1
|
Li J, Zhang Z, Gu J, Amini R, Mansfield AG, Xia J, White D, Stacey HD, Ang JC, Panesar G, Capretta A, Filipe CDM, Mossman K, Salena BJ, Gubbay JB, Balion C, Soleymani L, Miller MS, Yamamura D, Brennan JD, Li Y. Three on Three: Universal and High-Affinity Molecular Recognition of the Symmetric Homotrimeric Spike Protein of SARS-CoV-2 with a Symmetric Homotrimeric Aptamer. J Am Chem Soc 2022; 144:23465-23473. [PMID: 36520671 PMCID: PMC9762500 DOI: 10.1021/jacs.2c09870] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 12/23/2022]
Abstract
Our previously discovered monomeric aptamer for SARS-CoV-2 (MSA52) possesses a universal affinity for COVID-19 spike protein variants but is ultimately limited by its ability to bind only one subunit of the spike protein. The symmetrical shape of the homotrimeric SARS-CoV-2 spike protein presents the opportunity to create a matching homotrimeric molecular recognition element that is perfectly complementary to its structural scaffold, causing enhanced binding affinity. Here, we describe a branched homotrimeric aptamer with three-fold rotational symmetry, named TMSA52, that not only possesses excellent binding affinity but is also capable of binding several SARS-CoV-2 spike protein variants with picomolar affinity, as well as pseudotyped lentiviruses expressing SARS-CoV-2 spike protein variants with femtomolar affinity. Using Pd-Ir nanocubes as nanozymes in an enzyme-linked aptamer binding assay (ELABA), TMSA52 was capable of sensitively detecting diverse pseudotyped lentiviruses in pooled human saliva with a limit of detection as low as 6.3 × 103 copies/mL. The ELABA was also used to test 50 SARS-CoV-2-positive and 60 SARS-CoV-2-negative patient saliva samples, providing sensitivity and specificity values of 84.0 and 98.3%, respectively, thus highlighting the potential of TMSA52 for the development of future rapid tests.
Collapse
Affiliation(s)
- Jiuxing Li
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Zijie Zhang
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jimmy Gu
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Ryan Amini
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Alexandria G. Mansfield
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jianrun Xia
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Dawn White
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4O3, Canada
| | - Hannah D. Stacey
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- McMaster
Immunology Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jann C. Ang
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- McMaster
Immunology Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Gurpreet Panesar
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Alfredo Capretta
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4O3, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Carlos D. M. Filipe
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Karen Mossman
- McMaster
Immunology Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Department
of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Bruno J. Salena
- Department
of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Cynthia Balion
- Department
of Pathology and Molecular Medicine, McMaster
University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Leyla Soleymani
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Department
of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- School
of Biomedical Engineering, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Matthew S. Miller
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- McMaster
Immunology Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Deborah Yamamura
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Department
of Pathology and Molecular Medicine, McMaster
University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada
| | - John D. Brennan
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4O3, Canada
| | - Yingfu Li
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4O3, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- School
of Biomedical Engineering, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
2
|
Mack A, Emperle M, Schnee P, Adam S, Pleiss J, Bashtrykov P, Jeltsch A. Preferential self-interaction of DNA methyltransferase DNMT3A subunits containing the R882H cancer mutation leads to dominant changes of flanking sequence preferences. J Mol Biol 2022; 434:167482. [DOI: 10.1016/j.jmb.2022.167482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
|
3
|
Emperle M, Dukatz M, Kunert S, Holzer K, Rajavelu A, Jurkowska RZ, Jeltsch A. The DNMT3A R882H mutation does not cause dominant negative effects in purified mixed DNMT3A/R882H complexes. Sci Rep 2018; 8:13242. [PMID: 30185810 PMCID: PMC6125428 DOI: 10.1038/s41598-018-31635-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022] Open
Abstract
The DNA methyltransferase DNMT3A R882H mutation is observed in 25% of all AML patients. DNMT3A is active as tetramer and the R882H mutation is located in one of the subunit/subunit interfaces. Previous work has reported that formation of mixed wildtype/R882H complexes leads to a strong loss of catalytic activity observed in in vitro DNA methylation assays (Russler-Germain et al., 2014, Cancer Cell 25:442–454). To investigate this effect further, we have prepared mixed wildtype/R882H DNMT3A complexes by incubation of individually purified subunits of the DNMT3A catalytic domain and full-length DNMT3A2. In addition, we have used a double affinity tag approach and specifically purified mixed catalytic domain complexes formed after co-expression of R882H and wildtype subunits in E. coli cells. Afterwards, we determined the catalytic activity of the mixed complexes and compared it to that of purified complexes only consisting of one subunit type. In both settings, the expected catalytic activities of mixed R882H/wildtype complexes were observed demonstrating an absence of a dominant negative effect of the R882H mutation in purified DNMT3A enzymes. This result suggests that heterocomplex formation of DNMT3A and R882H is unlikely to cause dominant negative effects in human cells as well. The limitations of this conclusion and its implications are discussed.
Collapse
Affiliation(s)
- Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Michael Dukatz
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Stefan Kunert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Katharina Holzer
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Arumugam Rajavelu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.,Rajiv Gandhi Center for Biotechnology (RGCB), Trivandrum, 695014, Kerala, India
| | - Renata Z Jurkowska
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.,BioMed X Innovation Center, Im Neuenheimer Feld 583, D-69120, Heidelberg, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
4
|
Jeltsch A. From Bioengineering to CRISPR/Cas9 - A Personal Retrospective of 20 Years of Research in Programmable Genome Targeting. Front Genet 2018; 9:5. [PMID: 29434619 PMCID: PMC5790776 DOI: 10.3389/fgene.2018.00005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/04/2018] [Indexed: 12/03/2022] Open
Abstract
Genome targeting of restriction enzymes and DNA methyltransferases has many important applications including genome and epigenome editing. 15–20 years ago, my group was involved in the development of approaches for programmable genome targeting, aiming to connect enzymes with an oligodeoxynucleotide (ODN), which could form a sequence-specific triple helix at the genomic target site. Importantly, the target site of such enzyme-ODN conjugate could be varied simply by altering the ODN sequence promising great applicative values. However, this approach was facing many problems including the preparation and purification of the enzyme-ODN conjugates, their efficient delivery into cells, slow kinetics of triple helix formation and the requirement of a poly-purine target site sequence. Hence, for several years genome and epigenome editing approaches mainly were based on Zinc fingers and TAL proteins as targeting devices. More recently, CRISPR/Cas systems were discovered, which use a bound RNA for genome targeting that forms an RNA/DNA duplex with one DNA strand of the target site. These systems combine all potential advantages of the once imagined enzyme-ODN conjugates and avoid all main disadvantageous. Consequently, the application of CRISPR/Cas in genome and epigenome editing has exploded in recent years. We can draw two important conclusions from this example of research history. First, evolution still is the better bioengineer than humans and, whenever tested in parallel, natural solutions outcompete engineered ones. Second, CRISPR/Cas system were discovered in pure, curiosity driven, basic research, highlighting that it is basic, bottom-up research paving the way for fundamental innovation.
