1
|
Wang Z, Wang T, Chen X, Lv L, Luo Y, Gu W. ALTMAN: A Novel Method for Cell Cycle Analysis. ACS OMEGA 2024; 9:37780-37788. [PMID: 39281911 PMCID: PMC11391549 DOI: 10.1021/acsomega.4c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 09/18/2024]
Abstract
Accurate analysis of S-phase fraction is crucial for the assessment of cell proliferation levels, tumor malignancy and prognostic effects of treatment. Most of the currently developed methods for S-phase cell analysis rely on flow cytometric analysis of DNA content determination. However, the lack of standardized procedures for sample analysis and interpretation of cell cycle fitting graphs poses a significant limitation in clinical practice for utilizing flow cytometry to measure the cell cycle based on DNA content. Herein, we developed an approach for analyzing S-phase cells based on telomerase activity determination. Briefly, this approach distinguishes S-phase cells in cell populations via direct fluorescence tracking of telomerase activity within individual cells. The dynamic analysis of telomerase activity in different cell cycles was made possible by the ALTMAN strategy developed in our previous studies, which has been successfully employed to distinguish S-phase cells in cultured cells. This method offers a novel avenue for the assessment of cell cycle status and the evaluation of the proliferation status of tumor cells and the prognosis effect of tumor patients via analyzing the differences in telomerase activity during different cell cycle processes.
Collapse
Affiliation(s)
- Zining Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Tian Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xiaohui Chen
- Department of Clinical Laboratory, Fuling Hospital, Chongqing University, Chongqing 408099, People's Republic of China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, Chongqing 400044, People's Republic of China
| | - Linxi Lv
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wei Gu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
2
|
Sanpedro-Luna JA, Jacinto-Vázquez JJ, Anastacio-Marcelino E, Posadas-Gutiérrez CM, Olmos-Pineda I, González-Bernal JA, Carcaño-Montiel M, Vega-Alvarado L, Vázquez-Cruz C, Sánchez-Alonso P. Telomerase RNA plays a major role in the completion of the life cycle in Ustilago maydis and shares conserved domains with other Ustilaginales. PLoS One 2023; 18:e0281251. [PMID: 36952474 PMCID: PMC10035886 DOI: 10.1371/journal.pone.0281251] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/18/2023] [Indexed: 03/25/2023] Open
Abstract
The RNA subunit of telomerase is an essential component whose primary sequence and length are poorly conserved among eukaryotic organisms. The phytopathogen Ustilago maydis is a dimorphic fungus of the order Ustilaginales. We analyzed several species of Ustilaginales to computationally identify the TElomere RNA (TER) gene ter1. To confirm the identity of the TER gene, we disrupted the gene and characterized telomerase-negative mutants. Similar to catalytic TERT mutants, ter1Δ mutants exhibit phenotypes of growth delay, telomere shortening and low replicative potential. ter1-disrupted mutants were unable to infect maize seedlings in heterozygous crosses and showed defects such as cell cycle arrest and segregation failure. We concluded that ter1, which encodes the TER subunit of the telomerase of U. maydis, have similar and perhaps more extensive functions than trt1.
Collapse
Affiliation(s)
- Juan Antonio Sanpedro-Luna
- Instituto de Ciencias, Posgrado en Microbiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - José Juan Jacinto-Vázquez
- Instituto de Ciencias, Posgrado en Microbiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Estela Anastacio-Marcelino
- Instituto de Ciencias, Centro de Investigaciones Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Iván Olmos-Pineda
- Facultad de Ciencias de la Computación, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Jesús Antonio González-Bernal
- Department of Computer Science and Engineering, The University of Texas Arlington, Arlington, Texas, United States of America
| | - Moisés Carcaño-Montiel
- Instituto de Ciencias, Centro de Investigaciones Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México, México
| | - Candelario Vázquez-Cruz
- Instituto de Ciencias, Posgrado en Microbiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
- Instituto de Ciencias, Centro de Investigaciones Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Patricia Sánchez-Alonso
- Instituto de Ciencias, Posgrado en Microbiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
- Instituto de Ciencias, Centro de Investigaciones Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
- * E-mail:
| |
Collapse
|
3
|
Liu W, Fan Z, Li L, Li M. DNA-Based Nanoprobes for Simultaneous Detection of Telomerase and Correlated Biomolecules. Chembiochem 2022; 23:e202200307. [PMID: 35927933 DOI: 10.1002/cbic.202200307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Indexed: 11/12/2022]
Abstract
Telomerase (TE), a ribonucleoprotein reverse transcriptase, is enzymatically activated in most tumor cells and is responsible for promoting tumor progression and malignancy by enabling replicative immortality of cancer cells. TE has become an important hallmark for cancer diagnosis and a potential therapy target. Therefore, accurate and in site detection of TE activity, especially the simultaneous imaging of TE activity and its correlated biomolecules, is highly essential to medical diagnostics and therapeutics. DNA-based nanoprobes, with their effective cell penetration capability and programmability, are the most advantageous for detection of intracellular TE activity. This concept article introduces the recent strategies for in situ sensing and imaging of TE activity, with a focus on simultaneous detection of TE and related biomolecules, and provides challenges and perspectives for the development of new strategies for such correlated imaging.
Collapse
Affiliation(s)
- Wenjing Liu
- Capital Medical University, Beijing Chest Hospital, CHINA
| | - Zetan Fan
- National Center for Nanoscience and Technology, cas key lab, CHINA
| | - Lele Li
- National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, 11 ZhongGuanCun BeiYiTiao, Haidian District, 100190, Beijing, CHINA
| | - Mengyuan Li
- University of Science and Technology Beijing, Chemistry, CHINA
| |
Collapse
|
4
|
Koubová J, Čapková Frydrychová R. Telomerase-Positive Somatic Tissues of Honeybee Queens (Apis mellifera) Display No DNA Replication. Cytogenet Genome Res 2021; 161:470-475. [PMID: 34649236 DOI: 10.1159/000518888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022] Open
Abstract
Telomere biology is closely linked to the process of aging. The restoration of telomere length by maintaining telome-rase activity in certain cell types of human adults allows for the proliferative capacity of the cells and preserves the regeneration potential of the tissue. The absence of telome-rase, that leads to telomere attrition and irreversible cell cycle arrest in most somatic cells, acts as a protective mechanism against uncontrolled cancer growth. Nevertheless, there have been numerous studies indicating noncanonical functions of telomerase besides those involved in telomere lengthening. Eusocial insects serve as a great system for aging research. This is because eusocial reproductives, such as queens and kings, have a significantly extended lifespan compared to nonreproductive individuals of the same species. We report that the somatic tissues of honeybee queens (Apis mellifera) are associated with upregulated telomerase activity; however, this upregulation does not fully correlate with the rate of DNA replication in the tissues. This indicates a noncanonical role of telomerase in the somatic tissues of honeybee queens.
Collapse
Affiliation(s)
- Justina Koubová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Radmila Čapková Frydrychová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
5
|
Nolte J. Lrrc34 Interacts with Oct4 and Has an Impact on Telomere Length in Mouse Embryonic Stem Cells. Stem Cells Dev 2021; 30:1093-1102. [PMID: 34549596 DOI: 10.1089/scd.2021.0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Telomere length maintenance in pluripotent stem cells (PSCs) is a main characteristic and a major premise for their undifferentiated long-term survival. However, little is known about the factors that control telomere length and elongation in these cells. Here, I describe Lrrc34 (leucine-rich repeat 34) as a novel telomere length regulating gene in murine embryonic stem cells. Downregulation of Lrrc34 results in significant reduction of telomerase activity and telomere length over time while also influencing the expression of known telomere length-associated genes. Generating induced PSCs (iPSCs) with Lrrc34 as a fifth factor in classical Yamanaka reprogramming increases the efficiency but did not have an impact on telomere length in the resulting iPSCs. Moreover, Lrrc34 was found to interact with Oct4, connecting the pluripotency network to telomere length regulation.
Collapse
Affiliation(s)
- Jessica Nolte
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Wu X, Wu J, Dai J, Chen B, Chen Z, Wang S, Wu F, Lou X, Xia F. Aggregation-induced emission luminogens reveal cell cycle-dependent telomerase activity in cancer cells. Natl Sci Rev 2021; 8:nwaa306. [PMID: 34691667 PMCID: PMC8288165 DOI: 10.1093/nsr/nwaa306] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
Telomerase acts as an important biomarker for tumor identification, and synthesizes telomeric repeats at the end of chromosome telomeres during the replicative phase of the cell cycle; thus, the expression level of telomerase changes as the cell cycle progresses. TERT mRNA expression and telomerase activity were significantly increased in over 80% of human cancers from tissue specimens. Although many efforts have been made in detecting the activity of TERT mRNA and active telomerase, the heterogeneous behavior of the cell cycle was overlooked, which might affect the accuracy of the detection results. Herein, the AIEgen-based biosensing systems of PyTPA-DNA and Silole-R were developed to detect the cellular level of TERT mRNA and telomerase in different cell cycles. As a result, the fluorescence signal of cancer cells gradually increased from G0/G1, G1/S to S phase. In contrast, both cancer cells arrested at G2/M phase and normal cells exhibited negligible fluorescence intensities. Compared to normal tissues, malignant tumor samples demonstrated a significant turn-on fluorescence signal. Furthermore, the transcriptomics profiling revealed that tumor biomarkers changed as the cell cycle progressed and biomarkers of CA9, TK1 and EGFR were more abundantly expressed at early S stage. In this vein, our study presented advanced biosensing tools for more accurate analysis of the cell-cycle-dependent activity of TERT mRNA and active telomerase in clinical tissue samples.
