1
|
Nirwal S, Czarnocki-Cieciura M, Chaudhary A, Zajko W, Skowronek K, Chamera S, Figiel M, Nowotny M. Mechanism of RecF-RecO-RecR cooperation in bacterial homologous recombination. Nat Struct Mol Biol 2023; 30:650-660. [PMID: 37081315 DOI: 10.1038/s41594-023-00967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/15/2023] [Indexed: 04/22/2023]
Abstract
In bacteria, one type of homologous-recombination-based DNA-repair pathway involves RecFOR proteins that bind at the junction between single-stranded (ss) and double-stranded (ds) DNA. They facilitate the replacement of SSB protein, which initially covers ssDNA, with RecA, which mediates the search for homologous sequences. However, the molecular mechanism of RecFOR cooperation remains largely unknown. We used Thermus thermophilus proteins to study this system. Here, we present a cryo-electron microscopy structure of the RecF-dsDNA complex, and another reconstruction that shows how RecF interacts with two different regions of the tetrameric RecR ring. Lower-resolution reconstructions of the RecR-RecO subcomplex and the RecFOR-DNA assembly explain how RecO is positioned to interact with ssDNA and SSB, which is proposed to lock the complex on a ssDNA-dsDNA junction. Our results integrate the biochemical data available for the RecFOR system and provide a framework for its complete understanding.
Collapse
Affiliation(s)
- Shivlee Nirwal
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Anuradha Chaudhary
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Weronika Zajko
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Skowronek
- Biophysics and Bioanalytics Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Sebastian Chamera
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
2
|
Shinn MK, Chaturvedi SK, Kozlov AG, Lohman T. Allosteric effects of E. coli SSB and RecR proteins on RecO protein binding to DNA. Nucleic Acids Res 2023; 51:2284-2297. [PMID: 36808259 PMCID: PMC10018359 DOI: 10.1093/nar/gkad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Escherichia coli single stranded (ss) DNA binding protein (SSB) plays essential roles in DNA maintenance. It binds ssDNA with high affinity through its N-terminal DNA binding core and recruits at least 17 different SSB interacting proteins (SIPs) that are involved in DNA replication, recombination, and repair via its nine amino acid acidic tip (SSB-Ct). E. coli RecO, a SIP, is an essential recombination mediator protein in the RecF pathway of DNA repair that binds ssDNA and forms a complex with E. coli RecR protein. Here, we report ssDNA binding studies of RecO and the effects of a 15 amino acid peptide containing the SSB-Ct monitored by light scattering, confocal microscope imaging, and analytical ultracentrifugation (AUC). We find that one RecO monomer can bind the oligodeoxythymidylate, (dT)15, while two RecO monomers can bind (dT)35 in the presence of the SSB-Ct peptide. When RecO is in molar excess over ssDNA, large RecO-ssDNA aggregates occur that form with higher propensity on ssDNA of increasing length. Binding of RecO to the SSB-Ct peptide inhibits RecO-ssDNA aggregation. RecOR complexes can bind ssDNA via RecO, but aggregation is suppressed even in the absence of the SSB-Ct peptide, demonstrating an allosteric effect of RecR on RecO binding to ssDNA. Under conditions where RecO binds ssDNA but does not form aggregates, SSB-Ct binding enhances the affinity of RecO for ssDNA. For RecOR complexes bound to ssDNA, we also observe a shift in RecOR complex equilibrium towards a RecR4O complex upon binding SSB-Ct. These results suggest a mechanism by which SSB recruits RecOR to facilitate loading of RecA onto ssDNA gaps.
Collapse
Affiliation(s)
- Min Kyung Shinn
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sumit K Chaturvedi
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- To whom correspondence should be addressed. Tel: +1 314 362 4393; Fax: +1 314 362 7183;
| |
Collapse
|
3
|
Yoshinaga M, Nakayama T, Inagaki Y. A novel structural maintenance of chromosomes (SMC)-related protein family specific to Archaea. Front Microbiol 2022; 13:913088. [PMID: 35992648 PMCID: PMC9389158 DOI: 10.3389/fmicb.2022.913088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
The ATPases belonging to the structural maintenance of chromosomes (SMC) superfamily are involved in the maintenance of chromosome organization and dynamics, as well as DNA repair. The major proteins in this superfamily recognized to date are either conserved among the three domains of Life (i.e., SMC and Rad50) or specific to Bacteria (i.e., RecF, RecN, and MukB). In Archaea, no protein related to SMC (SMC-related protein) with a broad taxonomic distribution has been reported. Nevertheless, two SMC-related proteins, namely coalescin and Sph, have been identified in crenarchaea Sulfolobus spp. and the euryarchaeon Halobacterium salinarum, respectively, hinting that the diversity of SMC-related proteins has been overlooked in Archaea. In this study, we report a novel SMC-related protein that is distributed among broad archaeal lineages and termed “Archaea-specific SMC-related proteins” or “ASRPs.” We further demonstrate that the ASRP family encloses both coalescin and Sph but the two proteins represent only a tip of the diversity of this family.
Collapse
Affiliation(s)
- Mari Yoshinaga
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Takuro Nakayama
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuji Inagaki
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Yuji Inagaki,
| |
Collapse
|
4
|
Shinn MK, Kozlov AG, Lohman TM. Allosteric effects of SSB C-terminal tail on assembly of E. coli RecOR proteins. Nucleic Acids Res 2021; 49:1987-2004. [PMID: 33450019 PMCID: PMC7913777 DOI: 10.1093/nar/gkaa1291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 01/21/2023] Open
Abstract
Escherichia coli RecO is a recombination mediator protein that functions in the RecF pathway of homologous recombination, in concert with RecR, and interacts with E. coli single stranded (ss) DNA binding (SSB) protein via the last 9 amino acids of the C-terminal tails (SSB-Ct). Structures of the E. coli RecR and RecOR complexes are unavailable; however, crystal structures from other organisms show differences in RecR oligomeric state and RecO stoichiometry. We report analytical ultracentrifugation studies of E. coli RecR assembly and its interaction with RecO for a range of solution conditions using both sedimentation velocity and equilibrium approaches. We find that RecR exists in a pH-dependent dimer-tetramer equilibrium that explains the different assembly states reported in previous studies. RecO binds with positive cooperativity to a RecR tetramer, forming both RecR4O and RecR4O2 complexes. We find no evidence of a stable RecO complex with RecR dimers. However, binding of RecO to SSB-Ct peptides elicits an allosteric effect, eliminating the positive cooperativity and shifting the equilibrium to favor a RecR4O complex. These studies suggest a mechanism for how SSB binding to RecO influences the distribution of RecOR complexes to facilitate loading of RecA onto SSB coated ssDNA to initiate homologous recombination.
Collapse
Affiliation(s)
- Min Kyung Shinn
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.,Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Fallon AM. DNA recombination and repair in Wolbachia: RecA and related proteins. Mol Genet Genomics 2021; 296:437-456. [PMID: 33507381 DOI: 10.1007/s00438-020-01760-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Wolbachia is an obligate intracellular bacterium that has undergone extensive genomic streamlining in its arthropod and nematode hosts. Because the gene encoding the bacterial DNA recombination/repair protein RecA is not essential in Escherichia coli, abundant expression of this protein in a mosquito cell line persistently infected with Wolbachia strain wStri was unexpected. However, RecA's role in the lytic cycle of bacteriophage lambda provides an explanation for retention of recA in strains known to encode lambda-like WO prophages. To examine DNA recombination/repair capacities in Wolbachia, a systematic examination of RecA and related proteins in complete or nearly complete Wolbachia genomes from supergroups A, B, C, D, E, F, J and S was undertaken. Genes encoding proteins including RecA, RecF, RecO, RecR, RecG and Holliday junction resolvases RuvA, RuvB and RuvC are uniformly absent from Wolbachia in supergroup C and have reduced representation in supergroups D and J, suggesting that recombination and repair activities are compromised in nematode-associated Wolbachia, relative to strains that infect arthropods. An exception is filarial Wolbachia strain wMhie, assigned to supergroup F, which occurs in a nematode host from a poikilothermic lizard. Genes encoding LexA and error-prone polymerases are absent from all Wolbachia genomes, suggesting that the SOS functions induced by RecA-mediated activation of LexA do not occur, despite retention of genes encoding a few proteins that respond to LexA induction in E. coli. Three independent E. coli accessions converge on a single Wolbachia UvrD helicase, which interacts with mismatch repair proteins MutS and MutL, encoded in nearly all Wolbachia genomes. With the exception of MutL, which has been mapped to a eukaryotic association module in Phage WO, proteins involved in recombination/repair are uniformly represented by single protein annotations. Putative phage-encoded MutL proteins are restricted to Wolbachia supergroups A and B and show higher amino acid identity than chromosomally encoded MutL orthologs. This analysis underscores differences between nematode and arthropod-associated Wolbachia and describes aspects of DNA metabolism that potentially impact development of procedures for transformation and genetic manipulation of Wolbachia.