Collapse
Affiliation(s)
- Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
5
|
Kurian P, Capolupo A, Craddock TJA, Vitiello G. Water-mediated correlations in DNA-enzyme interactions. PHYSICS LETTERS. A 2018; 382:33-43. [PMID: 29403145 PMCID: PMC5796540 DOI: 10.1016/j.physleta.2017.10.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this paper we consider dipole-mediated correlations between DNA and enzymes in the context of their water environment. Such correlations emerge from electric dipole-dipole interactions between aromatic ring structures in DNA and in enzymes. We show that there are matching collective modes between DNA and enzyme dipole fields, and that a dynamic time-averaged polarization vanishes in the water dipole field only if either DNA, enzyme, or both are absent from the sample. This persistent field may serve as the electromagnetic image that, in popular colloquialisms about DNA biochemistry, allows enzymes to "scan" or "read" the double helix. Topologically nontrivial configurations in the coherent ground state requiring clamplike enzyme behavior on the DNA may stem, ultimately, from spontaneously broken gauge symmetries.
Collapse
Affiliation(s)
- P. Kurian
- Quantum Biology Laboratory, National Human Genome Center and Department of Medicine, Howard University College of Medicine, Washington, DC 20059, USA
| | - A. Capolupo
- Università degli Studi di Salerno and INFN Gruppo Collegato di Salerno, 84084 Fisciano (Salerno), Italy
| | - T. J. A. Craddock
- Departments of Psychology and Neuroscience, Computer Science, and Clinical Immunology, and Clinical Systems Biology Group, Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - G. Vitiello
- Università degli Studi di Salerno and INFN Gruppo Collegato di Salerno, 84084 Fisciano (Salerno), Italy
| |
Collapse
|
6
|
Kurian P, Dunston G, Lindesay J. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases. J Theor Biol 2016; 391:102-12. [PMID: 26682627 PMCID: PMC4746125 DOI: 10.1016/j.jtbi.2015.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/29/2015] [Accepted: 11/15/2015] [Indexed: 10/22/2022]
Abstract
Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism.
Collapse
Affiliation(s)
- P Kurian
- National Human Genome Center, Howard University College of Medicine, Washington, DC 20059, USA; Department of Physics and Astronomy, Howard University, Washington, DC 20059, USA; Computational Physics Laboratory, Howard University, Washington, DC 20059, USA.
| | - G Dunston
- National Human Genome Center, Howard University College of Medicine, Washington, DC 20059, USA; Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA
| | - J Lindesay
- Department of Physics and Astronomy, Howard University, Washington, DC 20059, USA; Computational Physics Laboratory, Howard University, Washington, DC 20059, USA
| |
Collapse
|
7
|
Zaremba M, Siksnys V. An Engineered SS Bridge Blocks the Conformational Change Required for the Nuclease Activity of BfiI. Biochemistry 2015; 54:5340-7. [PMID: 26261897 DOI: 10.1021/acs.biochem.5b00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The type IIS restriction endonuclease BfiI is a homodimer, and each monomer is composed of the N-terminal catalytic and C-terminal DNA recognition domains connected by a 28-residue linker segment. In the crystal in the absence of cognate DNA, BfiI exists in a "closed" conformation, in which an interdomain linker occludes a putative DNA binding surface at the catalytic domain and sterically hinders access to the active site. Cognate DNA binding presumably triggers a conformational change from the inactive "closed" state to the catalytically competent "open" state. Here we show that the disulfide SS bridge engineered at the domain interface locks the enzyme in the "closed" state. In the "closed" SS-linked state, BfiI binds cognate DNA with the same affinity as the wild-type enzyme but does not cut it, indicating that cross-linking introduces a restraint on the conformational transition, which couples DNA recognition and cleavage. Disruption of the interdomain SS bridge by the reducing agent restores the DNA cleavage ability of BfiI.
Collapse
Affiliation(s)
- Mindaugas Zaremba
- Institute of Biotechnology, Vilnius University , Graiciuno 8, Vilnius LT-02241, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University , Graiciuno 8, Vilnius LT-02241, Lithuania
| |
Collapse
|
8
|
Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res 2014; 42:7489-527. [PMID: 24878924 PMCID: PMC4081073 DOI: 10.1093/nar/gku447] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022] Open
Abstract
This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.
Collapse
Affiliation(s)
- Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Geoffrey G Wilson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938-2723, USA
| | - Wolfgang Wende
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| |
Collapse
|
9
|
Horton JR, Nugent RL, Li A, Mabuchi MY, Fomenkov A, Cohen-Karni D, Griggs RM, Zhang X, Wilson GG, Zheng Y, Xu SY, Cheng X. Structure and mutagenesis of the DNA modification-dependent restriction endonuclease AspBHI. Sci Rep 2014; 4:4246. [PMID: 24604015 PMCID: PMC3946040 DOI: 10.1038/srep04246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/13/2014] [Indexed: 12/13/2022] Open
Abstract
The modification-dependent restriction endonuclease AspBHI recognizes 5-methylcytosine (5mC) in the double-strand DNA sequence context of (C/T)(C/G)(5mC)N(C/G) (N = any nucleotide) and cleaves the two strands a fixed distance (N12/N16) 3′ to the modified cytosine. We determined the crystal structure of the homo-tetrameric AspBHI. Each subunit of the protein comprises two domains: an N-terminal DNA-recognition domain and a C-terminal DNA cleavage domain. The N-terminal domain is structurally similar to the eukaryotic SET and RING-associated (SRA) domain, which is known to bind to a hemi-methylated CpG dinucleotide. The C-terminal domain is structurally similar to classic Type II restriction enzymes and contains the endonuclease catalytic-site motif of DX20EAK. To understand how specific amino acids affect AspBHI recognition preference, we generated a homology model of the AspBHI-DNA complex, and probed the importance of individual amino acids by mutagenesis. Ser41 and Arg42 are predicted to be located in the DNA minor groove 5′ to the modified cytosine. Substitution of Ser41 with alanine (S41A) and cysteine (S41C) resulted in mutants with altered cleavage activity. All 19 Arg42 variants resulted in loss of endonuclease activity.
Collapse
Affiliation(s)
- John R Horton
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | - Rebecca L Nugent
- 1] New England Biolabs, 240 County Road, Ipswich, MA 01938, USA [2]
| | - Andrew Li
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Alexey Fomenkov
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Rose M Griggs
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | | | - Yu Zheng
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Shuang-yong Xu
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| |
Collapse
|
10
|
Gabsalilow L, Schierling B, Friedhoff P, Pingoud A, Wende W. Site- and strand-specific nicking of DNA by fusion proteins derived from MutH and I-SceI or TALE repeats. Nucleic Acids Res 2013; 41:e83. [PMID: 23408850 PMCID: PMC3627573 DOI: 10.1093/nar/gkt080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Targeted genome engineering requires nucleases that introduce a highly specific double-strand break in the genome that is either processed by homology-directed repair in the presence of a homologous repair template or by non-homologous end-joining (NHEJ) that usually results in insertions or deletions. The error-prone NHEJ can be efficiently suppressed by ‘nickases’ that produce a single-strand break rather than a double-strand break. Highly specific nickases have been produced by engineering of homing endonucleases and more recently by modifying zinc finger nucleases (ZFNs) composed of a zinc finger array and the catalytic domain of the restriction endonuclease FokI. These ZF-nickases work as heterodimers in which one subunit has a catalytically inactive FokI domain. We present two different approaches to engineer highly specific nickases; both rely on the sequence-specific nicking activity of the DNA mismatch repair endonuclease MutH which we fused to a DNA-binding module, either a catalytically inactive variant of the homing endonuclease I-SceI or the DNA-binding domain of the TALE protein AvrBs4. The fusion proteins nick strand specifically a bipartite recognition sequence consisting of the MutH and the I-SceI or TALE recognition sequences, respectively, with a more than 1000-fold preference over a stand-alone MutH site. TALE–MutH is a programmable nickase.