Collapse
Affiliation(s)
- Xia Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhe Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feng Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
7
|
Hasan AS, Luo L, Baba S, Li TS. Estrogen is required for maintaining the quality of cardiac stem cells. PLoS One 2021; 16:e0245166. [PMID: 33481861 PMCID: PMC7822545 DOI: 10.1371/journal.pone.0245166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022] Open
Abstract
Compared to the age-matched men, the incidence of cardiovascular diseases is lower in premenopausal but higher in postmenopausal women, suggesting the cardio-protective role of estrogen in females. Although cardiac stem cells (CSCs) express estrogen receptors, yet the effects of estrogen on CSCs remain unclear. In this study, we investigated the potential role of estrogen in maintaining the quality of CSCs by in vivo and in vitro experiments. For the in vivo study, estrogen deficiency was induced by ovariectomy in 6-weeks-old C57BL/6 female mice, and then randomly given 17β-estradiol (E2) replacements at a low dose (0.01 mg/60 days) and high dose (0.18 mg/60 days), or vehicle treatment. All mice were killed 2 months after treatments, and heart tissues were collected for ex vivo expansion of CSCs. Compared to age-matched healthy controls, estrogen deficiency slightly decreased the yield of CSCs with significantly lower telomerase activity and more DNA damage. Interestingly, E2 replacements at low and high doses significantly increased the yield of CSCs and reversed the quality impairment of CSCs following estrogen deficiency. For the in vitro study, twice-passaged CSCs from the hearts of adult healthy female mice were cultured with the supplement of 0.01, 0.1, and 1 μM E2 in the medium for 3 days. We found that E2 supplement increased c-kit expression, increased proliferative activity, improved telomerase activity, and reduced DNA damage of CSCs in a dose-dependent manner. Our data suggested the potential role of estrogen in maintaining the quality of CSCs, providing new insight into the cardio-protective effects of estrogen.
Collapse
Affiliation(s)
- Al Shaimaa Hasan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Department of Medical Pharmacology, Qena Faculty of Medicine, South Valley University, Qena, Egypt
| | - Lan Luo
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Satoko Baba
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
8
|
Samad MA, Saiman MZ, Abdul Majid N, Karsani SA, Yaacob JS. Berberine Inhibits Telomerase Activity and Induces Cell Cycle Arrest and Telomere Erosion in Colorectal Cancer Cell Line, HCT 116. Molecules 2021; 26:E376. [PMID: 33450878 PMCID: PMC7828342 DOI: 10.3390/molecules26020376] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the most common cancer among males and females, which is associated with the increment of telomerase level and activity. Some plant-derived compounds are telomerase inhibitors that have the potential to decrease telomerase activity and/or level in various cancer cell lines. Unfortunately, a deeper understanding of the effects of telomerase inhibitor compound(s) on CRC cells is still lacking. Therefore, in this study, the aspects of telomerase inhibitors on a CRC cell line (HCT 116) were investigated. Screening on HCT 116 at 48 h showed that berberine (10.30 ± 0.89 µg/mL) is the most effective (lowest IC50 value) telomerase inhibitor compared to boldine (37.87 ± 3.12 µg/mL) and silymarin (>200 µg/mL). Further analyses exhibited that berberine treatment caused G0/G1 phase arrest at 48 h due to high cyclin D1 (CCND1) and low cyclin-dependent kinase 4 (CDK4) protein and mRNA levels, simultaneous downregulation of human telomerase reverse transcriptase (TERT) mRNA and human telomerase RNA component (TERC) levels, as well as a decrease in the TERT protein level and telomerase activity. The effect of berberine treatment on the cell cycle was time dependent as it resulted in a delayed cell cycle and doubling time by 2.18-fold. Telomerase activity and level was significantly decreased, and telomere erosion followed suit. In summary, our findings suggested that berberine could decrease telomerase activity and level of HCT 116, which in turn inhibits the proliferative ability of the cells.
Collapse
Affiliation(s)
- Muhammad Azizan Samad
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.S.); (M.Z.S.); (S.A.K.)
| | - Mohd Zuwairi Saiman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.S.); (M.Z.S.); (S.A.K.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.S.); (M.Z.S.); (S.A.K.)
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.S.); (M.Z.S.); (S.A.K.)
| | - Jamilah Syafawati Yaacob
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.S.); (M.Z.S.); (S.A.K.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
9
|
Noureen N, Wu S, Lv Y, Yang J, Alfred Yung WK, Gelfond J, Wang X, Koul D, Ludlow A, Zheng S. Integrated analysis of telomerase enzymatic activity unravels an association with cancer stemness and proliferation. Nat Commun 2021; 12:139. [PMID: 33420056 PMCID: PMC7794223 DOI: 10.1038/s41467-020-20474-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Active telomerase is essential for stem cells and most cancers to maintain telomeres. The enzymatic activity of telomerase is related but not equivalent to the expression of TERT, the catalytic subunit of the complex. Here we show that telomerase enzymatic activity can be robustly estimated from the expression of a 13-gene signature. We demonstrate the validity of the expression-based approach, named EXTEND, using cell lines, cancer samples, and non-neoplastic samples. When applied to over 9,000 tumors and single cells, we find a strong correlation between telomerase activity and cancer stemness. This correlation is largely driven by a small population of proliferating cancer cells that exhibits both high telomerase activity and cancer stemness. This study establishes a computational framework for quantifying telomerase enzymatic activity and provides new insights into the relationships among telomerase, cancer proliferation, and stemness.
Collapse
Affiliation(s)
- Nighat Noureen
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Shaofang Wu
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Yingli Lv
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA
| | - Juechen Yang
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan Gelfond
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Xiaojing Wang
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Dimpy Koul
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Ludlow
- Department of Movement Science, University of Michigan, Ann Arbor, MI, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA.
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
10
|
Zheng KW, Liu C, Meng Q, Hao YH, Zheng JP, Li W, Tan Z. One-Step High-Throughput Telomerase Activity Measurement of Cell Populations, Single Cells, and Single-Enzyme Complexes. ACS OMEGA 2020; 5:24666-24673. [PMID: 33015483 PMCID: PMC7528320 DOI: 10.1021/acsomega.0c03246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/01/2020] [Indexed: 05/08/2023]
Abstract
Telomerase, a key enzyme involved in telomere homeostasis, is a major player involved in or required for sustained cell proliferation. It is expressed in ∼90% tumor but rarely in normal somatic cells. Therefore, telomerase serves as a diagnostic marker and therapeutic target of cancers. Although many methods are available for measuring telomerase activity, a convenient, fast, sensitive, and reliable method is still lacking for routine use in both clinics and research. Here, we present a single-enzyme sensitivity telomere repeat amplification protocol for quantifying telomerase activity. With multiple optimizations, the protocol pushes the ultimate detection limit down to a single telomerase complex, enabling measurement of telomerase activity of not only multiple cancerous/normal cell samples but also single cancer cells alone or even in the presence of 8000 normal cells. Implemented in a one-step mix-and-run format, the protocol offers a most sensitive, fast, accurate, and reproducible quantification of telomerase activity with linearity ranging from 20,000 HeLa cancer cells to a single telomerase complex. It requires minimal manual operation and experimental skill and is convenient for either low or high throughput of samples. We expect that the protocol should provide practical routine analyses of telomerase in both research and clinical applications. As an example, we demonstrate how telomerase activity evolves at the single-cell level and partitions in cell division in early mouse embryo development.
Collapse
Affiliation(s)
- Ke-wei Zheng
- School of Pharmaceutical
Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510275, P. R. China
- State Key Laboratory of Membrane Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive
Biology, Institute of Zoology, Chinese Academy
of Sciences, Beijing 100101, P. R. China
| | - Qing Meng
- State Key Laboratory of Membrane Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yu-hua Hao
- State Key Laboratory of Membrane Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Jin-ping Zheng
- Center
for Healthy Aging, Changzhi Medical College, Changzhi 046000, Shanxi, P. R. China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive
Biology, Institute of Zoology, Chinese Academy
of Sciences, Beijing 100101, P. R. China
| | - Zheng Tan
- State Key Laboratory of Membrane Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Center
for Healthy Aging, Changzhi Medical College, Changzhi 046000, Shanxi, P. R. China
| |
Collapse
|
11
|
Yang Y, Bin YD, Qin QP, Luo XJ, Zou BQ, Zhang HX. Novel Quinoline-based Ir(III) Complexes Exhibit High Antitumor Activity in Vitro and in Vivo. ACS Med Chem Lett 2019; 10:1614-1619. [PMID: 31857836 DOI: 10.1021/acsmedchemlett.9b00337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022] Open
Abstract
Eight novel Ir(III) complexes listed as [Ir(H-P)2(P)]PF6 (PyP-Ir), [Ir(H-P)2(dMP)]PF6 (PydMP-Ir), [Ir(H-P)2(MP)]PF6 (PyMP-Ir), [Ir(H-P)2(tMP)]PF6 (PytMP-Ir), [Ir(MPy)2(P)]PF6 (MPyP-Ir), [Ir(MPy)2(dMP)]PF6 (MPydMP-Ir), [Ir(MPy)2(MP)]PF6 (MPyMP-Ir), [Ir(MPy)2((tMP)]PF6 (MPytMP-Ir) with 2-phenylpyri-dine (H-P) and 3-methyl-2-phenylpyridine (MPy) as ancillary ligands and pyrido-[3,2-a]-pyrido[1',2':1,2]imidazo[4,5-c]phenazine (P), 12,13-dimethyl pyrido-[3,2-a]-pyrido[1',2':1,2]-imidazo-[4,5-c]-phenazine (dMP), 2-methylpyrido [3,2-a]-pyrido-[1',2':1,2]-imidazo-[4,5-c]-phenazine (MP), and 2,12,13-trimethylpyrido-[3,2-a]-pyrido-[1',2':1,2]-imidazo-[4,5-c]-phenazine (tMP) as main ligands, respectively, were designed and synthesized to fully characterize and explore the effect of their toxicity on cancer cells. Cytotoxic mechanism studies demonstrated that the eight Ir(III) complexes exhibited highly potent antitumor activity selectively against cancer cell lines NCI-H460, T-24, and HeLa, and no activity against HL-7702, a noncancerous cell line. Among the eight Ir(III) complexes, MPytMP-Ir exhibited the highest cytotoxicity with an IC50 = 5.05 ± 0.22 nM against NCI-H460 cells. The antitumor activity of MPytMP-Ir in vitro could be contributed to the steric or electronic effect of the methyl groups, which induced telomerase inhibition and damaged mitochondria in NCI-H460 cells. More importantly, MPytMP-Ir displayed a superior inhibitory effect on NCI-H460 xenograft in vivo than cisplatin. Our work demonstrates that MPytMP-Ir could potentially be developed as a novel potent Ir-based antitumor drug.
