1
|
Chen J, Wang J, Yang W, Zhao L, Su J. Activity Regulation and Conformation Response of Janus Kinase 3 Mediated by Phosphorylation: Exploration from Correlation Network Analysis and Markov Model. J Chem Inf Model 2025. [PMID: 40199555 DOI: 10.1021/acs.jcim.5c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The activity of the enzyme JAK3 is modulated by tyrosine phosphorylation, yet the underlying molecular details remain not fully understood. In this study, we employed a GaMD trajectory-based Markov model and correlation network analysis (CNA) to investigate the impact of single phosphorylation (SP) at Y980 (pY980) and double phosphorylation (DP) at Y980/Y981 (pY980/pY981) on the conformational dynamics of JAK3 bound by inhibitors IZA and MI1. The Markov model analysis indicated that both SP and DP result in fewer conformational states and significantly influence the conformational dynamics of the P-loop, αC-helix, and loop1-loop3, while maintaining the hinge region's high rigidity. The CNA findings revealed that phosphorylation alters the communication network among different structural regions of JAK3, providing a rational explanation for how phosphorylation affects the conformational dynamics of the distant P-loop and loop1-loop3. Moreover, the conformational changes mediated by SP and DP further affect the interactions between the inhibitors and the hot spots (L828, V836, E903, Y904, L905, and L956) of JAK3. This work offers valuable theoretical insights into the molecular mechanisms that regulate JAK3 activity.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Jian Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Wanchun Yang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Jing Su
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| |
Collapse
|
2
|
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. MOLECULAR BIOMEDICINE 2023; 4:40. [PMID: 37938494 PMCID: PMC10632324 DOI: 10.1186/s43556-023-00151-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The Janus kinase-signal transducer and transcription activator pathway (JAK-STAT) serves as a cornerstone in cellular signaling, regulating physiological and pathological processes such as inflammation and stress. Dysregulation in this pathway can lead to severe immunodeficiencies and malignancies, and its role extends to neurotransduction and pro-inflammatory signaling mechanisms. Although JAK inhibitors (Jakinibs) have successfully treated immunological and inflammatory disorders, their application has generally been limited to diseases with similar pathogenic features. Despite the modest expression of JAK-STAT in the CNS, it is crucial for functions in the cortex, hippocampus, and cerebellum, making it relevant in conditions like Parkinson's disease and other neuroinflammatory disorders. Furthermore, the influence of the pathway on serotonin receptors and phospholipase C has implications for stress and mood disorders. This review expands the understanding of JAK-STAT, moving beyond traditional immunological contexts to explore its role in stress-related disorders and CNS function. Recent findings, such as the effectiveness of Jakinibs in chronic conditions such as rheumatoid arthritis, expand their therapeutic applicability. Advances in isoform-specific inhibitors, including filgotinib and upadacitinib, promise greater specificity with fewer off-target effects. Combination therapies, involving Jakinibs and monoclonal antibodies, aiming to enhance therapeutic specificity and efficacy also give great hope. Overall, this review bridges the gap between basic science and clinical application, elucidating the complex influence of the JAK-STAT pathway on human health and guiding future interventions.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia.
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia.
| | - Evgenii Gusev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Irina Utepova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002, Ekaterinburg, Russian Federation
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
- Clinical Research Center of Cancer Immunotherapy, Hubei Wuhan, 430022, China
| |
Collapse
|
3
|
Patel J, Vazquez T, Chin F, Keyes E, Yan D, Diaz D, Grinnell M, Sharma M, Li Y, Feng R, Sprow G, Dan J, Werth VP. Multidimensional immune profiling of cutaneous lupus erythematosus in vivo stratified by patient responses to antimalarials. Arthritis Rheumatol 2022; 74:1687-1698. [PMID: 35583812 DOI: 10.1002/art.42235] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The pathogenesis of cutaneous lupus erythematous (CLE) is multifactorial and CLE is difficult to treat due to heterogeneity of inflammatory processes between patients. Antimalarials such as hydroxychloroquine (HCQ) and quinacrine (QC) have long been first-line systemic therapy; however, many patients do not respond and require systemic immunosuppressants with undesirable side effects. Given the complexity and unpredictable responses in CLE, we sought to identify the immunologic landscape of CLE patients stratified by subsequent treatment outcomes to identify potential biomarkers of inducible response. METHOD We performed imaging mass cytometry with 48 treatment-naïve skin biopsies of HCQ responders, QC responders, and non-responders (NR) to analyze multiple immune cell types and inflammatory markers in their native environment in CLE skin. Patients were stratified according to their subsequent response to antimalarials to identify baseline immunophenotypes which may predict response to therapy. RESULTS HCQ responders demonstrated increased CD4 T cells compared to QC. NR had decreased Tregs compared to QC and increased central memory T cells compared to HCQ. QC responders expressed increased phosphorylated (p) STING and IFNκ compared to HCQ. pSTING and IFNκ localized to conventional dendritic cells and positively correlated on a tissue and cellular level. Neighborhood analysis revealed decreased regulatory cell interactions in NR patients. Hierarchical clustering revealed NR groups separated based on pSTAT2/3/4/5, pIRF3, Granzyme B, pJAK2, IL4, IL17, and IFNγ. CONCLUSION These findings demonstrate differential immune compositions between CLE patients, guiding the future for precision-based medicine and treatment response.