Collapse
Affiliation(s)
- Ann M Fallon
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, St. Paul, MN, 55108, USA.
| |
Collapse
|
6
|
Myka KK, Marians KJ. Two components of DNA replication-dependent LexA cleavage. J Biol Chem 2020; 295:10368-10379. [PMID: 32513870 PMCID: PMC7383369 DOI: 10.1074/jbc.ra120.014224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Induction of the SOS response, a cellular system triggered by DNA damage in bacteria, depends on DNA replication for the generation of the SOS signal, ssDNA. RecA binds to ssDNA, forming filaments that stimulate proteolytic cleavage of the LexA transcriptional repressor, allowing expression of > 40 gene products involved in DNA repair and cell cycle regulation. Here, using a DNA replication system reconstituted in vitro in tandem with a LexA cleavage assay, we studied LexA cleavage during DNA replication of both undamaged and base-damaged templates. Only a ssDNA-RecA filament supported LexA cleavage. Surprisingly, replication of an undamaged template supported levels of LexA cleavage like that induced by a template carrying two site-specific cyclobutane pyrimidine dimers. We found that two processes generate ssDNA that could support LexA cleavage. 1) During unperturbed replication, single-stranded regions formed because of stochastic uncoupling of the leading-strand DNA polymerase from the replication fork DNA helicase, and 2) on the damaged template, nascent leading-strand gaps were generated by replisome lesion skipping. The two pathways differed in that RecF stimulated LexA cleavage during replication of the damaged template, but not normal replication. RecF appears to facilitate RecA filament formation on the leading-strand ssDNA gaps generated by replisome lesion skipping.
Collapse
Affiliation(s)
- Kamila K Myka
- Molecular Biology Program, Sloan Kettering Institute Memorial Sloan Kettering Cancer Center, New York, New York USA
| | - Kenneth J Marians
- Molecular Biology Program, Sloan Kettering Institute Memorial Sloan Kettering Cancer Center, New York, New York USA
| |
Collapse
|
7
|
Shinn MK, Kozlov AG, Nguyen B, Bujalowski WM, Lohman TM. Are the intrinsically disordered linkers involved in SSB binding to accessory proteins? Nucleic Acids Res 2019; 47:8581-8594. [PMID: 31329947 PMCID: PMC7145534 DOI: 10.1093/nar/gkz606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli single strand (ss) DNA binding (SSB) protein protects ssDNA intermediates and recruits at least 17 SSB interacting proteins (SIPs) during genome maintenance. The SSB C-termini contain a 9 residue acidic tip and a 56 residue intrinsically disordered linker (IDL). The acidic tip interacts with SIPs; however a recent proposal suggests that the IDL may also interact with SIPs. Here we examine the binding to four SIPs (RecO, PriC, PriA and χ subunit of DNA polymerase III) of three peptides containing the acidic tip and varying amounts of the IDL. Independent of IDL length, we find no differences in peptide binding to each individual SIP indicating that binding is due solely to the acidic tip. However, the tip shows specificity, with affinity decreasing in the order: RecO > PriA ∼ χ > PriC. Yet, RecO binding to the SSB tetramer and an SSB–ssDNA complex show significant thermodynamic differences compared to the peptides alone, suggesting that RecO interacts with another region of SSB, although not the IDL. SSB containing varying IDL deletions show different binding behavior, with the larger linker deletions inhibiting RecO binding, likely due to increased competition between the acidic tip interacting with DNA binding sites within SSB.
Collapse
Affiliation(s)
- Min Kyung Shinn
- Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.,Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexander G Kozlov
- Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Binh Nguyen
- Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Wlodek M Bujalowski
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Timothy M Lohman
- Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Tang Q, Liu YP, Shan HH, Tian LF, Zhang JZ, Yan XX. ATP-dependent conformational change in ABC-ATPase RecF serves as a switch in DNA repair. Sci Rep 2018; 8:2127. [PMID: 29391496 PMCID: PMC5794780 DOI: 10.1038/s41598-018-20557-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/19/2018] [Indexed: 11/13/2022] Open
Abstract
RecF is a principal member of the RecF pathway. It interacts with RecO and RecR to initiate homologous recombination by loading RecA recombinases on single-stranded DNA and displacing single-stranded DNA-binding proteins. As an ATP-binding cassette ATPase, RecF exhibits ATP-dependent dimerization and structural homology with Rad50 and SMC proteins. However, the mechanism and action pattern of RecF ATP-dependent dimerization remains unclear. Here, We determined three crystal structures of TTERecF, TTERecF-ATP and TTERecF-ATPɤS from Thermoanaerobacter tengcongensis that reveal a novel ATP-driven RecF dimerization. RecF contains a positively charged tunnel on its dimer interface that is essential to ATP binding. Our structural and biochemical data indicate that the Walker A motif serves as a switch and plays a key role in ATP binding and RecF dimerization. Furthermore, Biolayer interferometry assay results showed that the TTERecF interacted with ATP and formed a dimer, displaying a higher affinity for DNA than that of the TTERecF monomer. Overall, our results provide a solid structural basis for understanding the process of RecF binding with ATP and the functional mechanism of ATP-dependent RecF dimerization.
Collapse
Affiliation(s)
- Qun Tang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan-Ping Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hai-Huan Shan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Fei Tian
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie-Zhong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Xue Yan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Lu CH, Chang TT, Cho CC, Lin HC, Li HW. Stable Nuclei of Nucleoprotein Filament and High ssDNA Binding Affinity Contribute to Enhanced RecA E38K Recombinase Activity. Sci Rep 2017; 7:14964. [PMID: 29097773 PMCID: PMC5668366 DOI: 10.1038/s41598-017-15088-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/20/2017] [Indexed: 11/10/2022] Open
Abstract
RecA plays central roles in the homologous recombination to repair double-stranded DNA break damage in E. coli. A previously identified recA strain surviving high doses of UV radiation includes a dominant RecA E38K mutation. Using single-molecule experiments, we showed that the RecA E38K variant protein assembles nucleoprotein filaments more rapidly than the wild-type RecA. We also used a single-molecule fluorescence resonance energy transfer (smFRET) experiment to compare the nucleation cluster dynamics of wild-type RecA and RecA E38K mutants on various short ssDNA substrates. At shorter ssDNA, nucleation clusters of RecA E38K form dynamically, while only few were seen in wild-type RecA. RecA E38K also forms stable nuclei by specifically lowering the dissociation rate constant, kd. These observations provide evidence that greater nuclei stability and higher ssDNA binding affinity contribute to the observed enhanced recombination activity of the RecA E38K mutant. Given that assembly of RecA nucleoprotein filaments is the first committed step in recombinational repair processes, enhancement at this step gives rise to a more efficient recombinase.
Collapse
Affiliation(s)
- Chih-Hao Lu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Ting-Tzu Chang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chia-Chuan Cho
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hui-Cin Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Abstract
Replication forks frequently are challenged by lesions on the DNA template, replication-impeding DNA secondary structures, tightly bound proteins or nucleotide pool imbalance. Studies in bacteria have suggested that under these circumstances the fork may leave behind single-strand DNA gaps that are subsequently filled by homologous recombination, translesion DNA synthesis or template-switching repair synthesis. This review focuses on the template-switching pathways and how the mechanisms of these processes have been deduced from biochemical and genetic studies. I discuss how template-switching can contribute significantly to genetic instability, including mutational hotspots and frequent genetic rearrangements, and how template-switching may be elicited by replication fork damage.
Collapse
Affiliation(s)
- Susan T Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 2454-9110, USA.
| |
Collapse
|
11
|
Abstract
The bacteriophage λ Red homologous recombination system has been studied over the past 50 years as a model system to define the mechanistic details of how organisms exchange DNA segments that share extended regions of homology. The λ Red system proved useful as a system to study because recombinants could be easily generated by co-infection of genetically marked phages. What emerged from these studies was the recognition that replication of phage DNA was required for substantial Red-promoted recombination in vivo, and the critical role that double-stranded DNA ends play in allowing the Red proteins access to the phage DNA chromosomes. In the past 16 years, however, the λ Red recombination system has gained a new notoriety. When expressed independently of other λ functions, the Red system is able to promote recombination of linear DNA containing limited regions of homology (∼50 bp) with the Escherichia coli chromosome, a process known as recombineering. This review explains how the Red system works during a phage infection, and how it is utilized to make chromosomal modifications of E. coli with such efficiency that it changed the nature and number of genetic manipulations possible, leading to advances in bacterial genomics, metabolic engineering, and eukaryotic genetics.