Collapse
Affiliation(s)
- Lilia Gabsalilow
- Institute for Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
11
|
Schierling B, Dannemann N, Gabsalilow L, Wende W, Cathomen T, Pingoud A. A novel zinc-finger nuclease platform with a sequence-specific cleavage module. Nucleic Acids Res 2012; 40:2623-38. [PMID: 22135304 PMCID: PMC3315325 DOI: 10.1093/nar/gkr1112] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 11/04/2011] [Accepted: 11/06/2011] [Indexed: 12/18/2022] Open
Abstract
Zinc-finger nucleases (ZFNs) typically consist of three to four zinc fingers (ZFs) and the non-specific DNA-cleavage domain of the restriction endonuclease FokI. In this configuration, the ZFs constitute the binding module and the FokI domain the cleavage module. Whereas new binding modules, e.g. TALE sequences, have been considered as alternatives to ZFs, no efforts have been undertaken so far to replace the catalytic domain of FokI as the cleavage module in ZFNs. Here, we have fused a three ZF array to the restriction endonuclease PvuII to generate an alternative ZFN. While PvuII adds an extra element of specificity when combined with ZFs, ZF-PvuII constructs must be designed such that only PvuII sites with adjacent ZF-binding sites are cleaved. To achieve this, we introduced amino acid substitutions into PvuII that alter K(m) and k(cat) and increase fidelity. The optimized ZF-PvuII fusion constructs cleave DNA at addressed sites with a >1000-fold preference over unaddressed PvuII sites in vitro as well as in cellula. In contrast to the 'analogous' ZF-FokI nucleases, neither excess of enzyme over substrate nor prolonged incubation times induced unaddressed cleavage in vitro. These results present the ZF-PvuII platform as a valid alternative to conventional ZFNs.
Collapse
Affiliation(s)
- Benno Schierling
- Institute of Biochemistry, Justus-Liebig University, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Metal ion and DNA binding by single-chain PvuII endonuclease: lessons from the linker. J Biol Inorg Chem 2011; 16:1269-78. [PMID: 21725852 DOI: 10.1007/s00775-011-0814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
Abstract
Understanding the roles of metal ions in restriction enzymes has been complicated by both the presence of two metal ions in many active sites and their homodimeric structure. Using a single-chain form of the wild-type restriction enzyme PvuII (scWT) in which subunits are fused with a short polypeptide linker (Simoncsits et al. in J. Mol. Biol. 309:89-97, 2001), we have characterized metal ion and DNA binding behavior in one subunit and examined the effects of the linker on dimer behavior. scWT exhibits heteronuclear single quantum coherence NMR spectra similar to those of native wild-type PvuII (WT). For scWT, isothermal titration calorimetry data fit to two Ca(II) sites per subunit with low-millimolar K (d)s. The variant scWT|E68A, in which metal ion binding in one subunit is abolished by mutation, also binds two Ca(II) ions in the WT subunit with low-millimolar K (d)s. When there are no added metal ions, DNA binding affinity for scWT is tenfold stronger than that of the native WT, but tenfold weaker at saturating Ca(II) concentration. In the presence of Ca(II), scWT|E68A binds target DNA similarly to scWT, indicating that high-affinity substrate binding can be carried energetically by one metal-ion-binding subunit. Global analysis of DNA binding data for scWT|E68A suggests that the metal-ion-dependent behaviors observed for WT are reflective of independent subunit behavior. This characterization provides an understanding of subunit contributions in a homodimeric context.
Collapse
|
13
|
Vasu K, Saravanan M, Rajendra BVRN, Nagaraja V. Generation of a Manganese Specific Restriction Endonuclease with Nicking Activity. Biochemistry 2010; 49:8425-33. [DOI: 10.1021/bi101035k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kommireddy Vasu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Matheshwaran Saravanan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| |
Collapse
|
14
|
Prasannan CB, Xie F, Dupureur CM. Characterizing metalloendonuclease mixed metal complexes by global kinetic analysis. J Biol Inorg Chem 2010; 15:533-45. [PMID: 20084532 DOI: 10.1007/s00775-010-0621-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 12/21/2009] [Indexed: 11/25/2022]
Affiliation(s)
- Charulata B Prasannan
- Department of Chemistry and Biochemistry, Center for Nanoscience, University of Missouri St. Louis, St. Louis, MO 63121, USA
| | | | | |
Collapse
|
15
|
Sanders KL, Catto LE, Bellamy SRW, Halford SE. Targeting individual subunits of the FokI restriction endonuclease to specific DNA strands. Nucleic Acids Res 2009; 37:2105-15. [PMID: 19223323 PMCID: PMC2673415 DOI: 10.1093/nar/gkp046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Many restriction endonucleases are dimers that act symmetrically at palindromic DNA sequences, with each active site cutting one strand. In contrast, FokI acts asymmetrically at a non-palindromic sequence, cutting ‘top’ and ‘bottom’ strands 9 and 13 nucleotides downstream of the site. FokI is a monomeric protein with one active site and a single monomer covers the entire recognition sequence. To cut both strands, the monomer at the site recruits a second monomer from solution, but it is not yet known which DNA strand is cut by the monomer bound to the site and which by the recruited monomer. In this work, mutants of FokI were used to show that the monomer bound to the site made the distal cut in the bottom strand, whilst the recruited monomer made in parallel the proximal cut in the top strand. Procedures were also established to direct FokI activity, either preferentially to the bottom strand or exclusively to the top strand. The latter extends the range of enzymes for nicking specified strands at specific sequences, and may facilitate further applications of FokI in gene targeting.
Collapse
Affiliation(s)
- Kelly L Sanders
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
16
|
Nakonieczna J, Kaczorowski T, Obarska-Kosinska A, Bujnicki JM. Functional analysis of MmeI from methanol utilizer Methylophilus methylotrophus, a subtype IIC restriction-modification enzyme related to type I enzymes. Appl Environ Microbiol 2009; 75:212-23. [PMID: 18997032 PMCID: PMC2612229 DOI: 10.1128/aem.01322-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 10/29/2008] [Indexed: 11/20/2022] Open
Abstract
MmeI from Methylophilus methylotrophus belongs to the type II restriction-modification enzymes. It recognizes an asymmetric DNA sequence, 5'-TCCRAC-3' (R indicates G or A), and cuts both strands at fixed positions downstream of the specific site. This particular feature has been exploited in transcript profiling of complex genomes (using serial analysis of gene expression technology). We have shown previously that the endonucleolytic activity of MmeI is strongly dependent on the presence of S-adenosyl-l-methionine (J. Nakonieczna, J. W. Zmijewski, B. Banecki, and A. J. Podhajska, Mol. Biotechnol. 37:127-135, 2007), which puts MmeI in subtype IIG. The same cofactor is used by MmeI as a methyl group donor for modification of an adenine in the upper strand of the recognition site to N(6)-methyladenine. Both enzymatic activities reside in a single polypeptide (919 amino acids [aa]), which puts MmeI also in subtype IIC of the restriction-modification systems. Based on a molecular model, generated with the use of bioinformatic tools and validated by site-directed mutagenesis, we were able to localize three functional domains in the structure of the MmeI enzyme: (i) the N-terminal portion containing the endonucleolytic domain with the catalytic Mg2+-binding motif D(70)-X(9)-EXK(82), characteristic for the PD-(D/E)XK superfamily of nucleases; (ii) a central portion (aa 310 to 610) containing nine sequence motifs conserved among N(6)-adenine gamma-class DNA methyltransferases; (iii) the C-terminal portion (aa 610 to 919) containing a putative target recognition domain. Interestingly, all three domains showed highest similarity to the corresponding elements of type I enzymes rather than to classical type II enzymes. We have found that MmeI variants deficient in restriction activity (D70A, E80A, and K82A) can bind and methylate specific nucleotide sequence. This suggests that domains of MmeI responsible for DNA restriction and modification can act independently. Moreover, we have shown that a single amino acid residue substitution within the putative target recognition domain (S807A) resulted in a MmeI variant with a higher endonucleolytic activity than the wild-type enzyme.
