1
|
Mollusc N-glycosylation: Structures, Functions and Perspectives. Biomolecules 2021; 11:biom11121820. [PMID: 34944464 PMCID: PMC8699351 DOI: 10.3390/biom11121820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
Molluscs display a sophisticated N-glycan pattern on their proteins, which is, in terms of involved structural features, even more diverse than that of vertebrates. This review summarises the current knowledge of mollusc N-glycan structures, with a focus on the functional aspects of the corresponding glycoproteins. Furthermore, the potential of mollusc-derived biomolecules for medical applications is addressed, emphasising the importance of mollusc research.
Collapse
|
2
|
Catalytic flexibility of rice glycosyltransferase OsUGT91C1 for the production of palatable steviol glycosides. Nat Commun 2021; 12:7030. [PMID: 34857750 PMCID: PMC8639739 DOI: 10.1038/s41467-021-27144-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
Steviol glycosides are the intensely sweet components of extracts from Stevia rebaudiana. These molecules comprise an invariant steviol aglycone decorated with variable glycans and could widely serve as a low-calorie sweetener. However, the most desirable steviol glycosides Reb D and Reb M, devoid of unpleasant aftertaste, are naturally produced only in trace amounts due to low levels of specific β (1-2) glucosylation in Stevia. Here, we report the biochemical and structural characterization of OsUGT91C1, a glycosyltransferase from Oryza sativa, which is efficient at catalyzing β (1-2) glucosylation. The enzyme's ability to bind steviol glycoside substrate in three modes underlies its flexibility to catalyze β (1-2) glucosylation in two distinct orientations as well as β (1-6) glucosylation. Guided by the structural insights, we engineer this enzyme to enhance the desirable β (1-2) glucosylation, eliminate β (1-6) glucosylation, and obtain a promising catalyst for the industrial production of naturally rare but palatable steviol glycosides.
Collapse
|
3
|
Eckmair B, Jin C, Abed-Navandi D, Paschinger K. Multistep Fractionation and Mass Spectrometry Reveal Zwitterionic and Anionic Modifications of the N- and O-glycans of a Marine Snail. Mol Cell Proteomics 2015; 15:573-97. [PMID: 26598642 DOI: 10.1074/mcp.m115.051573] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 12/11/2022] Open
Abstract
Various studies in the past have revealed that molluscs can produce a wide range of rather complex N-glycan structures, which vary from those occurring in other invertebrate animals; particularly methylated glycans have been found in gastropods, and there are some reports of anionic glycans in bivalves. Due to the high variability in terms of previously described structures and methodologies, it is a major challenge to establish glycomic workflows that yield the maximum amount of detailed structural information from relatively low quantities of sample. In this study, we apply differential release with peptide:N-glycosidases F and A followed by solid-phase extraction on graphitized carbon and reversed-phase materials to examine the glycome of Volvarina rubella (C. B. Adams, 1845), a margin snail of the clade Neogastropoda. The resulting four pools of N-glycans were fractionated on a fused core RP-HPLC column and subject to MALDI-TOF MS and MS/MS in conjunction with chemical and enzymatic treatments. In addition, selected N-glycan fractions, as well as O-glycans released by β-elimination, were analyzed by porous graphitized carbon-LC-MS and MS(n). This comprehensive approach enabled us to determine a number of novel modifications of protein-linked glycans, including N-methyl-2-aminoethylphosphonate on mannose and N-acetylhexosamine residues, core β1,3-linked mannose, zwitterionic moieties on core Galβ1,4Fuc motifs, additional mannose residues on oligomannosidic glycans, and bisubstituted antennal fucose; furthermore, typical invertebrate N-glycans with sulfate and core fucose residues are present in this gastropod.