Collapse
Affiliation(s)
- Yan Yang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, P. R. China
| | - Yi-Dong Bin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, P. R. China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Xu-Jian Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
| | - Bi-Qun Zou
- Department of Chemistry, Guilin Normal College, 9 Feihu Road, Gulin 541001, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Hua-Xin Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, P. R. China
| |
Collapse
|
12
|
Novel tacrine platinum(II) complexes display high anticancer activity via inhibition of telomerase activity, dysfunction of mitochondria, and activation of the p53 signaling pathway. Eur J Med Chem 2018; 158:106-122. [PMID: 30205260 DOI: 10.1016/j.ejmech.2018.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/18/2023]
Abstract
In this work, we designed and synthesized tacrine platinum(II) complexes [PtClL(DMSO)]⋅CH3OH (Pt1), [PtClL(DMP)] (Pt2), [PtClL(DPPTH)] (Pt3), [PtClL(PTH)] (Pt4), [PtClL(PIPTH)] (Pt5), [PtClL(PM)] (Pt6) and [PtClL(en)] (Pt7) with 4,4'-dimethyl-2,2'-bipyridine (DMP), 4,7-diphenyl-1,10-phenanthroline (DPPTH), 1,10-phenanthroline (PTH), 2-(1-pyrenecarboxaldehyde) imidazo [4,5-f]-[1,10] phenanthroline (PIPTH), 2-picolylamine (PM) and 1,2-ethylenediamine (en) as telomerase inhibitors and p53 activators. Biological evaluations demonstrated that Pt1Pt7 exhibited cytotoxic activity against the tested NCIH460, Hep-G2, SK-OV-3, SK-OV-3/DDP and MGC80-3 cancer cell lines, with Pt5 displaying the highest cytotoxicity. Pt5 exhibited an IC50 value of 0.13 ± 0.16 μM against SK-OV-3/DDP cancer cells and significantly reduced tumor growth in a Hep-G2 xenograft mouse model (tumor growth inhibition (TGI) = 40.8%, p < 0.05) at a dose of 15.0 mg/kg. Interestingly, Pt1Pt7 displayed low cytotoxicity against normal HL-7702 cells. Mechanistic studies revealed that these compounds caused cell cycle arrest at the G2/M and S phases, and regulated the expression of CDK2, cyclin A, p21, p53 and p27. Further mechanistic studies showed that Pt5 induced SK-OV3/DDP cell apoptosis via dysfunction of mitochondria, inhibition of the telomerase activity by directly targeting the c-myc promoter, and activation of the p53 signaling pathway. Taken together, Pt5 has the potential to be further developed as a new antitumor drug.
Collapse
|
13
|
Qin QP, Wang SL, Tan MX, Wang ZF, Huang XL, Wei QM, Shi BB, Zou BQ, Liang H. Synthesis and antitumor mechanisms of two novel platinum(ii) complexes with 3-(2′-benzimidazolyl)-7-methoxycoumarin. Metallomics 2018; 10:1160-1169. [DOI: 10.1039/c8mt00125a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pt2 is a novel telomerase inhibitor binding to c-myc promoter elements, which arrests the cell cycle at the G2/M phase and induces apoptosis and causes mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Shu-Long Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Zhen-Feng Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Xiao-Ling Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Qing-Min Wei
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Bei-Bei Shi
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Bi-Qun Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
14
|
Abstract
BACKGROUND Telomeres are protein DNA structures present at the ends of chromosomes and are essential for genetic stability and cell replication. Telomerase is the enzyme complex that maintains telomere integrity. Hematopoietic stem cells express telomerase and contain long telomeres, which become shorter as cells differentiate and mature. The extent of telomere shortening and the level of telomerase activity often correlate with the presence and severity of some hematopoietic diseases. METHODS The fundamentals of telomeres and telomerase are reviewed, and the telomere biology of human hematopoietic cells is discussed. RESULTS Telomere length and telomerase activity are important in the self-renewal of hematopoietic stem cells. Changes within these compartments affect both normal hematopoietic cells and the generation of hematopoietic disease. Telomere length provides information pertaining to the proliferative history and potential of a hematopoietic cell. CONCLUSIONS The role of telomerase and telomeres within the hematopoietic compartment needs further clarification. Advances in our knowledge in this field may improve clinical outcomes for the treatment of hematologic disease.
Collapse
Affiliation(s)
- Ngaire Elwood
- Leukaemia Research Fund Stem Cell Laboratory, Department of Clinical Haematology and Oncology, Murdoch Children's Research Institute, Melbourne, Australia.
| |
Collapse
|
15
|
Zou BQ, Qin QP, Bai YX, Cao QQ, Zhang Y, Liu YC, Chen ZF, Liang H. Synthesis and antitumor mechanism of a new iron(iii) complex with 5,7-dichloro-2-methyl-8-quinolinol as ligands. MEDCHEMCOMM 2017; 8:633-639. [PMID: 30108780 PMCID: PMC6072324 DOI: 10.1039/c6md00644b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/26/2017] [Indexed: 11/21/2022]
Abstract
A new iron(iii) complex with 5,7-dichloro-2-methyl-8-quinolinol (HClMQ) as ligands, i.e., [Fe(ClMQ)2Cl] (1), was synthesized and evaluated for its anticancer activity. Compared to the HClMQ ligand, complex 1 showed a higher cytotoxicity towards a series of tumor cell lines, including Hep-G2, BEL-7404, NCI-H460, A549, and T-24, with IC50 values in the range of 5.04-14.35 μM. Notably, the Hep-G2 cell line was the most sensitive to complex 1. Mechanistic studies indicated that complex 1 is a telomerase inhibitor targeting c-myc G-quadruplex DNA and can trigger cell apoptosis via inducing cell cycle arrest and DNA damage.
Collapse
Affiliation(s)
- Bi-Qun Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
- Department of Chemistry , Guilin Normal College , Guilin , Guangxi 541001 , P. R. China
| | - Qi-Pin Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Yu-Xia Bai
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Qian-Qian Cao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Ye Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
- Department of Chemistry , Guilin Normal College , Guilin , Guangxi 541001 , P. R. China
- College of Pharmacy , Guilin Medical University , North Ring 2rd Road 109 , Guilin 541004 , P. R. China
| | - Yan-Cheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| |
Collapse
|
16
|
Taji F, Kouchesfahani HM, Sheikholeslami F, Romani B, Baesi K, Vahabpour R, Edalati M, Teimoori-Toolabi L, Jazaeri EO, Abdoli A. Autophagy induction reduces telomerase activity in HeLa cells. Mech Ageing Dev 2016; 163:40-45. [PMID: 28043814 DOI: 10.1016/j.mad.2016.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/09/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022]
Abstract
Autophagy is a cellular homeostatic process whereby damaged proteins and organelles are encapsulated into double membrane vesicles, called autophagosomes, for lysosomal digestion. Beclin1 plays a key role in the initial steps of autophagosome formation. In this study, we evaluated the effect of Beclin 1 overexpression in induction of autophagy and the relationship between autophagy induction and telomerase activity in HeLa cells. We found that overexpression of Beclin 1 in HeLa cells leads to autophagosome formation as shown by intracellular autophagosomal marker LC3-II staining. Expression of Beclin1 reduced telomerase activity for about 100 fold compared with the control while it did not affect TERT expression level. The results of cell cycle analysis indicated that the cell cycle and proliferation progressed normally up to 48h post-transfection. Understanding the role of autophagy induction and telomerase in the pathophysiology of aging and human cancer reveal new strategies that hold much promise for intervention and therapeutic uses.
Collapse
Affiliation(s)
- Fatemeh Taji
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, 13169-43551, Iran
| | - Homa Mohseni Kouchesfahani
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, 13169-43551, Iran
| | - Farzaneh Sheikholeslami
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Bizhan Romani
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, 61357-15794, Iran; Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Kazem Baesi
- Hepatitis and AIDS Dept., Pasteur Institute of Iran, Tehran, Iran
| | - Rouhollah Vahabpour
- Medical Lab Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Edalati
- Department of Hematology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| | | | - Asghar Abdoli
- Hepatitis and AIDS Dept., Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
17
|
Oxoisoaporphine as Potent Telomerase Inhibitor. Molecules 2016; 21:molecules21111534. [PMID: 27854257 PMCID: PMC6274343 DOI: 10.3390/molecules21111534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/25/2016] [Accepted: 11/05/2016] [Indexed: 11/17/2022] Open
Abstract
Two compounds previously isolated from traditional Chinese medicine, Menispermum dauricum (DC), 6-hydroxyl-oxoisoaporphine (H-La), and 4,6-di(2-pyridinyl)benzo[h]isoindolo[4,5,6-de]quinolin-8(5H)-one (H-Lb), were known to have in vitro antitumor activity and to selectively bind human telomeric, c-myc, and bcl-2 G-quadruplexes (G4s). In this study, the binding properties of these two compounds to telomerase were investigated through molecular docking and telomeric repeat amplication protocol and silver staining assay (TRAP-silver staining assay). The binding energies bound to human telomerase RNA were calculated by molecular docking to be -6.43 and -9.76 kcal/mol for H-La and H-Lb, respectively. Compared with H-La, the ligand H-Lb more strongly inhibited telomerase activity in the SK-OV-3 cells model.
