1
|
Jumlongras D, Lachke SA, O’Connell DJ, Aboukhalil A, Li X, Choe SE, Ho JWK, Turbe-Doan A, Robertson EA, Olsen BR, Bulyk ML, Amendt BA, Maas RL. An evolutionarily conserved enhancer regulates Bmp4 expression in developing incisor and limb bud. PLoS One 2012; 7:e38568. [PMID: 22701669 PMCID: PMC3373496 DOI: 10.1371/journal.pone.0038568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/07/2012] [Indexed: 12/02/2022] Open
Abstract
To elucidate the transcriptional regulation of Bmp4 expression during organogenesis, we used phylogenetic footprinting and transgenic reporter analyses to identify Bmp4 cis-regulatory modules (CRMs). These analyses identified a regulatory region located ∼46 kb upstream of the mouse Bmp4 transcription start site that had previously been shown to direct expression in lateral plate mesoderm. We refined this regulatory region to a 396-bp minimal enhancer, and show that it recapitulates features of endogenous Bmp4 expression in developing mandibular arch ectoderm and incisor epithelium during the initiation-stage of tooth development. In addition, this enhancer directs expression in the apical ectodermal ridge (AER) of the developing limb and in anterior and posterior limb mesenchyme. Transcript profiling of E11.5 mouse incisor dental lamina, together with protein binding microarray (PBM) analyses, allowed identification of a conserved DNA binding motif in the Bmp4 enhancer for Pitx homeoproteins, which are also expressed in the developing mandibular and incisor epithelium. In vitro electrophoretic mobility shift assays (EMSA) and in vivo transgenic reporter mutational analyses revealed that this site supports Pitx binding and that the site is necessary to recapitulate aspects of endogenous Bmp4 expression in developing craniofacial and limb tissues. Finally, Pitx2 chromatin immunoprecipitation (ChIP) demonstrated direct binding of Pitx2 to this Bmp4 enhancer site in a dental epithelial cell line. These results establish a direct molecular regulatory link between Pitx family members and Bmp4 gene expression in developing incisor epithelium.
Collapse
Affiliation(s)
- Dolrudee Jumlongras
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Salil A. Lachke
- Department of Biological Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Daniel J. O’Connell
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Anton Aboukhalil
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Xiao Li
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Sung E. Choe
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Joshua W. K. Ho
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Annick Turbe-Doan
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Erin A. Robertson
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Bjorn R. Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brad A. Amendt
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Richard L. Maas
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| |
Collapse
|
2
|
Santagati F, Abe K, Schmidt V, Schmitt-John T, Suzuki M, Yamamura KI, Imai K. Identification of Cis-regulatory Elements in the Mouse Pax9/Nkx2-9 Genomic Region: Implication for Evolutionary Conserved Synteny. Genetics 2003; 165:235-42. [PMID: 14504231 PMCID: PMC1462746 DOI: 10.1093/genetics/165.1.235] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
We previously reported close physical linkage between Pax9 and Nkx2-9 in the human, mouse, and pufferfish (Fugu rubripes) genomes. In this study, we analyzed cis-regulatory elements of the two genes by comparative sequencing in the three species and by transgenesis in the mouse. We identified two regions including conserved noncoding sequences that possessed specific enhancer activities for expression of Pax9 in the medial nasal process and of Nkx2-9 in the ventral neural tube. Remarkably, the latter contained the consensus Gli-binding motif. Interestingly, the identified Pax9 cis-regulatory sequences were located in an intron of the neighboring gene Slc25a21. Close examination of an extended genomic interval around Pax9 revealed the presence of strong synteny conservation in the human, mouse, and Fugu genomes. We propose such an intersecting organization of cis-regulatory sequences in multigenic regions as a possible mechanism that maintains evolutionary conserved synteny.