Collapse
Affiliation(s)
- Joanna Nakonieczna
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk, and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland.
| | | | | | | |
Collapse
|
17
|
Papadakos GA, Nastri H, Riggs P, Dupureur CM. Uncoupling metallonuclease metal ion binding sites via nudge mutagenesis. J Biol Inorg Chem 2007; 12:557-69. [PMID: 17308914 DOI: 10.1007/s00775-007-0209-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 01/12/2007] [Indexed: 11/28/2022]
Abstract
The hydrolysis of phosphodiester bonds by nucleases is critical to nucleic acid processing. Many nucleases utilize metal ion cofactors, and for a number of these enzymes two active-site metal ions have been detected. Testing proposed mechanistic roles for individual bound metal ions has been hampered by the similarity between the sites and cooperative behavior. In the homodimeric PvuII restriction endonuclease, the metal ion dependence of DNA binding is sigmoidal and consistent with two classes of coupled metal ion binding sites. We reasoned that a conservative active-site mutation would perturb the ligand field sufficiently to observe the titration of individual metal ion binding sites without significantly disturbing enzyme function. Indeed, mutation of a Tyr residue 5.5 A from both metal ions in the enzyme-substrate crystal structure (Y94F) renders the metal ion dependence of DNA binding biphasic: two classes of metal ion binding sites become distinct in the presence of DNA. The perturbation in metal ion coordination is supported by 1H-15N heteronuclear single quantum coherence spectra of enzyme-Ca(II) and enzyme-Ca(II)-DNA complexes. Metal ion binding by free Y94F is basically unperturbed: through multiple experiments with different metal ions, the data are consistent with two alkaline earth metal ion binding sites per subunit of low millimolar affinity, behavior which is very similar to that of the wild type. The results presented here indicate a role for the hydroxyl group of Tyr94 in the coupling of metal ion binding sites in the presence of DNA. Its removal causes the affinities for the two metal ion binding sites to be resolved in the presence of substrate. Such tuning of metal ion affinities will be invaluable to efforts to ascertain the contributions of individual bound metal ions to metallonuclease function.
Collapse
Affiliation(s)
- Grigorios A Papadakos
- Department of Chemistry and Biochemistry, University of Missouri-St Louis, St Louis, MO 63121, USA
| | | | | | | |
Collapse
|
18
|
Bellamy SRW, Milsom SE, Scott DJ, Daniels LE, Wilson GG, Halford SE. Cleavage of individual DNA strands by the different subunits of the heterodimeric restriction endonuclease BbvCI. J Mol Biol 2005; 348:641-53. [PMID: 15826661 DOI: 10.1016/j.jmb.2005.02.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 02/11/2005] [Accepted: 02/18/2005] [Indexed: 11/26/2022]
Abstract
BbvCI cleaves an asymmetric DNA sequence, 5'-CC downward arrow TCAGC-3'/5'-GC downward arrow TGAGG-3', as indicated. While many Type II restriction enzymes consist of identical subunits, BbvCI has two different subunits: R(1), which acts at GC downward arrow TGAGG; and R(2), which acts at CC downward arrow TCAGC. Some mutants of BbvCI with defects in one subunit, either R(1)(-)R(2)(+) or R(1)(+)R(2)(-), cleave only one strand, that attacked by the native subunit. In analytical ultracentrifugation at various concentrations of protein, wild-type and mutant BbvCI enzymes aggregated extensively, but are R(1)R(2) heterodimers at the concentrations used in DNA cleavage reactions. On a plasmid with one recognition site, wild-type BbvCI cleaved both strands before dissociating from the DNA, while the R(1)(-)R(2)(+) and R(1)(+)R(2)(-) mutants acted almost exclusively on their specified strands, albeit at relatively slow rates. During the wild-type reaction, the DNA is cleaved initially in one strand, mainly that targeted by the R(1) subunit. The other strand is then cleaved slowly by R(2) before the enzyme dissociates from the DNA. Hence, the nicked form accumulates as a transient intermediate. This behaviour differs from that of many other restriction enzymes, which cut both strands at equal rates. However, the activities of the R(1)(+) and R(2)(+) subunits in the wild-type enzyme can differ from their activities in the R(1)(+)R(2)(-) and R(1)(-)R(2)(+) mutants. Each active site in BbvCI therefore influences the other.
Collapse
Affiliation(s)
- Stuart R W Bellamy
- Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Heiter DF, Lunnen KD, Wilson GG. Site-Specific DNA-nicking Mutants of the Heterodimeric Restriction Endonuclease R.BbvCI. J Mol Biol 2005; 348:631-40. [PMID: 15826660 DOI: 10.1016/j.jmb.2005.02.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 02/12/2005] [Accepted: 02/18/2005] [Indexed: 10/25/2022]
Abstract
The restriction enzyme R.BbvCI cleaves duplex DNA within a seven base-pair asymmetric recognition sequence, thus: CCTCAGC/GCTGAGG-->CC--TCAGC/GC--TGAGG. We show that R.BbvCI comprises two different subunits, R(1) and R(2); that each subunit contains a catalytic site for DNA strand hydrolysis; and that these sites act independently and strand-specifically. In turn, each catalytic site was inactivated by mutagenesis to form dimeric enzymes in which only one site remained functional. The altered enzymes hydrolyzed just one strand of the recognition sequence, nicking the DNA rather than cleaving it. Enzymes in which the catalytic site in the R(1) subunit remained functional nicked the bottom strand of the sequence, producing CCTCAGC/GC--TGAGG, while those in which the catalytic site in the R(2) subunit remained functional nicked the top strand, producing CC--TCAGC/GCTGAGG. These DNA-nicking enzymes could prove useful for investigation of DNA repair, recombination, and replication, and for laboratory procedures that initiate from nicks, such as DNA degradation, synthesis, and amplification.
Collapse
Affiliation(s)
- Daniel F Heiter
- New England Biolabs Inc., 32 Tozer Road, Beverly, MA 01915, USA
| | | | | |
Collapse
|
20
|
Fritsche P, Alves J. A monomeric mutant of restriction endonuclease EcoRI nicks DNA without sequence specificity. Biol Chem 2005; 385:975-85. [PMID: 15551873 DOI: 10.1515/bc.2004.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have mutated the monomer-monomer interface of the restriction endonuclease EcoRI in order to destabilize the homodimer and to stabilize heterodimers. Mutations of Leu158 to charged amino acid residues result in strong destabilization of the dimer. The largest effect was detected for the L158D mutant which is monomeric even at higher concentrations. It unspecifically degrades DNA by cleaving both single strands independently every 15 nucleotides on the average. Although cleavage is reproducible, it is not determined by nucleotide sequence but by general properties like conformation or deformability as has been found for other unspecific nucleases. Mutations of Ile230, which is in direct contact with Leu158 of the other subunit, cause structural changes with the loss of about ten percent alpha-helix content, but interfere only marginally with homodimerization and double strand cleavage. Again the mutation to aspartate shows the strongest effects. Mixtures of single mutants, one containing aspartate at one of the two positions and the other lysine at the corresponding position, form heterodimers. These are mainly stabilized compared to the homodimers by re-establishment of the wild-type hydrophobic interaction at the not mutated residues while an interaction of aspartate and lysine seems energetically unfavorable in this structural context.