Collapse
|
18
|
Qin JL, Qin QP, Wei ZZ, Yu YC, Meng T, Wu CX, Liang YL, Liang H, Chen ZF. Stabilization of c-myc G-Quadruplex DNA, inhibition of telomerase activity, disruption of mitochondrial functions and tumor cell apoptosis by platinum(II) complex with 9-amino-oxoisoaporphine. Eur J Med Chem 2016; 124:417-427. [DOI: 10.1016/j.ejmech.2016.08.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/29/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
|
19
|
Jain RK, Hong DS, Naing A, Wheler J, Helgason T, Shi NY, Gad Y, Kurzrock R. Novel phase I study combining G1 phase, S phase, and G2/M phase cell cycle inhibitors in patients with advanced malignancies. Cell Cycle 2016; 14:3434-40. [PMID: 26467427 DOI: 10.1080/15384101.2015.1090065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PURPOSE Cancer is a manifestation of aberrant cellular proliferation, and the cell cycle is one of the most successfully drugged targets in oncology. No prior study has been reported that simultaneously targets the 3 principal cell cycle phases populated by proliferating cells--G1, S, and G2/M. METHODS Temsirolimus (G1 inhibitor), topotecan (S inhibitor), and bortezomib (G2/M inhibitor) were administered in combination to patients with advanced malignancies using a 3+3 dose escalation schedule to assess the safety and establish the maximum tolerated dose (primary endpoints) of this cell cycle targeting approach. An in silico pharmacodynamic model using established effects of each of these agents on the cell cycle was used to validate the regimen and to guide the dosing regimen. RESULTS Sixty-two subjects were enrolled. The most common adverse events and dose-limiting toxicities were cytopenias, consistent with the cell cycle targeting approach employed. All cytopenias resolved to baseline values upon holding study drug administration. The maximum tolerated dose was temsirolimus 15 mg/kg IV D1, 8, 15; topotecan 2.8 mg/m(2) IV D1, 8; and bortezomib 0.6 mg/m2 IV D1, 4, 8, 11 [DOSAGE ERROR CORRECTED] of a 21-day cycle. In silico modeling suggests the regimen induces cell population shifts from G2/M and S phases to G1 phase and the quiescent G0 phase. Eighteen percent of subjects (11/62) achieved partial response (n = 2, serous ovarian and papillary thyroid) or stable disease for > 6 months (n = 9). CONCLUSION Combining drugs with inhibitory activity of G1 phase, S phase, and G2/M phase is safe and warrants further evaluation.
Collapse
Affiliation(s)
- Rajul K Jain
- a Department of Investigational Cancer Therapeutics (Phase I Program) ; MD Anderson Cancer Center ; Houston , TX USA
| | - David S Hong
- a Department of Investigational Cancer Therapeutics (Phase I Program) ; MD Anderson Cancer Center ; Houston , TX USA
| | - Aung Naing
- a Department of Investigational Cancer Therapeutics (Phase I Program) ; MD Anderson Cancer Center ; Houston , TX USA
| | - Jennifer Wheler
- a Department of Investigational Cancer Therapeutics (Phase I Program) ; MD Anderson Cancer Center ; Houston , TX USA
| | - Thorunn Helgason
- a Department of Investigational Cancer Therapeutics (Phase I Program) ; MD Anderson Cancer Center ; Houston , TX USA
| | - Nai-Yi Shi
- a Department of Investigational Cancer Therapeutics (Phase I Program) ; MD Anderson Cancer Center ; Houston , TX USA
| | | | - Razelle Kurzrock
- c Moores Cancer Center; University of California San Diego ; La Jolla , CA USA
| |
Collapse
|
20
|
Almami A, Hegazy SA, Nabbi A, Alshalalfa M, Salman A, Abou-Ouf H, Riabowol K, Bismar TA. ING3 is associated with increased cell invasion and lethal outcome in ERG-negative prostate cancer patients. Tumour Biol 2016; 37:9731-8. [PMID: 26803516 DOI: 10.1007/s13277-016-4802-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/06/2016] [Indexed: 12/25/2022] Open
Abstract
The inhibitor of growth family member 3 (ING3) is a member of the ING tumor suppressor family. Although its expression has been reported in various types of cancers, the role of ING3 and its prognostic value in prostate cancer (PCa) has not been investigated. ING3 expression and prognostic value was assessed in a cohort of PCa patients (n = 312) treated with transurethral resection of prostate using immumoflourescent automated quantitative analysis (AQUA) system. In vitro studies were carried out in conjunction to investigate its expression in various PCa cell lines. ING3 knockdown was also carried out in DU145 cell lines to assess for any changes in invasion and migration. ING3 expression was highest in benign prostate tissues (mean 3.2 ± 0.54) compared to PCa (mean 2.5 ± 0.26) (p = 0.437), advanced prostate cancer (AdvPCa) (mean 1.5 ± 0.32) (p = 0.004), and castration-resistant prostate cancer (CRPC) (mean 2.28 ± 0.32) (p = 0.285). ING3 expression was inversely correlated to Gleason score (p = 0.039) and ETS-related gene (ERG) expression (p = 0.019). Higher ING3 expression was marginally associated with lethal disease (p = 0.052), and this was more pronounced in patients with ERG-negative status (p = 0.018). Inhibition of ING3 in DU145 PCa cells using small interfering RNA (siRNA) was associated with decreased cell invasion (p = 0.0016) and cell migration compared to control cells. ING3 is significantly associated with PCa disease progression and cancer-specific mortality. To our knowledge, this is the first report suggesting an oncogenic function of ING3, previously well known as a tumor suppressor protein. Further studies should investigate potential-related pathways in association to ING3.
Collapse
Affiliation(s)
- Amal Almami
- Medical Science Department Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.,Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, Alberta, Canada
| | - Samar A Hegazy
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, Alberta, Canada
| | - Arash Nabbi
- Medical Science Department Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.,Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, Alberta, Canada
| | | | - Asma Salman
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, Alberta, Canada
| | - Hatem Abou-Ouf
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, Alberta, Canada
| | - Karl Riabowol
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, Alberta, Canada.,Departments of Oncology, Biochemistry and Molecular Biology, Calgary, Alberta, Canada.,Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, Alberta, Canada
| | - Tarek A Bismar
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, Alberta, Canada. .,Departments of Oncology, Biochemistry and Molecular Biology, Calgary, Alberta, Canada. .,Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, Alberta, Canada. .,The Prostate Centre, Calgary, Alberta, Canada. .,Departments of Pathology & Laboratory Medicine and Oncology, University of Calgary-Cumming School of Medicine, Rockyview General Hospital, Calgary, Alberta, T2V 1P9, Canada.
| |
Collapse
|
21
|
Zou HH, Wei JG, Qin XH, Mo SG, Qin QP, Liu YC, Liang FP, Zhang YL, Chen ZF. Synthesis, crystal structure, cytotoxicity and action mechanism of Zn(ii) and Mn(ii) complexes with 4-([2,2′:6′,2′′-terpyridin]-4′-yl)-N,N-diethylaniline as a ligand. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00098c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two metallo-complexes inhibited telomerase by interacting with c-myc G4-DNA and induced cell cycle arrest at the S phase.
Collapse
Affiliation(s)
- Hua-Hong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Jun-Guang Wei
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Xiao-Huan Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Shun-Gui Mo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Yan-Cheng Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Fu-Pei Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Yun-Liang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Zhen-Feng Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| |
Collapse
|
22
|
Abstract
In this review, Schmidt and Cech cover human telomerase biogenesis, trafficking, and activation, comparing key aspects with the analogous events in other species. Telomerase is the ribonucleoprotein enzyme that catalyzes the extension of telomeric DNA in eukaryotes. Recent work has begun to reveal key aspects of the assembly of the human telomerase complex, its intracellular trafficking involving Cajal bodies, and its recruitment to telomeres. Once telomerase has been recruited to the telomere, it appears to undergo a separate activation step, which may include an increase in its repeat addition processivity. This review covers human telomerase biogenesis, trafficking, and activation, comparing key aspects with the analogous events in other species.
Collapse
Affiliation(s)
- Jens C Schmidt
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Thomas R Cech
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
23
|
Vogan JM, Collins K. Dynamics of Human Telomerase Holoenzyme Assembly and Subunit Exchange across the Cell Cycle. J Biol Chem 2015; 290:21320-35. [PMID: 26170453 DOI: 10.1074/jbc.m115.659359] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 01/04/2023] Open
Abstract
Human telomerase acts on telomeres during the genome synthesis phase of the cell cycle, accompanied by its concentration in Cajal bodies and transient colocalization with telomeres. Whether the regulation of human telomerase holoenzyme assembly contributes to the cell cycle restriction of telomerase function is unknown. We investigated the steady-state levels, assembly, and exchange dynamics of human telomerase subunits with quantitative in vivo cross-linking and other methods. We determined the physical association of telomerase subunits in cells blocked or progressing through the cell cycle as synchronized by multiple protocols. The total level of human telomerase RNA (hTR) was invariant across the cell cycle. In vivo snapshots of telomerase holoenzyme composition established that hTR remains bound to human telomerase reverse transcriptase (hTERT) throughout all phases of the cell cycle, and subunit competition assays suggested that hTERT-hTR interaction is not readily exchangeable. In contrast, the telomerase holoenzyme Cajal body-associated protein, TCAB1, was released from hTR in mitotic cells coincident with TCAB1 delocalization from Cajal bodies. This telomerase holoenzyme disassembly was reversible with cell cycle progression without any change in total TCAB1 protein level. Consistent with differential cell cycle regulation of hTERT-hTR and TCAB1-hTR protein-RNA interactions, overexpression of hTERT or TCAB1 had limited if any influence on hTR assembly of the other subunit. Overall, these findings revealed a cell cycle regulation that disables human telomerase association with telomeres while preserving the co-folded hTERT-hTR ribonucleoprotein catalytic core. Studies here, integrated with previous work, led to a unifying model for telomerase subunit assembly and trafficking in human cells.