Collapse
Affiliation(s)
- Fabio Santagati
- GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, D-85764 Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Montpetit A, Wilson MD, Chevrette M, Koop BF, Sinnett D. Analysis of the conservation of synteny between Fugu and human chromosome 12. BMC Genomics 2003; 4:30. [PMID: 12877756 PMCID: PMC179898 DOI: 10.1186/1471-2164-4-30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Accepted: 07/23/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pufferfish Fugu rubripes (Fugu) with its compact genome is increasingly recognized as an important vertebrate model for comparative genomic studies. In particular, large regions of conserved synteny between human and Fugu genomes indicate its utility to identify disease-causing genes. The human chromosome 12p12 is frequently deleted in various hematological malignancies and solid tumors, but the actual tumor suppressor gene remains unidentified. RESULTS We investigated approximately 200 kb of the genomic region surrounding the ETV6 locus in Fugu (fETV6) in order to find conserved functional features, such as genes or regulatory regions, that could give insight into the nature of the genes targeted by deletions in human cancer cells. Seven genes were identified near the fETV6 locus. We found that the synteny with human chromosome 12 was conserved, but extensive genomic rearrangements occurred between the Fugu and human ETV6 loci. CONCLUSION This comparative analysis led to the identification of previously uncharacterized genes in the human genome and some potentially important regulatory sequences as well. This is a good indication that the analysis of the compact Fugu genome will be valuable to identify functional features that have been conserved throughout the evolution of vertebrates.
Collapse
Affiliation(s)
- Alexandre Montpetit
- Division of Hematology-Oncology, Charles-Bruneau Cancer Center, Research Center, Sainte-Justine Hospital, 3175 Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Biochemistry, University of Montreal, Montreal, QC, Canada
| | - Michael D Wilson
- Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Mario Chevrette
- The Research Institute of the McGill University Health Centre and Department of Surgery, McGill University, Montreal, QC, H3G 1A4, Canada
| | - Ben F Koop
- Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Daniel Sinnett
- Division of Hematology-Oncology, Charles-Bruneau Cancer Center, Research Center, Sainte-Justine Hospital, 3175 Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Biochemistry, University of Montreal, Montreal, QC, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
4
|
Winnard P, Sidell BD, Vayda ME. Teleost introns are characterized by a high A+T content. Comp Biochem Physiol B Biochem Mol Biol 2002; 133:155-61. [PMID: 12381377 DOI: 10.1016/s1096-4959(02)00104-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously observed that Antarctic fish genes contain intron sequences of high A+T content (60-70% average A+T) which are in stark contrast with adjacent protein coding-sequences. Here, we report that this disparity in intron/exon base composition is a common feature among teleosts. We analyzed 483 teleost genomic DNA sequences, containing 2583 introns, from 80 teleost genera that populate polar, temperate, or tropical habitats. Eighty-nine percent of teleost introns display an A+T content between 50-84% A+T with a mean of 60% A+T. In contrast, only 37% of teleost exons have an A+T content greater-than 50% with a mean of 48% A+T. A comparison to homologous mammalian genes showed a striking difference; in this case, introns and exons have similar base compositions, averaging 45-47% A+T. This indicates that most teleost genes exhibit a large difference in base composition between their introns and exons. There was no correlation of teleost intron A+T content to intron length or habitat temperature range. Thus, teleost intron sequences tend to show the common feature of being much higher in A+T content then neighboring exons.
Collapse
Affiliation(s)
- Paul Winnard
- Department of Biochemistry, Microbiology, and Molecular Biology, University of Maine, Orono, ME 04469-5735, USA
| | | | | |
Collapse
|
5
|
Mandrioli M, Manicardi GC. Cytogenetic and molecular analysis of the pufferfish Tetraodon fluviatilis (Osteichthyes). Genetica 2002; 111:433-8. [PMID: 11841187 DOI: 10.1023/a:1013787230829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In view of their compact genome, pufferfish (Tetraodontiformes) have been proposed as model animal for the study of the vertebrate genome. Despite such interest, cytogenetic information about puffers is still scanty. To fill this gap, a cytogenetic analysis of T. fluviatilis has been performed using both classical and molecular techniques. C-banding, followed by DAPI staining, evidenced that in T. fluviatilis, like all other puffer species so far examined, heterochromatin is essentially AT-rich and it is located at centromeres, whereas staining with CMA3, silver staining and FISH with a 28S ribosomal RNA gene DNA probe showed 2-4 nucleolar organizing regions (NORs) located in heterochromatic regions in the considered puffer species. FISH with the 5S probe put in evidence both in T. fluviatilis and in T. nigroviridis only a 5S cluster per haploid genome that is physically unlinked with the major ribosomal RNA genes including the 28S rRNA genes. Hybridization with the (TTAGGG)n probe showed in all the puffers brightly fluorescent signals uniform both in size and intensity at the end of all the chromosomes. Finally, mariner-like elements (MLEs) have been identified in T. fluviatilis and they have located into the NOR-associated heterochromatin.