Collapse
Affiliation(s)
- Petra Fritsche
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | |
Collapse
|
21
|
Samuelson JC, Zhu Z, Xu SY. The isolation of strand-specific nicking endonucleases from a randomized SapI expression library. Nucleic Acids Res 2004; 32:3661-71. [PMID: 15247348 PMCID: PMC484165 DOI: 10.1093/nar/gkh674] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Type IIS restriction endonuclease SapI recognizes the DNA sequence 5'-GCTCTTC-3' (top strand by convention) and cleaves downstream (N1/N4) indicating top- and bottom-strand spacing, respectively. The asymmetric nature of DNA recognition presented the possibility that one, if not two, nicking variants might be created from SapI. To explore this possibility, two parallel selection procedures were designed to isolate either top-strand nicking or bottom-strand nicking variants from a randomly mutated SapI expression library. These procedures take advantage of a SapI substrate site designed into the expression plasmid, which allows for in vitro selection of plasmid clones possessing a site-specific and strand-specific nick. A procedure designed to isolate bottom-strand nicking enzymes yielded Nb.SapI-1 containing a critical R420I substitution near the end of the protein. The top-strand procedure yielded several SapI variants with a distinct preference for top-strand cleavage. Mutations present within the selected clones were segregated to confirm a top-strand nicking phenotype for single variants Q240R, E250K, G271R or K273R. The nature of the amino acid substitutions found in the selected variants provides evidence that SapI may possess two active sites per monomer. This work presents a framework for establishing the mechanism of SapI DNA cleavage.
Collapse
|
22
|
Zhu Z, Samuelson JC, Zhou J, Dore A, Xu SY. Engineering strand-specific DNA nicking enzymes from the type IIS restriction endonucleases BsaI, BsmBI, and BsmAI. J Mol Biol 2004; 337:573-83. [PMID: 15019778 DOI: 10.1016/j.jmb.2004.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 01/28/2004] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
More than 80 type IIA/IIS restriction endonucleases with different recognition specificities are now known. In contrast, only a limited number of strand-specific nicking endonucleases are currently available. To overcome this limitation, a novel genetic screening method was devised to convert type IIS restriction endonucleases into strand-specific nicking endonucleases. The genetic screen consisted of four steps: (1) random mutagenesis to create a plasmid library, each bearing an inactivated endonuclease gene; (2) restriction digestion of plasmids containing the wild-type and the mutagenized endonuclease gene; (3) back-crosses with the wild-type gene by ligation to the wild-type N-terminal or C-terminal fragment; (4) transformation of the ligated DNA into a pre-modified host and screening for nicking endonuclease activity in total cell culture or cell extracts of the transformants. Nt.BsaI and Nb.BsaI nicking endonucleases were isolated from BsaI using this genetic screen. In addition, site-directed mutagenesis was carried out to isolate BsaI nicking variants with minimal double-stranded DNA cleavage activity. The equivalent amino acid substitutions were introduced into BsmBI and BsmAI restriction endonucleases with similar recognition sequence and significant amino acid sequence identity and their nicking variants were successfully isolated. This work provides strong evidence that some type IIS restriction endonucleases carry two separate active sites. When one of the active sites is inactivated, the type IIS restriction endonuclease may nick only one strand.
Collapse
Affiliation(s)
- Zhenyu Zhu
- New England Biolabs, Inc. 32 Tozer Road, Beverly, MA 01915, USA
| | | | | | | | | |
Collapse
|
23
|
Rimseliene R, Maneliene Z, Lubys A, Janulaitis A. Engineering of restriction endonucleases: using methylation activity of the bifunctional endonuclease Eco57I to select the mutant with a novel sequence specificity. J Mol Biol 2003; 327:383-91. [PMID: 12628245 DOI: 10.1016/s0022-2836(03)00142-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type II restriction endonucleases (REs) are widely used tools in molecular biology, biotechnology and diagnostics. Efforts to generate new specificities by structure-guided design and random mutagenesis have been unsuccessful so far. We have developed a new procedure called the methylation activity-based selection (MABS) for generating REs with a new specificity. MABS uses a unique property of bifunctional type II REs to methylate DNA targets they recognize. The procedure includes three steps: (1) conversion of a bifunctional RE into a monofunctional DNA-modifying enzyme by cleavage center disruption; (2) mutagenesis and selection of mutants with altered DNA modification specificity based on their ability to protect predetermined DNA targets; (3) reconstitution of the cleavage center's wild-type structure. The efficiency of the MABS technique was demonstrated by altering the sequence specificity of the bifunctional RE Eco57I from 5'-CTGAAG to 5'-CTGRAG, and thus generating the mutant restriction endonuclease (and DNA methyltransferase) of a specificity not known before. This study provides evidence that MABS is a promising technique for generation of REs with new specificities.
Collapse
|
24
|
Abstract
Restriction endonucleases have become a fundamental tool of molecular biology with many commercial vendors and extensive product lines. While a significant amount has been learned about restriction enzyme diversity, genomic organization, and mechanism, these continue to be active areas of research and assist in classification efforts. More recently, one focus has been their exquisite specificity for the proper recognition sequence and the lack of homology among enzymes recognizing the same DNA sequence. Some questions also remain regarding in vivo function. Site-directed mutagenesis and fusion proteins based on known endonucleases show promise for custom-designed cleavage. An understanding of the enzymes and their properties can improve their productive application by maintaining critical digest parameters and enhancing or avoiding alternative activities.
Collapse
MESH Headings
- Animals
- DNA Restriction Enzymes/chemistry
- DNA Restriction Enzymes/classification
- DNA Restriction Enzymes/genetics
- DNA Restriction Enzymes/metabolism
- Deoxyribonucleases, Type I Site-Specific/chemistry
- Deoxyribonucleases, Type I Site-Specific/classification
- Deoxyribonucleases, Type I Site-Specific/genetics
- Deoxyribonucleases, Type I Site-Specific/metabolism
- Deoxyribonucleases, Type II Site-Specific/chemistry
- Deoxyribonucleases, Type II Site-Specific/classification
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Deoxyribonucleases, Type III Site-Specific/chemistry
- Deoxyribonucleases, Type III Site-Specific/classification
- Deoxyribonucleases, Type III Site-Specific/genetics
- Deoxyribonucleases, Type III Site-Specific/metabolism
- Enzyme Activation
- Humans
- Species Specificity
- Substrate Specificity
Collapse
|
25
|
Protozanova E, Demidov VV, Soldatenkov V, Chasovskikh S, Frank-Kamenetskii MD. Tailoring the activity of restriction endonuclease PleI by PNA-induced DNA looping. EMBO Rep 2002; 3:956-61. [PMID: 12231505 PMCID: PMC1307623 DOI: 10.1093/embo-reports/kvf192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA looping is one of the key factors allowing proteins bound to different DNA sites to signal one another via direct contacts. We demonstrate that DNA looping can be generated in an arbitrary chosen site by sequence-directed targeting of double-stranded DNA with pseudocomplementary peptide-nucleic acids (pcPNAs). We designed pcPNAs to mask the DNA from cleavage by type IIs restriction enzyme PleI while not preventing the enzyme from binding to its primary DNA recognition site. Direct interaction between two protein molecules (one bound to the original recognition site and the other to a sequence-degenerated site) results in a totally new activity of PleI: it produces a nick near the degenerate site. The PNA-induced nicking efficiency varies with the distance between the two protein-binding sites in a phase with the DNA helical periodicity. Our findings imply a general approach for the fine-tuning of proteins bound to DNA sites well separated along the DNA chain.