Collapse
Affiliation(s)
- Jacob M Vogan
- From the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720
| | - Kathleen Collins
- From the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720
| |
Collapse
|
24
|
Fu J, Wang D, Mei D, Zhang H, Wang Z, He B, Dai W, Zhang H, Wang X, Zhang Q. Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer. J Control Release 2015; 204:11-9. [PMID: 25646783 DOI: 10.1016/j.jconrel.2015.01.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 01/14/2023]
Abstract
The biomimetic delivery system (BDS) based on special types of endogenous cells like macrophages and T cells, has been emerging as a novel strategy for cancer therapy, due to its tumor homing property and biocompatibility. However, its development is impeded by complicated construction, low drug loading or negative effect on the cell bioactivity. The present report constructed a BDS by loading doxorubicin (DOX) into a mouse macrophage-like cell line (RAW264.7). It was found that therapeutically meaningful amount of DOX could be loaded into the RAW264.7 cells by simply incubation, without significantly affecting the viability of the cells. Drug could release from the BDS and maintain its activity. RAW264.7 cells exhibited obvious tumor-tropic capacity towards 4T1 mouse breast cancer cells both in vitro and in vivo, and drug loading did not alter this tendency. Importantly, the DOX loaded macrophage system showed promising anti-cancer efficacy in terms of tumor suppression, life span prolongation and metastasis inhibition, with reduced toxicity. In conclusion, it is demonstrated that the BDS developed here seems to overcome some of the main issues related to a BDS. The DOX loaded macrophages might be a potential BDS for targeted cancer therapy.
Collapse
Affiliation(s)
- Jijun Fu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dong Mei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haoran Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhaoyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
25
|
Alibardi L. Immunolocalization of the telomerase‐1 component in cells of the regenerating tail, testis, and intestine of lizards. J Morphol 2015; 276:748-58. [DOI: 10.1002/jmor.20375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/27/2014] [Accepted: 01/24/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Dipartimento of BigeaUniversity of Bologna Bologna Italy
| |
Collapse
|
26
|
Wang C, Zhao L, Lu S. Role of TERRA in the regulation of telomere length. Int J Biol Sci 2015; 11:316-23. [PMID: 25678850 PMCID: PMC4323371 DOI: 10.7150/ijbs.10528] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/25/2014] [Indexed: 01/08/2023] Open
Abstract
Telomere dysfunction is closely associated with human diseases such as cancer and ageing. Inappropriate changes in telomere length and/or structure result in telomere dysfunction. Telomeres have been considered to be transcriptionally silent, but it was recently demonstrated that mammalian telomeres are transcribed into telomeric repeat-containing RNA (TERRA). TERRA, a long non-coding RNA, participates in the regulation of telomere length, telomerase activity and heterochromatinization. The correct regulation of telomere length may be crucial to telomeric homeostasis and functions. Here, we summarize recent advances in our understanding of the crucial role of TERRA in the maintenance of telomere length, with focus on the variety of mechanisms by which TERRA is involved in the regulation of telomere length. This review aims to enable further understanding of how TERRA-targeted drugs can target telomere-related diseases.
Collapse
Affiliation(s)
- Caiqin Wang
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, China, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou 310006, China
| | - Li Zhao
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, China, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou 310006, China
| | - Shiming Lu
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, China, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou 310006, China
| |
Collapse
|
27
|
Li J, Mansmann UR. A molecular signaling map and its application. Cell Signal 2014; 26:2834-42. [PMID: 25192909 DOI: 10.1016/j.cellsig.2014.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/17/2014] [Indexed: 12/31/2022]
Abstract
Cancer research over the past decades has revealed a number of molecular, biochemical, and cellular events that reflect progressive transformation of normal human cells into their malignant derivatives. These findings help to better understand the complexity of human tumorigenesis. In our study, molecular information is organized to chart a comprehensive map of the signaling network for human cancer. It includes transcriptional and translational regulation and diverse feedback-control loops. It is demonstrated that applying this signaling network map allows predicting the effect of targeted therapy before it can be applied into practice to reduce clinical trial risks. Hence, the proposed map with prognosticating potential effect might become part of drug discovery programs for targeted therapy. Applied in individual patient care it helps to reduce the current reliance of cancer treatment on chemotherapies with low therapeutic indices. This study also demonstrates that continuing elucidation of tumorigenesis will not only need heterotypic organ culture systems in vitro and increasingly refined animal models in vivo, but also computationally calculable virtual cell models in silico.
Collapse
Affiliation(s)
- Jian Li
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrich R Mansmann
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
28
|
Xi L, Cech TR. Inventory of telomerase components in human cells reveals multiple subpopulations of hTR and hTERT. Nucleic Acids Res 2014; 42:8565-77. [PMID: 24990373 PMCID: PMC4117779 DOI: 10.1093/nar/gku560] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Telomerase is the ribonucleoprotein (RNP) enzyme that elongates telomeric DNA to compensate for the attrition occurring during each cycle of DNA replication. Knowing the levels of telomerase in continuously dividing cells is important for understanding how much telomerase is required for cell immortality. In this study, we measured the endogenous levels of the human telomerase RNP and its two key components, human telomerase RNA (hTR) and human telomerase reverse transcriptase (hTERT). We estimate ∼240 telomerase monomers per cell for HEK 293T and HeLa, a number similar to that of telomeres in late S phase. The subunits were in excess of RNPs (e.g. ∼1150 hTR and ∼500 hTERT molecules per HeLa cell), suggesting the existence of unassembled components. This hypothesis was tested by overexpressing individual subunits, which increased total telomerase activity as measured by the direct enzyme assay. Thus, there are subpopulations of both hTR and hTERT not assembled into telomerase but capable of being recruited. We also determined the specific activity of endogenous telomerase and of overexpressed super-telomerase both to be ∼60 nt incorporated per telomerase per minute, with Km(dGTP) ∼17 μM, indicating super-telomerase is as catalytically active as endogenous telomerase and is thus a good model for biochemical studies.
Collapse
Affiliation(s)
- Linghe Xi
- University of Colorado BioFrontiers Institute, Boulder, CO 80303, USA Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Thomas R Cech
- University of Colorado BioFrontiers Institute, Boulder, CO 80303, USA Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA
| |
Collapse
|
29
|
Shen T, Ma J, Zhang L, Yu X, Liu M, Hou Y, Wang Y, Ma C, Li S, Zhu D. Positive feedback-loop of telomerase reverse transcriptase and 15-lipoxygenase-2 promotes pulmonary hypertension. PLoS One 2013; 8:e83132. [PMID: 24376652 PMCID: PMC3871619 DOI: 10.1371/journal.pone.0083132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 10/31/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Pulmonary hypertension (PH) is characterized with pulmonary vasoconstriction and vascular remodeling mediated by 15-lipoxygenase (15-LO)/15-hydroxyeicosatetraenoic acid (15-HETE) according to our previous studies. Meanwhile, telomerase reverse transcriptase (TERT) activity is highly correlated with vascular injury and remodeling, suggesting that TERT may be an essential determinant in the development of PH. The aim of this study was to determine the contribution and molecular mechanisms of TERT in the pathogenesis of PH. APPROACH AND RESULTS We measured the right ventricular systolic pressure (RVSP) and ventricular weight, analyzed morphometric change of the pulmonary vessels in the hypoxia or monocrotaline treated rats. Bromodeoxyuridine incorporation, transwell assay and flow cytometry in pulmonary smooth muscle cells were performed to investigate the roles and relationship of TERT and 15-LO/15-HETE in PH. We revealed that the expression of TERT was increased in pulmonary vasculature of patients with PH and in the monocrotaline or hypoxia rat model of PH. The up-regulation of TERT was associated with experimental elevated RVSP and pulmonary vascular remodeling. Coimmunoprecipitation experiments identified TERT as a novel interacting partner of 15-LO-2. TERT and 15-LO-2 augmented protein expression of each other. In addition, the proliferation, migration and cell-cycle transition from G0/G1 phase to S phase induced by hypoxia were inhibited by TERT knockdown, which were rescued by 15-HETE addition. CONCLUSIONS These results demonstrate that TERT regulates pulmonary vascular remodeling. TERT and 15-LO-2 form a positive feedback loop and together promote proliferation and migration of pulmonary artery smooth muscle cells, creating a self-amplifying circuit which propels pulmonary hypertension.
Collapse
Affiliation(s)
- Tingting Shen
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, China
| | - Jun Ma
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, China
| | - Lei Zhang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, China
| | - Xiufeng Yu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, China
| | - Mengmeng Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, China
| | - Yunlong Hou
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanyan Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, China
| | - Cui Ma
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, China
| | - Shuzhen Li
- Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Daling Zhu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, China
- Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
30
|
Webb CJ, Wu Y, Zakian VA. DNA repair at telomeres: keeping the ends intact. Cold Spring Harb Perspect Biol 2013; 5:5/6/a012666. [PMID: 23732473 DOI: 10.1101/cshperspect.a012666] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The molecular era of telomere biology began with the discovery that telomeres usually consist of G-rich simple repeats and end with 3' single-stranded tails. Enormous progress has been made in identifying the mechanisms that maintain and replenish telomeric DNA and the proteins that protect them from degradation, fusions, and checkpoint activation. Although telomeres in different organisms (or even in the same organism under different conditions) are maintained by different mechanisms, the disparate processes have the common goals of repairing defects caused by semiconservative replication through G-rich DNA, countering the shortening caused by incomplete replication, and postreplication regeneration of G tails. In addition, standard DNA repair mechanisms must be suppressed or modified at telomeres to prevent their being recognized and processed as DNA double-strand breaks. Here, we discuss the players and processes that maintain and regenerate telomere structure.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
31
|
Salehinejad P, Alitheen NB, Mandegary A, Nematollahi-mahani SN, Janzamin E. Effect of EGF and FGF on the expansion properties of human umbilical cord mesenchymal cells. In Vitro Cell Dev Biol Anim 2013; 49:515-23. [DOI: 10.1007/s11626-013-9631-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 04/29/2013] [Indexed: 12/13/2022]
|
32
|
CHEN PENG, LIU BING, HU MING. The effect of hydroxycamptothecin and pingyangmycin on human squamous cell carcinoma of the tongue. Oncol Lett 2013; 5:947-952. [PMID: 23426884 PMCID: PMC3576210 DOI: 10.3892/ol.2013.1109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 12/30/2012] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to test hydroxycamptothecin (HCPT) and pingyangmycin (PYM) for their ability to inhibit the squamous cells of tongue carcinoma (Tca8113 cells). The effect of these compounds was tested using the MTT assay in vitro, clonogenic assays, flow cytometry, morphological observation, telomeric repeat amplification protocol (TRAP), transplantation of tumors into athymic mice and TUNEL staining. Treatment with HCPT and PYM, alone or in combination, inhibited the tumor cells and showed a greater inhibition when the drugs were combined. The cloning efficiency of Tca8113 cells was decreased. The microstructure and cell cycle of the cells changed significantly as a result of treatment. Telomerase activity was significantly inhibited in a time-dependent manner. By appearing to promote apoptosis, the drugs demonstrated a significant level of inhibition of the tumor cells in an athymic mouse model, promoting prolonged survival. HCPT and PYM have a marked cytotoxic effect on Tca8113 cells which is improved when used in combination.