Collapse
Affiliation(s)
- Barbara Eckmair
- From the ‡Department für Chemie, Universität für Bodenkultur Wien, 1190 Wien, Austria
| | - Chunsheng Jin
- §Institutionen för Biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden
| | | | - Katharina Paschinger
- From the ‡Department für Chemie, Universität für Bodenkultur Wien, 1190 Wien, Austria;
| |
Collapse
|
4
|
Genetic Interactions Between Drosophila sialyltransferase and β1,4-N-acetylgalactosaminyltransferase-A Genes Indicate Their Involvement in the Same Pathway. G3-GENES GENOMES GENETICS 2012; 2:653-6. [PMID: 22690374 PMCID: PMC3362294 DOI: 10.1534/g3.112.001974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/22/2012] [Indexed: 12/26/2022]
Abstract
Sialylated glycans play a prominent role in the Drosophila nervous system where they are involved in the regulation of neural transmission. However, the functional pathway of sialylation in invertebrates, including Drosophila, remains largely unknown. Here we used a combination of genetic and behavioral approaches to shed light on the Drosophila sialylation pathway. We examined genetic interactions between Drosophila sialyltransferase (DSiaT) and β1,4-N-acetylgalactosaminyltransferase (β4GalNAcT) genes. Our results indicated that β4GalNAcTA and DSiaT cooperate within the same functional pathway that regulates neural transmission. We found that β4GalNAcTA is epistatic to DSiaT. Our data suggest an intriguing possibility that β4GalNAcTA may participate in the biosynthesis of sialylated glycans.
Collapse
|
5
|
Stereoselective entry into the d-GalNAc series starting from the d-Gal one: a new access to N-acetyl-d-galactosamine and derivatives thereof. Carbohydr Res 2009; 344:298-303. [DOI: 10.1016/j.carres.2008.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/10/2008] [Accepted: 11/28/2008] [Indexed: 11/20/2022]
|
6
|
Qasba PK, Ramakrishnan B, Boeggeman E. Structure and function of beta -1,4-galactosyltransferase. Curr Drug Targets 2008; 9:292-309. [PMID: 18393823 DOI: 10.2174/138945008783954943] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beta-1,4-galactosylransferase (beta4Gal-T1) participates in the synthesis of Galbeta1-4-GlcNAc-disaccharide unit of glycoconjugates. It is a trans-Golgi glycosyltransferase (Glyco-T) with a type II membrane protein topology, a short N-terminal cytoplasmic domain, a membrane-spanning region, as well as a stem and a C-terminal catalytic domain facing the trans-Golgi-lumen. Its hydrophobic membrane-spanning region, like that of other Glyco-T, has a shorter length compared to plasma membrane proteins, an important feature for its retention in the trans-Golgi. The catalytic domain has two flexible loops, a long and a small one. The primary metal binding site is located at the N-terminal hinge region of the long flexible loop. Upon binding of metal ion and sugar-nucleotide, the flexible loops undergo a marked conformational change, from an open to a closed conformation. Conformational change simultaneously creates at the C-terminal region of the flexible loop an oligosaccharide acceptor binding site that did not exist before. The loop acts as a lid covering the bound donor substrate. After completion of the transfer of the glycosyl unit to the acceptor, the saccharide product is ejected; the loop reverts to its native conformation to release the remaining nucleotide moiety. The conformational change in beta4Gal-T1 also creates the binding site for a mammary gland-specific protein, alpha-lactalbumin (LA), which changes the acceptor specificity of the enzyme toward glucose to synthesize lactose during lactation. The specificity of the sugar donor is generally determined by a few residues in the sugar-nucleotide binding pocket of Glyco-T, conserved among the family members from different species. Mutation of these residues has allowed us to design new and novel glycosyltransferases, with broader or requisite donor and acceptor specificities, and to synthesize specific complex carbohydrates as well as specific inhibitors for these enzymes.
Collapse
Affiliation(s)
- Pradman K Qasba
- Structural Glycobiology Section, CCRNP, NCI-Frederick, Building 469, Room 221, Frederick, Maryland 21702, USA.