Collapse
Affiliation(s)
- Ekaterina Protozanova
- Center for Advanced Biotechnology, Boston University, 36 Cummington Street, Boston, MA 02215
| | - Vadim V. Demidov
- Center for Advanced Biotechnology, Boston University, 36 Cummington Street, Boston, MA 02215
- V.V. Demidov and M.D. Frank-Kamenetskii should be regarded as senior authors
| | - Viatcheslav Soldatenkov
- Department of Radiation Medicine, Georgetown University Medical Center, 3970 Reservoir Road N.W., Washington, DC 20007, USA
| | - Sergey Chasovskikh
- Department of Radiation Medicine, Georgetown University Medical Center, 3970 Reservoir Road N.W., Washington, DC 20007, USA
| | - Maxim D. Frank-Kamenetskii
- Center for Advanced Biotechnology, Boston University, 36 Cummington Street, Boston, MA 02215
- V.V. Demidov and M.D. Frank-Kamenetskii should be regarded as senior authors
- Tel: +1 617 353 8498; Fax: +1 617 353 8501;
| |
Collapse
|
26
|
Xu Y, Lunnen KD, Kong H. Engineering a nicking endonuclease N.AlwI by domain swapping. Proc Natl Acad Sci U S A 2001; 98:12990-5. [PMID: 11687651 PMCID: PMC60812 DOI: 10.1073/pnas.241215698] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changing enzymatic function through genetic engineering still presents a challenge to molecular biologists. Here we present an example in which changing the oligomerization state of an enzyme changes its function. Type IIs restriction endonucleases such as AlwI usually fold into two separate domains: a DNA-binding domain and a catalytic/dimerization domain. We have swapped the putative dimerization domain of AlwI with a nonfunctional dimerization domain from a nicking enzyme, N.BstNBI. The resulting chimeric enzyme, N.AlwI, no longer forms a dimer. Interestingly, the monomeric N.AlwI still recognizes the same sequence as AlwI but only cleaves the DNA strand containing the sequence 5'-GGATC-3' (top strand). In contrast, the wild-type AlwI exists as a dimer in solution and cleaves two DNA strands; the top strand is cleaved by an enzyme binding to that sequence, and its complementary bottom strand is cleaved by the second enzyme dimerized with the first enzyme. N.AlwI is unable to form a dimer and therefore nicks DNA as a monomer. In addition, the engineered nicking enzyme is at least as active as the wild-type AlwI and is thus a useful enzyme. To our knowledge, this is the first report of creating a nicking enzyme by domain swapping.
Collapse
Affiliation(s)
- Y Xu
- New England Biolabs, 32 Tozertypeoad, Beverly, MA 01915, USA
| | | | | |
Collapse
|
27
|
Besnier CE, Kong H. Converting MlyI endonuclease into a nicking enzyme by changing its oligomerization state. EMBO Rep 2001; 2:782-6. [PMID: 11520857 PMCID: PMC1084030 DOI: 10.1093/embo-reports/kve175] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
N.BstNBI is a nicking endonuclease that recognizes the sequence GAGTC and nicks one DNA strand specifically. The Type IIs endonuclease, MlyI, also recognizes GAGTC, but cleaves both DNA strands. Sequence comparisons revealed significant similarities between N.BstNBI and MlyI. Previous studies showed that MlyI dimerizes in the presence of a cognate DNA, whereas N.BstNBI remains a monomer. This suggests that dimerization may be required for double-stranded cleavage. To test this hypothesis, we used a multiple alignment to design mutations to disrupt the dimerization function of MlyI. When Tyr491 and Lys494 were both changed to alanine, the mutated endonuclease, N.MlyI, no longer formed a dimer and cleaved only one DNA strand specifically. Thus, we have shown that changing the oligomerization state of an enzyme changes its enzymatic function. This experiment also established a protocol that could be applied to other Type IIs endonucleases in order to generate more novel nicking endonucleases.
Collapse
Affiliation(s)
- C E Besnier
- New England Biolabs, Inc., 32 Tozer Road, Beverly, MA 01915, USA
| | | |
Collapse
|
28
|
Pingoud A, Jeltsch A. Structure and function of type II restriction endonucleases. Nucleic Acids Res 2001; 29:3705-27. [PMID: 11557805 PMCID: PMC55916 DOI: 10.1093/nar/29.18.3705] [Citation(s) in RCA: 440] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2001] [Revised: 03/23/2001] [Accepted: 06/07/2001] [Indexed: 11/13/2022] Open
Abstract
More than 3000 type II restriction endonucleases have been discovered. They recognize short, usually palindromic, sequences of 4-8 bp and, in the presence of Mg(2+), cleave the DNA within or in close proximity to the recognition sequence. The orthodox type II enzymes are homodimers which recognize palindromic sites. Depending on particular features subtypes are classified. All structures of restriction enzymes show a common structural core comprising four beta-strands and one alpha-helix. Furthermore, two families of enzymes can be distinguished which are structurally very similar (EcoRI-like enzymes and EcoRV-like enzymes). Like other DNA binding proteins, restriction enzymes are capable of non-specific DNA binding, which is the prerequisite for efficient target site location by facilitated diffusion. Non-specific binding usually does not involve interactions with the bases but only with the DNA backbone. In contrast, specific binding is characterized by an intimate interplay between direct (interaction with the bases) and indirect (interaction with the backbone) readout. Typically approximately 15-20 hydrogen bonds are formed between a dimeric restriction enzyme and the bases of the recognition sequence, in addition to numerous van der Waals contacts to the bases and hydrogen bonds to the backbone, which may also be water mediated. The recognition process triggers large conformational changes of the enzyme and the DNA, which lead to the activation of the catalytic centers. In many restriction enzymes the catalytic centers, one in each subunit, are represented by the PD. D/EXK motif, in which the two carboxylates are responsible for Mg(2+) binding, the essential cofactor for the great majority of enzymes. The precise mechanism of cleavage has not yet been established for any enzyme, the main uncertainty concerns the number of Mg(2+) ions directly involved in cleavage. Cleavage in the two strands usually occurs in a concerted fashion and leads to inversion of configuration at the phosphorus. The products of the reaction are DNA fragments with a 3'-OH and a 5'-phosphate.
Collapse
Affiliation(s)
- A Pingoud
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
| | | |
Collapse
|
29
|
Simoncsits A, Tjörnhammar ML, Raskó T, Kiss A, Pongor S. Covalent joining of the subunits of a homodimeric type II restriction endonuclease: single-chain PvuII endonuclease. J Mol Biol 2001; 309:89-97. [PMID: 11491304 DOI: 10.1006/jmbi.2001.4651] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The PvuII restriction endonuclease has been converted from its natural homodimeric form into a single polypeptide chain by tandemly linking the two subunits through a short peptide linker. The arrangement of the single-chain PvuII (sc PvuII) is (2-157)-GlySerGlyGly-(2-157), where (2-157) represents the amino acid residues of the enzyme subunit and GlySerGlyGly is the peptide linker. By introducing the corresponding tandem gene into Escherichia coli, PvuII endonuclease activity could be detected in functional in vivo assays. The sc enzyme was expressed at high level as a soluble protein. The purified enzyme was shown to have the molecular mass expected for the designed sc protein. Based on the DNA cleavage patterns obtained with different substrates, the cleavage specificity of the sc PvuII is indistinguishable from that of the wild-type (wt) enzyme. The sc enzyme binds specifically to the cognate DNA site under non-catalytic conditions, in the presence of Ca2+, with the expected 1:1 stoichiometry. Under standard catalytic conditions, the sc enzyme cleaves simultaneously the two DNA strands in a concerted manner. Steady-state kinetic parameters of DNA cleavage by the sc and wt PvuII showed that the sc enzyme is a potent, but somewhat less efficient catalyst; the k(cat)/K(M) values are 1.11 x 10(9) and 3.50 x 10(9) min(-1) M(-1) for the sc and wt enzyme, respectively. The activity decrease is due to the lower turnover number and to the lower substrate affinity. The sc arrangement provides a facile route to obtain asymmetrically modified heterodimeric enzymes.