Collapse
Affiliation(s)
- Jay Patel
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Vazquez
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104
| | - Felix Chin
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Keyes
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daisy Yan
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - DeAnna Diaz
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Madison Grinnell
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meena Sharma
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yubin Li
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rui Feng
- Department of Biostatistics and Epidemiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grant Sprow
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Josh Dan
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Liu Y, Zhou Z, Guo S, Li K, Wang P, Fan Y, He X, Jiang Y, Lan R, Chen S, Dai S, Hong Q, Chu M. Transcriptome Analysis Reveals Key miRNA-mRNA Pathways in Ovarian Tissues of Yunshang Black Goats With Different Kidding Numbers. Front Endocrinol (Lausanne) 2022; 13:883663. [PMID: 35663314 PMCID: PMC9160789 DOI: 10.3389/fendo.2022.883663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
The granulosa cell (GC) is the basic functional unit of follicles, and it is important for promoting follicle growth and sex hormones, as well as growth factor secretion in the process of reproduction. A variety of factors influence granulocyte proliferation, yet there are still many gaps to be filled in target and non-coding RNA regulation. In our study, the differentially expressed (DE) mRNAs and miRNAs were detected by using RNA-seq, and we constructed a mRNA-miRNA network related to goat prolificacy. Then, the goat primary GCs were isolated from the follicle for the function validation of candidate genes and their regulator miRNAs. A total of 2,968 DE mRNAs and 99 DE miRNAs were identified in the high- and low-prolificacy goat by RNA-seq, of which there were 1,553 upregulated and 1,415 downregulated mRNAs, and 80 upregulated and 19 downregulated miRNAs, respectively. JAK3 was identified as highly expressed in the low-prolificacy goats (3 times higher than high-prolificacy goats), and the integrated analysis showed that chi-miR-493-3p was a potential regulator of JAK3. The analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that JAK3 was involved in the PI3K-Akt signaling pathway, the Jak-STAT signaling pathway, and signaling pathways regulating pluripotency of stem cells. In particular, the PI3K-Akt signaling pathway was a typical pathway for cell proliferation, differentiation, apoptosis, and migration. We found that the chi-miR-493-3p targets JAK3 directly via RT-qPCR, dual fluorescence assays, and Western blot. Furthermore, the expression of JAK3 was significantly decreased by the chi-miR-493-3p mimic and increased by the chi-miR-493-3p inhibitor. The CCK-8 assay showed that overexpression of JAK3 promoted cell proliferation, while inhibiting JAK3 had the opposite effect. The expression of cell proliferation markers CDK4 and cyclin D2 also showed the same results. Moreover, the enzyme-linked immunosorbent assay showed that steroid hormones E2 and PROG were increased by overexpressing JAK3 and decreased by inhibiting JAK3. Therefore, our results identified a chi-miR-439-3p-JAK3 regulatory pathway, which provided a new insight into the GC proliferation and prolificacy of goat.
Collapse
Affiliation(s)
- Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Zuyang Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Siwu Guo
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Kunyu Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Peng Wang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yekai Fan
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Rong Lan
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | | | - Shenghong Dai
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- *Correspondence: Mingxing Chu, ; Qionghua Hong,
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Mingxing Chu, ; Qionghua Hong,
| |
Collapse
|
5
|
Pan Y, Pan H, Lian C, Wu B, Lin J, Huang G, Cui B. Case Report: Mutations in JAK3 causing severe combined immunodeficiency complicated by disseminated Bacille Calmette-Guérin disease and Pneumocystis pneumonia. Front Immunol 2022; 13:1055607. [PMID: 36466884 PMCID: PMC9712176 DOI: 10.3389/fimmu.2022.1055607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND As a form of severe combined immunodeficiency (SCID), Janus kinase 3 (JAK3) deficiency can be fatal during severe infections in children, especially after inoculation of live-attenuated vaccines. We report a unique case of JAK3 deficiency with two compound heterozygous JAK3 mutations complicated by disseminated Bacille Calmette-Guérin (BCG) disease and Pneumocystis pneumonia. CASE DESCRIPTION A 5-month-old Chinese girl presented with recurring fever and productive cough after BCG vaccination and ineffective antibiotic treatment. Chest CT demonstrated bilateral infiltrations, enlarged mediastinal and axillary lymph nodes, and hypoplasia of the thymus. Mycobacterium tuberculosis and Pneumocystis jirovecii were detected from blood samples by sequencing. Acid-fast bacilli were also found from the sputum aspirate and gastric aspirate. Lymphocyte subset analyses indicated T-B+NK- immunodeficiency, and gene sequencing identified two heterozygous missense mutations (one unreported globally) in the Janus homology 7 (JH7) domain of JAK3. The patient received rifampicin, isoniazid, ethambutol, and trimethoprim/sulfamethoxazole and was discharged after improvements but against advice. OUTCOME The patient died at 13 months of age due to severe infections and hepatic damage. DISCUSSION SCID should be recognized before inoculation of live-attenuated vaccines in children. Newborn screening for SCID is advocated. Further investigations are needed to better understand the pathogenicity of the variants and molecular mechanism of the JH7 domain of JAK3.