Collapse
Affiliation(s)
- Kenan C Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
12
|
Unraveling the mechanisms of extreme radioresistance in prokaryotes: Lessons from nature. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 767:92-107. [PMID: 27036069 DOI: 10.1016/j.mrrev.2015.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/27/2022]
Abstract
The last 50 years, a variety of archaea and bacteria able to withstand extremely high doses of ionizing radiation, have been discovered. Several lines of evidence suggest a variety of mechanisms explaining the extreme radioresistance of microorganisms found usually in isolated environments on Earth. These findings are discussed thoroughly in this study. Although none of the strategies discussed here, appear to be universal against ionizing radiation, a general trend was found. There are two cellular mechanisms by which radioresistance is achieved: (a) protection of the proteome and DNA from damage induced by ionizing radiation and (b) recruitment of advanced and highly sophisticated DNA repair mechanisms, in order to reconstruct a fully functional genome. In this review, we critically discuss various protecting (antioxidant enzymes, presence or absence of certain elements, high metal ion or salt concentration etc.) and repair (Homologous Recombination, Single-Strand Annealing, Extended Synthesis-Dependent Strand Annealing) mechanisms that have been proposed to account for the extraordinary abilities of radioresistant organisms and the homologous radioresistance signature genes in these organisms. In addition, and based on structural comparative analysis of major radioresistant organisms, we suggest future directions and how humans could innately improve their resistance to radiation-induced toxicity, based on this knowledge.
Collapse
|
13
|
Abstract
From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis.
Collapse
|
14
|
Kidane D, Ayora S, Sweasy JB, Graumann PL, Alonso JC. The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery. Crit Rev Biochem Mol Biol 2012; 47:531-55. [PMID: 23046409 DOI: 10.3109/10409238.2012.729562] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Natural transformation is a programmed mechanism characterized by binding of free double-stranded (ds) DNA from the environment to the cell pole in rod-shaped bacteria. In Bacillus subtilis some competence proteins, which process the dsDNA and translocate single-stranded (ss) DNA into the cytosol, recruit a set of recombination proteins mainly to one of the cell poles. A subset of single-stranded binding proteins, working as "guardians", protects ssDNA from degradation and limit the RecA recombinase loading. Then, the "mediators" overcome the inhibitory role of guardians, and recruit RecA onto ssDNA. A RecA·ssDNA filament searches for homology on the chromosome and, in a process that is controlled by "modulators", catalyzes strand invasion with the generation of a displacement loop (D-loop). A D-loop resolvase or "resolver" cleaves this intermediate, limited DNA replication restores missing information and a DNA ligase seals the DNA ends. However, if any step fails, the "rescuers" will repair the broken end to rescue chromosomal transformation. If the ssDNA does not share homology with resident DNA, but it contains information for autonomous replication, guardian and mediator proteins catalyze plasmid establishment after inhibition of RecA. DNA replication and ligation reconstitute the molecule (plasmid transformation). In this review, the interacting network that leads to a cross talk between proteins of the uptake and genetic recombination machinery will be placed into prospective.
Collapse
Affiliation(s)
- Dawit Kidane
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
15
|
Tang Q, Gao P, Liu YP, Gao A, An XM, Liu S, Yan XX, Liang DC. RecOR complex including RecR N-N dimer and RecO monomer displays a high affinity for ssDNA. Nucleic Acids Res 2012; 40:11115-25. [PMID: 23019218 PMCID: PMC3510498 DOI: 10.1093/nar/gks889] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
RecR is an important recombination mediator protein in the RecFOR pathway. RecR together with RecO and RecF facilitates RecA nucleoprotein filament formation and homologous pairing. Structural and biochemical studies of Thermoanaerobacter tengcongensis RecR (TTERecR) and its series mutants revealed that TTERecR uses the N-N dimer as a basic functional unit to interact with TTERecO monomer. Two TTERecR N-N dimers form a ring-shaped tetramer via an interaction between their C-terminal regions. The tetramer is a result of crystallization only. Hydrophobic interactions between the entire helix-hairpin-helix domains within the N-terminal regions of two TTERecR monomers are necessary for formation of a RecR functional N-N dimer. The TTERecR N-N dimer conformation also affects formation of a hydrophobic patch, which creates a binding site for TTERecO in the TTERecR Toprim domain. In addition, we demonstrate that TTERecR does not bind single-stranded DNA (ssDNA) and binds double-stranded DNA very weakly, whereas TTERecOR complex can stably bind DNA, with a higher affinity for ssDNA than double-stranded DNA. Based on these results, we propose an interaction model for the RecOR:ssDNA complex.
Collapse
Affiliation(s)
- Qun Tang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sgs1 truncations induce genome rearrangements but suppress detrimental effects of BLM overexpression in Saccharomyces cerevisiae. J Mol Biol 2010; 405:877-91. [PMID: 21111748 DOI: 10.1016/j.jmb.2010.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/09/2010] [Accepted: 11/16/2010] [Indexed: 11/23/2022]
Abstract
RecQ-like DNA helicases are conserved from bacteria to humans. They perform functions in the maintenance of genome stability, and their mutation is associated with cancer predisposition and premature aging syndromes in humans. Here, a series of C-terminal deletions and point mutations of Sgs1, the only RecQ-like helicase in yeast, show that the Helicase/RNase D C-terminal domain and the Rad51 interaction domain are dispensable for Sgs1's role in suppressing genome instability, whereas the zinc-binding domain and the helicase domain are required. BLM expression from the native SGS1 promoter had no adverse effects on cell growth and was unable to complement any sgs1Δ defects. BLM overexpression, however, significantly increased the rate of accumulating gross-chromosomal rearrangements in a dosage-dependent manner and greatly exacerbated sensitivity to DNA-damaging agents. Co-expressing sgs1 truncations of up to 900 residues, lacking all known functional domains of Sgs1, suppressed the hydroxyurea sensitivity of BLM-overexpressing cells, suggesting a functional relationship between Sgs1 and BLM. Protein disorder prediction analysis of Sgs1 and BLM was used to produce a functional Sgs1-BLM chimera by replacing the N-terminus of BLM with the disordered N-terminus of Sgs1. The functionality of this chimera suggests that it is the disordered N-terminus, a site of protein binding and posttranslational modification, that confers species specificity to these two RecQ-like proteins.
Collapse
|
17
|
Hinz JM. Role of homologous recombination in DNA interstrand crosslink repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:582-603. [PMID: 20658649 DOI: 10.1002/em.20577] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Homologous recombination repair (HRR) encompasses mechanisms that employ homologous DNA sequences as templates for repair or tolerance of a wide range of DNA lesions that inhibit DNA replication in S phase. Arguably the most imposing of these DNA lesions is that of the interstrand crosslink (ICL), consisting of a covalently attached chemical bridge between opposing DNA strands. ICL repair requires the coordinated activities of HRR and a number of proteins from other DNA repair and damage response systems, including nucleotide excision repair, base excision repair, mismatch repair, and translesion DNA synthesis (TLS). Interestingly, different organisms favor alternative methods of HRR in the ICL repair process. E. coli perform ICL repair using a homology-driven damage bypass mechanism analogous to daughter strand gap repair. Eukaryotes from yeast to humans initiate ICL repair primarily during DNA replication, relying on HRR activity to restart broken replication forks associated with double-strand break intermediates induced by nucleolytic activities of other excision repair factors. Higher eukaryotes also employ several additional factors, including members of the Fanconi anemia damage-response network, which further promote replication-associated ICL repair through the activation and coordination of various DNA excision repair, TLS, and HRR proteins. This review focuses on the proteins and general mechanisms of HRR associated with ICL repair in different model organisms.
Collapse
Affiliation(s)
- John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
18
|
ATP binding, ATP hydrolysis, and protein dimerization are required for RecF to catalyze an early step in the processing and recovery of replication forks disrupted by DNA damage. J Mol Biol 2010; 401:579-89. [PMID: 20558179 DOI: 10.1016/j.jmb.2010.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 12/30/2022]
Abstract
In Escherichia coli, the recovery of replication following disruption by UV-induced DNA damage requires the RecF protein and occurs through a process that involves stabilization of replication fork DNA, resection of nascent DNA to allow the offending lesion to be repaired, and reestablishment of a productive replisome on the DNA. RecF forms a homodimer and contains an ATP binding cassette ATPase domain that is conserved among eukaryotic SMC (structural maintenance of chromosome) proteins, including cohesin, condensin, and Rad50. Here, we investigated the functions of RecF dimerization, ATP binding, and ATP hydrolysis in the progressive steps involved in recovering DNA synthesis following disruption by DNA damage. RecF point mutations with altered biochemical properties were constructed in the chromosome. We observed that protein dimerization, ATP binding, and ATP hydrolysis were essential for maintaining and processing the arrested replication fork, as well as for restoring DNA synthesis. In contrast, stabilization of the RecF protein dimer partially protected the DNA at the arrested fork from degradation, although overall processing and recovery remained severely impaired.