Collapse
Affiliation(s)
- A Simoncsits
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| | | | | | | | | |
Collapse
|
30
|
Horton JR, Nastri HG, Riggs PD, Cheng X. Asp34 of PvuII endonuclease is directly involved in DNA minor groove recognition and indirectly involved in catalysis. J Mol Biol 1998; 284:1491-504. [PMID: 9878366 DOI: 10.1006/jmbi.1998.2269] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The PvuII restriction endonuclease is a homodimer that recognizes and cleaves the DNA sequence 5'-CAGCTG-3' in double-stranded DNA, and the structure of this enzyme has been reported. In the wild-type enzyme, Asp34 interacts with the internal guanine of the recognition sequence on the minor groove side. The Asp34 codon was altered to specify Gly (D34G), and in vitro studies have revealed that the D34G protein has lost binding specificity for the central G.C base-pairs, and that it cuts the canonical sequence with 10(-4)-fold reduced activity as compared to the wild-type enzyme. We have now determined the structure at 1.59 A resolution of the D34G PvuII endonuclease complexed with a 12 bp duplex deoxyoligonucleotide containing the cognate sequence. The D34G alteration results in several structural changes relative to wild-type protein/DNA complexes. First, the sugar moiety of the internal guanine changes from a C2'-endo to C3'-endo pucker while that of the 3' guanine changes from C3'-endo to C2'-endo pucker. Second, the axial rise between the internal G.C base-pairs is reduced while that between the G.C and flanking base-pairs is expanded. Third, two distinct monomeric active sites are observed that we refer to as being "primed" and "unprimed" for phosphodiester bond cleavage. The primed and unprimed sites differ in the conformation of the Asp58 side-chain, and in the absence from unprimed sites of four networked water molecules. These water molecules, present in the primed site, have been implicated in the catalytic mechanism of this and other endonucleases; some of them can be replaced by the Mg2+ necessary for cleavage. Taken together, these structural changes imply that the Asp34 side-chains from the two subunits maintain a distinct conformation of its DNA substrate, properly situating the target backbone phosphates and indirectly manipulating the active sites. This provides some insight into how recognition of the specific DNA sequence is linked to catalysis by the highly specific restriction endonucleases, and reveals one way in which the structural conformation of the DNA is modulated coordinately with that of the PvuII protein.
Collapse
Affiliation(s)
- J R Horton
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | | | | | | |
Collapse
|
31
|
Schulze C, Jeltsch A, Franke I, Urbanke C, Pingoud A. Crosslinking the EcoRV restriction endonuclease across the DNA-binding site reveals transient intermediates and conformational changes of the enzyme during DNA binding and catalytic turnover. EMBO J 1998; 17:6757-66. [PMID: 9822618 PMCID: PMC1171021 DOI: 10.1093/emboj/17.22.6757] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
EcoRV completely encircles bound DNA with two loops, forming the entry and exit gate for the DNA substrate. These loops were crosslinked generating CL-EcoRV which binds and releases linear DNA only slowly, because threading linear DNA into and out of the DNA-binding 'tunnel' of CL-EcoRV is not very effective. If the crosslinking reaction is carried out with a circular bound DNA, CL-EcoRV is hyperactive towards the trapped substrate which is cleaved very quickly but not very accurately. CL-EcoRV also binds to, but does not cleave, circular DNA when added from the outside, because it cannot enter the active site. Based on these results a two-step binding model is proposed for EcoRV: initial DNA binding occurs at the outer side of the loops before the gate opens and then the DNA is transferred to the catalytic center.
Collapse
Affiliation(s)
- C Schulze
- Institut für Biochemie (Fachbereich Biologie), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen
| | | | | | | | | |
Collapse
|
32
|
Gimble FS, Duan X, Hu D, Quiocho FA. Identification of Lys-403 in the PI-SceI homing endonuclease as part of a symmetric catalytic center. J Biol Chem 1998; 273:30524-9. [PMID: 9804821 DOI: 10.1074/jbc.273.46.30524] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Superposition of the PI-SceI and I-CreI homing endonuclease three-dimensional x-ray structures indicates general similarity between the I-CreI homodimer and the PI-SceI endonuclease domain. Saddle-shaped structures are present in each protein that are proposed to bind DNA. At the putative endonucleolytic active sites, the superposition reveals that two lysine (Lys-301 and Lys-403 in PI-SceI and Lys-98 and Lys-98' in I-CreI) and two aspartic acid residues (Asp-218 and Asp-326 in PI-SceI and Asp-20 and Asp-20' in I-CreI) are related by 2-fold symmetry. The critical role of Lys-301, Asp-218, and Asp-326 in the PI-SceI reaction pathway was reported previously. Here, we demonstrate the significance of the active-site symmetry by showing that alanine substitution at Lys-403 reduces cleavage activity by greater than 50-fold but has little effect on the DNA binding activity of the mutant enzyme. Substitution of Lys-403 with arginine, which maintains the positive charge, has only a modest effect on activity. Interestingly, even though the Lys-301 and Lys-403 residues display pseudosymmetry, PI-SceI mutant proteins with substitutions at these positions have different behaviors. The presence of similar basic and acidic residues in many LAGLIDADG homing endonucleases suggests that these enzymes use a common reaction mechanism to cleave double-stranded DNA.
Collapse
Affiliation(s)
- F S Gimble
- Center for Macromolecular Design, Institute of Biosciences and Technology and Department of Biochemistry and Biophysics, Texas A & M University, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
33
|
Stahl F, Wende W, Jeltsch A, Pingoud A. The mechanism of DNA cleavage by the type II restriction enzyme EcoRV: Asp36 is not directly involved in DNA cleavage but serves to couple indirect readout to catalysis. Biol Chem 1998; 379:467-73. [PMID: 9628339 DOI: 10.1515/bchm.1998.379.4-5.467] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Three different mechanisms have been proposed to describe DNA cleavage by the type II restriction endonuclease EcoRV, which differ in the number and function of metal ions directly involved in catalysis and the different roles assigned to amino acid residues in the active sites and a phosphate group of the substrate. There are only four acidic amino acid residues close to the scissile bond: the essential Asp74 and Asp90, the non-essential Glu45, and Asp36. We show here that Asp36 can be exchanged for alanine, with only minor effects on the cleavage rate of the nearby phosphodiester bond, excluding that Asp36 could be directly involved in catalysis. Hence, the two versions of the two-metal-ion mechanism are not compatible with the experimental data, because too few ligands for two metal ions are present near the active site of EcoRV. Our result, thus, supports the one-metal-ion mechanism for EcoRV. We suggest that Asp36 has an allosteric effect by which specific contacts between one strand of the DNA and one subunit of the enzyme trigger the activation of one catalytic center. Given the similar structures of the active sites of EcoRV, EcoRI, BamHI, PvuII and FokI, as well as the occurrence of a characteristic catalytic motif in several other restriction enzymes, we conclude that these enzymes most likely share a similar mechanism of DNA cleavage, whose characteristic feature is the involvement of only one Mg2+ ion in catalysis.
