1
|
Arsenault SV, Riba-Grognuz O, Shoemaker D, Hunt BG, Keller L. Direct and indirect genetic effects of a social supergene. Mol Ecol 2023; 32:1087-1097. [PMID: 36541826 DOI: 10.1111/mec.16830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Indirect genetic effects describe phenotypic variation that results from differences in the genotypic composition of social partners. Such effects represent heritable sources of environmental variation in eusocial organisms because individuals are typically reared by their siblings. In the fire ant Solenopsis invicta, a social supergene exhibits striking indirect genetic effects on worker regulation of colony queen number, such that the genotypic composition of workers at the supergene determines whether colonies contain a single or multiple queens. We assessed the direct and indirect genetic effects of this supergene on gene expression in brains and abdominal tissues from laboratory-reared workers and compared these with previously published data from field-collected prereproductive queens. We found that direct genetic effects caused larger gene expression changes and were more consistent across tissue types and castes than indirect genetic effects. Indirect genetic effects influenced the expression of many loci but were generally restricted to the abdominal tissues. Further, indirect genetic effects were only detected when the genotypic composition of social partners differed throughout the development and adult life of focal workers, and were often only significant with relatively lenient statistical cutoffs. Our study provides insight into direct and indirect genetic effects of a social supergene on gene regulatory dynamics across tissues and castes in a complex society.
Collapse
Affiliation(s)
| | - Oksana Riba-Grognuz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - DeWayne Shoemaker
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Blacher P, De Gasperin O, Chapuisat M. Cooperation by ant queens during colony-founding perpetuates alternative forms of social organization. Behav Ecol Sociobiol 2021; 75:165. [PMID: 35035032 PMCID: PMC8718384 DOI: 10.1007/s00265-021-03105-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022]
Abstract
Abstract Key social traits, like queen number in eusocial insect colonies, have long been considered plastic, but the recent finding that colony social organization is under strict genetic control in multiple ant lineages challenges this view. This begs the question of which hardwired behavioral mechanism(s) generate alternative forms of social organization during colony development. We addressed this question in the Alpine silver ant, Formica selysi, a species with two social forms determined by a supergene. Queens that carry exclusively the M haplotype are produced by and live in monogyne (= single-queen) colonies, whereas queens that carry at least one copy of the P haplotype are produced by and live in polygyne (= multiple-queen) colonies. With extensive field samplings and laboratory experiments, we show that both types of queens successfully establish colonies independently, without being accompanied by workers, but that they do so in contrasting ways. Monogyne queens were generally intolerant of other queens and founded colonies solitarily, whereas polygyne queens were mutually attracted to each other and mainly founded colonies cooperatively. These associations persisted for months after worker emergence, suggesting that cooperative colony-founding leads to permanent multiple queening. Overall, our study shows that queens of each social form found colonies independently in the field but that P-carrying queens are more likely to cooperate, thereby contributing to perpetuate alternative forms of social organization. Significance statement Understanding the genetic and behavioral underpinnings of social organization is a major goal in evolutionary biology. Recent studies have shown that colony social organization is controlled by supergenes in multiple ant lineages. But the behavioral processes linking the genotype of a queen to the type of colony she will form remain largely unknown. Here, we show that in Alpine silver ants, alternative supergene genotypes are associated with different levels of social attraction and tolerance in young queens. These hardwired differences in social traits make queens carrying the P supergene haplotype more prone to cooperate and form durable associations during independent colony-founding. These findings help explain how genetic variants induce alternative forms of social organization during the ontogeny of a colony. They also illustrate how simple phenotypic differences at the individual level can result in large differences at higher levels of organization. Supplementary Information The online version contains supplementary material available at 10.1007/s00265-021-03105-1.
Collapse
Affiliation(s)
- Pierre Blacher
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Ornela De Gasperin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Kjeldgaard MK, Eyer PA, McMichael CC, Bockoven AA, King JT, Hyodo A, Boutton TW, Vargo EL, Eubanks MD. Distinct colony boundaries and larval discrimination in polygyne red imported fire ants (Solenopsis invicta). Mol Ecol 2021; 31:1007-1020. [PMID: 34747530 DOI: 10.1111/mec.16264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
Evaluating the factors that promote invasive ant abundance is critical to assess their ecological impact and inform their management. Many invasive ant species show reduced nestmate recognition and an absence of boundaries between unrelated nests, which allow populations to achieve greater densities due to reduced intraspecific competition. We examined nestmate discrimination and colony boundaries in introduced populations of the red imported fire ant (Solenopsis invicta; hereafter, fire ant). Fire ants occur in two social forms: monogyne (colonies with a single egg-laying queen) and polygyne (colonies with multiple egg-laying queens). In contrast with monogyne nests, polygyne nests are thought to be interconnected due to the reduced antagonism between non-nestmate polygyne workers, perhaps because polygyne workers habituate the colony to an odour unique to Gp-9b -carrying adults. However, colony boundaries and nestmate discrimination are poorly documented, particularly for worker-brood interactions. To delimit boundaries between field colonies, we correlated the exchange of a 15 N-glycine tracer dissolved in a sucrose solution with social form. We also evaluated nestmate discrimination between polygyne workers and larvae in the laboratory. Counter to our expectations, polygyne colonies behaved identically to monogyne colonies, suggesting both social forms maintain strict colony boundaries. Polygyne workers also preferentially fed larval nestmates and may have selectively cannibalized non-nestmates. The levels of relatedness among workers in polygyne colonies was higher than those previously reported in North America (mean ± standard error: 0.269 ± 0.037). Our study highlights the importance of combining genetic analyses with direct quantification of resource exchange to better understand the factors influencing ant invasions.
Collapse
Affiliation(s)
| | - Pierre-André Eyer
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Collin C McMichael
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Alison A Bockoven
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Joanie T King
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Ayumi Hyodo
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
| | - Thomas W Boutton
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
| | - Edward L Vargo
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Micky D Eubanks
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Zahnd S, Fontcuberta A, Koken M, Cardinaux A, Chapuisat M. Fine-scale habitat heterogeneity favours the coexistence of supergene-controlled social forms in Formica selysi. BMC Ecol Evol 2021; 21:24. [PMID: 33583395 PMCID: PMC7883426 DOI: 10.1186/s12862-020-01742-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/25/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Social insects vary widely in social organization, yet the genetical and ecological factors influencing this variation remain poorly known. In particular, whether spatially varying selection influences the maintenance of social polymorphisms in ants has been rarely investigated. To fill this gap, we examined whether fine-scale habitat heterogeneity contributes to the co-existence of alternative forms of social organization within populations. Single-queen colonies (monogyne social form) are generally associated with better colonization abilities, whereas multiple-queen colonies (polygyne social form) are predicted to be better competitors and monopolize saturated habitats. We hypothesize that each social form colonizes and thrives in distinct local habitats, as a result of their alternative dispersal and colony founding strategies. Here, we test this hypothesis in the Alpine silver ant, in which a supergene controls polymorphic social organization. RESULTS Monogyne and polygyne colonies predominate in distinct habitats of the same population. The analysis of 59 sampling plots distributed across six habitats revealed that single-queen colonies mostly occupy unconnected habitats that were most likely reached by flight. This includes young habitats isolated by water and old habitats isolated by vegetation. In contrast, multiple-queen colonies were abundant in young, continuous and saturated habitats. Hence, alternative social forms colonize and monopolize distinct niches at a very local scale. CONCLUSIONS Alternative social forms colonized and monopolized different local habitats, in accordance with differences in colonization and competition abilities. The monogyne social form displays a colonizer phenotype, by efficiently occupying empty habitats, while the polygyne social form exhibits a competitor phenotype, thriving in saturated habitats. The combination of the two phenotypes, coupled with fine-scale habitat heterogeneity, may allow the coexistence of alternative social forms within populations. Overall, these results suggest that spatially varying selection may be one of the mechanisms contributing to the maintenance of genetic polymorphisms in social organization.