Collapse
|
19
|
Kozlov AG, Jezewska MJ, Bujalowski W, Lohman TM. Binding specificity of Escherichia coli single-stranded DNA binding protein for the chi subunit of DNA pol III holoenzyme and PriA helicase. Biochemistry 2010; 49:3555-66. [PMID: 20329707 DOI: 10.1021/bi100069s] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Escherichia coli single-stranded DNA binding protein (SSB) plays a central role in DNA metabolism through its high affinity interactions with ssDNA, as well as its interactions with numerous other proteins via its unstructured C-termini. Although SSB interacts with at least 14 other proteins, it is not understood how SSB might recruit one protein over another for a particular metabolic role. To probe the specificity of these interactions, we have used isothermal titration calorimetry to examine the thermodynamics of binding of SSB to two E. coli proteins important for DNA replication, the chi subunit of DNA polymerase III holoenzyme and the PriA helicase. We find that an SSB tetramer can bind up to four molecules of either protein primarily via interactions with the last approximately 9 amino acids in the conserved SSB C-terminal tails (SSB-Ct). We observe intrinsic specificity for the binding of an isolated SSB-Ct peptide to PriA over chi due primarily to a more favorable enthalpic component. PriA and chi also bind with weaker affinity to SSB (in the absence of ssDNA) than to isolated SSB-Ct peptides, indicating an inhibitory effect of the SSB protein core. Although the binding affinity of SSB for both chi and PriA is enhanced if SSB is prebound to ssDNA, this effect is larger with PriA indicating a further enhancement of SSB specificity for PriA. These results also suggest that DNA binding proteins such as PriA, which also interact with SSB, could use this interaction to gain access to ssDNA by first interacting with the SSB C-termini.
Collapse
Affiliation(s)
- Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
20
|
Chan KW, Lee YJ, Wang CH, Huang H, Sun YJ. Single-stranded DNA-binding protein complex from Helicobacter pylori suggests an ssDNA-binding surface. J Mol Biol 2009; 388:508-19. [PMID: 19285993 DOI: 10.1016/j.jmb.2009.03.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 11/19/2022]
Abstract
Single-stranded DNA (ssDNA)-binding protein (SSB) plays an important role in DNA replication, recombination, and repair. SSB consists of an N-terminal ssDNA-binding domain with an oligonucleotide/oligosaccharide binding fold and a flexible C-terminal tail involved in protein-protein interactions. SSB from Helicobacter pylori (HpSSB) was isolated, and the ssDNA-binding characteristics of HpSSB were analyzed by fluorescence titration and electrophoretic mobility shift assay. Tryptophan fluorescence quenching was measured as 61%, and the calculated cooperative affinity was 5.4x10(7) M(-1) with an ssDNA-binding length of 25-30 nt. The crystal structure of the C-terminally truncated protein (HpSSBc) in complex with 35-mer ssDNA [HpSSBc-(dT)(35)] was determined at a resolution of 2.3 A. The HpSSBc monomer folds as an oligonucleotide/oligosaccharide binding fold with a Y-shaped conformation. The ssDNA wrapped around the HpSSBc tetramer through a continuous binding path comprising five essential aromatic residues and a positively charged surface formed by numerous basic residues.
Collapse
Affiliation(s)
- Kun-Wei Chan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | | | | | | | | |
Collapse
|
21
|
Orchestration of Haemophilus influenzae RecJ Exonuclease by Interaction with Single-Stranded DNA-Binding Protein. J Mol Biol 2009; 385:1375-96. [DOI: 10.1016/j.jmb.2008.11.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 11/19/2022]
|
22
|
Makharashvili N, Mi T, Koroleva O, Korolev S. RecR-mediated modulation of RecF dimer specificity for single- and double-stranded DNA. J Biol Chem 2008; 284:1425-34. [PMID: 19017635 DOI: 10.1074/jbc.m806378200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecF pathway proteins play an important role in the restart of stalled replication and DNA repair in prokaryotes. Following DNA damage, RecF, RecR, and RecO initiate homologous recombination (HR) by loading of the RecA recombinase on single-stranded (ss) DNA, protected by ssDNA-binding protein. The specific role of RecF in this process is not well understood. Previous studies have proposed that RecF directs the RecOR complex to boundaries of damaged DNA regions by recognizing single-stranded/double-stranded (ss/ds) DNA junctions. RecF belongs to ABC-type ATPases, which function through an ATP-dependent dimerization. Here, we demonstrate that the RecF of Deinococcus radiodurans interacts with DNA as an ATP-dependent dimer, and that the DNA binding and ATPase activity of RecF depend on both the structure of DNA substrate, and the presence of RecR. We found that RecR interacts as a tetramer with the RecF dimer. RecR increases the RecF affinity to dsDNA without stimulating ATP hydrolysis but destabilizes RecF binding to ssDNA and dimerization, likely due to increasing the ATPase rate. The DNA-dependent binding of RecR to the RecF-DNA complex occurs through specific protein-protein interactions without significant contributions from RecR-DNA interactions. Finally, RecF neither alone nor in complex with RecR preferentially binds to the ss/dsDNA junction. Our data suggest that the specificity of the RecFOR complex toward the boundaries of DNA damaged regions may result from a network of protein-protein and DNA-protein interactions, rather than a simple recognition of the ss/dsDNA junction by RecF.
Collapse
Affiliation(s)
- Nodar Makharashvili
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|
23
|
Killoran MP, Kohler PL, Dillard JP, Keck JL. RecQ DNA helicase HRDC domains are critical determinants in Neisseria gonorrhoeae pilin antigenic variation and DNA repair. Mol Microbiol 2008; 71:158-71. [PMID: 19017267 DOI: 10.1111/j.1365-2958.2008.06513.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neisseria gonorrhoeae (Gc), an obligate human bacterial pathogen, utilizes pilin antigenic variation to evade host immune defences. Antigenic variation is driven by recombination between expressed (pilE) and silent (pilS) copies of the pilin gene, which encodes the major structural component of the type IV pilus. We have investigated the role of the GcRecQ DNA helicase (GcRecQ) in this process. Whereas the vast majority of bacterial RecQ proteins encode a single 'Helicase and RNase D C-terminal' (HRDC) domain, GcRecQ encodes three tandem HRDC domains at its C-terminus. Gc mutants encoding versions of GcRecQ with either two or all three C-terminal HRDC domains removed are deficient in pilin variation and sensitized to UV light-induced DNA damage. Biochemical analysis of a GcRecQ protein variant lacking two HRDC domains, GcRecQDeltaHRDC2,3, shows it has decreased affinity for single-stranded and partial-duplex DNA and reduced unwinding activity on a synthetic Holliday junction substrate relative to full-length GcRecQ in the presence of Gc single-stranded DNA-binding protein (GcSSB). Our results demonstrate that the multiple HRDC domain architecture in GcRecQ is critical for structure-specific DNA binding and unwinding, and suggest that these features are central to GcRecQ's roles in Gc antigenic variation and DNA repair.
Collapse
Affiliation(s)
- Michael P Killoran
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | | | | | | |
Collapse
|
24
|
Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL. SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 2008; 43:289-318. [PMID: 18937104 PMCID: PMC2583361 DOI: 10.1080/10409230802341296] [Citation(s) in RCA: 418] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When duplex DNA is altered in almost any way (replicated, recombined, or repaired), single strands of DNA are usually intermediates, and single-stranded DNA binding (SSB) proteins are present. These proteins have often been described as inert, protective DNA coatings. Continuing research is demonstrating a far more complex role of SSB that includes the organization and/or mobilization of all aspects of DNA metabolism. Escherichia coli SSB is now known to interact with at least 14 other proteins that include key components of the elaborate systems involved in every aspect of DNA metabolism. Most, if not all, of these interactions are mediated by the amphipathic C-terminus of SSB. In this review, we summarize the extent of the eubacterial SSB interaction network, describe the energetics of interactions with SSB, and highlight the roles of SSB in the process of recombination. Similar themes to those highlighted in this review are evident in all biological systems.