Collapse
Affiliation(s)
- F Stahl
- Institut für Biochemie, Fachbereich Biologie, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | |
Collapse
|
34
|
Pfannschmidt C, Langowski J. Superhelix organization by DNA curvature as measured through site-specific labeling. J Mol Biol 1998; 275:601-11. [PMID: 9466934 DOI: 10.1006/jmbi.1997.1476] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For determining the position of a defined site in a superhelical DNA we have developed a method for introducing a covalent biotin label at a specific sequence while preserving the superhelicity. This is done by first introducing a specific nick, labeling the DNA by limited nick translation and sealing the nick with ligase. The superhelicity is controlled by including ethidium in the ligation reaction. Using scanning force of microscopy on DNAs labeled by this method, we have then compared the position of streptavidin markers at a specific site relative to the end loop of the superhelix. We found that in DNAs with permanently curved inserts the label is located preferentially at a defined distance from the end loop, while in controls without curved inserts the label position was random. This indicates that curves are located in or near the end loops in a superhelix.
Collapse
Affiliation(s)
- C Pfannschmidt
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
35
|
Seligman LM, Stephens KM, Savage JH, Monnat RJ. Genetic analysis of the Chlamydomonas reinhardtii I-CreI mobile intron homing system in Escherichia coli. Genetics 1997; 147:1653-64. [PMID: 9409828 PMCID: PMC1208338 DOI: 10.1093/genetics/147.4.1653] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have developed and used a genetic selection system in Escherichia coli to study functional requirements for homing site recognition and cleavage by a representative eukaryotic mobile intron endonuclease. The homing endonuclease, I-CreI, was originally isolated from the chloroplast of the unicellular green alga Chlamydomonas reinhardtii. I-CreI homing site mutants contained base pair substitutions or single base deletions that altered the rate of homing site cleavage and/or product release. I-CreI endonuclease mutants fell into six phenotypic classes that differed in in vivo activity, toxicity or genetic dominance. Inactivating mutations clustered in the N-terminal 60% of the I-CreI amino acid sequence, and two frameshift mutations were isolated that resulted in premature translation termination though retained partial activity. These mutations indicate that the N-terminal two-thirds of the I-CreI endonuclease is sufficient for homing site recognition and cleavage. Substitution mutations altered in four potential active site residues were examined: D20N, Q47H or R70A substitutions inactivated endonuclease activity, whereas S22A did not. The genetic approach we have taken complements phylogenetic and structural studies of mobile intron endonucleases and has provided new information on the mechanistic basis of I-CreI homing site recognition and cleavage.
Collapse
Affiliation(s)
- L M Seligman
- Department of Pathology, University of Washington, Seattle 98195-7705, USA
| | | | | | | |
Collapse
|
36
|
Nastri HG, Evans PD, Walker IH, Riggs PD. Catalytic and DNA binding properties of PvuII restriction endonuclease mutants. J Biol Chem 1997; 272:25761-7. [PMID: 9325303 DOI: 10.1074/jbc.272.41.25761] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The role of particular residues of the PvuII endonuclease in DNA binding and cleavage was studied by mutational analysis using a number of in vivo and in vitro approaches. While confirming the importance of residues predicted to be involved directly in function by the crystal structure, the analysis led to several striking results. Aspartate 34, which contacts the central base pair of the PvuII site (5'-CAGCTG-3') through the minor groove, plays a critical role in binding specificity. A D34G mutant binds with high affinity to any of the sequences in the set CANNTG, although its low level of cleavage activity acts only on the wild-type site. In addition, a His to Ala mutation at the residue that contacts the central G and is predicted to be blocked by PvuII methylation still requires the PvuII methylase to be maintained in vivo, arguing against this hypothesis as the only mechanism for methylation protection. Finally, four of the five mutations that reduce cleavage activity while still exhibiting binding in the gel shift assay are at residues that form DNA- or subunit-subunit contacts rather than in the catalytic center. This provides further evidence for a strong linkage between specific binding and catalysis.
Collapse
Affiliation(s)
- H G Nastri
- New England Biolabs Incorporated, Beverly, Massachusetts 01915, USA
| | | | | | | |
Collapse
|
37
|
Pingoud A, Jeltsch A. Recognition and cleavage of DNA by type-II restriction endonucleases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:1-22. [PMID: 9210460 DOI: 10.1111/j.1432-1033.1997.t01-6-00001.x] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Restriction endonucleases are enzymes which recognize short DNA sequences and cleave the DNA in both strands. Depending on the enzymological properties different types are distinguished. Type II restriction endonucleases are homodimers which recognize short palindromic sequences 4-8 bp in length and, in the presence of Mg2+, cleave the DNA within or next to the recognition site. They are capable of non-specific binding to DNA and make use of linear diffusion to locate their target site. Binding and recognition of the specific site involves contacts to the bases of the recognition sequence and the phosphodiester backbone over approximately 10-12 bp. In general, recognition is highly redundant which explains the extreme specificity of these enzymes. Specific binding is accompanied by conformational changes over both the protein and the DNA. This mutual induced fit leads to the activation of the catalytic centers. The precise mechanism of cleavage has not yet been established for any restriction endonuclease. Currently two models are discussed: the substrate-assisted catalysis mechanism and the two-metal-ion mechanism. Structural similarities identified between EcoRI, EcoRV, BamHI, PvuII and Cfr10I suggest that many type II restriction endonucleases are not only functionally but also evolutionarily related.
Collapse
Affiliation(s)
- A Pingoud
- Institut für Biochemie, Fachbereich Biologie, Justus-Liebig-Universität, Giessen, Germany
| | | |
Collapse
|
38
|
Wende W, Stahl F, Pingoud A. The production and characterization of artificial heterodimers of the restriction endonuclease EcoRV. Biol Chem 1996; 377:625-32. [PMID: 8922590 DOI: 10.1515/bchm3.1996.377.10.625] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A novel approach to studying the inter- and intrasubunit communication required for the activity of homodimeric proteins is described. It was developed for the restriction endonuclease EcoRV, but should also be useful for other homodimeric enzymes. Two ecorV genes encoding different EcoRV mutants are coexpressed in the same Escherichia coli cell leading to homo- and heterodimeric variants of the enzyme. The two ecorV genes carry either a 5' extension coding for the glutathione-S-transferase or a His6-tag. The EcoRV heterodimer produced in vivo is separated from the two EcoRV homodimers and purified to homogeneity by affinity chromatography. Purified EcoRV heterodimers are stable and are not subject to reassortment of the subunits. To investigate the interdependence of the two catalytic centers, EcoRV heterodimers consisting of one subunit with wild type sequence and one subunit with amino acid substitutions in the PD...(D/E)XK motif, characteristic for the active sites of many restriction endonucleases, were produced. While the homodimeric EcoRV active site mutants are catalytically inactive, the heterodimeric EcoRV variants with one active and one inactive catalytic center display a twofold reduced activity toward oligodeoxynucleotide substrates compared to the wild type, and preferentially nick supercoiled plasmid DNA. From these results we conclude that in the wild type enzyme both catalytic centers function independently of each other.
Collapse
Affiliation(s)
- W Wende
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Germany
| | | | | |
Collapse
|