Collapse
Affiliation(s)
- PENG CHEN
- Department of Oral and Maxillofacial Surgery, General Hospital of PLA, Beijing 100853
| | - BING LIU
- Department of Stomatology, General Air Force Hospital of PLA, Beijing 100036,
P.R. China
| | - MING HU
- Department of Oral and Maxillofacial Surgery, General Hospital of PLA, Beijing 100853
| |
Collapse
|
33
|
Ševčíková T, Bišová K, Fojtová M, Lukešová A, Hrčková K, Sýkorová E. Completion of cell division is associated with maximum telomerase activity in naturally synchronized cultures of the green alga Desmodesmus quadricauda. FEBS Lett 2013; 587:743-8. [PMID: 23395610 DOI: 10.1016/j.febslet.2013.01.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/17/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Telomerase maintains the ends of eukaryotic chromosomes, and its activity is an important parameter correlating with the proliferative capacity of cells. We have investigated cell cycle-specific changes in telomerase activity using cultures of Desmodesmus quadricauda, a model alga naturally synchronized by light/dark entrainment. A quantitative telomerase assay revealed high activity in algal cultures, with slight changes during the light period. Significantly increased telomerase activity was observed at the end of the dark phase, when cell division was complete. In contrast to other models, a natural separation between nuclear and cellular division typical for the cell cycle in D. quadricauda made this observation possible.
Collapse
Affiliation(s)
- Tereza Ševčíková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, vvi, 612 65 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
34
|
Richardson GD, Breault D, Horrocks G, Cormack S, Hole N, Owens WA. Telomerase expression in the mammalian heart. FASEB J 2012; 26:4832-40. [PMID: 22919071 PMCID: PMC3509052 DOI: 10.1096/fj.12-208843] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While the mammalian heart has low, but functionally significant, levels of telomerase expression, the cellular population responsible remains incompletely characterized. This study aimed to identify the cell types responsible for cardiac telomerase activity in neonatal, adult, and cryoinjured adult hearts using transgenic mice expressing green fluorescent protein (GFP), driven by the promoter for murine telomerase reverse transcriptase (mTert), which is a necessary and rate-limiting component of telomerase. A rare population of mTert-GFP-expressing cells was identified that possessed all detectable cardiac telomerase RNA and telomerase activity. It was heterogeneous and included cells coexpressing markers of cardiomyocytic, endothelial, and mesenchymal lineages, putative cardiac stem cell markers, and, interestingly, cardiomyocytes with a differentiated phenotype. Quantification using both flow cytometry and immunofluorescence identified a significant decline in mTert-GFP cells in adult animals compared to neonates (∼9- and ∼20-fold, respectively). Cardiac injury resulted in a ∼6.45-fold expansion of this population (P<0.005) compared with sham-operated controls. This study identifies the cells responsible for cardiac telomerase activity, demonstrates a significant diminution with age but a marked response to injury, and, given the relationship between telomerase activity and stem cell populations, suggests that they represent a potential target for further investigation of cardiac regenerative potential.—Richardson, G. D., Breault, D., Horrocks, G., Cormack, S., Hole, N., Owens, W. A. Telomerase expression in the mammalian heart.
Collapse
Affiliation(s)
- Gavin D Richardson
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| | | | | | | | | | | |
Collapse
|
35
|
Ji X, Sun H, Zhou H, Xiang J, Tang Y, Zhao C. The interaction of telomeric DNA and C-myc22 G-quadruplex with 11 natural alkaloids. Nucleic Acid Ther 2012; 22:127-36. [PMID: 22480315 DOI: 10.1089/nat.2012.0342] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Telomeric DNA and C-myc22 are DNA G-quadruplex (G4)-forming sequences associated with tumorigenesis. Ligands that can facilitate the formation and increase the stabilization of G4 can halt tumor cell proliferation and have been regarded as potential anti-cancer drugs. In the present study, we have investigated the interaction of 11 natural alkaloids with G4 formed by telomeric DNA and C-myc22 sequences. Our results indicated that sanguinarine (San), palmatine (Pal), and berberine (Beb) of the first series (S1) can induce the formation of G4 as well as increase the stabilization ability. Daurisoline (S2-1), O-methyldauricine (S2-2), O-diacetyldaurisoline (S2-3), daurinoline (S2-4), dauricinoline (S2-5), N,N'-dimethyldauricine iodide (S2-6), and N,N'-dimethyldaurisoline iodide (S2-7) of the second series (S2) showed similar stabilization ability. We found that unsaturated ring C, N(+) positively charged centers, and conjugated aromatic rings are key factors to increase the stabilization ability of S1, and we gave some advice on structure modification to S2 through structure-activity study. Besides, we found San and Pal to be cell cycle blocker in G(1). San was speculated to bind to G4 through intercalation or end stacking.
Collapse
Affiliation(s)
- Xiaohui Ji
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Key Laboratory of Gene Engineering Drugs and Biological Technology College of Life Science, Beijing Normal University, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
36
|
Shapira S, Granot G, Mor-Tzuntz R, Raanani P, Uziel O, Lahav M, Shpilberg O. Second-generation tyrosine kinase inhibitors reduce telomerase activity in K562 cells. Cancer Lett 2012; 323:223-31. [PMID: 22554713 DOI: 10.1016/j.canlet.2012.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/19/2012] [Accepted: 04/22/2012] [Indexed: 02/07/2023]
Abstract
In this study we present the effects of nilotinib and dasatinib on telomerase activity and regulation. Nilotinib and dasatinib strongly reduced telomerase activity in BCR-ABL-positive (K562) and BCR-ABL-negative (HL60) cells, demonstrating that their effect on telomerase activity is uncoupled from their effect on BCR-ABL. Nilotinib and dasatinib caused a substantial decrease in hTERT mRNA expression. Phospho-Sp1 regulates hTERT transcription. We detected a considerable decrease in Sp1 nuclear expression and binding to the hTERT promoter following exposure to the drugs. We also detected a reduction in Map kinase, known to phosphorylate Sp1. Telomerase is also activated and translocated to the nucleus when phosphorylated by AKT. We detected a decrease in phospho-AKT and a reduction in the nuclear expression of hTERT following exposure to nilotinib and dasatinib. In conclusion, we provide evidence for transcriptional and post-translational inhibition of telomerase by nilotinib and dasatinib which is not necessarily mediated via known targets of these tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Saar Shapira
- Felsenstein Medical Research Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | | | |
Collapse
|
37
|
Ji X, Chen J, Sun H, Zhou H, Xiang J, Peng A, Tang Y, Zhao C. The interaction of telomere DNA G-quadruplex with three bis-benzyltetrahydroisoquinoline alkaloids. Nucleic Acid Ther 2011; 21:415-22. [PMID: 22017543 DOI: 10.1089/nat.2011.0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Telomeres are important multifunctional nucleoprotein structures located at the ends of eukaryotic chromosomes. Telomerase regulates telomere elongation, and its activity is associated with tumorigenesis. Because the activity of telomerase can be inhibited by G-quadruplex (G4) formation (a four-stranded DNA with stacks of G-quartets formed by four guanines in a planar structure), the role of G4 in cancer therapy has attracted many research interests. We studied the effects of three natural alkaloids-tetrandrine, fangchinoline, and berbamine-on the stability and formation of telomere DNA G4 with circular dichroism melting spectroscopy (melting-CD), variable temperature ultraviolet (melting-UV), proton nuclear magnetic resonance spectroscopy ((1)H NMR), and molecular docking, and examined the relationships among the alkaloid structure and their activities. We further investigated their cytotoxicity with the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) and flow cytometry (FCM). The results demonstrated that alkaloids increased G4 stability and induced its formation, which added structure diversity of G4-ligands. The results showed that -OH at R(1), -OCH(3) at R(2), and [Formula: see text] at R(3) had higher stability than other substituent groups for these alkaloids. We also found a transition of antiparallel to parallel G4 as the temperature increased. The result indicated the possible advantage of parallel G4 in adversity. In addition, the alkaloids demonstrated a moderate cytotoxicity and proved to be cell cycle blocker in the G(1) phase. These alkaloids have revealed promising potentials to be the agents for antitumor therapy.
Collapse
Affiliation(s)
- Xiaohui Ji
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology College of Life Science, Beijing Normal University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Li L, Guan Y, Liu H, Hao N, Liu T, Meng X, Fu C, Li Y, Qu Q, Zhang Y, Ji S, Chen L, Chen D, Tang F. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS NANO 2011; 5:7462-70. [PMID: 21854047 DOI: 10.1021/nn202399w] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Low targeting efficiency is one of the biggest limitations for nanoparticulate drug delivery system-based cancer therapy. In this study, an efficient approach for tumor-targeted drug delivery was developed with mesenchymal stem cells as the targeting vehicle and a silica nanorattle as the drug carrier. A silica nanorattle-doxorubicin drug delivery system was efficiently anchored to mesenchymal stem cells (MSCs) by specific antibody-antigen recognitions at the cytomembrane interface without any cell preconditioning. Up to 1500 nanoparticles were uploaded to each MSC cell with high cell viability and tumor-tropic ability. The intracellular retention time of the silica nanorattle was no less than 48 h, which is sufficient for cell-directed tumor-tropic delivery. In vivo experiments proved that the burdened MSCs can track down the U251 glioma tumor cells more efficiently and deliver doxorubicin with wider distribution and longer retention lifetime in tumor tissues compared with free DOX and silica nanorattle-encapsulated DOX. The increased and prolonged DOX intratumoral distribution further contributed to significantly enhanced tumor-cell apoptosis. This strategy has potential to be developed as a robust and generalizable method for targeted tumor therapy with high efficiency and low systematic toxicity.