Collapse
Affiliation(s)
- Robert D Shereda
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | |
Collapse
|
25
|
Killoran MP, Keck JL. Structure and function of the regulatory C-terminal HRDC domain from Deinococcus radiodurans RecQ. Nucleic Acids Res 2008; 36:3139-49. [PMID: 18411208 PMCID: PMC2396406 DOI: 10.1093/nar/gkn143] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RecQ helicases are critical for maintaining genome integrity in organisms ranging from bacteria to humans by participating in a complex network of DNA metabolic pathways. Their diverse cellular functions require specialization and coordination of multiple protein domains that integrate catalytic functions with DNA-protein and protein-protein interactions. The RecQ helicase from Deinococcus radiodurans (DrRecQ) is unusual among RecQ family members in that it has evolved to utilize three 'Helicase and RNaseD C-terminal' (HRDC) domains to regulate its activity. In this report, we describe the high-resolution structure of the C-terminal-most HRDC domain of DrRecQ. The structure reveals unusual electrostatic surface features that distinguish it from other HRDC domains. Mutation of individual residues in these regions affects the DNA binding affinity of DrRecQ and its ability to unwind a partial duplex DNA substrate. Taken together, the results suggest the unusual electrostatic surface features of the DrRecQ HRDC domain may be important for inter-domain interactions that regulate structure-specific DNA binding and help direct DrRecQ to specific recombination/repair sites.
Collapse
Affiliation(s)
- Michael P Killoran
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1532, USA
| | | |
Collapse
|
26
|
Abstract
All organisms possess a diverse set of genetic programs that are used to alter cellular physiology in response to environmental cues. The gram-negative bacterium, Escherichia coli, mounts what is known as the "SOS response" following DNA damage, replication fork arrest, and a myriad of other environmental stresses. For over 50 years, E. coli has served as the paradigm for our understanding of the transcriptional, and physiological changes that occur following DNA damage (400). In this chapter, we summarize the current view of the SOS response and discuss how this genetic circuit is regulated. In addition to examining the E. coli SOS response, we also include a discussion of the SOS regulatory networks in other bacteria to provide a broader perspective on how prokaryotes respond to DNA damage.
Collapse
|
27
|
Inoue J, Honda M, Ikawa S, Shibata T, Mikawa T. The process of displacing the single-stranded DNA-binding protein from single-stranded DNA by RecO and RecR proteins. Nucleic Acids Res 2007; 36:94-109. [PMID: 18000001 PMCID: PMC2248737 DOI: 10.1093/nar/gkm1004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The regions of single-stranded (ss) DNA that result from DNA damage are immediately coated by the ssDNA-binding protein (SSB). RecF pathway proteins facilitate the displacement of SSB from ssDNA, allowing the RecA protein to form protein filaments on the ssDNA region, which facilitates the process of recombinational DNA repair. In this study, we examined the mechanism of SSB displacement from ssDNA using purified Thermus thermophilus RecF pathway proteins. To date, RecO and RecR are thought to act as the RecOR complex. However, our results indicate that RecO and RecR have distinct functions. We found that RecR binds both RecF and RecO, and that RecO binds RecR, SSB and ssDNA. The electron microscopic studies indicated that SSB is displaced from ssDNA by RecO. In addition, pull-down assays indicated that the displaced SSB still remains indirectly attached to ssDNA through its interaction with RecO in the RecO-ssDNA complex. In the presence of both SSB and RecO, the ssDNA-dependent ATPase activity of RecA was inhibited, but was restored by the addition of RecR. Interestingly, the interaction of RecR with RecO affected the ssDNA-binding properties of RecO. These results suggest a model of SSB displacement from the ssDNA by RecF pathway proteins.
Collapse
Affiliation(s)
- Jin Inoue
- RIKEN Discovery Research Institute, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
28
|
Belle JJ, Casey A, Courcelle CT, Courcelle J. Inactivation of the DnaB helicase leads to the collapse and degradation of the replication fork: a comparison to UV-induced arrest. J Bacteriol 2007; 189:5452-62. [PMID: 17526695 PMCID: PMC1951839 DOI: 10.1128/jb.00408-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 05/17/2007] [Indexed: 11/20/2022] Open
Abstract
Replication forks face a variety of structurally diverse impediments that can prevent them from completing their task. The mechanism by which cells overcome these hurdles is likely to vary depending on the nature of the obstacle and the strand in which the impediment is encountered. Both UV-induced DNA damage and thermosensitive replication proteins have been used in model systems to inhibit DNA replication and characterize the mechanism by which it recovers. In this study, we examined the molecular events that occur at replication forks following inactivation of a thermosensitive DnaB helicase and found that they are distinct from those that occur following arrest at UV-induced DNA damage. Following UV-induced DNA damage, the integrity of replication forks is maintained and protected from extensive degradation by RecA, RecF, RecO, and RecR until replication can resume. By contrast, inactivation of DnaB results in extensive degradation of the nascent and leading-strand template DNA and a loss of replication fork integrity as monitored by two-dimensional agarose gel analysis. The degradation that occurs following DnaB inactivation partially depends on several genes, including recF, recO, recR, recJ, recG, and xonA. Furthermore, the thermosensitive DnaB allele prevents UV-induced DNA degradation from occurring following arrest even at the permissive temperature, suggesting a role for DnaB prior to loading of the RecFOR proteins. We discuss these observations in relation to potential models for both UV-induced and DnaB(Ts)-mediated replication inhibition.
Collapse
Affiliation(s)
- Jerilyn J Belle
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | | | | | | |
Collapse
|
29
|
McInerney P, O'Donnell M. Replisome fate upon encountering a leading strand block and clearance from DNA by recombination proteins. J Biol Chem 2007; 282:25903-16. [PMID: 17609212 DOI: 10.1074/jbc.m703777200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication forks that collapse upon encountering a leading strand lesion are reactivated by a recombinative repair process called replication restart. Using rolling circle DNA substrates to model replication forks, we examine the fate of the helicase and both DNA polymerases when the leading strand polymerase is blocked. We find that the helicase continues over 0.5 kb but less than 3 kb and that the lagging strand DNA polymerase remains active despite its connection to a stalled leading strand enzyme. Furthermore, the blocked leading strand polymerase remains stably bound to the replication fork, implying that it must be dismantled from DNA in order for replication restart to initiate. Genetic studies have identified at least four gene products required for replication restart, RecF, RecO, RecR, and RecA. We find here that these proteins displace a stalled polymerase at a DNA template lesion. Implications of these results for replication fork collapse and recovery are discussed.
Collapse
Affiliation(s)
- Peter McInerney
- Howard Hughes Medical Institute, Laboratory of DNA Replication, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
30
|
Timmins J, Leiros I, McSweeney S. Crystal structure and mutational study of RecOR provide insight into its mode of DNA binding. EMBO J 2007; 26:3260-71. [PMID: 17581636 PMCID: PMC1914108 DOI: 10.1038/sj.emboj.7601760] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 05/24/2007] [Indexed: 11/09/2022] Open
Abstract
The crystal structure of the complex formed between Deinococcus radiodurans RecR and RecO (drRecOR) has been determined. In accordance with previous biochemical characterisation, the drRecOR complex displays a RecR:RecO molecular ratio of 2:1. The biologically relevant drRecOR entity consists of a heterohexamer in the form of two drRecO molecules positioned on either side of the tetrameric ring of drRecR, with their OB (oligonucleotide/oligosaccharide-binding) domains pointing towards the interior of the ring. Mutagenesis studies validated the protein-protein interactions observed in the crystal structure and allowed mapping of the residues in the drRecOR complex required for DNA binding. Furthermore, the preferred DNA substrate of drRecOR was identified as being 3'-overhanging DNA, as encountered at ssDNA-dsDNA junctions. Together these results suggest a possible mechanism for drRecOR recognition of stalled replication forks.
Collapse
Affiliation(s)
- Joanna Timmins
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, Grenoble-CEDEX 9, France
| | - Ingar Leiros
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, Grenoble-CEDEX 9, France
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, University of Tromsø, Tromsø, Norway
| | - Sean McSweeney
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, Grenoble-CEDEX 9, France
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, BP 220, 6 rue Jules Horowitz, 38043 Grenoble-Cedex 9, France. Tel.: +33 4 76 88 23 62; Fax: +33 4 76 88 21 60; E-mail:
| |
Collapse
|
31
|
Shereda RD, Bernstein DA, Keck JL. A central role for SSB in Escherichia coli RecQ DNA helicase function. J Biol Chem 2007; 282:19247-58. [PMID: 17483090 DOI: 10.1074/jbc.m608011200] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecQ DNA helicases are critical components of DNA replication, recombination, and repair machinery in all eukaryotes and bacteria. Eukaryotic RecQ helicases are known to associate with numerous genome maintenance proteins that modulate their cellular functions, but there is little information regarding protein complexes involving the prototypical bacterial RecQ proteins. Here we use an affinity purification scheme to identify three heterologous proteins that associate with Escherichia coli RecQ: SSB (single-stranded DNA-binding protein), exonuclease I, and RecJ exonuclease. The RecQ-SSB interaction is direct and is mediated by the RecQ winged helix subdomain and the C terminus of SSB. Interaction with SSB has important functional consequences for RecQ. SSB stimulates RecQ-mediated DNA unwinding, whereas deletion of the C-terminal RecQ-binding site from SSB produces a variant that blocks RecQ DNA binding and unwinding activities, suggesting that RecQ recognizes both the SSB C terminus and DNA in SSB.DNA nucleoprotein complexes. These findings, together with the noted interactions between human RecQ proteins and Replication Protein A, identify SSB as a broadly conserved RecQ-binding protein. These results also provide a simple model that explains RecQ integration into genome maintenance processes in E. coli through its association with SSB.
