mutagenesis experiments based on the known tertiary structure of the catalytic (c) chain of E. coli aspartate transcarbamoylase (ATCase). In ATCase, each c chain is composed of two globular domains connected by two interdomain helices, one of which is near the C-terminus and is critical for the in vivo folding of the chains and their assembly into trimers. Each active site is located at the interface between two chains and requires the participation of residues from each of the adjacent chains. OTCase, a trimeric enzyme, has been proposed to be similar in structure to the ATCase trimer on the basis of sequence identity (32%), the nature of the reaction catalyzed by the enzyme, and secondary structure predictions. As shown here, analysis of OTCase and ATCase sequences revealed extensive evolutionary conservation in portions corresponding to the ATCase active site and the C-terminal helix. Truncations and substitutions within the predicted C-terminal helix of OTCase had effects on activity and thermal stability strikingly similar to those caused by analogous alterations in ATCase. Similarly, substitutions at either of two conserved residues, Ser 55 and Lys 86, in the proposed active site of OTCase had deleterious effects parallel to those caused by the analogous ATCase substitutions. Hybrid trimers comprised of chains from both these relatively inactive OTCase mutants exhibited dramatically increased activity, as predicted for shared active sites located at the chain interfaces. These results strongly support the hypothesis that the tertiary and quaternary structures of the two enzymes are similar.
Collapse
Affiliation(s)
- L B Murata
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
50
|
Nguyen VT, Baker DP, Tricot C, Baur H, Villeret V, Dideberg O, Gigot D, Stalon V, Haas D. Catabolic ornithine carbamoyltransferase of Pseudomonas aeruginosa. Importance of the N-terminal region for dodecameric structure and homotropic carbamoylphosphate cooperativity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:283-93. [PMID: 8617277 DOI: 10.1111/j.1432-1033.1996.00283.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pseudomonas aeruginosa has an anabolic (ArgF) and a catabolic (ArcB) ornithine carbamoyltransferase (OTCase). Despite extensive sequence similarities, these enzymes function unidirectionally in vivo. In the dodecameric catabolic OTCase, homotropic cooperativity for carbamoylphosphate strongly depresses the anabolic reaction; the residue Glu1O5 and the C-terminus are known to be essential for this cooperativity. When Glu1O5 and nine C-terminal amino acids of the catabolic OTCase were introduced, by in vitro genetic manipulation, into the closely related, trimeric, anabolic (ArgF) OTCase of Escherichia coli, the enzyme displayed Michaelis-Menten kinetics and no cooperativity was observed. This indicates that additional amino acid residues are required to produce homotropic cooperativity and a dodecameric assembly. To localize these residues, we constructed several hybrid enzymes by fusing, in vivo or in vitro, the E. coli argF gene to the P. aeruginosa arcB gene. A hybrid enzyme consisting of 101 N-terminal ArgF amino acids fused to 233 C-terminal ArcB residues and the reciprocal ArcB-ArgF hybrid were both trimers with little or no cooperativity. Replacing the seven N-terminal residues of the ArcB enzyme by the corresponding six residues of E. coli ArgF enzyme produced a dodecameric enzyme which showed a reduced affinity for carbamoylphosphate and an increase in homotropic cooperativity. Thus, the N-terminal amino acids of catabolic OTCase are important for interaction with carbamoylphosphate, but do not alone determine dodecameric assembly. Hybrid enzymes consisting of either 26 or 42 N-terminal ArgF amino acids and the corresponding C-terminal ArcB residues were both trimeric, yet they retained some homotropic cooperativity. Within the N-terminal ArcB region, a replacement of motif 28-33 by the corresponding ArgF segment destabilized the dodecameric structure and the enzyme existed in trimeric and dodecameric states, indicating that this region is important for dodecameric assembly. These findings were interpreted in the light of the three-dimensional structure of catabolic OTCase, which allows predictions about trimer-trimer interactions. Dodecameric assembly appears to require at least three regions: the N- and C-termini (which are close to each other in a monomer), residues 28-33 and residues 147-154. Dodecameric structure correlates with high carbamoylphosphate cooperativity and thermal stability, but some trimeric hybrid enzymes retain cooperativity, and the dodecameric Glu1O5-->Ala mutant gives hyperbolic carbamoylphosphate saturation, indicating that dodecameric structure is neither necessary nor sufficient to ensure cooperativity.
Collapse
Affiliation(s)
- V T Nguyen
- Laboratoire de Microbiologie, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|