Collapse
Affiliation(s)
- Ying Pan
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hui Pan
- The Outpatient Department, Shantou Longhu People’s Hospital, Shantou, Guangdong, China
- The Clinical Research Unit, Shantou University Medical College, Shantou, Guangdong, China
| | - Chunan Lian
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Beiyan Wu
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jieying Lin
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Guang Huang
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Binglin Cui
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- *Correspondence: Binglin Cui,
| |
Collapse
|
6
|
Nailwal NP, Doshi GM. Role of intracellular signaling pathways and their inhibitors in the treatment of inflammation. Inflammopharmacology 2021; 29:617-640. [PMID: 34002330 DOI: 10.1007/s10787-021-00813-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is not only a defense mechanism of the innate immune system against invaders, but it is also involved in the pathogenesis of many diseases such as atherosclerosis, thrombosis, diabetes, epilepsy, and many neurodegenerative disorders. The World Health Organization (WHO) reports worldwide estimates of people (9.6% in males and 18.0% in females) aged over 60 years, suffering from symptomatic osteoarthritis, and around 339 million suffering from asthma. Other chronic inflammatory diseases, such as ulcerative colitis and Crohn's disease are also highly prevalent. The existing anti-inflammatory agents, both non-steroidal and steroidal, are highly effective; however, their prolonged use is marred by the severity of associated side effects. A holistic approach to ensure patient compliance requires understanding the pathophysiology of inflammation and exploring new targets for drug development. In this regard, various intracellular cell signaling pathways and their signaling molecules have been identified to be associated with inflammation. Therefore, chemical inhibitors of these pathways may be potential candidates for novel anti-inflammatory drug approaches. This review focuses on the anti-inflammatory effect of these inhibitors (for JAK/STAT, MAPK, and mTOR pathways) describing their mechanism of action through literature search, current patents, and molecules under clinical trials.
Collapse
Affiliation(s)
- Namrata P Nailwal
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), V. M. Road, 400056, Mumbai, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), V. M. Road, 400056, Mumbai, India.
| |
Collapse
|
7
|
Deregulation of the Interleukin-7 Signaling Pathway in Lymphoid Malignancies. Pharmaceuticals (Basel) 2021; 14:ph14050443. [PMID: 34066732 PMCID: PMC8151260 DOI: 10.3390/ph14050443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
The cytokine interleukin-7 (IL-7) and its receptor are critical for lymphoid cell development. The loss of IL-7 signaling causes severe combined immunodeficiency, whereas gain-of-function alterations in the pathway contribute to malignant transformation of lymphocytes. Binding of IL-7 to the IL-7 receptor results in the activation of the JAK-STAT, PI3K-AKT and Ras-MAPK pathways, each contributing to survival, cell cycle progression, proliferation and differentiation. Here, we discuss the role of deregulated IL-7 signaling in lymphoid malignancies of B- and T-cell origin. Especially in T-cell leukemia, more specifically in T-cell acute lymphoblastic leukemia and T-cell prolymphocytic leukemia, a high frequency of mutations in components of the IL-7 signaling pathway are found, including alterations in IL7R, IL2RG, JAK1, JAK3, STAT5B, PTPN2, PTPRC and DNM2 genes.
Collapse
|
8
|
Chauhan P, Nair A, Patidar A, Dandapat J, Sarkar A, Saha B. A primer on cytokines. Cytokine 2021; 145:155458. [PMID: 33581983 DOI: 10.1016/j.cyto.2021.155458] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022]
Abstract
Cytokines are pleiotropic polypeptides that control the development of and responses mediated by immune cells. Cytokine classification predominantly relies on [1] the target receptor(s), [2] the primary structural features of the extracellular domains of their receptors, and [3] their receptor composition. Functionally, cytokines are either pro-inflammatory or anti-inflammatory, hematopoietic colony-stimulating factors, developmental and would healing maintaining immune homeostasis. When the balance in C can form complex networks amongst themselves that may affect the homeostasis and diseases. Cytokines can affect resistance and susceptibility for many diseases and their availability in the host cytokine production and interaction is disturbed, immunopathogenesis sets in. Therefore, cytokine-targeting bispecific, and chimeric antibodies form a significant mode of immnuo-therapeutics Although the field has grown deep and wide, many areas of cytokine biology remain unknown. Here, we have reviewed these cytokines along with the organization, signaling, and functions through respective cytokine-receptor-families. Being part of the special issue on the Role of Cytokines in Leishmaniasis, this review is intended to be used as an organized primer on cytokines and not a resource for detailed discussion- for which a two-volume Handbook of cytokines is available- on each of the cytokines. Priming the readers on cytokines, we next brief the role of cytokines in Leishmaniasis. In the brief, we do not provide an account of each of the involved cytokines known to date, instead, we offer a temporal relationship between the cytokines and the progress of the infection towards the alternate outcomes- healing or non-healing- of the infection.
Collapse
Affiliation(s)
- Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Ashok Patidar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Jagneshwar Dandapat
- P.G. Department of Biotechnology, Utkal University, Bhubaneswar 751004, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar 751024, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; Trident Academy of Creative Technology, Bhubaneswar 751024, India; Department of Allied Health Sciences, BLDE (Deemed University), Vijayapura 562135, India.
| |
Collapse
|
9
|
Common and different roles of IL-4 and IL-13 in skin allergy and clinical implications. Curr Opin Allergy Clin Immunol 2019; 19:319-327. [DOI: 10.1097/aci.0000000000000553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Essential Kinases and Transcriptional Regulators and Their Roles in Autoimmunity. Biomolecules 2019; 9:biom9040145. [PMID: 30974919 PMCID: PMC6523499 DOI: 10.3390/biom9040145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Kinases and transcriptional regulators are fundamental components of cell signaling that are expressed on many types of immune cells which are involved in secretion of cytokines, cell proliferation, differentiation, and apoptosis. Both play important roles in biological responses in health as well as in illnesses such as the autoimmune diseases which comprise at least 80 disorders. These diseases are caused by complex genetic and environmental interactions that lead to a breakage of immunologic tolerance and a disruption of the balance between self-reactive cells and regulatory cells. Kinases or transcriptional regulatory factors often have an abnormal expression in the autoimmune cells that participate in the pathogenesis of autoimmune disease. These abnormally expressed kinases or transcriptional regulators can over-activate the function of self-reactive cells to produce inflammatory cytokines or down-regulate the activity of regulatory cells, thus causing autoimmune diseases. In this review we introduce five kinds of kinase and transcriptional regulator related to autoimmune diseases, namely, members of the Janus kinase (JAK) family (JAK3 and/or tyrosine kinase 2 (TYK2)), fork head box protein 3 (Foxp3), the retinoic acid-related orphan receptor gamma t (RORγt), and T-box expressed in T cells (T-bet) factors. We also provide a mechanistic insight into how these kinases and transcriptional regulators affect the function of the immune cells related to autoimmune diseases, as well as a description of a current drug design targeting these kinases and transcriptional regulators. Understanding their exact role helps offer new therapies for control of the inflammatory responses that could lead to clinical improvement of the autoimmune diseases.