Collapse
Affiliation(s)
- Robert D Shereda
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706-1532, USA
| | | | | |
Collapse
|
32
|
Simmons LA, Grossman AD, Walker GC. Replication is required for the RecA localization response to DNA damage in Bacillus subtilis. Proc Natl Acad Sci U S A 2007; 104:1360-5. [PMID: 17229847 PMCID: PMC1783139 DOI: 10.1073/pnas.0607123104] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In both prokaryotes and eukaryotes, proteins involved in DNA repair often organize into multicomponent complexes that can be visualized as foci in living cells. We used a RecA-GFP fusion to examine the subcellular cues that direct RecA-GFP to assemble as foci in response to DNA damage. We used two different methods to inhibit initiation of DNA replication and determined that DNA replication is required for the cell to establish RecA-GFP foci after exposure to DNA-damaging agents. Furthermore, use of endonuclease cleavage to generate a site-specific double-strand break demonstrated that the replication machinery (replisome) and DNA synthesis are required for assembly of RecA-GFP foci during repair of a double-strand break. We monitored the cellular levels of RecA and found that focus formation does not require further induction of protein levels, suggesting that foci result from a redistribution of existing protein to sites of damage encountered by the replisome. Taken together, our results support the model that existing RecA protein is recruited to ssDNA generated by the replisome at sites of DNA damage. These results provide insight into the mechanisms that the cell uses to recruit repair proteins to damaged DNA in living cells.
Collapse
Affiliation(s)
- Lyle A. Simmons
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- *To whom correspondence should be addressed at:
Department of Biology, Building 68-633, Massachusetts Institute of Technology, Cambridge, MA 02139. E-mail:
| |
Collapse
|
33
|
Ishino Y, Nishino T, Morikawa K. Mechanisms of maintaining genetic stability by homologous recombination. Chem Rev 2006; 106:324-39. [PMID: 16464008 DOI: 10.1021/cr0404803] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshizumi Ishino
- Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukukoka-shi, Fukuoka, Japan.
| | | | | |
Collapse
|
34
|
Killoran MP, Keck JL. Three HRDC domains differentially modulate Deinococcus radiodurans RecQ DNA helicase biochemical activity. J Biol Chem 2006; 281:12849-57. [PMID: 16531400 DOI: 10.1074/jbc.m600097200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecQ helicases are key genome maintenance enzymes that function in DNA replication, recombination, and repair. In contrast to nearly every other identified RecQ family member, the RecQ helicase from the radioresistant bacterium Deinococcus radiodurans encodes three "Helicase and RNase D C-terminal" (HRDC) domains at its C terminus. HRDC domains have been implicated in structure-specific nucleic acid binding with roles in targeting RecQ proteins to particular DNA structures; however, only RecQ proteins with single HRDC domains have been examined to date. We demonstrate that the HRDC domains can be proteolytically removed from the D. radiodurans RecQ (DrRecQ) C terminus, consistent with each forming a structural domain. Using this observation as a guide, we produced a panel of recombinant DrRecQ variants lacking combinations of its HRDC domains to investigate their biochemical functions. The N-terminal-most HRDC domain is shown to be critical for high affinity DNA binding and for efficient unwinding of DNA in some contexts. In contrast, the more C-terminal HRDC domains attenuate the DNA binding affinity and DNA-dependent ATP hydrolysis rate of the enzyme and play more complex roles in structure-specific DNA unwinding. Our results indicate that the multiple DrRecQ HRDC domains have evolved to encode DNA binding and regulatory functions in the enzyme.
Collapse
Affiliation(s)
- Michael P Killoran
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706-1532, USA
| | | |
Collapse
|
35
|
Kidane D, Graumann PL. Dynamic formation of RecA filaments at DNA double strand break repair centers in live cells. ACTA ACUST UNITED AC 2005; 170:357-66. [PMID: 16061691 PMCID: PMC2171471 DOI: 10.1083/jcb.200412090] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We show that RecN protein is recruited to a defined DNA double strand break (DSB) in Bacillus subtilis cells at an early time point during repair. Because RecO and RecF are successively recruited to DSBs, it is now clear that dynamic DSB repair centers (RCs) exist in prokaryotes. RecA protein was also recruited to RCs and formed highly dynamic filamentous structures, which we term threads, across the nucleoids. Formation of RecA threads commenced ∼30 min after the induction of DSBs, after RecN recruitment to RCs, and disassembled after 2 h. Time-lapse microscopy showed that the threads rapidly changed in length, shape, and orientation within minutes and can extend at 1.02 μm/min. The formation of RecA threads was abolished in recJ addAB mutant cells but not in each of the single mutants, suggesting that RecA filaments can be initiated via two pathways. Contrary to proteins forming RCs, DNA polymerase I did not form foci but was present throughout the nucleoids (even after induction of DSBs or after UV irradiation), suggesting that it continuously scans the chromosome for DNA lesions.
Collapse
Affiliation(s)
- Dawit Kidane
- Biochemie, Fachbereich Chemie, Hans-Meerwein-Strasse, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | |
Collapse
|
36
|
Maxwell KL, Reed P, Zhang RG, Beasley S, Walmsley AR, Curtis FA, Joachimiak A, Edwards AM, Sharples GJ. Functional similarities between phage lambda Orf and Escherichia coli RecFOR in initiation of genetic exchange. Proc Natl Acad Sci U S A 2005; 102:11260-5. [PMID: 16076958 PMCID: PMC1183564 DOI: 10.1073/pnas.0503399102] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Indexed: 11/18/2022] Open
Abstract
Genetic recombination in bacteriophage lambda relies on DNA end processing by Exo to expose 3'-tailed strands for annealing and exchange by beta protein. Phage lambda encodes an additional recombinase, Orf, which participates in the early stages of recombination by supplying a function equivalent to the Escherichia coli RecFOR complex. These host enzymes assist loading of the RecA strand exchange protein onto ssDNA coated with ssDNA-binding protein. In this study, we purified the Orf protein, analyzed its biochemical properties, and determined its crystal structure at 2.5 angstroms. The homodimeric Orf protein is arranged as a toroid with a shallow U-shaped cleft, lined with basic residues, running perpendicular to the central cavity. Orf binds DNA, favoring single-stranded over duplex and with no obvious preference for gapped, 3'-tailed, or 5'-tailed substrates. An interaction between Orf and ssDNA-binding protein was indicated by far Western analysis. The functional similarities between Orf and RecFOR are discussed in relation to the early steps of recombinational exchange and the interplay between phage and bacterial recombinases.
Collapse
Affiliation(s)
- Karen L Maxwell
- Centre for Infectious Diseases, Wolfson Research Institute, University of Durham, Queen's Campus, Stockton-on-Tees TS17 6BH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Leiros I, Timmins J, Hall DR, McSweeney S. Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans. EMBO J 2005; 24:906-18. [PMID: 15719017 PMCID: PMC554131 DOI: 10.1038/sj.emboj.7600582] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 01/21/2005] [Indexed: 11/09/2022] Open
Abstract
The RecFOR pathway has been shown to be essential for DNA repair through the process of homologous recombination in bacteria and, recently, to be important in the recovery of stalled replication forks following UV irradiation. RecO, along with RecR, RecF, RecQ and RecJ, is a principal actor in this fundamental DNA repair pathway. Here we present the three-dimensional structure of a member of the RecO family. The crystal structure of Deinococcus radiodurans RecO (drRecO) reveals possible binding sites for DNA and for the RecO-binding proteins within its three discrete structural regions: an N-terminal oligonucleotide/oligosaccharide-binding domain, a helical bundle and a zinc-finger motif. Furthermore, drRecO was found to form a stable complex with RecR and to bind both single- and double-stranded DNA. Mutational analysis confirmed the existence of multiple DNA-binding sites within the protein.