| | | | | |
Collapse
|
7
|
Kawar ZS, Van Die I, Cummings RD. Molecular cloning and enzymatic characterization of a UDP-GalNAc:GlcNAc(beta)-R beta1,4-N-acetylgalactosaminyltransferase from Caenorhabditis elegans. J Biol Chem 2002; 277:34924-32. [PMID: 12167666 DOI: 10.1074/jbc.m206112200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A common terminal structure in glycans from animal glycoproteins and glycolipids is the lactosamine sequence Gal(beta)4GlcNAc-R (LacNAc or LN). An alternative sequence that occurs in vertebrate as well as in invertebrate glycoconjugates is GalNAc(beta)4GlcNAc-R (LacdiNAc or LDN). Whereas genes encoding beta4GalTs responsible for LN synthesis have been reported, the beta4GalNAcT(s) responsible for LDN synthesis has not been identified. Here we report the identification of a gene from Caenorhabditis elegans encoding a UDP-GalNAc:GlcNAc(beta)-R beta1,4-N-acetylgalactosaminyltransferase (Ce(beta)4GalNAcT) that synthesizes the LDN structure. Ce(beta)4GalNAcT is a member of the beta4GalT family, and its cDNA is predicted to encode a 383-amino acid type 2 membrane glycoprotein. A soluble, epitope-tagged recombinant form of Ce(beta)4GalNAcT expressed in CHO-Lec8 cells was active using UDP-GalNAc, but not UDP-Gal, as a donor toward a variety of acceptor substrates containing terminal beta-linked GlcNAc in both N- and O-glycan type structures. The LDN structure of the product was verified by co-chromatography with authentic standards and (1)H NMR spectroscopy. Moreover, Chinese hamster ovary CHO-Lec8 and CHO-Lec2 cells expressing Ce(beta)4GalNAcT acquired LDN determinants on endogenous glycoprotein N-glycans, demonstrating that the enzyme is active in mammalian cells as an authentic beta4GalNAcT. The identification and availability of this novel enzyme should enhance our understanding of the structure and function of LDN-containing glycoconjugates.
Collapse
Affiliation(s)
- Ziad S Kawar
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
8
|
Ramakrishnan B, Boeggeman E, Qasba PK. Beta-1,4-galactosyltransferase and lactose synthase: molecular mechanical devices. Biochem Biophys Res Commun 2002; 291:1113-8. [PMID: 11883930 DOI: 10.1006/bbrc.2002.6506] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent structural investigations on the beta-1,4-galactosyltransferase-1 (Gal-T1) and lactose synthase (LS) have revealed that they are akin to an exquisite mechanical device with two well-coordinated flexible loops that are contained within the Gal-T1 catalytic domain. The smaller one has a Trp residue (Trp314) flanked by glycine residues. The larger one comprises amino acid residues 345 to 365. Upon substrate binding, the Trp314 side chain moves to lock the sugar nucleotide in the binding site, while the large loop undergoes a conformational change, masking the sugar nucleotide binding site, and creates (i) the oligosaccharide binding cavity; (ii) a protein-protein interacting site for the enzyme's partner, alpha-lactalbumin (LA); and (iii) a metal ion binding site. Only in conformation II do Gal-T1 and LA form the LS complex, enabling Gal-T1 to choose the new substrate glucose. LA holds and puts Glc right in the acceptor binding site of Gal-T1, which then maximizes the interactions with Glc, thereby making it a preferred acceptor for the LS reaction. The interaction of LA with Gal-T1 in conformation II also stabilizes the sugar-nucleotide-enzyme complex, kinetically enhancing the sugar transfer, even from the less preferred sugar nucleotides. The conformational change that masks the sugar nucleotide binding site can also be induced by the acceptor alone, thus making it possible for the protein to act as a specific lectin.
Collapse
Affiliation(s)
- Boopathy Ramakrishnan
- Structural Glycobiology Section, National Cancer Institute/NIH, Building 469, Frederick, MD 21702, USA
| | | | | |
Collapse
|
9
|
Chandrasekaran EV, Chawda R, Piskorz C, Locke RD, Ta A, Sharad G, Odunsi K, Lele S, Matta KL. Human ovarian cancer, lymphoma spleen, and bovine milk GlcNAc:beta1,4Gal/GalNAc transferases: two molecular species in ovarian tumor and induction of GalNAcbeta1,4Glc synthesis by alpha-lactalbumin. Carbohydr Res 2001; 334:105-18. [PMID: 11502266 DOI: 10.1016/s0008-6215(01)00150-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Affinity Gel-UDP was utilized to purify GlcNAc:beta1,4Gal/GalNAc transferases (Ts) from human lymphoma spleen, ovarian tumor, and ovarian cancer sera. Mn(2+) was found to be an absolute requirement for activity. Two molecular species containing both beta1,4Gal/GalNAc-T activities were discernible when the purified ovarian tumor microsomal enzyme was subjected to Sephacryl S-100 HR column chromatography as well as native polyacylamide gel-electrophoresis. Acceptor specificity studies of the affinity-purified lymphoma spleen and ovarian tumor microsomal enzymes and the conventionally purified, as well as the cloned, bovine milk GlcNAc:beta1,4Gal-Ts using a number of synthetic acceptors showed that the beta(1,6)-linked GlcNAc moiety to alpha-GalNAc was the most efficient acceptor. As compared to the purified milk enzyme, the recombinant form exhibited sixfold GlcNAc:beta1,4 GalNAc-T activity and up to eightfold GlcNAc6SO3beta-:beta1,4Gal-T activity. Further, the recombinant enzyme catalyzed the transfer of GalNAc to the terminal beta-linked GlcNAc6SO3 moiety. Alpha-lactalbumin (alpha-LA) inhibited up to 85%, the transfer of Gal to the GlcNAc moiety linked either to Man or GlcNAc. On the contrary, alpha-LA had no significant influence on the transfer of GalNAc to the above acceptors. alpha-LA had no appreciable effect on the recombinant enzyme, except for the transfer of Gal or GalNAc to Glc. Both alpha- and beta-glucosides, as well as alpha-N-acetylglucosaminide, did not serve as acceptors.