Collapse
Affiliation(s)
- Sacha Zahnd
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Amaranta Fontcuberta
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Mesut Koken
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Aline Cardinaux
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
5
|
Ajayi OS, Chen L, Fadamiro HY. Host preference in parasitic phorid flies: response of Pseudacteon curvatus and P. obtusus to venom alkaloids of native and imported Solenopsis fire ants. CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Hakala SM, Ittonen M, Seppä P, Helanterä H. Limited dispersal and an unexpected aggression pattern in a native supercolonial ant. Ecol Evol 2020; 10:3671-3685. [PMID: 32313626 PMCID: PMC7160175 DOI: 10.1002/ece3.6154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 11/16/2022] Open
Abstract
Understanding how social groups function requires studies on how individuals move across the landscape and interact with each other. Ant supercolonies are extreme cooperative units that may consist of thousands of interconnected nests, and their individuals cooperate over large spatial scales. However, the inner structure of suggested supercolonial (or unicolonial) societies has rarely been extensively studied using both genetic and behavioral analyses. We describe a dense supercolony-like aggregation of more than 1,300 nests of the ant Formica (Coptoformica) pressilabris. We performed aggression assays and found that, while aggression levels were generally low, there was some aggression within the assumed supercolony. The occurrence of aggression increased with distance from the focal nest, in accordance with the genetically viscous population structure we observe by using 10 DNA microsatellite markers. However, the aggressive interactions do not follow any clear pattern that would allow specifying colony borders within the area. The genetic data indicate limited gene flow within and away from the supercolony. Our results show that a Formica supercolony is not necessarily a single unit but can be a more fluid mosaic of aggressive and amicable interactions instead, highlighting the need to study internest interactions in detail when describing supercolonies.
Collapse
Affiliation(s)
- Sanja M. Hakala
- Centre of Excellence in Biological Interactions, Organismal and Evolutionary Biology Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
| | - Mats Ittonen
- Centre of Excellence in Biological Interactions, Organismal and Evolutionary Biology Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
- Department of ZoologyStockholm UniversityStockholmSweden
| | - Perttu Seppä
- Centre of Excellence in Biological Interactions, Organismal and Evolutionary Biology Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
| | - Heikki Helanterä
- Centre of Excellence in Biological Interactions, Organismal and Evolutionary Biology Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| |
Collapse
|
7
|
Yan Z, Martin SH, Gotzek D, Arsenault SV, Duchen P, Helleu Q, Riba-Grognuz O, Hunt BG, Salamin N, Shoemaker D, Ross KG, Keller L. Evolution of a supergene that regulates a trans-species social polymorphism. Nat Ecol Evol 2020; 4:240-249. [PMID: 31959939 DOI: 10.1038/s41559-019-1081-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/04/2019] [Indexed: 11/09/2022]
Abstract
Supergenes are clusters of linked genetic loci that jointly affect the expression of complex phenotypes, such as social organization. Little is known about the origin and evolution of these intriguing genomic elements. Here we analyse whole-genome sequences of males from native populations of six fire ant species and show that variation in social organization is under the control of a novel supergene haplotype (termed Sb), which evolved by sequential incorporation of three inversions spanning half of a 'social chromosome'. Two of the inversions interrupt protein-coding genes, resulting in the increased expression of one gene and modest truncation in the primary protein structure of another. All six socially polymorphic species studied harbour the same three inversions, with the single origin of the supergene in their common ancestor inferred by phylogenomic analyses to have occurred half a million years ago. The persistence of Sb along with the ancestral SB haplotype through multiple speciation events provides a striking example of a functionally important trans-species social polymorphism presumably maintained by balancing selection. We found that while recombination between the Sb and SB haplotypes is severely restricted in all species, a low level of gene flux between the haplotypes has occurred following the appearance of the inversions, potentially mitigating the evolutionary degeneration expected at genomic regions that cannot freely recombine. These results provide a detailed picture of the structural genomic innovations involved in the formation of a supergene controlling a complex social phenotype.
Collapse
Affiliation(s)
- Zheng Yan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Simon H Martin
- Institute of Evolutionary Biology, the University of Edinburgh, Edinburgh, UK
| | - Dietrich Gotzek
- Department of Entomology and Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | - Pablo Duchen
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Quentin Helleu
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Oksana Riba-Grognuz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - DeWayne Shoemaker
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Kenneth G Ross
- Department of Entomology, University of Georgia, Athens, GA, USA.
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Eyer P, Espinoza EM, Blumenfeld AJ, Vargo EL. The underdog invader: Breeding system and colony genetic structure of the dark rover ant ( Brachymyrmex patagonicus Mayr). Ecol Evol 2020; 10:493-505. [PMID: 31993123 PMCID: PMC6972842 DOI: 10.1002/ece3.5917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/18/2019] [Indexed: 01/19/2023] Open
Abstract
Ants are among the most successful species at invading new environments. Their success undeniably comes from their various modes of reproduction and colony breeding structures, which influence their dispersal ability, reproductive potential, and foraging strategies. Almost all invasive ant species studied so far form supercolonies, a dense network of interconnected nests comprising numerous queens, without aggression toward non-nestmates. This strategy results in invasive colonies that are able to grow extremely fast and large while avoiding intraspecific competition, allowing them to monopolize environmental resources and outcompete native species. Here, we developed and used 10 microsatellite markers to investigate the population structure and breeding system of the dark rover ant Brachymyrmex patagonicus Mayr in its introduced range. We determined whether this species exhibits a supercolonial structure by assessing whether different nests belonged to the same genetic colony. We inferred its dispersal ability by investigating isolation by distance and estimated the numbers of queens per colonies and mating per queen through parent-offspring inferences. We found that most of the colonies of B. patagonicus were comprised of a single nest, headed by a single queen. Each nest was distinct from one another, without isolation by distance, which suggests strong dispersal ability through nuptial flights. These features are commonly observed in noninvasive and native ant species, but they are surprising for a successful invasive ant, as they strongly differ from other invasive ants. Overall, we discuss how this seemingly unfavorable strategy for an invasive ant might favor the invasive success of the dark rover ant in the United States.
Collapse
Affiliation(s)
| | - Elida M. Espinoza
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
- EnviroFlight, LLCYellow SpringsOHUSA
| | | | - Edward L. Vargo
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
9
|
Ritualized aggressive behavior reveals distinct social structures in native and introduced range tawny crazy ants. PLoS One 2019; 14:e0225597. [PMID: 31756233 PMCID: PMC6874334 DOI: 10.1371/journal.pone.0225597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/07/2019] [Indexed: 11/19/2022] Open
Abstract
How workers within an ant colony perceive and enforce colony boundaries is a defining biological feature of an ant species. Ants fall along a spectrum of social organizations ranging from single-queen, single nest societies to species with multi-queen societies in which workers exhibit colony-specific, altruistic behaviors towards non-nestmate workers from distant locations. Defining where an ant species falls along this spectrum is critical for understanding its basic ecology. Herein we quantify queen numbers, describe intraspecific aggression, and characterize the distribution of colony sizes for tawny crazy ant (Nylanderia fulva) populations in native range areas in South America as well as in their introduced range in the Southeastern United States. In both ranges, multi-queen nests are common. In the introduced range, aggressive behaviors are absent at all spatial scales tested, indicating that within the population in the Southeastern United States N. fulva is unicolonial. However, this contrasts strongly with intraspecific aggression in its South American native range. In the native range, intraspecific aggression between ants from different nests is common and ritualized. Aggression is typically one-sided and follows a stereotyped sequence of escalating behaviors that stops before actual fighting occurs. Spatial patterns of non-aggressive nest aggregation and the transitivity of non-aggressive interactions demonstrate that results of neutral arena assays usefully delineate colony boundaries. In the native range, both the spatial extent of colonies and the average number of queens encountered per nest differ between sites. This intercontinental comparison presents the first description of intraspecific aggressive behavior for this invasive ant and characterizes the variation in colony organization in the native-range, a pre-requisite to a full understanding of the origins of unicoloniality in its introduced range.