Collapse
Affiliation(s)
- Linlin Li
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Senthilkumar PK, Klingelhutz AJ, Jacobus JA, Lehmler H, Robertson LW, Ludewig G. Airborne polychlorinated biphenyls (PCBs) reduce telomerase activity and shorten telomere length in immortal human skin keratinocytes (HaCat). Toxicol Lett 2011; 204:64-70. [PMID: 21530622 DOI: 10.1016/j.toxlet.2011.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 12/17/2022]
Abstract
PCBs, a group of 209 individual congeners, are ubiquitous environmental pollutants and classified as probable human carcinogens. One major route of exposure is by inhalation of these industrial compounds, possibly daily from inner city air and/or indoor air in contaminated buildings. Hallmarks of aging and carcinogenesis are changes in telomere length and telomerase activity. We hypothesize that semi-volatile PCBs, like those found in inner city air, are capable of disrupting telomerase activity and altering telomere length. To explore this possibility, we exposed human skin keratinocytes to a synthetic Chicago Airborne Mixture (CAM) of PCBs, or the prominent airborne PCB congeners, PCB28 or PCB52 for up to 48 days and determined telomerase activity, telomere length, cell proliferation, and cell cycle distribution. PCBs 28, 52 and CAM significantly reduced telomerase activity from days 18-48. Telomere length was shortened by PCB 52 from day 18 and PCB 28 and CAM from days 30 on. All PCBs decreased cell proliferation from day 18; only PCB 52 produced a small increase of cells in G0/G1 of the cell cycle. This significant inhibition of telomerase activity and reduction of telomere length by PCB congeners suggest a potential mechanism by which these compounds could lead to accelerated aging and cancer.
Collapse
Affiliation(s)
- P K Senthilkumar
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, United States
| | | | | | | | | | | |
Collapse
|
40
|
Lee JH, Lee SY, Lee JH, Lee SH. p21 WAF1 is involved in interferon-β-induced attenuation of telomerase activity and human telomerase reverse transcriptase (hTERT) expression in ovarian cancer. Mol Cells 2010; 30:327-33. [PMID: 20814747 DOI: 10.1007/s10059-010-0131-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 07/21/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022] Open
Abstract
Telomerase activation is a key step in the development of human cancers. Interferon-β (IFN-β) signaling induces growth arrest in many tumors but the anticancer mechanism of IFN-β is poorly understood. In the present study, we show that IFN-β signaling represses telomerase activity and human telomerase reverse transcriptase (hTERT) transcription in ovarian cancer and suggest that this signaling is mediated by p21(WAF1). IFN-β triggered down-regulation of telomerase activity and hTERT mRNA expression and also induced p21 expression, independently of p53 induction. Ectopic expression of p21 attenuated hTERT promoter activity. Murine embryonic fibroblasts (MEFs) genetically deficient in p21 (p21-/-) showed elevated (> 15 times) hTERT promoter activity compared to wild-type MEFs. Overexpression of p21 reduced the hTERT promoter activity of p21-/- MEFs and hTERT mRNA expression in HCT119 p21(WAF1) null cell. These findings provide evidence that p21 is a potential mediator of IFN-β-induced attenuation of telomerase activity and tumor suppression.
Collapse
Affiliation(s)
- Ji-Hae Lee
- Department of Life Science, Yongin University, Yongin, 449-714, Korea
| | | | | | | |
Collapse
|
41
|
Bae-Jump VL, Zhou C, Boggess JF, Whang YE, Barroilhet L, Gehrig PA. Rapamycin inhibits cell proliferation in type I and type II endometrial carcinomas: a search for biomarkers of sensitivity to treatment. Gynecol Oncol 2010; 119:579-85. [PMID: 20863555 DOI: 10.1016/j.ygyno.2010.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/17/2010] [Accepted: 08/20/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Our goal was to evaluate the effect of rapamycin, an mTOR inhibitor, in type I and II human endometrial cancer tumor explants. METHODS Short-term tissue culture with fresh endometrial cancer tumor explants was performed. Cell proliferation was assessed by MTS assay after treatment with rapamycin. Akt and PTEN status were documented by Western blotting. The effect of rapamycin on phosphorylated-S6 and 4E-BP-1 was also assessed by Western blotting. Real-time RT-PCR was used to quantify hTERT mRNA expression. Telomere length was determined by terminal restriction fragment Southern blotting. RESULTS Thirteen fresh endometrial cancer tumor explants (nine Type I, four Type II) were placed in short-term culture and treated with rapamycin. Nine of the endometrial cancer tumors responded to rapamycin, with a median IC₅₀ of 11.4 nM. Sensitivity to rapamycin was independent of PTEN and Akt status. Tumors (13/13) had a reduction in phosphorylated-S6 and 10/13 had a reduction in phosphorylated 4E-BP-1. Rapamycin decreased hTERT mRNA expression in all of the endometrial cancer tumors. Telomere length did not correspond with responsiveness to this drug. CONCLUSIONS Rapamycin demonstrated activity in fresh endometrial tumor explants independent of PTEN and Akt status. Some tumors demonstrated a reduction in phosphorylated-S6 and 4E-BP-1 without a significant change in cellular proliferation, suggesting that additional pathways may modulate cellular proliferation. Thus, mTOR inhibitors may be a useful targeted therapy for both type I and type II endometrial cancers, but the search remains for a predictive biomarker of sensitivity to this therapy.
Collapse
Affiliation(s)
- Victoria L Bae-Jump
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
42
|
Li K, Zhang J, Ren JJ, Wang Q, Yang KY, Xiong ZJ, Mao YQ, Qi YY, Chen XW, Lan F, Wang XJ, Xiao HY, Lin P, Wei YQ. A novel zinc finger protein Zfp637 behaves as a repressive regulator in myogenic cellular differentiation. J Cell Biochem 2010; 110:352-62. [PMID: 20235149 DOI: 10.1002/jcb.22546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Zinc finger proteins have been implicated as transcription factors in the differentiation and development of cells and tissues in higher organisms. The classical C2H2 zinc finger motif is one main type of motif of zinc finger proteins. Our previous studies have shown that Zfp637, which comprises six consecutively typical and one atypical C2H2 zinc finger motifs, is highly expressed in undifferentiated or poorly differentiated cell lines, but is moderately or slightly expressed in normal tissues. We have also demonstrated that Zfp637 can promote cell proliferation. However, its role in the regulation of cell differentiation remains unknown. We report here that endogenous Zfp637 as well as mTERT is expressed in proliferating C2C12 myoblasts and that their expression is downregulated during myogenic differentiation. Constitutive expression of Zfp637 in C2C12 myoblasts increased mTERT expression and telomerase activity, and promoted the progression of the cell cycle and cell proliferation. By contrast, endogenous repression of Zfp637 expression by RNA interference downregulated the mTERT gene and the activity of telomerase, and markedly reduced cell proliferation. Overexpression of Zfp637 also inhibited the expression of myogenic differentiation-specific genes such as MyoD and myogenin, and prevented C2C12 myoblast differentiation. Our results suggest that Zfp637 inhibits muscle differentiation through a defect in the cell cycle exit by potentially regulating mTERT expression in C2C12 myoblasts. This may provide a new research line for studying muscle differentiation.
Collapse
Affiliation(s)
- Kai Li
- Division of Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cassar L, Li H, Jiang FX, Liu JP. TGF-beta induces telomerase-dependent pancreatic tumor cell cycle arrest. Mol Cell Endocrinol 2010; 320:97-105. [PMID: 20138964 DOI: 10.1016/j.mce.2010.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/27/2010] [Accepted: 02/02/2010] [Indexed: 12/21/2022]
Abstract
Recent studies suggest that transforming growth factor beta (TGF-beta) inhibits telomerase activity by repression of the telomerase reverse transcriptase (TERT) gene. In this report, we show that TGF-beta induces TERT repression-dependent apoptosis in pancreatic tumor, vascular smooth muscle, and cervical cancer cell cultures. TGF-beta activates Smad3 signaling, induces TERT gene repression and results in G1/S phase cell cycle arrest and apoptosis. TERT over-expression stimulates the G1/S phase transition and alienates TGF-beta-induced cell cycle arrest and apoptosis. Our data suggest that telomere maintenance is a limiting factor of the transition of the cell cycle. TGF-beta triggers cell cycle arrest and death by a mechanism involving telomerase deregulation of telomere maintenance.
Collapse
Affiliation(s)
- Lucy Cassar
- Department of Immunology, Monash University, Central Clinical School, AMREP, Commercial Road, Melbourne, Victoria 3004, Australia.
| | | | | | | |
Collapse
|
44
|
Mor-Tzuntz R, Uziel O, Shpilberg O, Lahav J, Raanani P, Bakhanashvili M, Rabizadeh E, Zimra Y, Lahav M, Granot G. Effect of imatinib on the signal transduction cascade regulating telomerase activity in K562 (BCR-ABL-positive) cells sensitive and resistant to imatinib. Exp Hematol 2010; 38:27-37. [PMID: 19837126 DOI: 10.1016/j.exphem.2009.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 09/10/2009] [Accepted: 10/14/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Imatinib mesylate (IM) is a tyrosine kinase inhibitor selective for BCR-ABL and indicated for the treatment of chronic myeloid leukemia. It has recently been demonstrated that IM also targets other cellular components. Considering the significant role of telomerase in malignant transformation, we studied the effect of IM on telomerase activity (TA) and regulation in BCR-ABL-positive and -negative cells, sensitive and resistant to IM. MATERIALS AND METHODS Through combining telomeric repeat amplification protocol for detecting TA, reverse transcription polymerase chain reaction and Western blots for detecting RNA and protein levels of telomerase regulating proteins and fluorescence-activated cell sorting analysis, we showed that IM targets telomerase and the signal transduction cascade upstream of it. RESULTS IM significantly inhibited TA in BCR-ABL-positive and -negative cells and in chronic myeloid leukemia patients. TA inhibition was also observed in BCR-ABL positive cells resistant to IM at drug concentrations that did not lead to a reduction in BCR-ABL expression. In addition, a reduction in phosphorylated AKT and phosphorylated PDK-1 was also detected following IM incubation. CONCLUSIONS We demonstrate an inhibitory effect of IM on TA and on the AKT/PDK pathway. Because this effect was observed in cell expressing the BCR-ABL protein as well as cells not expressing it, and in cells sensitive as well as resistant to IM, it is reasonable to assume that the inhibitory effect of IM on TA is not mediated through known IM targets. The results of this study show that cells resistant to IM with regard to its effect on BCR-ABL could still be sensitive to IM treatment regarding other cellular components.