Collapse
Affiliation(s)
- E V Chandrasekaran
- Department of Molecular and Cellular Biophysics, Roswell Park Cancer Institute, Elm and Carton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Furukawa K, Kitamura N, Sato T, Hiraizumi S. Differentiation-Associated Expression of ß-N-Acetylgalactosaminylated N-Linked Oligosaccharides in Mammary Epithelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 491:313-23. [PMID: 14533805 DOI: 10.1007/978-1-4615-1267-7_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Not only mammalian pituitary glycoprotein hormones but also many glycoproteins from a variety of animal species have been shown to contain N-linked oligosacchardies with the GalNAcbeta1 --> 4GlcNAc structure. Two types of beta-1,4-GalNAcT were found; one transfers N-acetylgalactosamine to acceptor oligosaccharides, which is stimulated by the hormone peptide and the other simply transfers sugar without such activation. In the case of bovine mammary membrane glycoproteins, the expression of beta-N-acetylgalactosaminylated N-linked oligosaccharides was associated with the functional differentiation of the epithelial cells. In contrast, the expression level of such oligosaccharides was much reduced in glycoprotein samples from human breast tumors compared with those from the unaffected regions. These results strongly suggest that the beta-N-acetylgalactosaminylation is one which is regulated under cellular differentiation and dedifferentiation of the mammary gland. Whether or not beta-N-acetylgalactosaminylated N-linked oligosaccharides have unique functions in addition to clearance of the hormone from the circulation remains to be elucidated.
Collapse
Affiliation(s)
- K Furukawa
- Department of Biosignal Research, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | | | | | | |
Collapse
|
11
|
Van den Nieuwenhof IM, Koistinen H, Easton RL, Koistinen R, Kämäräinen M, Morris HR, Van Die I, Seppälä M, Dell A, Van den Eijnden DH. Recombinant glycodelin carrying the same type of glycan structures as contraceptive glycodelin-A can be produced in human kidney 293 cells but not in chinese hamster ovary cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4753-62. [PMID: 10903509 DOI: 10.1046/j.1432-1327.2000.01528.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have produced human recombinant glycodelin in human kidney 293 cells and in Chinese hamster ovary (CHO) cells. Structural analyses by lectin immunoassays and fast atom bombardment mass spectrometry showed that recombinant human glycodelin produced in CHO cells contains only typical CHO-type glycans and is devoid of any of the N, N'-diacetyllactosediamine (lacdiNAc)-based chains previously identified in glycodelin-A (GdA). By contrast, human kidney 293 cells produced recombinant glycodelin with the same type of carbohydrate structures as GdA. The presence of a beta1-->4-N-acetylgalactosaminyltransferase functioning in the synthesis of lacdiNAc-based glycans in human kidney 293 cells is concluded to be the cause of the occurrence of lacdiNAc-based glycans on glycodelin produced in these cells. Furthermore, human kidney 293 cells were found to be particularly suited for the production of recombinant glycodelin when they were cultured in high glucose media. Lowering the glucose concentration and the addition of glucosamine resulted in higher relative amounts of oligomannosidic-type glycans and complex glycans with truncated antennae. Human glycodelin is an attractive candidate for the development of a contraceptive agent, and this study gives valuable information for selecting the proper expression system and cell culture conditions for the production of a correctly glycosylated recombinant form.