Collapse
Affiliation(s)
- Ingar Leiros
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, Grenoble, France
| | - Joanna Timmins
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, Grenoble, France
| | - David R Hall
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, Grenoble, France
| | - Sean McSweeney
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, Grenoble, France
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, BP 220, 6 rue Jules Horowitz, 38043 Grenoble Cedex 9, France. Tel.: +33 4 76 88 23 62; Fax: +33 4 76 88 21 60; E-mail:
| |
Collapse
|
38
|
Kidane D, Sanchez H, Alonso JC, Graumann PL. Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids. Mol Microbiol 2005; 52:1627-39. [PMID: 15186413 DOI: 10.1111/j.1365-2958.2004.04102.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have found that SMC-like RecN protein, RecF and RecO proteins that are involved in DNA recombination play an important role in DNA double-strand break (DSB) repair in Bacillus subtilis. Upon induction of DNA DSBs, RecN, RecO and RecF localized as a discrete focus on the nucleoids in a majority of cells, whereas two or three foci were rarely observed. RecN, RecO and RecF co-localized to the induced foci, with RecN localizing first, while RecO localized later, followed by RecF. Thus, three repair proteins were differentially recruited to distinct sites on the nucleoids, potentially constituting active DSB repair centres (RCs). RecF did not form regular foci in the absence of RecN and failed to form any foci in recO cells, demonstrating a central role for RecN and RecO in initializing the formation of RCs. RecN/O/F foci were detected in recA, recG or recU mutant cells, indicating that the proteins act upstream of proteins involved in synapsis or post-synapsis. In the absence of exogenous DNA damage, RCs were rare, but they accumulated in recA and recU cells, suggesting that DSBs occur frequently in the absence of RecA or RecU. The results suggest a model in which RecN that forms multimers in solution and high-molecular-weight complexes in cells containing DSBs initiates the formation of RCs that mediate DSB repair with the homologous sister chromosome, which presents a novel concept for DSB repair in prokaryotes.
Collapse
Affiliation(s)
- Dawit Kidane
- Biochemie, Fachbereich Chemie, Hans-Meerwein-Strasse, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
39
|
Poteete AR. Modulation of DNA repair and recombination by the bacteriophage lambda Orf function in Escherichia coli K-12. J Bacteriol 2004; 186:2699-707. [PMID: 15090511 PMCID: PMC387792 DOI: 10.1128/jb.186.9.2699-2707.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The orf gene of bacteriophage lambda, fused to a promoter, was placed in the galK locus of Escherichia coli K-12. Orf was found to suppress the recombination deficiency and sensitivity to UV radiation of mutants, in a Delta(recC ptr recB recD)::P(tac) gam bet exo pae cI DeltarecG background, lacking recF, recO, recR, ruvAB, and ruvC functions. It also suppressed defects of these mutants in establishing replication of a pSC101-related plasmid. Compared to orf, the recA803 allele had only small effects on recF, recO, and recR mutant phenotypes and no effect on a ruvAB mutant. In a fully wild-type background with respect to known recombination and repair functions, orf partially suppressed the UV sensitivity of ruvAB and ruvC mutants.
Collapse
Affiliation(s)
- Anthony R Poteete
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue, Worcester, MA 01655, USA.
| |
Collapse
|
40
|
Lee BI, Kim KH, Park SJ, Eom SH, Song HK, Suh SW. Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair. EMBO J 2004; 23:2029-38. [PMID: 15116069 PMCID: PMC424415 DOI: 10.1038/sj.emboj.7600222] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 04/06/2004] [Indexed: 11/08/2022] Open
Abstract
RecR, together with RecF and RecO, facilitates RecA loading in the RecF pathway of homologous recombinational DNA repair in procaryotes. The human Rad52 protein is a functional counterpart of RecFOR. We present here the crystal structure of RecR from Deinococcus radiodurans (DR RecR). A monomer of DR RecR has a two-domain structure: the N-terminal domain with a helix-hairpin-helix (HhH) motif and the C-terminal domain with a Cys4 zinc-finger motif, a Toprim domain and a Walker B motif. Four such monomers form a ring-shaped tetramer of 222 symmetry with a central hole of 30-35 angstroms diameter. In the crystal, two tetramers are concatenated, implying that the RecR tetramer is capable of opening and closing. We also show that DR RecR binds to both dsDNA and ssDNA, and that its HhH motif is essential for DNA binding.
Collapse
Affiliation(s)
- Byung Il Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Kyoung Hoon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Soo Jeong Park
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju, Korea
| | - Soo Hyun Eom
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju, Korea
| | - Hyun Kyu Song
- Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Se Won Suh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
- Department of Chemistry, School of Chemistry & Molecular Engineering, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea. Tel.: +82 2 880 6653; Fax: +82 2 889 1568; E-mail:
| |
Collapse
|
41
|
Chow KH, Courcelle J. RecO Acts with RecF and RecR to Protect and Maintain Replication Forks Blocked by UV-induced DNA Damage in Escherichia coli. J Biol Chem 2004; 279:3492-6. [PMID: 14625283 DOI: 10.1074/jbc.m311012200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, recF and recR are required to stabilize and maintain replication forks arrested by UV-induced DNA damage. In the absence of RecF, replication fails to recover, and the nascent lagging strand of the arrested replication fork is extensively degraded by the RecQ helicase and RecJ nuclease. recO mutants are epistatic with recF and recR with respect to recombination and survival assays after DNA damage. In this study, we show that RecO functions with RecF and RecR to protect the nascent lagging strand of arrested replication forks after UV-irradiation. In the absence of RecO, the nascent DNA at arrested replication forks is extensively degraded and replication fails to recover. The extent of nascent DNA degradation is equivalent in single, double, or triple mutants of recF, recO, or recR, and the degradation is dependent upon RecJ and RecQ functions. Because RecF has been shown to protect the nascent lagging strand from degradation, these observations indicate that RecR and RecO function with RecF to protect the same nascent strand of the arrested replication fork and are likely to act at a common point during the recovery process. We discuss these results in relation to the biochemical and cellular properties of RecF, RecO, and RecR and their potential role in loading RecA filaments to maintain the replication fork structure after the arrest of replication by UV-induced DNA damage.
Collapse
Affiliation(s)
- Kin-Hoe Chow
- Department of Biological Science, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | | |
Collapse
|
42
|
Kline KA, Sechman EV, Skaar EP, Seifert HS. Recombination, repair and replication in the pathogenic Neisseriae: the 3 R's of molecular genetics of two human-specific bacterial pathogens. Mol Microbiol 2003; 50:3-13. [PMID: 14507359 DOI: 10.1046/j.1365-2958.2003.03679.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most of the detailed mechanisms that have been established for the molecular biological processes that mediate recombination, repair and replication of DNA have come from studies of the Escherichia coli paradigm. The human specific pathogens, Neisseria gonorrhoeae and N. meningitidis, are Gram-negative bacteria that have some molecular processes that are similar to E. coli and others that appear to be divergent. We propose that the pathogenic Neisseriae have evolved a specialized collection of molecular mechanisms to adapt to life limited to human hosts. In this MicroReview, we explore what is known about the basic processes of DNA repair, DNA recombination (genetic exchange and pilin variation) and DNA replication in these human specific pathogens.
Collapse
Affiliation(s)
- Kimberly A Kline
- Northwestern University Feinberg School of Medicine, Department of Microbiology and Immunology, Chicago, IL, 60611 USA
| | | | | | | |
Collapse
|
43
|
Yu D, Sawitzke JA, Ellis H, Court DL. Recombineering with overlapping single-stranded DNA oligonucleotides: testing a recombination intermediate. Proc Natl Acad Sci U S A 2003; 100:7207-12. [PMID: 12771385 PMCID: PMC165854 DOI: 10.1073/pnas.1232375100] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A phage lambda-based recombination system, Red, can be used for high-efficiency mutagenesis, repair, and engineering of chromosomal or episomal DNA in vivo in Escherichia coli. When long linear double-stranded DNA with short flanking homologies to their targets are used for the recombination, the lambda Exo, Beta, and Gam proteins are required. The current model is: (i) Gam inhibits the host RecBCD activity, thereby protecting the DNA substrate for recombination; (ii) Exo degrades from each DNA end in a 5' --> 3' direction, creating double-stranded DNA with 3' single-stranded DNA tails; and (iii) Beta binds these 3' overhangs to protect and anneal them to complementary sequences. We have tested this model for Red recombination by using electroporation to introduce overlapping, complementary oligonucleotides that when annealed in vivo approximate the recombination intermediate that Exo should create. Using this technique we found Exo-independent recombination. Surprisingly, a similarly constructed substrate with 5' overhangs recombined more efficiently. This 5' overhang recombination required both Exo and Beta for high levels of recombination and the two oligonucleotides need to overlap by only 6 bp on their 3' ends. Results indicate that Exo may load Beta onto the 3' overhang it produces. In addition, multiple overlapping oligonucleotides were successfully used to generate recombinants in vivo, a technique that could prove useful for many genetic engineering procedures.