Collapse
|
11
|
Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol (Lausanne) 2018; 9:35. [PMID: 29487568 PMCID: PMC5816795 DOI: 10.3389/fendo.2018.00035] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK-STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.
Collapse
Affiliation(s)
- Farhad Dehkhoda
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine M. M. Lee
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Johan Medina
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Brooks
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Ferrao R, Lupardus PJ. The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK-Receptor Interactions. Front Endocrinol (Lausanne) 2017; 8:71. [PMID: 28458652 PMCID: PMC5394478 DOI: 10.3389/fendo.2017.00071] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/27/2017] [Indexed: 12/24/2022] Open
Abstract
The Janus kinases (JAKs) are non-receptor tyrosine kinases essential for signaling in response to cytokines and interferons and thereby control many essential functions in growth, development, and immune regulation. JAKs are unique among tyrosine kinases for their constitutive yet non-covalent association with class I and II cytokine receptors, which upon cytokine binding bring together two JAKs to create an active signaling complex. JAK association with cytokine receptors is facilitated by N-terminal FERM and SH2 domains, both of which are classical mediators of peptide interactions. Together, the JAK FERM and SH2 domains mediate a bipartite interaction with two distinct receptor peptide motifs, the proline-rich "Box1" and hydrophobic "Box2," which are present in the intracellular domain of cytokine receptors. While the general sidechain chemistry of Box1 and Box2 peptides is conserved between receptors, they share very weak primary sequence homology, making it impossible to posit why certain JAKs preferentially interact with and signal through specific subsets of cytokine receptors. Here, we review the structure and function of the JAK FERM and SH2 domains in light of several recent studies that reveal their atomic structure and elucidate interaction mechanisms with both the Box1 and Box2 receptor motifs. These crystal structures demonstrate how evolution has repurposed the JAK FERM and SH2 domains into a receptor-binding module that facilitates interactions with multiple receptors possessing diverse primary sequences.
Collapse
Affiliation(s)
- Ryan Ferrao
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Patrick J. Lupardus
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
- *Correspondence: Patrick J. Lupardus,
| |
Collapse
|
13
|
Varghese LN, Defour JP, Pecquet C, Constantinescu SN. The Thrombopoietin Receptor: Structural Basis of Traffic and Activation by Ligand, Mutations, Agonists, and Mutated Calreticulin. Front Endocrinol (Lausanne) 2017; 8:59. [PMID: 28408900 PMCID: PMC5374145 DOI: 10.3389/fendo.2017.00059] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022] Open
Abstract
A well-functioning hematopoietic system requires a certain robustness and flexibility to maintain appropriate quantities of functional mature blood cells, such as red blood cells and platelets. This review focuses on the cytokine receptor that plays a significant role in thrombopoiesis: the receptor for thrombopoietin (TPO-R; also known as MPL). Here, we survey the work to date to understand how this receptor functions at a molecular level throughout its lifecycle, from traffic to the cell surface, dimerization and binding cognate cytokine via its extracellular domain, through to its subsequent activation of associated Janus kinases and initiation of downstream signaling pathways, as well as the regulation of these processes. Atomic level resolution structures of TPO-R have remained elusive. The identification of disease-causing mutations in the receptor has, however, offered some insight into structure and function relationships, as has artificial means of receptor activation, through TPO mimetics, transmembrane-targeting receptor agonists, and engineering in dimerization domains. More recently, a novel activation mechanism was identified whereby mutated forms of calreticulin form complexes with TPO-R via its extracellular N-glycosylated domain. Such complexes traffic pathologically in the cell and persistently activate JAK2, downstream signal transducers and activators of transcription (STATs), and other pathways. This pathologic TPO-R activation is associated with a large fraction of human myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Leila N. Varghese
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- SIGN Pole, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Philippe Defour
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- SIGN Pole, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Department of Clinical Biology, Cliniques universitaires St Luc, Université catholique de Louvain, Brussels, Belgium
| | - Christian Pecquet
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- SIGN Pole, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Stefan N. Constantinescu
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- SIGN Pole, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- *Correspondence: Stefan N. Constantinescu,
| |
Collapse
|
14
|