Collapse
Affiliation(s)
- I M Van den Nieuwenhof
- Department of Medical Chemistry, Faculty of Medicine, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Van den Nieuwenhof IM, Schiphorst WE, Van den Eijnden DH. The lactose analog GalNAcbeta1-->4Glc is present in bovine colostrum. Enzymatic basis for its occurrence. FEBS Lett 1999; 459:377-80. [PMID: 10526168 DOI: 10.1016/s0014-5793(99)01284-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have isolated from bovine colostrum the lactose analog GalNAcbeta1-->4Glc. The enzymatic basis for its occurrence was studied by assaying the activities of GlcNAcbeta-R beta4-N-acetylgalactosaminyltransferase (beta4-GalNAcT) and GlcNAcbeta-R beta4-galactosyltransferase (beta4-GalT) in primary milk and several lactating bovine mammary gland fractions. As the beta4-GalNAcT, which appears to be tightly membrane bound, is induced by the milk protein alpha-lactalbumin (alpha-LA) to act on Glc, it is concluded that beta4-GalNAcT is responsible for the synthesis of GalNAcbeta1-->4Glc in the gland. The comparatively low level (15-20 mg/l) at which this disaccharide is produced may be due to the relatively poor interaction of beta4-GalNAcT with alpha-LA as well as to the fact that alpha-LA does not inhibit the action of the enzyme on N-acetylglucosaminides.
Collapse
Affiliation(s)
- I M Van den Nieuwenhof
- Department of Medical Chemistry, Faculty of Medicine, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
13
|
Van den Nieuwenhof IM, Schiphorst WE, Van Die I, Van den Eijnden DH. Bovine mammary gland UDP-GalNAc:GlcNAcbeta-R beta1-->4-N-acetylgalactosaminyltransferase is glycoprotein hormone nonspecific and shows interaction with alpha-lactalbumin. Glycobiology 1999; 9:115-23. [PMID: 9949189 DOI: 10.1093/glycob/9.2.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have identified a novel N -acetylgalactosaminyltransferase activity in lactating bovine mammary gland membranes. Acceptor specificity studies and analysis of products obtained in vitro by 400 MHz1H-NMR spectroscopy revealed that the enzyme catalyses the transfer of N -acetylgalactosamine (GalNAc) from UDP-GalNAc to acceptor substrates carrying a terminal, beta-linked N -acetylglucosamine (GlcNAc) residue and establishes a beta1-->4-linkage forming a GalNAcbeta1-->4GlcNAc ( N, N '-diacetyllactosediamine, lacdiNAc) unit. Therefore, the enzyme can be identified as a UDP-GalNAc:GlcNAcbeta-R beta1-->4-N-acetylgalactosaminyltransferase (beta4-GalNAcT). This enzyme resembles invertebrate beta4-GalNAcT as well as mammalian beta4-galactosyltransferase (beta4-GalT) in acceptor specificity. It can, however, be clearly distinguished from the pituitary hormone-specific beta4-GalNAcT by its incapability of acting with an elevated activity on a glycoprotein substrate carrying a hormone-specific peptide motif. Furthermore, the GalNAcT activity appeared not to be due to a promiscuous action of a beta4-GalT as could be demonstrated by comparing the beta4-GalNAcT and beta4-GalT activities of the mammary gland, bovine colostrum, and purified beta4-GalT, by competition studies with UDP-GalNAc and UDP-Gal, and by use of an anti-beta4-GalT polyclonal inhibiting antibody. Interestingly, under conditions where mammalian beta4-GalT forms with alpha-lactalbumin (alpha-LA) the lactose synthase complex, the mammary gland beta4-GalNAcT was similarly induced by alpha-LA to act on Glc with an increased efficiency yielding the lactose analog GalNAcbeta1-->4Glc. This enzyme thus forms the second example of a mammalian glycosyltransferase the specificity of which can be modified by this milk protein. It is proposed that the mammary gland beta4-GalNAcT functions in the synthesis of lacdiNAc-based, complex-type glycans frequently occurring on bovine milk glycoproteins. The action of this enzyme is to be considered when aiming at the production of properly glycosylated protein biopharmaceuticals in the milk of transgenic dairy animals.