Collapse
|
10
|
Eyer PA, McDowell B, Johnson LNL, Calcaterra LA, Fernandez MB, Shoemaker D, Puckett RT, Vargo EL. Supercolonial structure of invasive populations of the tawny crazy ant Nylanderia fulva in the US. BMC Evol Biol 2018; 18:209. [PMID: 30594137 PMCID: PMC6310932 DOI: 10.1186/s12862-018-1336-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Social insects are among the most serious invasive pests in the world, particularly successful at monopolizing environmental resources to outcompete native species and achieve ecological dominance. The invasive success of some social insects is enhanced by their unicolonial structure, under which the presence of numerous queens and the lack of aggression against non-nestmates allow high worker densities, colony growth, and survival while eliminating intra-specific competition. In this study, we investigated the population genetics, colony structure and levels of aggression in the tawny crazy ant, Nylanderia fulva, which was recently introduced into the United States from South America. RESULTS We found that this species experienced a genetic bottleneck during its invasion lowering its genetic diversity by 60%. Our results show that the introduction of N. fulva is associated with a shift in colony structure. This species exhibits a multicolonial organization in its native range, with colonies clearly separated from one another, whereas it displays a unicolonial system with no clear boundaries among nests in its invasive range. We uncovered an absence of genetic differentiation among populations across the entire invasive range, and a lack of aggressive behaviors towards conspecifics from different nests, even ones separated by several hundreds of kilometers. CONCLUSIONS Overall, these results suggest that across its entire invasive range in the U.S.A., this species forms a single supercolony spreading more than 2000 km. In each invasive nest, we found several, up to hundreds, of reproductive queens, each being mated with a single male. The many reproductive queens per nests, together with the free movement of individuals between nests, leads to a relatedness coefficient among nestmate workers close to zero in introduced populations, calling into question the stability of this unicolonial system in which indirect fitness benefits to workers is apparently absent.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA.
| | - Bryant McDowell
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| | - Laura N L Johnson
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| | - Luis A Calcaterra
- Fundación para el Estudio de Especies Invasivas (FuEDEI) and CONICET, Bolívar 1559, B1686EFA, Hurlingham, Buenos Aires, Argentina
| | - Maria Belen Fernandez
- Fundación para el Estudio de Especies Invasivas (FuEDEI) and CONICET, Bolívar 1559, B1686EFA, Hurlingham, Buenos Aires, Argentina
| | - DeWayne Shoemaker
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996-4560, USA
| | - Robert T Puckett
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| | - Edward L Vargo
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| |
Collapse
|
11
|
Loope KJ, Millar JG, Wilson Rankin EE. Weak nestmate discrimination behavior in native and invasive populations of a yellowjacket wasp (Vespula pensylvanica). Biol Invasions 2018. [DOI: 10.1007/s10530-018-1783-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Zheng C, Yang F, Zeng L, Vargo EL, Xu Y. Genetic diversity and colony structure of Tapinoma melanocephalum on the islands and mainland of South China. Ecol Evol 2018; 8:5427-5440. [PMID: 29938063 PMCID: PMC6010919 DOI: 10.1002/ece3.4065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/06/2018] [Accepted: 03/24/2018] [Indexed: 11/07/2022] Open
Abstract
AIM Tapinoma melanocephalum is listed as one of the most important invasive pest species in China. Information regarding the patterns of invasion and effects of geographic isolation on the population genetics of this species is largely lacking. LOCATION South China. METHODS To address this problem, we genotyped 39 colonies (two colonies were collapsed due to genetic similarity) using microsatellite markers and mitochondrial DNA sequencing to compare colony genetic structure of T. melanocephalum on the mainland and islands of South China. RESULTS An analysis of the colony genotypes showed that the genetic diversity of the mainland population was slightly higher than that of the island populations but not significantly so. However, the observed heterozygosity on Shangchuan Island (SCD) was significantly lower than that of the other colonies. We also found six haplotypes in 111 mitochondrial DNA COI sequences. The relatedness (r) value between colonies of SCD was 0.410, higher than that of the other populations. The genetic clusters among colonies were not related to geographic locations and exhibited admixture likely due to frequent human-mediated dispersal associated with trade between the mainland population and the islands. Pairwise FSTs between populations showed differentiation among mainland populations, while SCD displayed high levels of divergence (FST > 0.15) from most mainland populations. There was no significant isolation by distance among colonies. Most populations showed signs of a bottleneck effect. MAIN CONCLUSIONS Our study suggests that there was no significant difference in the genetic diversity among the islands and the mainland; however, the lower genetic diversity, the higher degree of genetic divergence from other colonies, and the higher relatedness among nestmates made the SCD population stand out from all the others.
Collapse
Affiliation(s)
- Chunyan Zheng
- Department of EntomologySouth China Agricultural UniversityGuangzhouChina
| | - Fan Yang
- Department of EntomologySouth China Agricultural UniversityGuangzhouChina
| | - Ling Zeng
- Department of EntomologySouth China Agricultural UniversityGuangzhouChina
| | - Edward L. Vargo
- Department of EntomologyTexas A&M UniversityCollege StationTexas
| | - Yijuan Xu
- Department of EntomologySouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
13
|
Sato K, Sakamoto H, Hirata M, Kidokoro-Kobayashi M, Ozaki M, Higashi S, Murakami T. Relationship Among Establishment Durations, Kin Relatedness, Aggressiveness, and Distance Between Populations of Eight Invasive Argentine Ant (Hymenoptera: Formicidae) Supercolonies in Japan. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1676-1684. [PMID: 28531326 DOI: 10.1093/jee/tox141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Indexed: 06/07/2023]
Abstract
We investigated kin relatedness and kin-recognition abilities of the Argentine ant, Linepithema humile (Mayr), an invader from North America that has pervaded Japan for 20 yr, using genetic analyses and behavioral bioassays. From these data and interactions among factors, we formulated an eradication and management time-scale pattern diagram. Relatedness within a colony using microsatellite markers was effectively zero, whereas relatedness estimated by multilocus DNA fingerprinting markers was relatively high. Specifically, relatedness of recently invaded populations was estimated at nearly 0.3. From the results of behavioral bioassays on the invading populations of the Argentine ant, all colonies except the Kobe supercolonies did not show clearly aggressive behaviors toward workers belonging to other colonies, even when distantly located. Because they are critical factors for eradicating and managing invasive organisms, we assessed the relationships among kin relatedness using multilocus DNA fingerprinting and microsatellite markers, with aggressiveness, in 2011 and 2012, including the establishment durations, and distances among supercolonies. A generalized linear model (GLM) analysis, with establishment durations as an explanatory variable, strongly contributed to explaining estimated relatedness from the two methods. Specifically, models using kin relatedness for both multilocus DNA fingerprinting and microsatellite markers provided the strongest contribution to explaining the establishment durations. Within 3 yr after establishment in a native area, eradication is possible because of their low genetic diversity and small colony size. After 15 yr, eradication will be more difficult, but it is preferable to just monitor the impact for a nonnative ecosystem.