Ndiaye K, Castonguay A, Benoit G, Silversides DW, Lussier JG. Differential regulation of Janus kinase 3 (JAK3) in bovine preovulatory follicles and identification of JAK3 interacting proteins in granulosa cells. J Ovarian Res 2016; 9:71. [PMID: 27793176 PMCID: PMC5086056 DOI: 10.1186/s13048-016-0280-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/17/2016] [Indexed: 11/11/2022] Open
Abstract
Background Janus kinase 3 (JAK3) is a member of the membrane-associated non-receptor tyrosine kinase protein family and is considered predominantly expressed in hematopoietic cells. We previously identified JAK3 as a differentially expressed gene in granulosa cells (GC) of bovine preovulatory follicles. The present study aimed to further investigate JAK3 regulation, to identify protein binding partners and better understand its mode of action in bovine reproductive cells. Results GC were obtained from small follicles (SF), dominant follicles at day 5 of the estrous cycle (DF), and ovulatory follicles, 24 h following hCG injection (OF). RT-PCR analyses showed greatest expression of JAK3 in GC of DF, while JAK3 expression was downregulated in OF (P < 0.0001). In addition, there was a 5- and 20-fold reduction of JAK3 steady-state mRNA levels in follicular walls, respectively at 12 and 24 hours post-hCG as compared to 0 h (P < 0.05). Similarly, JAK3 expression was downregulated by the endogenous LH surge. These results were confirmed in western blot analysis showing weakest JAK3 protein amounts in OF as compared to DF. Yeast two-hybrid screening of a DF-cDNA library resulted in the identification of JAK3 partners in GC that were confirmed by co-immunoprecipitation and included leptin receptor overlapping transcript-like 1 (LEPROTL1), inhibin beta A (INHBA) and cyclin-dependent kinase inhibitor 1B (CDKN1B). In functional studies using bovine endometrial cells, JAK3 increased phosphorylation of STAT3 and cell viability, while the addition of JANEX-1 inhibited JAK3 actions. Conclusion These results support a physiologically relevant role of JAK3 in follicular development and provide insights into the mode of action and function of JAK3 in reproductive tissues. Electronic supplementary material The online version of this article (doi:10.1186/s13048-016-0280-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kalidou Ndiaye
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Centre de recherche en reproduction animale (CRRA), Université de Montréal, P.O. Box 5000, St-Hyacinthe, Québec, J2S 7C6, Canada. .,Faculté de médecine vétérinaire, Département de biomédecine vétérinaire, Université de Montréal, 3200 Rue Sicotte, St-Hyacinthe, Québec, J2S 2M2, Canada.
| | - Amélie Castonguay
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Centre de recherche en reproduction animale (CRRA), Université de Montréal, P.O. Box 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Gabriel Benoit
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Centre de recherche en reproduction animale (CRRA), Université de Montréal, P.O. Box 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - David W Silversides
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Centre de recherche en reproduction animale (CRRA), Université de Montréal, P.O. Box 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Jacques G Lussier
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Centre de recherche en reproduction animale (CRRA), Université de Montréal, P.O. Box 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| |
Collapse
|
15
|
Springuel L, Renauld JC, Knoops L. JAK kinase targeting in hematologic malignancies: a sinuous pathway from identification of genetic alterations towards clinical indications. Haematologica 2015; 100:1240-53. [PMID: 26432382 PMCID: PMC4591756 DOI: 10.3324/haematol.2015.132142] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/17/2015] [Indexed: 12/16/2022] Open
Abstract
Constitutive JAK-STAT pathway activation occurs in most myeloproliferative neoplasms as well as in a significant proportion of other hematologic malignancies, and is frequently a marker of poor prognosis. The underlying molecular alterations are heterogeneous as they include activating mutations in distinct components (cytokine receptor, JAK, STAT), overexpression (cytokine receptor, JAK) or rare JAK2 fusion proteins. In some cases, concomitant loss of negative regulators contributes to pathogenesis by further boosting the activation of the cascade. Exploiting the signaling bottleneck provided by the limited number of JAK kinases is an attractive therapeutic strategy for hematologic neoplasms driven by constitutive JAK-STAT pathway activation. However, given the conserved nature of the kinase domain among family members and the interrelated roles of JAK kinases in many physiological processes, including hematopoiesis and immunity, broad usage of JAK inhibitors in hematology is challenged by their narrow therapeutic window. Novel therapies are, therefore, needed. The development of more selective inhibitors is a questionable strategy as such inhibitors might abrogate the beneficial contribution of alleviating the cancer-related pro-inflammatory microenvironment and raise selective pressure to a threshold that allows the emergence of malignant subclones harboring drug-resistant mutations. In contrast, synergistic combinations of JAK inhibitors with drugs targeting cascades that work in concert with JAK-STAT pathway appear to be promising therapeutic alternatives to JAK inhibitors as monotherapies.