Collapse
Affiliation(s)
- M Mandrioli
- Dipartimento di Biologia Animale, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
| | | |
Collapse
|
6
|
Mandrioli M, Cuoghi B, Marini M, Manicardi GC. Cytogenetic analysis of the pufferfish Tetraodon fluviatilis (Osteichthyes). Chromosome Res 2000; 8:237-42. [PMID: 10841051 DOI: 10.1023/a:1009257131091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Because of their compact genome, pufferfish (Tetraodontiformes) have been proposed as a model for the study of the vertebrate genome. The genome of pufferfish is peculiar as it has the structural complexity of the genomes of higher vertebrates, but has small introns and lacks large clusters of highly repetitive sequences. Despite such interest, information about the genetics of pufferfish is still scanty. To fill this gap, we have performed a cytogenetic analysis of the pufferfish, Tetraodon fluviatilis, which can be maintained in an aquarium for a long time and, unlike the pufferfish, Fugu rubripes, it is not difficult to obtain. Karyotype analysis shows that T. fluviatilis has 2n = 42 with two metacentric chromosomes, four submetacentrics, two subtelocentrics and 34 acrocentrics. C-banding, followed by DAPI staining, showed that heterochromatin is essentially AT-rich and is located at centromeres. Staining of the same metaphase plates with CMA3 showed the presence of four heterochromatic regions located on two pairs of submetacentric chromosomes. Silver staining and FISH with a 28S rDNA probe showed that these GC-rich regions are nucleolar organizing regions (NORs). Finally, regardless of the technique used, no difference in the chromosome complement was found between males and females.
Collapse
Affiliation(s)
- M Mandrioli
- Dipartimento di Biologia Animale, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
| | | | | | | |
Collapse
|
7
|
Ohtsuka M, Makino S, Yoda K, Wada H, Naruse K, Mitani H, Shima A, Ozato K, Kimura M, Inoko H. Construction of a linkage map of the medaka (Oryzias latipes) and mapping of the Da mutant locus defective in dorsoventral patterning. Genome Res 1999; 9:1277-87. [PMID: 10613850 PMCID: PMC311007 DOI: 10.1101/gr.9.12.1277] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/1999] [Accepted: 09/01/1999] [Indexed: 11/25/2022]
Abstract
Double anal fin (Da) is a medaka with an autosomal semidominant mutation that causes mirror image duplication of the ventral region concentrating on the caudal region. The chromosomal location of the Da gene and its sequence have remained unknown. We constructed a medaka linkage map as a first step to approach positional cloning of the gene. The segregation analysis was performed on the basis of genetic recombination during female meiosis using 134 random amplified polymorphic DNA (RAPD) markers, 13 sequence-tagged sites (STSs), 15 polymorphic sequences from known genes, and the Da gene. One hundred forty-six markers from the above markers segregated into 26 linkage groups. The size of the genome was estimated to be 1776 cM in length. We identified four syntenic regions between medaka and zebrafish (and human) by mapping the known genes and found one of them to be located in close proximity to the Da gene. By mapping the region surrounding the Da gene in high resolution, two markers were detected flanking the Da gene at 0.32 and 0.80 cM. The detected markers providing a vital clue to initiate chromosome walking will lead us to the definite location of the Da gene.
Collapse
Affiliation(s)
- M Ohtsuka
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kehrer-Sawatzki H, Maier C, Moschgath E, Elgar G, Krone W. Characterization of three genes, AKAP84, BAW and WSB1, located 3' to the neurofibromatosis type 1 locus in Fugu rubripes. Gene 1999; 235:1-11. [PMID: 10415327 DOI: 10.1016/s0378-1119(99)00222-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sequence analysis of cosmid clones was instrumental to identify three genes in the region flanking the Fugu rubripes NF1 gene in the 3' direction: the AKAP84 gene (A-kinase anchor protein 84), the WSB1 gene (WD-40-repeat protein with a SOCS box) and the BAW gene of yet unknown function located between the AKAP84 and the WSB1 genes. The human homologues of these genes are not located in the immediate vicinity of the NF1 gene at 17q11.2. Although synteny of the NF1, AKAP84, BAW and WSB1 genes is conserved between Fugu and human, the gene order is not conserved, and more than a simple inversion would have been necessary to explain the difference in gene order. The mammalian homologue of the Fugu BAW gene or protein has not yet been characterized. As deduced from the respective cDNAs, the Fugu AKAP84, WSB1 and BAW proteins vary concerning the overall degree of similarity to their mammalian counterparts. Whereas the overall similarity of AKAP84 between Fugu and mouse is low, three regions of known functional importance show considerable conservation. These are the N-terminal anchoring domain mediating the insertion of AKAP84 in the outer mitochondrial membrane, the binding site of the regulatory subunit (RI or RII) of protein kinase A, and the C-terminal domain present in the alternatively spliced isoform AKAP121 with an hnRNP K homology domain involved in RNA binding. A higher overall similarity of deduced protein sequences between Fugu and mouse was observed comparing the BAW gene products (74.1%) and the WSB1 proteins (77.2%).