Collapse
Affiliation(s)
- K Sato
- Hokkaido University of Education, Hakodate, Hokkaido 040-8567, Japan
- Chiba Oihama High School, Chiba, Chiba 260-0823, Japan
| | - H Sakamoto
- Faculty of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan
| | - M Hirata
- Sapporo Ohtani High School, Sapporo, Hokkaido 065-0016, Japan
| | | | - M Ozaki
- Kobe University, Kobe, Hyogo 657-8501, Japan
| | - S Higashi
- Hokkaido University, Sapporo, Hokkaido 060-0808, Japan
| | - T Murakami
- Hokkaido University of Education, Hakodate, Hokkaido 040-8567, Japan
- Kyushu University, Decision Science, 744 Motooka, Fukuoka 819-0315, Japan
| |
Collapse
|
14
|
Goodisman MAD, Ross KG. A TEST OF QUEEN RECRUITMENT MODELS USING NUCLEAR AND MITOCHONDRIAL MARKERS IN THE FIRE ANTSOLENOPSIS INVICTA. Evolution 2017; 52:1416-1422. [DOI: 10.1111/j.1558-5646.1998.tb02023.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1997] [Accepted: 06/19/1998] [Indexed: 11/30/2022]
Affiliation(s)
| | - Kenneth G. Ross
- Department of Entomology; University of Georgia; Athens Georgia 30602-2603
| |
Collapse
|
15
|
Ross KG, Vargo EL, Keller L. SIMPLE GENETIC BASIS FOR IMPORTANT SOCIAL TRAITS IN THE FIRE ANTSOLENOPSIS INVICTA. Evolution 2017; 50:2387-2399. [DOI: 10.1111/j.1558-5646.1996.tb03626.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1995] [Accepted: 05/30/1996] [Indexed: 11/28/2022]
Affiliation(s)
- Kenneth G. Ross
- Department of Entomology; University of Georgia; Athens Georgia 30602-2603
| | - Edward L. Vargo
- Brackenridge Field Laboratory and Department of Zoology; University of Texas; Austin Texas 78712
| | - Laurent Keller
- Institut de Zoologie et d'Ecologie Animale; Université de Lausanne; Bâtiment de Biologie, 1015 Lausanne
- Zoologisches Institut; Universität Bern; Ethologische Station Hasli, Wohlenstrasse 50a, CH-3032 Hinterkappelen Switzerland
| |
Collapse
|
16
|
Emiljanowicz LM, Hager HA, Newman JA. Traits related to biological invasion: A note on the applicability of risk assessment tools across taxa. NEOBIOTA 2017. [DOI: 10.3897/neobiota.32.9664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Perdereau E, Bagnères AG, Vargo EL, Baudouin G, Xu Y, Labadie P, Dupont S, Dedeine F. Relationship between invasion success and colony breeding structure in a subterranean termite. Mol Ecol 2015; 24:2125-42. [PMID: 25641360 DOI: 10.1111/mec.13094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 01/13/2023]
Abstract
Factors promoting the establishment and colonization success of introduced populations in new environments constitute an important issue in biological invasions. In this context, the respective role of pre-adaptation and evolutionary changes during the invasion process is a key question that requires particular attention. This study compared the colony breeding structure (i.e. number and relatedness among reproductives within colonies) in native and introduced populations of the subterranean pest termite, Reticulitermes flavipes. We generated and analysed a data set of both microsatellite and mtDNA loci on termite samples collected in three introduced populations, one in France and two in Chile, and in the putative source population of French and Chilean infestations that has recently been identified in New Orleans, LA. We also provided a synthesis combining our results with those of previous studies to obtain a global picture of the variation in breeding structure in this species. Whereas most native US populations are mainly composed of colonies headed by monogamous pairs of primary reproductives, all introduced populations exhibit a particular colony breeding structure that is characterized by hundreds of inbreeding reproductives (neotenics) and by a propensity of colonies to fuse, a pattern shared uniquely with the population of New Orleans. These characteristics are comparable to those of many invasive ants and are discussed to play an important role during the invasion process. Our finding that the New Orleans population exhibits the same breeding structure as its related introduced populations suggests that this native population is pre-adapted to invade new ranges.
Collapse
Affiliation(s)
- E Perdereau
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS - Université François-Rabelais, UFR Sciences, Parc Grandmont, Tours, 37200, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gotzek D, Axen HJ, Suarez AV, Helms Cahan S, Shoemaker D. Global invasion history of the tropical fire ant: a stowaway on the first global trade routes. Mol Ecol 2015; 24:374-88. [DOI: 10.1111/mec.13040] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/24/2014] [Accepted: 12/06/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Dietrich Gotzek
- Department of Animal Biology and Department of Entomology; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
- Department of Entomology; National Museum of Natural History; Smithsonian Institution; Washington DC 20013 USA
| | - Heather J. Axen
- Department of Biology; University of Vermont; Burlington VT 05405 USA
| | - Andrew V. Suarez
- Department of Animal Biology and Department of Entomology; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Sara Helms Cahan
- Department of Biology; University of Vermont; Burlington VT 05405 USA
| | | |
Collapse
|
19
|
Abstract
The genetic basis for animal social organization is poorly understood. Fire ants provide one of the rare cases where variation in social organization has been demonstrated to be under genetic control, which amazingly, segregates as a single Mendelian locus. A recent genetic, genomic, and cytological analysis revealed that this locus actually consists of over 600 genes locked together in a supergene that possesses many characteristics of sex chromosomes. The fire ant social supergene also behaves selfishly, and an interesting evolutionary question is whether the genes incorporated first into the social supergene were those for social adaptation, selfish genetic drive, or something else. In depth, functional molecular genetic analysis in fire ants and comparative genomics in other closely related socially polymorphic species will be required to resolve this question.
Collapse
Affiliation(s)
- Yu-Ching Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
20
|
Hanna C, Cook ED, Thompson AR, Dare LE, Palaski AL, Foote D, Goodisman MAD. Colony social structure in native and invasive populations of the social wasp Vespula pensylvanica. Biol Invasions 2013. [DOI: 10.1007/s10530-013-0517-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Ugelvig LV, Cremer S. Effects of social immunity and unicoloniality on host-parasite interactions in invasive insect societies. Funct Ecol 2012. [DOI: 10.1111/1365-2435.12013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Line V. Ugelvig
- IST Austria (Institute of Science and Technology Austria); Am Campus 1, A-3400 Klosterneuburg Austria
| | - Sylvia Cremer
- IST Austria (Institute of Science and Technology Austria); Am Campus 1, A-3400 Klosterneuburg Austria
| |
Collapse
|
22
|
Gruber MAM, Hoffmann BD, Ritchie PA, Lester PJ. Genetic diversity is positively associated with fine-scale momentary abundance of an invasive ant. Ecol Evol 2012; 2:2091-105. [PMID: 23139870 PMCID: PMC3488662 DOI: 10.1002/ece3.313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/07/2012] [Accepted: 06/12/2012] [Indexed: 11/11/2022] Open
Abstract
Many introduced species become invasive despite genetic bottlenecks that should, in theory, decrease the chances of invasion success. By contrast, population genetic bottlenecks have been hypothesized to increase the invasion success of unicolonial ants by increasing the genetic similarity between descendent populations, thus promoting co-operation. We investigated these alternate hypotheses in the unicolonial yellow crazy ant, Anoplolepis gracilipes, which has invaded Arnhem Land in Australia's Northern Territory. We used momentary abundance as a surrogate measure of invasion success, and investigated the relationship between A. gracilipes genetic diversity and its abundance, and the effect of its abundance on species diversity and community structure. We also investigated whether selected habitat characteristics contributed to differences in A. gracilipes abundance, for which we found no evidence. Our results revealed a significant positive association between A. gracilipes genetic diversity and abundance. Invaded communities were less diverse and differed in structure from uninvaded communities, and these effects were stronger as A. gracilipes abundance increased. These results contradict the hypothesis that genetic bottlenecks may promote unicoloniality. However, our A. gracilipes study population has diverged since its introduction, which may have obscured evidence of the bottleneck that would likely have occurred on arrival. The relative importance of genetic diversity to invasion success may be context dependent, and the role of genetic diversity may be more obvious in the absence of highly favorable novel ecological conditions.