Collapse
Affiliation(s)
- I M Van den Nieuwenhof
- Department of Medical Chemistry, Faculty of Medicine, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
14
|
Schwientek T, Almeida R, Levery SB, Holmes EH, Bennett E, Clausen H. Cloning of a novel member of the UDP-galactose:beta-N-acetylglucosamine beta1,4-galactosyltransferase family, beta4Gal-T4, involved in glycosphingolipid biosynthesis. J Biol Chem 1998; 273:29331-40. [PMID: 9792633 DOI: 10.1074/jbc.273.45.29331] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel putative member of the human UDP-galactose:beta-N-acetylglucosamine beta1,4-galactosyltransferase family, designated beta4Gal-T4, was identified by BLAST analysis of expressed sequence tags. The sequence of beta4Gal-T4 encoded a type II membrane protein with significant sequence similarity to other beta1,4-galactosyltransferases. Expression of the full coding sequence and a secreted form of beta4Gal-T4 in insect cells showed that the gene product had beta1,4-galactosyltransferase activity. Analysis of the substrate specificity of the secreted form revealed that the enzyme catalyzed glycosylation of glycolipids with terminal beta-GlcNAc; however, in contrast to beta4Gal-T1, -T2, and -T3, this enzyme did not transfer galactose to asialo-agalacto-fetuin, asialo-agalacto-transferrin, or ovalbumin. The catalytic activity of beta4Gal-T4 with monosaccharide acceptor substrates, N-acetylglucosamine as well as glucose, was markedly activated in the presence of alpha-lactalbumin. The genomic organization of the coding region of beta4Gal-T4 was contained in six exons. All intron/exon boundaries were similarly positioned in beta4Gal-T1, -T2, and -T3. beta4Gal-T4 represents a new member of the beta4-galactosyltransferase family. Its kinetic parameters suggest unique functions in the synthesis of neolactoseries glycosphingolipids.
Collapse
Affiliation(s)
- T Schwientek
- School of Dentistry, University of Copenhagen, Norre Allé 20, 2200 Copenhagen N, Denmark
| | | | | | | | | | | |
Collapse
|
15
|
Hokke CH, Neeleman AP, Koeleman CA, van den Eijnden DH. Identification of an alpha3-fucosyltransferase and a novel alpha2-fucosyltransferase activity in cercariae of the schistosome Trichobilharzia ocellata: biosynthesis of the Fucalpha1-->2Fucalpha1-->3[Gal(NAc)beta1-->4]GlcNAc sequence. Glycobiology 1998; 8:393-406. [PMID: 9499387 DOI: 10.1093/glycob/8.4.393] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fucose is a major constituent of the protein- and lipid-linked glycans of the various life-cycle stages of schistosomes. These fucosylated glycans are highly antigenic and seem to play a role in the pathology of schistosomiasis. In this article we describe the identification and characterization of two fucosyltransferases (FucTs) in cercariae of the avian schistosome Trichobilharzia ocellata, a GDP-Fuc:[Galbeta1-->4]GlcNAcbeta-R alpha1-->3-FucT and a novel GDP-Fuc:Fucalpha-R alpha1-->2-FucT. Triton X-100 extracts of cercariae were assayed for FucT activity using a variety of acceptor substrates. Type 1 chain (Galbeta1-->3GlcNAc) based compounds were poor acceptors, whereas those based on a type 2 chain (Galbeta1-->4GlcNAc), whether alpha2'-fucosylated, alpha3'-sialylated, or unsubstituted, and whether present as oligosaccharide or contained in a glycopeptide or glycoprotein, all served as acceptor substrates. In this respect the schistosomal alpha3-FucT resembles human FucT V and VI rather than other known FucTs. N-ethylmaleimide, an inhibitor of several human FucTs, had no effect on the activity of the schistosomal alpha3-FucT, whereas GDP-beta-S was strongly inhibitory. Large scale incubations were carried out with Galbeta1-->4GlcNAc, GalNAcbeta1-->4GlcNAcbeta-O -(CH2)8COOCH3 and Fucalpha1-->3GlcNAcbeta1-->2Man as acceptor substrates and the products of the incubations were isolated using a sequence of chromatographic techniques. By methylation analysis and 2D-TOCSY and ROESY1H-NMR spectroscopy the products formed were shown to be Galbeta1-->4[Fucalpha1-->2Fucalpha1-->3]GlcNAc, GalNAcbeta1-->4[Fucalpha1-->2Fucalpha1-->3]GlcNAcbe ta-O-(CH2)8COOCH3, and Fucalpha1-->2Fucalpha1-->3GlcNAcbeta1-->2Man, respectively. It is concluded that the alpha2-FucT and alpha3-FucT are involved in the biosynthesis of the (oligomeric) Lewisx sequences and the Fucalpha1-->2Fucalpha1-->3GlcNAc structural element that have been described on schistosomal glycoconjugates.