Collapse
Affiliation(s)
- Lorraine Springuel
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium Ludwig Institute for Cancer Research, Brussels, Belgium
| | - Jean-Christophe Renauld
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium Ludwig Institute for Cancer Research, Brussels, Belgium
| | - Laurent Knoops
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium Ludwig Institute for Cancer Research, Brussels, Belgium Hematology Unit, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
16
|
Farmer LJ, Ledeboer MW, Hoock T, Arnost MJ, Bethiel RS, Bennani YL, Black JJ, Brummel CL, Chakilam A, Dorsch WA, Fan B, Cochran JE, Halas S, Harrington EM, Hogan JK, Howe D, Huang H, Jacobs DH, Laitinen LM, Liao S, Mahajan S, Marone V, Martinez-Botella G, McCarthy P, Messersmith D, Namchuk M, Oh L, Penney MS, Pierce AC, Raybuck SA, Rugg A, Salituro FG, Saxena K, Shannon D, Shlyakter D, Swenson L, Tian SK, Town C, Wang J, Wang T, Wannamaker MW, Winquist RJ, Zuccola HJ. Discovery of VX-509 (Decernotinib): A Potent and Selective Janus Kinase 3 Inhibitor for the Treatment of Autoimmune Diseases. J Med Chem 2015; 58:7195-216. [DOI: 10.1021/acs.jmedchem.5b00301] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Luc J. Farmer
- Vertex Pharmaceuticals (Canada) Inc., 275 Armand-Frappier, Laval, Québec H7V 4A7, Canada
| | - Mark W. Ledeboer
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Thomas Hoock
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Michael J. Arnost
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Randy S. Bethiel
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Youssef L. Bennani
- Vertex Pharmaceuticals (Canada) Inc., 275 Armand-Frappier, Laval, Québec H7V 4A7, Canada
| | - James J. Black
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Christopher L. Brummel
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | | | - Warren A. Dorsch
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Bin Fan
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - John E. Cochran
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Summer Halas
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Edmund M. Harrington
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - James K. Hogan
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - David Howe
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Hui Huang
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Dylan H. Jacobs
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Leena M. Laitinen
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Shengkai Liao
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Sudipta Mahajan
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Valerie Marone
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | | | - Pamela McCarthy
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - David Messersmith
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Mark Namchuk
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Luke Oh
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Marina S. Penney
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Albert C. Pierce
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Scott A. Raybuck
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Arthur Rugg
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Francesco G. Salituro
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Kumkum Saxena
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Dean Shannon
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Dina Shlyakter
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Lora Swenson
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Shi-Kai Tian
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Christopher Town
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Jian Wang
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Tiansheng Wang
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - M. Woods Wannamaker
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Raymond J. Winquist
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Harmon J. Zuccola
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| |
Collapse
|
17
|
Combined immunodeficiency evolving into predominant CD4+ lymphopenia caused by somatic chimerism in JAK3. J Clin Immunol 2014; 34:941-53. [PMID: 25205547 PMCID: PMC4220108 DOI: 10.1007/s10875-014-0088-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022]
Abstract
Purpose Idiopathic CD4 lymphopenia constitutes a heterogeneous group of immunodeficiencies with characteristically low CD4+ T-cell counts with largely unknown genetic etiology. We here sought to determine the underlying molecular cause in an index family with two patients suffering from combined immunodeficiency that evolved into predominant CD4+ lymphopenia. The more severely affected index patient also presented with selective antibody deficiency against bacterial polysaccharide antigens. Methods For the genetic analysis, we used combined homozygosity mapping and exome sequencing. Functional assays included immunoblot analysis, flow cytometry and TCR Vβ spectratyping. Results A novel homozygous missense mutation was revealed in the kinase domain of JAK3 (c.T3196C, p.Cys1066Arg). Further analysis showed revertant chimerism in CD8+ T-cells in both patients. The additional presence of revertant CD4+ T-cells was associated with a milder clinical and immunological phenotype in the second patient, although the role somatic chimerism plays in amelioration of disease phenotype is uncertain, as presence of revertant cells had no effect on residual CD4 cell JAK3 signaling function. Residual activity of JAK3-dependent STAT3 and STAT5 signaling was also found in immortalized B-cell lines indicating a hypomorphic nature of the described mutation which likely contributes to the milder clinical phenotype. Conclusions We here present the first case of revertant mosaicism in JAK3 deficiency, manifesting as combined immunodeficiency evolving into predominant CD4+ lymphopenia. Revertant chimerism or hypomorphic mutations in genes typically associated with more severe T-cell deficiency should be considered when assessing patients with milder forms of combined immunodeficiencies. Electronic supplementary material The online version of this article (doi:10.1007/s10875-014-0088-2) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Wallweber HJA, Tam C, Franke Y, Starovasnik MA, Lupardus PJ. Structural basis of recognition of interferon-α receptor by tyrosine kinase 2. Nat Struct Mol Biol 2014; 21:443-8. [PMID: 24704786 PMCID: PMC4161281 DOI: 10.1038/nsmb.2807] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/03/2014] [Indexed: 12/25/2022]
Abstract
Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family of non-receptor tyrosine kinases, which are essential for proper signaling in immune responses and development. Here we present a 2.0 angstrom resolution crystal structure of a receptor-binding fragment of human TYK2 encompassing the FERM and SH2 domains in complex with a so-called “box2” containing intracellular peptide motif from the IFNα receptor (IFNAR1). The TYK2–IFNAR1 interface reveals an unexpected receptor-binding mode that mimics a SH2 domain–phosphopeptide interaction, with a glutamate replacing the canonical phosphotyrosine residue. This structure provides the first view to our knowledge of a JAK in complex with its cognate receptor and defines the molecular logic through which JAKs evolved to interact with divergent receptor sequences.
Collapse
Affiliation(s)
- Heidi J A Wallweber
- Department of Structural Biology, Genentech, South San Francisco, California, USA
| | - Christine Tam
- Department of Structural Biology, Genentech, South San Francisco, California, USA
| | - Yvonne Franke
- Department of Structural Biology, Genentech, South San Francisco, California, USA
| | | | - Patrick J Lupardus
- Department of Structural Biology, Genentech, South San Francisco, California, USA
| |
Collapse
|
19
|
Witte S, Muljo SA. Integrating non-coding RNAs in JAK-STAT regulatory networks. JAKSTAT 2014; 3:e28055. [PMID: 24778925 PMCID: PMC3995732 DOI: 10.4161/jkst.28055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/25/2014] [Accepted: 01/30/2014] [Indexed: 02/07/2023] Open
Abstract
Being a well-characterized pathway, JAK-STAT signaling serves as a valuable paradigm for studying the architecture of gene regulatory networks. The discovery of untranslated or non-coding RNAs, namely microRNAs and long non-coding RNAs, provides an opportunity to elucidate their roles in such networks. In principle, these regulatory RNAs can act as downstream effectors of the JAK-STAT pathway and/or affect signaling by regulating the expression of JAK-STAT components. Examples of interactions between signaling pathways and non-coding RNAs have already emerged in basic cell biology and human diseases such as cancer, and can potentially guide the identification of novel biomarkers or drug targets for medicine.