Collapse
Affiliation(s)
- Monica A M Gruber
- School of Biological Sciences, Victoria University of Wellington PO Box 600, Wellington, 6140, New Zealand
| | | | | | | |
Collapse
|
23
|
Gruber MAM, Burne AR, Abbott KL, Pierce RJ, Lester PJ. Population decline but increased distribution of an invasive ant genotype on a Pacific atoll. Biol Invasions 2012. [DOI: 10.1007/s10530-012-0312-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
LACOURSIÈRE-ROUSSEL ANAÏS, BOCK DANG, CRISTESCU MELANIAE, GUICHARD FRÉDÉRIC, GIRARD PHILIPPE, LEGENDRE PIERRE, McKINDSEY CHRISTOPHERW. Disentangling invasion processes in a dynamic shipping-boating network. Mol Ecol 2012; 21:4227-41. [DOI: 10.1111/j.1365-294x.2012.05702.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
LENIAUD LAURIANNE, HEFTEZ ABRAHAM, GRUMIAU LAURENT, ARON SERGE. Multiple mating and supercoloniality in Cataglyphis desert ants. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01772.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Gruber MAM, Hoffmann BD, Ritchie PA, Lester PJ. Recent behavioural and population genetic divergence of an invasive ant in a novel environment. DIVERS DISTRIB 2011. [DOI: 10.1111/j.1472-4642.2011.00833.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
27
|
Allen C, Valles SM, Strong CA. Multiple virus infections occur in individual polygyne and monogyne Solenopsis invicta ants. J Invertebr Pathol 2011; 107:107-11. [DOI: 10.1016/j.jip.2011.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/10/2011] [Accepted: 03/17/2011] [Indexed: 11/30/2022]
|
28
|
Schmidt D, Spring D, Mac Nally R, Thomson JR, Brook BW, Cacho O, McKenzie M. Finding needles (or ants) in haystacks: predicting locations of invasive organisms to inform eradication and containment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2010; 20:1217-1227. [PMID: 20666245 DOI: 10.1890/09-0838.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
To eradicate or effectively contain a biological invasion, all or most reproductive individuals of the invasion must be found and destroyed. To help find individual invading organisms, predictions of probable locations can be made with statistical models. We estimated spread dynamics based on time-series data and then used model-derived predictions of probable locations of individuals. We considered one of the largest data sets available for an eradication program: the campaign to eradicate the red imported fire ant (Solenopsis invicta) from around Brisbane, Australia. After estimating within-site growth (local growth) and intersite dispersal (saltatory spread) of fire ant nests, we modeled probabilities of fire ant presence for >600000 1-ha sites, including uncertainties about fire ant population and spatial dynamics. Such a high level of spatial detail is required to assist surveillance efforts but is difficult to incorporate into common modeling methods because of high computational costs. More than twice as many fire ant nests would have been found in 2008 using predictions made with our method rather than those made with the method currently used in the study region. Our method is suited to considering invasions in which a large area is occupied by the invader at low density. Improved predictions of such invasions can dramatically reduce the area that needs to be searched to find the majority of individuals, assisting containment efforts and potentially making eradication a realistic goal for many invasions previously thought to be ineradicable.
Collapse
Affiliation(s)
- Daniel Schmidt
- Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
29
|
Plant-based food resources, trophic interactions among alien species, and the abundance of an invasive ant. Biol Invasions 2010. [DOI: 10.1007/s10530-010-9790-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Menke SB, Booth W, Dunn RR, Schal C, Vargo EL, Silverman J. Is it easy to be urban? Convergent success in urban habitats among lineages of a widespread native ant. PLoS One 2010; 5:e9194. [PMID: 20169204 PMCID: PMC2820551 DOI: 10.1371/journal.pone.0009194] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 01/21/2010] [Indexed: 11/19/2022] Open
Abstract
The most rapidly expanding habitat globally is the urban habitat, yet the origin and life histories of the populations of native species that inhabit this habitat remain poorly understood. We use DNA barcoding of the COI gene in the widespread native pest ant Tapinoma sessile to test two hypotheses regarding the origin of urban populations and traits associated with their success. First, we determine if urban samples of T. sessile have a single origin from natural populations by looking at patterns of haplotype clustering from across their range. Second, we examine whether polygynous colony structure--a trait associated with invasion success--is correlated with urban environments, by studying the lineage dependence of colony structure. Our phylogenetic analysis of 49 samples identified four well supported geographic clades. Within clades, Kimura-2 parameter pairwise genetic distances revealed <2.3% variation; however, between clade genetic distances were 7.5-10.0%, suggesting the possibility of the presence of cryptic species. Our results indicate that T. sessile has successfully colonized urban environments multiple times. Additionally, polygynous colony structure is a highly plastic trait across habitat, clade, and haplotype. In short, T. sessile has colonized urban habitats repeatedly and appears to do so using life history strategies already present in more natural populations. Whether similar results hold for other species found in urban habitats has scarcely begun to be considered.
Collapse
Affiliation(s)
- Sean B Menke
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America.
| | | | | | | | | | | |
Collapse
|
31
|
Gotzek D, Ross KG. Current status of a model system: the gene Gp-9 and its association with social organization in fire ants. PLoS One 2009; 4:e7713. [PMID: 19893635 PMCID: PMC2767508 DOI: 10.1371/journal.pone.0007713] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 10/07/2009] [Indexed: 11/18/2022] Open
Abstract
The Gp-9 gene in fire ants represents an important model system for studying the evolution of social organization in insects as well as a rich source of information relevant to other major evolutionary topics. An important feature of this system is that polymorphism in social organization is completely associated with allelic variation at Gp-9, such that single-queen colonies (monogyne form) include only inhabitants bearing B-like alleles while multiple-queen colonies (polygyne form) additionally include inhabitants bearing b-like alleles. A recent study of this system by Leal and Ishida (2008) made two major claims, the validity and significance of which we examine here. After reviewing existing literature, analyzing the methods and results of Leal and Ishida (2008), and generating new data from one of their study sites, we conclude that their claim that polygyny can occur in Solenopsis invicta in the U.S.A. in the absence of expression of the b-like allele Gp-9(b) is unfounded. Moreover, we argue that available information on insect OBPs (the family of proteins to which GP-9 belongs), on the evolutionary/population genetics of Gp-9, and on pheromonal/behavioral control of fire ant colony queen number fails to support their view that GP-9 plays no role in the chemosensory-mediated communication that underpins regulation of social organization. Our analyses lead us to conclude that there are no new reasons to question the existing consensus view of the Gp-9 system outlined in Gotzek and Ross (2007).