Collapse
Affiliation(s)
- C H Hokke
- Department of Medical Chemistry Vrije Universiteit, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
16
|
Van den Eijnden DH, Neeleman AP, Bakker H, Van Die I. Novel pathways in complex-type oligosaccharide synthesis. New vistas opened by studies in invertebrates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 435:3-7. [PMID: 9498060 DOI: 10.1007/978-1-4615-5383-0_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- D H Van den Eijnden
- Department of Medical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
17
|
Abstract
The vast number of proteins that sustain the currently living organisms have been generated from a relatively small number of ancestral genes that has involved a variety of processes. Lysozyme is an ancient protein whose origin goes back an estimated 400 to 600 million years. This protein was originally a bacteriolytic defensive agent and has been adapted to serve a digestive function on at least two occasions, separated by nearly 40 million years. The origins of the related goose type and T4 phage lysozyme that are distinct from the more common C type are obscure. They share no discernable amino acid sequence identity and yet they possess common secondary and tertiary structures. Lysozyme C gene also gave rise, after gene duplication 300 to 400 million years ago, to a gene that currently codes for alpha-lactalbumin, a protein expressed only in the lactating mammary gland of all but a few species of mammals. It is required for the synthesis of lactose, the sugar secreted in milk. alpha-Lactalbumin shares only 40% identity in amino acid sequence with lysozyme C, but it has a closer spatial structure and gene organization. Although structurally similar, functionally they are quite distinct. Specific amino acid substitutions in alpha-lactalbumin account for the loss of the enzyme activity of lysozyme and the acquisition of the features necessary for its role in lactose synthesis. Evolutionary implications are as yet unclear but are being unraveled in many laboratories.
Collapse
Affiliation(s)
- P K Qasba
- Structural Glycobiology Section, National Cancer Institute, N.I.H., Frederick, MD 21702-1201, USA.
| | | |
Collapse
|
18
|
Bakker H, Van Tetering A, Agterberg M, Smit AB, Van den Eijnden DH, Van Die I. Deletion of two exons from the Lymnaea stagnalis beta1-->4-N-acetylglucosaminyltransferase gene elevates the kinetic efficiency of the encoded enzyme for both UDP-sugar donor and acceptor substrates. J Biol Chem 1997; 272:18580-5. [PMID: 9228024 DOI: 10.1074/jbc.272.30.18580] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lymnaea stagnalis UDP-GlcNAc:GlcNAcbeta-R beta1-->4-N-acetylglucosaminyltransferase (beta4-GlcNAcT) is an enzyme with structural similarity to mammalian UDP-Gal:GlcNAcbeta-R beta1-->4-galactosyltransferase (beta4-GalT). Here, we report that also the exon organization of the genes encoding these enzymes is very similar. The beta4-GlcNAcT gene (12.5 kilobase pairs, spanning 10 exons) contains four exons, encompassing sequences that are absent in the beta4-GalT gene. Two of these exons (exons 7 and 8) show a high sequence similarity to part of the preceding exon (exon 6), suggesting that they have originated by exon duplication. The exon in the beta4-GalT gene, corresponding to beta4-GlcNAcT exon 6, encodes a region that has been proposed to be involved in the binding of UDP-Gal. The question therefore arose, whether the repeating sequences encoded by exon 7 and 8 of the beta4-GlcNAcT gene would determine the specificity of the enzyme for UDP-GlcNAc, or for the less preferred UDP-GalNAc. It was found that deletion of only the sequence encoded by exon 8 resulted in a completely inactive enzyme. By contrast, deletion of the amino acid residues encoded by exons 7 and 8 resulted in an enzyme with an elevated kinetic efficiency for both UDP-sugar donors, as well as for its acceptor substrates. These results suggest that at least part of the donor and acceptor binding domains of the beta4-GlcNAcT are structurally linked and that the region encompassing the insertion contributes to acceptor recognition as well as to UDP-sugar binding and specificity.
Collapse
Affiliation(s)
- H Bakker
- Department of Medical Chemistry, Vrije Universiteit, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|