Collapse
Affiliation(s)
- Steven Witte
- Integrative Immunobiology Unit; Laboratory of Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, MD USA ; Wellcome Trust Sanger Institute; Genome Campus; Hinxton, UK
| | - Stefan A Muljo
- Integrative Immunobiology Unit; Laboratory of Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
20
|
Stepkowski SM, Kirken RA. Unique advantage of Janus kinase 3 as a target for selective and nontoxic immunosupression. Expert Rev Clin Immunol 2014; 1:307-10. [DOI: 10.1586/1744666x.1.3.307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Haan C, Haan S. Co-immunoprecipitation protocol to investigate cytokine receptor-associated proteins, e.g., Janus kinases or other associated signaling proteins. Methods Mol Biol 2013; 967:21-38. [PMID: 23296719 DOI: 10.1007/978-1-62703-242-1_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Jak binding to cytokine receptors has been shown to be a complex and tight interaction. When studying loss-of-function or gain-of-function mutants of the Jaks or cytokine receptors it is often necessary to know if a certain mutant still associates correctly in the context of the signaling complex. The standard technique to show interaction of Jaks with cytokine receptors or other signalling molecules is Co-immunoprecipitation. Here we describe our protocol and discuss different pitfalls that can be encountered during the procedure.
Collapse
Affiliation(s)
- Claude Haan
- Life Sciences Research Unit, University of Luxembourg, Luxembourg, UK,
| | | |
Collapse
|
22
|
O'Shea JJ, Kontzias A, Yamaoka K, Tanaka Y, Laurence A. Janus kinase inhibitors in autoimmune diseases. Ann Rheum Dis 2013; 72 Suppl 2:ii111-5. [PMID: 23532440 PMCID: PMC3616338 DOI: 10.1136/annrheumdis-2012-202576] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Biological therapies directed at proinflammatory cytokines have irrevocably changed the landscape of treatment of rheumatoid arthritis (RA) and other autoimmune diseases. With the advances in our knowledge in cytokine signalling, the question emerges whether targeting intracellular signalling might also be a safe and efficacious strategy. Janus kinases or Jaks are critical for a large family of cytokines and the first Jak inhibitors has been approved by the FDA. It is therefore timely to consider this new category of drugs and reflect on their potential roles, present and future, in the treatment of RA and related disorders.
Collapse
Affiliation(s)
- John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1930, USA.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Janus kinase (JAK)-signal transducer and activators of transcription (STAT) signaling pathways play crucial roles in lymphopoiesis. In particular, JAK3 has unique functions in the lymphoid system such that JAK3 ablation results in phenotypes resembling severe combined immunodeficiency syndrome. This review focuses on the biochemistry, immunological functions, and clinical significance of JAK3. Compared with other members of the JAK family, the biochemical properties of JAK3 are relatively less well characterized and thus largely inferred from studies of JAK2. Furthermore, new findings concerning the cross-talks between Notch and JAK signaling pathways through ubiquitin-mediated protein degradation are discussed in more detail.
Collapse
Affiliation(s)
- Wei Wu
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, 73104, USA
| | | |
Collapse
|
24
|
Jatiani SS, Baker SJ, Silverman LR, Reddy EP. Jak/STAT pathways in cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. Genes Cancer 2011; 1:979-93. [PMID: 21442038 DOI: 10.1177/1947601910397187] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hematopoiesis is the cumulative result of intricately regulated signaling pathways that are mediated by cytokines and their receptors. Studies conducted over the past 10 to 15 years have revealed that hematopoietic cytokine receptor signaling is largely mediated by a family of tyrosine kinases termed Janus kinases (JAKs) and their downstream transcription factors, termed STATs (signal transducers and activators of transcription). Aberrations in these pathways, such as those caused by the recently identified JAK2(V617F) mutation and translocations of the JAK2 gene, are underlying causes of leukemias and other myeloproliferative disorders. This review discusses the role of JAK/STAT signaling in normal hematopoiesis as well as genetic abnormalities associated with myeloproliferative and myelodisplastic syndromes. This review also summarizes the status of several small molecule JAK2 inhibitors that are currently at various stages of clinical development. Several of these compounds appear to improve the quality of life of patients with myeloproliferative disorders by palliation of disease-related symptoms. However, to date, these agents do not seem to significantly affect bone marrow fibrosis, alter marrow histopathology, reverse cytopenias, reduce red cell transfusion requirements, or significantly reduce allele burden. These results suggest the possibility that additional mutational events might be associated with the development of these neoplasms, and indicate the need for combination therapies as the nature and significance of these additional molecular events is better understood.
Collapse
Affiliation(s)
- Shashidhar S Jatiani
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
25
|
FERM domain mutations induce gain of function in JAK3 in adult T-cell leukemia/lymphoma. Blood 2011; 118:3911-21. [PMID: 21821710 DOI: 10.1182/blood-2010-12-319467] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an incurable disease where most patients succumb within the first year of diagnosis. Both standard chemotherapy regimens and mAbs directed against ATLL tumor markers do not alter this aggressive clinical course. Therapeutic development would be facilitated by the discovery of genes and pathways that drive or initiate ATLL, but so far amenable drug targets have not been forthcoming. Because the IL-2 signaling pathway plays a prominent role in ATLL pathogenesis, mutational analysis of pathway components should yield interesting results. In this study, we focused on JAK3, the nonreceptor tyrosine kinase that signals from the IL-2R, where activating mutations have been found in diverse neoplasms. We screened 36 ATLL patients and 24 ethnically matched controls and found 4 patients with mutations in JAK3. These somatic, missense mutations occurred in the N-terminal FERM (founding members: band 4.1, ezrin, radixin, and moesin) domain and induced gain of function in JAK3. Importantly, we show that these mutant JAK3s are inhibited with a specific kinase inhibitor already in human clinical testing. Our findings underscore the importance of this pathway in ATLL development and offer a therapeutic handle for this incurable cancer.