Collapse
Affiliation(s)
- Dietrich Gotzek
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
32
|
Buczkowski G, Bennett G. Colony Budding and its Effects on Food Allocation in the Highly Polygynous Ant,Monomorium pharaonis. Ethology 2009. [DOI: 10.1111/j.1439-0310.2009.01698.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Helanterä H, Strassmann JE, Carrillo J, Queller DC. Unicolonial ants: where do they come from, what are they and where are they going? Trends Ecol Evol 2009; 24:341-9. [DOI: 10.1016/j.tree.2009.01.013] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 01/05/2009] [Accepted: 01/05/2009] [Indexed: 11/15/2022]
|
34
|
Chirino MG, Gilbert LE, Folgarait PJ. Behavior and development of Pseudacteon curvatus (Diptera: Phoridae) varies according to the social form of its host Solenopsis invicta (Hymenoptera: Formicidae) in its native range. ENVIRONMENTAL ENTOMOLOGY 2009; 38:198-206. [PMID: 19791615 DOI: 10.1603/022.038.0125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We assessed the performance of Pseudacteon curvatus Borgmeier with respect to the social form of Solenopsis invicta Buren in Argentina In the field, we studied the effect the parasitoid on size and proportion of ant foragers. In the laboratory, we evaluated P. curvatus oviposition preferences; host size elected; developmental periods; and sexual size dimorphism, sex ratio, and parasitoid survivorship. P. curvatus affected the average size of foraging workers on both social forms diminishing the proportion of big and increasing the proportion of minor workers. P. curvatus required a shorter orientation time and exhibited a greater number of attacks when ovipositing on monogynes workers. In the laboratory, host sizes elected by P. curvatus were similar between social forms. However, attacks on polygyne colonies were more variable, increasing the number of unviable offspring. Developmental times of females and males of P. curvatus were similar for both social forms, but total developmental periods were shorter for males from monogyne colonies. We did not find differences between sexes in emerging adults' size by social form and the female: male sex ratio was 1:1 for both social forms. P. curvatus pupae survival and adult emergence per trial from monogyne colonies were greater than from polygyne colonies. The rarity of polygyne S. invicta in its native range may prevent this phorid from adjusting its life history to that social form. Consequences of applying this phorid in biological control are discussed.
Collapse
Affiliation(s)
- Mónica G Chirino
- Centro de Estudios e Investigaciones, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina.
| | | | | |
Collapse
|
35
|
Calcaterra LA, Livore JP, Delgado A, Briano JA. Ecological dominance of the red imported fire ant, Solenopsis invicta, in its native range. Oecologia 2008; 156:411-21. [PMID: 18305962 DOI: 10.1007/s00442-008-0997-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
Abstract
Despite the widespread impacts invasive species can have in introduced populations, little is known about competitive mechanisms and dominance hierarchies between invaders and similar taxa in their native range. This study examines interactions between the red imported fire ant, Solenopsis invicta, and other above-ground foraging ants in two habitats in northeastern Argentina. A combination of pitfall traps and baits was used to characterize the ant communities, their dominance relationships, and to evaluate the effect of phorid flies on the interactions. Twenty-eight ant species coexisted with S. invicta in a gallery forest gap, whereas only ten coexisted with S. invicta in a xerophytic forest grassland. S. invicta was the most numerically dominant species in the richest and complex habitat (gallery forest); however it performed better as discoverer and dominator in the simpler habitat. S. invicta was active during day and night. In spite of its poor capacity to discover resources, S. invicta showed the highest ecological dominance and the second-best behavioral dominance after Camponotus blandus. S. invicta won 78% of the interactions with other ants, mostly against its most frequent competitor, Pheidole cf. obscurithorax, dominating baits via mass recruitment and chemical aggression. P. cf. obscurithorax was the best food discoverer. S. invicta won 80% of the scarce interactions with Linepithema humile. Crematogaster quadriformis was one of the fastest foragers and the only ant that won an equal number of contests against S. invicta. The low presence of phorid flies affected the foraging rate of S. invicta, but not the outcome of interspecific interactions. This study revealed that the red imported fire ant ecologically dominated other terrestrial ants in its native range; however, other species were able to be numerically dominant or co-dominant in its presence.
Collapse
Affiliation(s)
- Luis A Calcaterra
- USDA-ARS-South American Biological Control Laboratory, Bolivar 1559 (B 1686EFA), Hurlingham, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
36
|
Feener DH, Orr MR, Wackford KM, Longo JM, Benson WW, Gilbert LE. Geographic variation in resource dominance-discovery in Brazilian ant communities. Ecology 2008; 89:1824-36. [PMID: 18705370 DOI: 10.1890/07-0659.1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A predictive framework for the ecology of species invasions requires that we learn what limits successful invaders in their native range. The red imported fire ant (Solenopsis invicta) is invasive in the United States, Puerto Rico, Australia, New Zealand, and China. Solenopsis invicta appears to be a superior competitor in its introduced range, where it can cause the local extirpation of native species, but little is known about its competitive ability in its native range in South America. Here we examine the competitive ability of S. invicta for food resources in three widely separated Brazilian ant communities. Each of these communities contains 20-40 ant species, 8-10 of which were common and frequently interacted with S. invicta. S. invicta at all three sites was attacked by several species-specific phorid parasitoids, and at one site, two other species were attacked by their own specialized parasitoids. We examined interactions in these local communities for evidence that trade-offs among ant species between resource dominance and resource discovery, and between resource dominance and parasitoid vulnerability facilitate local coexistence. The trade-off between resource dominance and resource discovery was strong and significant only at Santa Genebra, where parasitoids had no effect on the outcome of confrontations at resources. At Bonito, parasitoids significantly reduced the ability of S. invicta, which was the top-ranked behavioral dominant, from defending and usurping food resources from subordinate species. In the Pantanal, S. invicta ranked behind three other ant species in a linear hierarchy of behavioral dominance, and lost the majority of its interactions with a fourth more subordinate species, Paratrechina fulva, another invasive species. Parasitoids of S. invicta were uncommon in the Pantanal, and did not affect its low position in the hierarchy relative to the other two sites. Parasitoids, however, did affect the ability of Linepithema angulatum, the top-ranked behavioral dominant in this community, from defending and usurping resources from behavioral subordinates. These results indicate that both interspecific competition and trait-mediated indirect effects of phorid parasitoids affect the ecological success of the red imported fire ant in its native range, but that the relative importance of these factors varies geographically.
Collapse
Affiliation(s)
- Donald H Feener
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Ross KG, Shoemaker DD. Estimation of the number of founders of an invasive pest insect population: the fire ant Solenopsis invicta in the USA. Proc Biol Sci 2008; 275:2231-40. [PMID: 18577505 PMCID: PMC2603238 DOI: 10.1098/rspb.2008.0412] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/26/2008] [Accepted: 05/30/2008] [Indexed: 11/12/2022] Open
Abstract
Determination of the number of founders responsible for the establishment of invasive populations is important for developing biologically based management practices, predicting the invasive potential of species, and making inferences about ecological and evolutionary processes. The fire ant Solenopsis invicta is a major invasive pest insect first introduced into the USA from its native South American range in the mid-1930s. We use data from diverse genetic markers surveyed in the source population and the USA to estimate the number of founders of this introduced population. Data from different classes of nuclear markers (microsatellites, allozymes, sex-determination locus) and mitochondrial DNA are largely congruent in suggesting that 9-20 unrelated mated queens comprised the initial founder group to colonize the USA at Mobile, Alabama. Estimates of founder group size based on expanded samples from throughout the southern USA were marginally higher than this, consistent with the hypothesis of one or more secondary introductions of the ant into the USA. The rapid spread and massive population build-up of introduced S. invicta occurred despite the loss of substantial genetic variation associated with the relatively small invasive propagule size, a pattern especially surprising in light of the substantial genetic load imposed by the loss of variation at the sex-determination locus.