Collapse
Affiliation(s)
- Rahav Mor-Tzuntz
- Felsenstein Medical Research Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Petah-Tikva, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cantrell LA, Zhou C, Mendivil A, Malloy KM, Gehrig PA, Bae-Jump VL. Metformin is a potent inhibitor of endometrial cancer cell proliferation--implications for a novel treatment strategy. Gynecol Oncol 2009; 116:92-8. [PMID: 19822355 DOI: 10.1016/j.ygyno.2009.09.024] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/14/2009] [Accepted: 09/18/2009] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Obesity and diabetes are strong risk factors that drive the development of type I endometrial cancers. Recent epidemiological evidence suggests that metformin may lower cancer risk and reduce rates of cancer deaths among diabetic patients. In order to better understand metformin's anti-tumorigenic potential, our goal was to assess the effect of metformin on proliferation and expression of key targets of metformin cell signaling in endometrial cancer cell lines. METHODS The endometrial cancer cell lines, ECC-1 and Ishikawa, were used. Cell proliferation was assessed after exposure to metformin. Cell cycle progression was evaluated by flow cytometry. Apoptosis was assessed by ELISA for caspase-3 activity. hTERT expression was determined by real-time RT-PCR. Western immunoblotting was performed to determine the expression of the downstream targets of metformin. RESULTS Metformin potently inhibited growth in a dose-dependent manner in both cell lines (IC(50) of 1 mM). Treatment with metformin resulted in G1 arrest, induction of apoptosis and decreased hTERT expression. Western immunoblot analysis demonstrated that metformin induced phosphorylation of AMPK, its immediate downstream mediator, within 24 h of exposure. In parallel, treatment with metformin decreased phosphorylation of S6 protein, a key target of the mTOR pathway. CONCLUSIONS We find that metformin is a potent inhibitor of cell proliferation in endometrial cancer cell lines. This effect is partially mediated through AMPK activation and subsequent inhibition of the mTOR pathway. This work should provide the scientific foundation for future investigation of metformin as a strategy for endometrial cancer prevention and treatment.
Collapse
Affiliation(s)
- Leigh A Cantrell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, CB #7572, Chapel Hill, NC 27599-7572, USA
| | | | | | | | | | | |
Collapse
|
46
|
Vega F, Davuluri Y, Cho-Vega JH, Singh RR, Ma S, Wang RY, Multani AS, Drakos E, Pham LV, Lee YCL, Shen L, Ambrus J, Medeiros LJ, Ford RJ. Side population of a murine mantle cell lymphoma model contains tumour-initiating cells responsible for lymphoma maintenance and dissemination. J Cell Mol Med 2009; 14:1532-45. [PMID: 19656242 PMCID: PMC3829019 DOI: 10.1111/j.1582-4934.2009.00865.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
‘Cancer stem cells’ or ‘tumour initiating cells’ in B-cell non-Hodgkin lymphomas have not been demonstrated, although some studies focused on other cancer types suggest that such populations exist and represent tumour cells resistant to therapy and involved in relapse. These cells may also represent a putative neoplastic ‘cell of origin’ in lymphomas, but there is little substantive data to support this suggestion. Using cell lines derived from a recently established murine IL-14α× c-Myc double transgenic/mantle cell lymphoma-blastoid variant model, heretofore referred to as DTG cell lines, we identified a subset of cells within the side population (SP) with features of ‘tumour-initiating cells’. These features include higher expression of ABCG2 and BCL-2, longer telomere length, greater self-renewal ability and higher in vitro clonogenic and in vivo tumorigenic capacities compared with non-SP. In addition, in vitro viability studies demonstrated that the non-SP lymphoma subpopulation has a limited lifespan in comparison with the SP fraction. Syngenic transplant studies showed that non-SP derived tumours, in comparison to the SP-derived tumours, exhibit greater necrosis/apoptosis and less systemic dissemination capability. In conclusion, our data support the interpretation that the DTG SP fraction contains a cell population highly capable of tumour maintenance and systemic dissemination and lends support to the concept that ‘tumour-initiating cells’ occur in lymphomas.
Collapse
Affiliation(s)
- Francisco Vega
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yang Y, Sun H, Zhou Y, Ji S, Li M. Effects of three diterpenoids on tumour cell proliferation and telomerase activity. Nat Prod Res 2009; 23:1007-12. [DOI: 10.1080/14786410802295149] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Rossi A, Russo G, Puca A, La Montagna R, Caputo M, Mattioli E, Lopez M, Giordano A, Pentimalli F. The antiretroviral nucleoside analogue Abacavir reduces cell growth and promotes differentiation of human medulloblastoma cells. Int J Cancer 2009; 125:235-43. [PMID: 19358275 DOI: 10.1002/ijc.24331] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abacavir is one of the most efficacious nucleoside analogues, with a well-characterized inhibitory activity on reverse transcriptase enzymes of retroviral origin, and has been clinically approved for the treatment of AIDS. Recently, Abacavir has been shown to inhibit also the human telomerase activity. Telomerase activity seems to be required in essentially all tumours for the immortalization of a subset of cells, including cancer stem cells. In fact, many cancer cells are dependent on telomerase for their continued replication and therefore telomerase is an attractive target for cancer therapy. Telomerase expression is upregulated in primary primitive neuroectodermal tumours and in the majority of medulloblastomas suggesting that its activation is associated with the development of these diseases. Therefore, we decided to test Abacavir activity on human medulloblastoma cell lines with high telomerase activity. We report that exposure to Abacavir induces a dose-dependent decrease in the proliferation rate of medulloblastoma cells. This is associated with a cell accumulation in the G(2)/M phase of the cell cycle in the Daoy cell line, and with increased cell death in the D283-MED cell line, and is likely to be dependent on the inhibition of telomerase activity. Interestingly, both cell lines showed features of senescence after Abacavir treatment. Moreover, after Abacavir exposure we detected, by immunofluorescence staining, increased protein expression of the glial marker glial fibrillary acidic protein and the neuronal marker synaptophysin in both medulloblastoma cell lines. In conclusion, our results suggest that Abacavir reduces proliferation and induces differentiation of human medulloblastoma cells through the downregulation of telomerase activity. Thus, using Abacavir, alone or in combination with current therapies, might be an effective therapeutic strategy for the treatment of medulloblastoma.
Collapse
Affiliation(s)
- Alessandra Rossi
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia PA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen Y, Kong QZ. Dynamic changes of telomerase reverse transcriptase and P53 in the development of rat hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2009; 17:1493-1497. [DOI: 10.11569/wcjd.v17.i15.1493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the expression of telomerase reverse transcriptase (TERT) and P53 in the development of rat hepatocellular carcinoma (HCC).
METHODS: A HCC model was induced by diethyl nitrosoamine (DENA); telomerase activity was assayed using telomeric repeat amplication protocol (TRAP) method, whereas the expression of TERT and P53 was determined using immunofluorescence and Western blot, respectively.
RESULTS: Compared with low expression level of TERT and telomerase activity, which were detected and maintained at a relative stable level in normal tissue and inflammatory lesion, the over-expression of telomerase and TERT were detected in hepatocirrhosis and HCC stage. However, the expression of P53 was significantly increased in inflammatory stage, and dramatically decreased in hepatocirrhosis stage, even undetectable in HCC stage. When quantified, in inflammation stage, the P53 expression level showed significant difference compared with control group (3.53% ± 0.17% vs 2.19% ± 0.15%, P = 0.00), whereas in hepatocirrhosis stage, the expression level of P53 was only 0.98% ± 0.05%. Contrary to the trend of P53 expression, the expression of telomerase, and TERT were very low in inflammation stage, which were 34.47% ± 6.21% and 6.43% ± 1.14%, respectively. But in hepatocirrhosis, telomerase activity, and TERT protein expression levels showed significant difference compared with control group and tended to culminate in HCC. Statistically analysis showed that telomerase was correlated with TERT (r = 0.954, P = 0.046). As for P53, no relationship was found between P53 and telomerase and TERT.
CONCLUSION: Accelerated telomerase, and TERT expression with P53 inactivation might synergistically contribute to carcinogenesis and be consistent with the progression of HCC, therefore the three factors may be useful tools in diagnosis and prognosis of HCC.
Collapse
|
50
|
Bhagwandin VJ, Shay JW. Pancreatic cancer stem cells: fact or fiction? BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1792:248-59. [PMID: 19233264 PMCID: PMC2670354 DOI: 10.1016/j.bbadis.2009.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 02/07/2009] [Accepted: 02/10/2009] [Indexed: 12/11/2022]
Abstract
The terms cancer-initiating or cancer stem cells have been the subject of great interest in recent years. In this review we will use pancreatic cancer as an overall theme to draw parallels with historical findings to compare to recent reports of stem-like characteristics in pancreatic cancer. We will cover such topics as label-retaining cells (side-population), ABC transporter pumps, telomerase, quiescence, cell surface stem cell markers, and epithelial-mesenchymal transitions. Finally we will integrate the available findings into a pancreatic stem cell model that also includes metastatic disease.
Collapse
Affiliation(s)
- Vikash J. Bhagwandin
- University of California, San Francisco, G.W. Hooper Research Foundation, 513 Parnassus Avenue, San Francisco, CA 94143-0552
| | - Jerry W. Shay
- University of Texas Southwestern Medical Center, Department of Cell Biology, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039
| |
Collapse
|