Collapse
Affiliation(s)
- H Kehrer-Sawatzki
- Department of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | | | | | | | | |
Collapse
|
9
|
Tassone F, Villard L, Clancy K, Gardiner K. Structures, sequence characteristics, and synteny relationships of the transcription factor E4TF1, the splicing factor U2AF35 and the cystathionine beta synthetase genes from Fugu rubripes. Gene X 1999; 226:211-23. [PMID: 9931491 DOI: 10.1016/s0378-1119(98)00559-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
A cosmid containing the beta-amyloid precursor protein (APP) from Fugu rubripes has been completely sequenced. In addition to APP, the cosmid contains the E4TF1-60 transcription factor, the U2AF35 pre-mRNA splicing factor, and the cystathionine beta synthetase (CBS) gene. The human homologues of all four genes map to human chromosome 21 but are not clustered; APP and E4TF1-60 map within 21q21, whereas U2AF35 and CBS map approximately 20Mb distal in 21q22. 3. The protein sequences of the Fugu genes vary in their overall level of similarity to their mammalian homologues, but several regions of functional importance are almost identical. As expected, the intron/exon structures of the homologous pairs of genes are highly conserved, but there are significant differences in the compaction ratios. The introns of APP and E4TF1-60 are 49- and 24-fold smaller in Fugu than in human, and the intergenic distance is compressed at least 100-fold. For U2AF35 and CBS, the introns are compressed only five- to eightfold. These size differences were compared with those for a number of previously reported Fugu genes; in general, levels of compaction of Fugu genes are consistent with the isochore locations of the human homologues.
Collapse
Affiliation(s)
- F Tassone
- Eleanor Roosevelt Institute, 1899 Gaylord Street, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
10
|
Abstract
Several eukaryotes, including maize, yeast and Xenopus, are degenerate polyploids formed by relatively recent whole-genome duplications. Ohno's conjecture that more ancient genome duplications occurred in an ancestor of vertebrates is probably at least partly true but the present shortage of gene sequence and map information from vertebrates makes it difficult to either prove or disprove this hypothesis. Candidate paralogous segments in mammalian genomes have been identified but the lack of statistical rigour means that many of the proposals in the literature are probably artefacts.
Collapse
Affiliation(s)
- L Skrabanek
- Department of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| | | |
Collapse
|
11
|
Affiliation(s)
- M Angrist
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106-4955 USA.
| |
Collapse
|
12
|
Trachtulec Z, Hamvas RM, Forejt J, Lehrach HR, Vincek V, Klein J. Linkage of TATA-binding protein and proteasome subunit C5 genes in mice and humans reveals synteny conserved between mammals and invertebrates. Genomics 1997; 44:1-7. [PMID: 9286694 DOI: 10.1006/geno.1997.4839] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The TATA-binding protein (TBP) is a factor required for the transcription of all classes of eukaryotic genes. Here, we demonstrate that in the mouse the TBP-encoding gene (Tbp) resides next to the proteasomal subunit C5-encoding gene (Psmb1). The genes are located on mouse chromosome 17 in the t complex within the Hybrid sterility 1 (Hst1) region. We demonstrate that the homologous human genes (TBP AND PSMB1) are tightly linked on the long arm of chromosome 6, in a region syntenic with the proximal part of mouse chromosome 17. The mouse Tbp and Psmb1 and the human TBP and PSMB1 genes are transcribed in the opposite orientation. The TATA-binding protein and proteasomal subunit C5 genes are also linked on chromosome III of Caenorhabditis elegans, and together they are linked to other genes whose homologs map to human chromosome 6 and mouse chromosome 17. In the Drosophila genome, the housekeeping TATA-binding protein gene maps close to two other genes with homologs in the mammalian major histocompatibility complex. There thus exists conserved synteny of unrelated genes between mammals and invertebrates.
Collapse
Affiliation(s)
- Z Trachtulec
- Department of Microbiology and Immunology, University of Miami School of Medicine, Florida 33136, USA.
| | | | | | | | | | | |
Collapse
|