Collapse
Affiliation(s)
- Kenneth G Ross
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
38
|
CIOSI M, MILLER NJ, KIM KS, GIORDANO R, ESTOUP A, GUILLEMAUD T. Invasion of Europe by the western corn rootworm,Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Mol Ecol 2008; 17:3614-27. [DOI: 10.1111/j.1365-294x.2008.03866.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Caldera EJ, Ross KG, DeHeer CJ, Shoemaker DD. Putative native source of the invasive fire ant Solenopsis invicta in the USA. Biol Invasions 2008. [DOI: 10.1007/s10530-008-9219-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Gotzek D, Ross KG. Genetic regulation of colony social organization in fire ants: an integrative overview. QUARTERLY REVIEW OF BIOLOGY 2007; 82:201-26. [PMID: 17937246 DOI: 10.1086/519965] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Expression of colony social organization in fire ants appears to be under the control of a single Mendelian factor of large effect. Variation in colony queen number in Solenopsis invicta and its relatives is associated with allelic variation at the gene Gp-9, but not with variation at other unlinked genes; workers regulate queen identity and number on the basis of Gp-9 genotypic compatibility. Nongenetic factors, such as prior social experience, queen reproductive status, and local environment, have negligible effects on queen numbers which illustrates the nearly complete penetrance of Gp-9. As predicted, queen number can be manipulated experimentally by altering worker Gp-9 genotype frequencies. The Gp-9 allele lineage associated with polygyny in South American fire ants has been retained across multiple speciation events, which may signal the action of balancing selection to maintain social polymorphism in these species. Moreover, positive selection is implicated in driving the molecular evolution of Gp-9 in association with the origin of polygyny. The identity of the product of Gp-9 as an odorant-binding protein suggests plausible scenarios for its direct involvement in the regulation of queen number via a role in chemical communication. While these and other lines of evidence show that Gp-9 represents a legitimate candidate gene of major effect, studies aimed at determining (i) the biochemical pathways in which GP-9 functions; (ii) the phenotypic effects of molecular variation at Gp-9 and other pathway genes; and (iii) the potential involvement of genes in linkage disequilibrium with Gp-9 are needed to elucidate the genetic architecture underlying social organization in fire ants. Information that reveals the links between molecular variation, individual phenotype, and colony-level behaviors, combined with behavioral models that incorporate details of the chemical communication involved in regulating queen number, will yield a novel integrated view of the evolutionary changes underlying a key social adaptation.
Collapse
Affiliation(s)
- Dietrich Gotzek
- Department of Ecology and Evolution, University of Lausanne 1015 Lausanne, Switzerland.
| | | |
Collapse
|
41
|
Dalecky A, Debout G, Estoup A, McKey DB, Kjellberg F. Changes in mating system and social structure of the ant Petalomyrmex phylax are associated with range expansion in Cameroon. Evolution 2007; 61:579-95. [PMID: 17348921 DOI: 10.1111/j.1558-5646.2007.00044.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Past climate shifts have led to major oscillations in species distributions. Hence historical contingencies and selective processes occurring during such phases may be determinants for understanding the forces that have shaped extant phenotypes. In the plant-ant Petalomyrmex phylax (Formicinae), we observed spatial variation in number of queens in mature colonies, from several queens (high polygyny) in the median part of its distribution to a moderate number of queens (weak polygyny) or even only a single queen (monogyny) in the southwesternmost populations. This variation did not correlate with indicators of variation in current nest site availability and colony turnover, the supposedly determinant selective forces acting on gyny in ants. We show here that the variation in social structure correlates with a historical process corresponding to a progressive colonization of coastal southern Cameroon by the ant. Using microsatellite markers, we observed a clear pattern of isolation by distance except for the southernmost populations. Measures of genetic variability that do not take into account allele size were at equilibrium in all except the southernmost populations, suggesting recent foundation of the latter. Measures of genetic diversity taking into account allele size showed a clinal north-south decrease in variance of allele size. We propose that southern populations have yet to regain allele size variance after bottlenecks associated with the foundation of new populations, and that this variance is regained over time. Hence variation in social structure mirrors an old but still active southward colonization process or metapopulation dynamics, possibly in association with an expansion of the rain forest habitat during the late Holocene. A low number of queens in ant colonies is typically associated with strong dispersal capacity. We therefore suggest that the initial founders of new populations belong to the monogynous to weakly polygynous phenotype, and that queen number progressively increases in older populations.
Collapse
Affiliation(s)
- Ambroise Dalecky
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS, 1919 route de Mende, F-34293 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
42
|
Tsutsui ND, Case TJ. POPULATION GENETICS AND COLONY STRUCTURE OF THE ARGENTINE ANT (LINEPITHEMA HUMILE) IN ITS NATIVE AND INTRODUCED RANGES. Evolution 2007. [DOI: 10.1111/j.0014-3820.2001.tb00614.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Wang J, Jemielity S, Uva P, Wurm Y, Gräff J, Keller L. An annotated cDNA library and microarray for large-scale gene-expression studies in the ant Solenopsis invicta. Genome Biol 2007; 8:R9. [PMID: 17224046 PMCID: PMC1839134 DOI: 10.1186/gb-2007-8-1-r9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/17/2006] [Accepted: 01/15/2007] [Indexed: 01/22/2023] Open
Abstract
An annotated EST resource for the fire ant Solenopsis invicta containing 21,715 ESTs, which represent 11,864 putatively different transcripts, and a corresponding cDNA microarray are described. Ants display a range of fascinating behaviors, a remarkable level of intra-species phenotypic plasticity and many other interesting characteristics. Here we present a new tool to study the molecular mechanisms underlying these traits: a tentatively annotated expressed sequence tag (EST) resource for the fire ant Solenopsis invicta. From a normalized cDNA library we obtained 21,715 ESTs, which represent 11,864 putatively different transcripts with very diverse molecular functions. All ESTs were used to construct a cDNA microarray.
Collapse
Affiliation(s)
- John Wang
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Stephanie Jemielity
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Paolo Uva
- Istituto di Ricerche di Biologia Molecolare, Merck Research Laboratories, 00040 Pomezia, Rome, Italy
| | - Yannick Wurm
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Johannes Gräff
- Brain Research Institute, University of Zürich/Swiss Federal Institute of Technology, 8057 Zürich, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Garnas JR, Drummond FA, Groden E. Intercolony aggression within and among local populations of the invasive ant, Myrmica rubra (Hymenoptera: Formicidae), in coastal Maine. ENVIRONMENTAL ENTOMOLOGY 2007; 36:105-13. [PMID: 17349123 DOI: 10.1603/0046-225x(2007)36[105:iawaal]2.0.co;2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Myrmica rubra L. was introduced into New England in the early 20th century, and at present, has a patchy distribution in parts of northeastern North America, including records from 31 communities in Maine. M. rubra is highly polygynous, and colonies reproduce vegetatively, forming dense local populations where conditions are favorable. Using mobile nests and baited arenas in a series of field aggression bioassays, we tested patterns of internest tolerance within and among local populations on Mt. Desert Island, ME. We found that foragers originating from fragments of the same colony or from neighboring nests retained a high level of intraspecific tolerance over several months, whereas significant intercolony aggression among workers was present between colonies within the same local patch separated by approximately 10 m. Within populations, aggression score values were found to increase linearly with internest distance within a site. Aggression was highest between colonies from spatially different populations on the island and was higher still when nests were assayed against colonies at an off-island site 70 km away in Castine, ME. These data strongly suggest a multicolonial organization within and among local populations of M. rubra in parts of its introduced range. These findings contradict the loss of intraspecific aggression and unicolonial social structure over large geographic areas that have previously been observed in other invasive ant species, particularly Linepithema humile Mayr.