Collapse
Affiliation(s)
- Daiguan Yu
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, P.O. Box B, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
44
|
Morimatsu K, Kowalczykowski SC. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 2003; 11:1337-47. [PMID: 12769856 DOI: 10.1016/s1097-2765(03)00188-6] [Citation(s) in RCA: 321] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genetic evidence suggests that the RecF, RecO, and RecR (RecFOR) proteins participate in a common step of DNA recombination and repair, yet the biochemical event requiring collaboration of all three proteins is unknown. Here, we show that the concerted action of the RecFOR complex directs the loading of RecA protein specifically onto gapped DNA that is coated with single-stranded DNA binding (SSB) protein, thereby accelerating DNA strand exchange. The RecFOR complex recognizes the junction between the ssDNA and dsDNA regions and requires a base-paired 5' terminus at the junction. Thus, the RecFOR complex is a structure-specific mediator that targets recombinational repair to ssDNA-dsDNA junctions. This reaction reconstitutes the initial steps of recombinational gapped DNA repair and uncovers an event also common to the repair of ssDNA-tailed intermediates of dsDNA-break repair. We propose that the behavior of the RecFOR proteins is mimicked by functional counterparts that exist in all organisms.
Collapse
Affiliation(s)
- Katsumi Morimatsu
- Section of Microbiology, Center for Genetics and Development, University of California, Davis, 95616, USA
| | | |
Collapse
|
45
|
Abstract
In Escherichia coli, at least two groups of proteins, or "recombination machines," can operate independently on broken DNA to produce a 3'-terminated single-stranded DNA filament coated with RecA protein and ready for synapsis with intact homologous DNA. Recent analyses of mutants lacking one or more of the activities required for presynaptic filament formation by one recombination machine demonstrate that parts of the two normally separate machines can interchange to initiate homologous recombination.
Collapse
Affiliation(s)
- Susan K Amundsen
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
46
|
Kantake N, Madiraju MVVM, Sugiyama T, Kowalczykowski SC. Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination. Proc Natl Acad Sci U S A 2002; 99:15327-32. [PMID: 12438681 PMCID: PMC137716 DOI: 10.1073/pnas.252633399] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present biochemical evidence for the functional similarity of Escherichia coli RecO protein and bacteriophage T4 UvsY protein to eukaryotic Rad52 protein. Although Rad52 protein is conserved in eukaryotes, no sequence homologue has been found in prokaryotes or archeabacteria. Rad52 protein has two unique activities: facilitation of replication protein-A (RPA) displacement by Rad51 protein and annealing of RPA-single-stranded DNA (ssDNA) complexes. Both activities require species-specific interaction between Rad52 protein and RPA. Both RecO and UvsY proteins also possess the former property with regard to their cognate ssDNA-binding protein. Here, we report that RecO protein anneals ssDNA that is complexed with only its cognate ssDNA-binding protein, suggesting the involvement of species-specific interactions. Optimal activity for RecO protein occurs after formation of a 1:1 complex with SSB protein. RecR protein, which is known to stimulate RecO protein to facilitate SSB protein displacement by RecA protein, inhibits annealing by RecO protein, suggesting that RecR protein may regulate the choice between the DNA strand invasion versus annealing pathways. In addition, we show that UvsY protein anneals ssDNA; furthermore, ssDNA, which is complexed only with its cognate ssDNA-binding protein, is annealed in the presence of UvsY protein. These results indicate that RecO and possibly UvsY proteins are functional counterparts of Rad52 protein. Based on the conservation of these functions, we propose a modified double-strand break repair model that includes DNA annealing as an important intermediate step.
Collapse
Affiliation(s)
- Noriko Kantake
- Sections of Microbiology and Molecular and Cellular Biology, Genetics Graduate Group, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|
47
|
Petit MA, Ehrlich D. Essential bacterial helicases that counteract the toxicity of recombination proteins. EMBO J 2002; 21:3137-47. [PMID: 12065426 PMCID: PMC126070 DOI: 10.1093/emboj/cdf317] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PcrA, Rep and UvrD are three closely related bacterial helicases with a DExx signature. PcrA is encoded by Gram-positive bacteria and is essential for cell growth. Rep and UvrD are encoded by Gram-negative bacteria, and mutants lacking both helicases are also not viable. To understand the non-viability of the helicase mutants, we characterized spontaneous extragenic suppressors of a Bacillus subtilis pcrA null mutation. Here we report that one of these suppressors maps in recF and that previously isolated mutations in B.subtilis recF, recL, recO and recR, which belong to the same complementation group, all suppress the lethality of a pcrA mutation. Similarly, recF, recO or recR mutations suppress the lethality of the Escherichia coli rep uvrD double mutant. We conclude that RecFOR proteins are toxic in cells devoid of PcrA in Gram-positive bacteria, or Rep and UvrD in Gram-negative bacteria, and propose that the RecFOR proteins interfere with an essential cellular process, possibly replication, when DExx helicases PcrA, or Rep and UvrD are absent.
Collapse
Affiliation(s)
- Marie-Agnès Petit
- Laboratoire de Génétique Microbienne, INRA, 78352 Jouy en Josas cedex, France.
| | | |
Collapse
|
48
|
Tarkowski TA, Mooney D, Thomason LC, Stahl FW. Gene products encoded in the ninR region of phage lambda participate in Red-mediated recombination. Genes Cells 2002; 7:351-63. [PMID: 11952832 DOI: 10.1046/j.1365-2443.2002.00531.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The ninR region of phage lambda contains two recombination genes, orf (ninB) and rap (ninG), that were previously shown to have roles when the RecF and RecBCD recombination pathways of E. coli, respectively, operate on phage lambda. RESULTS When lambda DNA replication is blocked, recombination is focused at the termini of the virion chromosome. Deletion of the ninR region of lambda decreases the sharpness of the focusing without diminishing the overall rate of recombination. The phenotype is accounted for in large part by the deletion of rap and of orf. Mutation of the recJ gene of the host partially suppresses the Rap- phenotype. CONCLUSION ninR functions Orf and Rap participate in Red recombination, the primary pathway operating when wild-type lambda grows lytically in rec+ cells. The ability of recJ mutation to suppress the Rap- phenotype indicates that RecJ exonuclease can participate in Red-mediated recombination, at least in the absence of Rap function. A model is presented for Red-mediated RecA-dependent recombination that includes these newly identified participants.
Collapse
Affiliation(s)
- Trudee A Tarkowski
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | | | | | | |
Collapse
|
49
|
Sikder D, Unniraman S, Bhaduri T, Nagaraja V. Functional cooperation between topoisomerase I and single strand DNA-binding protein. J Mol Biol 2001; 306:669-79. [PMID: 11243779 DOI: 10.1006/jmbi.2000.4384] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein-protein interactions play important role in cell biochemistry by favorably or adversely influencing major molecular events. In most documented cases, the interaction is direct between the partner molecules. Influence of activity in the absence of direct physical interaction between DNA transaction proteins is another important means of modulation. We show here that single strand binding protein stimulates DNA topoisomerase I activity without direct protein-protein interactions. The stimulation is specific to topoisomerase I, as DNA gyrase activity is unaffected by SSB. We propose that such cases of functional collaboration between DNA transaction proteins play important roles in vivo.
Collapse
Affiliation(s)
- D Sikder
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | | | | |
Collapse
|
50
|
Abstract
To study the mechanisms by which Escherichia coli modulates the genotoxic effects of DNA damage, a novel system has been developed which permits quantitative measurements of various E. coli pathways involved in mutagenesis and DNA repair. Events measured include fidelity and efficiency of translesion DNA synthesis, excision repair, and recombination repair. Our strategy involves heteroduplex plasmid DNA bearing a single site-specific DNA adduct and several mismatched regions. The plasmid replicates in a mismatch repair-deficient host with the mismatches serving as strand-specific markers. Analysis of progeny plasmid DNA for linkage of the strand-specific markers identifies the pathway from which the plasmid is derived. Using this approach, a single 1, N(6)-ethenodeoxyadenosine adduct was shown to be repaired inefficiently by excision repair, to inhibit DNA synthesis by approximately 80 to 90%, and to direct the incorporation of correct dTMP opposite this adduct. This approach is especially useful in analyzing the damage avoidance-tolerance mechanisms. Our results also show that (i) progeny derived from the damage avoidance-tolerance pathway(s) accounts for more than 15% of all progeny; (ii) this pathway(s) requires functional recA, recF, recO, and recR genes, suggesting the mechanism to be daughter strand gap repair; (iii) the ruvABC genes or the recG gene is also required; and (iv) the RecG pathway appears to be more active than the RuvABC pathway. Based on these results, the mechanism of the damage avoidance-tolerance pathway is discussed.
Collapse
Affiliation(s)
- G A Pandya
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, SUNY at Stony Brook, Stony Brook, New York 11794-8651, USA
| | | | | | | |
Collapse
|