Collapse
Affiliation(s)
- Jeffrey R Garnas
- Department of Ecology and Evolutionary Biology, Dartmouth College, 103 Gilman Hall, Hanover, NH 03755, USA.
| | | | | |
Collapse
|
45
|
Thomas ML, Payne-Makrisâ CM, Suarez AV, Tsutsui ND, Holway DA. When supercolonies collide: territorial aggression in an invasive and unicolonial social insect. Mol Ecol 2007; 15:4303-15. [PMID: 17107467 DOI: 10.1111/j.1365-294x.2006.03038.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Some species of ants possess an unusual form of social organization in which aggression among nests is absent. This type of social organization, called unicoloniality, has been studied in only a handful of species and its evolutionary origins remain unclear. To date, no study has examined behavioural and genetic patterns at points of contact between the massive supercolonies that characterize unicoloniality. Since interactions at territory boundaries influence the costs of aggression and the likelihood of gene flow, such data may illuminate how supercolonies are formed and maintained. Here we provide field data on intraspecific territoriality for a widespread and invasive unicolonial social insect, the Argentine ant (Linepithema humile). We observed abrupt and well-defined behavioural boundaries at 16 contact zones between three different pairs of supercolonies. We visited nine of these zones weekly during a six-month period and observed consistent and intense intercolony aggression that resulted in variable, but often large, levels of worker mortality. Microsatellite variation along six transects across territory borders showed that F(ST) values were lower within supercolonies (0.08 +/- 0.01 (mean +/- SE)) than between supercolonies (0.29 +/- 0.01) and that this disparity was especially strong right at territory borders, despite direct and prolonged contact between the supercolonies. Matrix correspondence tests confirmed that levels of aggression and genetic differentiation were significantly correlated, but no relationship existed between geographic distance and either intraspecific aggression or genetic differentiation. Patterns of F(ST) variation indicated high levels of gene flow within supercolonies, but little to no gene flow between them. Overall, these findings are inconsistent with a model of relaxed ecological constraints leading to colony fusion and suggest that environmentally derived cues are not the prime determined of nestmate recognition in field populations of Argentine ants.
Collapse
Affiliation(s)
- Melissa L Thomas
- Division of Biological Sciences, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0346, USA.
| | | | | | | | | |
Collapse
|
46
|
LeBrun EG, Tillberg CV, Suarez AV, Folgarait PJ, Smith CR, Holway DA. AN EXPERIMENTAL STUDY OF COMPETITION BETWEEN FIRE ANTS AND ARGENTINE ANTS IN THEIR NATIVE RANGE. Ecology 2007; 88:63-75. [PMID: 17489455 DOI: 10.1890/0012-9658(2007)88[63:aesocb]2.0.co;2] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An understanding of why introduced species achieve ecological success in novel environments often requires information about the factors that limit the abundance of these taxa in their native ranges. Although numerous recent studies have evaluated the importance of natural enemies in this context, relatively few have examined how ecological success may result from differences in the magnitude of interference competition between communities in the native and introduced ranges of nonnative species. Here we examine how native-range competitive environments may relate to invasion success for two important invasive species, the red imported fire ant (Solenopsis invicta) and the Argentine ant (Linepithema humile), in a region of native-range sympatry. At two study sites in northern Argentina, we used stable-isotope analysis, a variety of observational approaches, and two different reciprocal removal experiments to test (1) whether S. invicta competes asymmetrically with L. humile (as suggested by the 20th century pattern of replacement in the southeastern United States) and (2) the extent to which these two species achieve behavioral and numerical dominance. Stable-isotope analysis and activity surveys indicated that S. invicta and L. humile are both omnivores and forage during broadly overlapping portions of the diel cycle. Short-term removal experiments at baits revealed no competitive asymmetry between S. invicta and L. humile. Longer-term colony removal experiments illustrated that S. invicta and L. humile experience an approximately equal competitive release upon removal of the other. Our results indicate that neither S. invicta nor L. humile achieves the same degree of behavioral or ecological dominance where they co-occur in native populations as they do in areas where either is common in their introduced range. These results strongly suggest that interspecific competition is an important limiting factor for both S. invicta and L. humile in South America.
Collapse
Affiliation(s)
- E G LeBrun
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Snyder WE, Evans EW. Ecological Effects of Invasive Arthropod Generalist Predators. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2006. [DOI: 10.1146/annurev.ecolsys.37.091305.110107] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arthropod generalist predators (AGP) are widespread and abundant in both aquatic and terrestrial ecosystems. They feed upon herbivores, detritivores, and predators, and also on plant material and detritus. In turn, AGP serve as prey for larger predators. Several prominent AGP have become invasive when moved by humans beyond their native range. With complex trophic roles, AGP have diverse effects on other species in their introduced ranges. The invaders displace similar native species, primarily through competition, intraguild predation, transmission of disease, and escape from predation and/or parasites. Invasive AGP often reach higher densities and/or biomass than the native predators they replace, sometimes strengthening herbivore regulation when invasive AGP feed on key herbivores, but sometimes weakening herbivore suppression when they eat key predators. The complexity and unpredictability of ecological effects of invasive AGP underscores the high risk of adverse consequences of intentional introductions of these species (e.g., for biological control or aquaculture).
Collapse
Affiliation(s)
- William E. Snyder
- Department of Entomology, Washington State University, Pullman, Washington 99164
| | - Edward W. Evans
- Department of Biology, Utah State University, Logan, Utah 84322
| |
Collapse
|
48
|
Goodisman MAD, Sankovich KA, Kovacs JL. Genetic and morphological variation over space and time in the invasive fire ant Solenopsis invicta. Biol Invasions 2006. [DOI: 10.1007/s10530-006-9059-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Holzer B, Chapuisat M, Kremer N, Finet C, Keller L. Unicoloniality, recognition and genetic differentiation in a native Formica ant. J Evol Biol 2006; 19:2031-9. [PMID: 17040400 DOI: 10.1111/j.1420-9101.2006.01133.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Some ants have an extraordinary form of social organization, called unicoloniality, whereby individuals mix freely among physically separated nests. This mode of social organization has been primarily studied in introduced and invasive ant species, so that the recognition ability and genetic structure of ants forming unicolonial populations in their native range remain poorly known. We investigated the pattern of aggression and the genetic structure of six unicolonial populations of the ant Formica paralugubris at four hierarchical levels: within nests, among nests within the same population, among nests of populations within the Alps or Jura Mountains and among nests of the two mountain ranges. Ants within populations showed no aggressive behaviour, but recognized nonnestmates as shown by longer antennation bouts. Overall, the level of aggression increased with geographic and genetic distance but was always considerably lower than between species. No distinct behavioural supercolony boundaries were found. Our study provides evidence that unicoloniality can be maintained in noninvasive ants despite significant genetic differentiation and the ability to discriminate between nestmates and nonnestmates.
Collapse
Affiliation(s)
- B Holzer
- Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
50
|
Hallar BL, Krieger MJB, Ross KG. Potential cause of lethality of an allele implicated in social evolution in fire ants. Genetica 2006; 131:69-79. [PMID: 17080300 DOI: 10.1007/s10709-006-9114-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 09/26/2006] [Indexed: 11/29/2022]
Abstract
The gene Gp-9 is believed to have a major effect on colony social organization in fire ants, with the presence of b-like alleles in a colony associated with multiple-queen (polygyne) organization. Queens and workers of polygyne Solenopsis invicta homozygous for the b-like allele designated b suffer reduced viability compared to other genotypes, and bb queens do not survive to become egg-layers. Thus, the b allele effectively acts as a recessive lethal. This allele differs from the remaining b-like alleles (designated b'), as well as all other Gp-9 alleles, by encoding a lysine at position 151 in the protein product, suggesting that this substitution is responsible for its deleterious effects. We tested this hypothesis by comparing frequencies of b'b' and bb homozygotes, first in queens of Solenopsis richteri and S. invicta, then in S. invicta workers from populations polymorphic for the two b-like alleles. We found that almost 20% of S. richteri queens were b'b' homozygotes, compared to the virtual absence of bb homozygotes among S. invicta queens, and that 5-18% of S. invicta workers bore genotype b'b', compared to the apparent lack of bb workers in the same populations. While we cannot entirely rule out involvement of other genes in complete gametic disequilibrium with Gp-9, our data are consistent with the hypothesis that the Lys(151) residue in GP-9 protein confers the deleterious effects of the b allele in homozygous condition, possibly by impairing the protein's function through interference with ligand binding/release or hindrance of dimer formation.
Collapse
Affiliation(s)
- Brittan L Hallar
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|