Collapse
|
26
|
MUC16 induced rapid G2/M transition via interactions with JAK2 for increased proliferation and anti-apoptosis in breast cancer cells. Oncogene 2011; 31:805-17. [PMID: 21785467 DOI: 10.1038/onc.2011.297] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MUC16/CA125 is a tumor marker currently used in clinics for the follow-up of patients with ovarian cancer. However, MUC16 expression is not entirely restricted to ovarian malignancies and has been reported in other cancers including breast cancer. Although it is well established as a biomarker, function of MUC16 in cancer remains to be elucidated. In the present study, we investigated the role of MUC16 in breast cancer and its underlying mechanisms. Interestingly, our results showed that MUC16 is overexpressed in breast cancer tissues whereas not expressed in non-neoplastic ducts. Further, stable knockdown of MUC16 in breast cancer cells (MDA MB 231 and HBL100) resulted in significant decrease in the rate of cell growth, tumorigenicity and increased apoptosis. In search of a mechanism for breast cancer cell proliferation we found that MUC16 interacts with the ezrin/radixin/moesin domain-containing protein of Janus kinase (JAK2) as demonstrated by the reciprocal immunoprecipitation method. These interactions mediate phosphorylation of STAT3 (Tyr705), which might be a potential mechanism for MUC16-induced proliferation of breast cancer cells by a subsequent co-transactivation of transcription factor c-Jun. Furthermore, silencing of MUC16 induced G2/M arrest in breast cancer cells through downregulation of Cyclin B1 and decreased phosphorylation of Aurora kinase A. This in turn led to enhanced apoptosis in the MUC16-knockdown breast cancer cells through Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated extrinsic apoptotic pathway with the help of c-Jun N-terminal kinase signaling. Collectively, our results suggest that MUC16 has a dual role in breast cancer cell proliferation by interacting with JAK2 and by inhibiting the apoptotic process through downregulation of TRAIL.
Collapse
|
27
|
Alicea-Velázquez NL, Boggon TJ. The use of structural biology in Janus kinase targeted drug discovery. Curr Drug Targets 2011; 12:546-55. [PMID: 21126226 DOI: 10.2174/138945011794751528] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/04/2010] [Indexed: 12/12/2022]
Abstract
The Janus kinases (or Jak kinases) mediate cytokine and growth factor signal transduction. Acquired or inherited Jak mutations can result in dysregulation of Jak-mediated signal transduction and can be critical to disease acquisition in neoplasias including acute myeloid, acute lymphoblastic and acute megakaryoblastic leukemias, and in rare X-linked severe combined immunodeficiency. The discovery of an acquired Jak2 point mutation, V617F, in significant numbers of patients with classical myeloproliferative disorders has increased the interest in development of Jak2-specific tyrosine kinase inhibitors and consequently there are now over 20 publically available structures of Jak kinase domains that describe all four family members, Jak1, Jak2, Jak3, and Tyk2. Here we review the recent advances in understanding the druggable structure and function of the Jak family, with a focus on the structural biology of the Jak kinase domain. We will discuss how these advances impact the development of Jak-targeted therapeutics.
Collapse
Affiliation(s)
- Nilda L Alicea-Velázquez
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., SHM B-316A, New Haven, CT 06520, USA
| | | |
Collapse
|
28
|
Flanagan ME, Blumenkopf TA, Brissette WH, Brown MF, Casavant JM, Shang-Poa C, Doty JL, Elliott EA, Fisher MB, Hines M, Kent C, Kudlacz EM, Lillie BM, Magnuson KS, McCurdy SP, Munchhof MJ, Perry BD, Sawyer PS, Strelevitz TJ, Subramanyam C, Sun J, Whipple DA, Changelian PS. Discovery of CP-690,550: a potent and selective Janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection. J Med Chem 2010; 53:8468-84. [PMID: 21105711 DOI: 10.1021/jm1004286] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a critical need for safer and more convenient treatments for organ transplant rejection and autoimmune disorders such as rheumatoid arthritis. Janus tyrosine kinases (JAK1, JAK3) are expressed in lymphoid cells and are involved in the signaling of multiple cytokines important for various T cell functions. Blockade of the JAK1/JAK3-STAT pathway with a small molecule was anticipated to provide therapeutic immunosuppression/immunomodulation. The Pfizer compound library was screened against the catalytic domain of JAK3 resulting in the identification of a pyrrolopyrimidine-based series of inhibitors represented by CP-352,664 (2a). Synthetic analogues of 2a were screened against the JAK enzymes and evaluated in an IL-2 induced T cell blast proliferation assay. Select compounds were evaluated in rodent efficacy models of allograft rejection and destructive inflammatory arthritis. Optimization within this chemical series led to identification of CP-690,550 1, a potential first-in-class JAK inhibitor for treatment of autoimmune diseases and organ transplant rejection.
Collapse
Affiliation(s)
- Mark E Flanagan
- Groton Laboratories, Pfizer Global Research & Development, Groton, Connecticut 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Oh K, Joo KM, Jung YS, Lee J, Kang H, Lee HY, Lee DS. A receptor-independent, cell-based JAK activation assay for screening for JAK3-specific inhibitors. J Immunol Methods 2010; 354:45-52. [PMID: 20138049 DOI: 10.1016/j.jim.2010.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 01/22/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
New immunosuppressive compounds with less systemic toxicity that could replace calcineurin inhibitors are urgently needed. For identification of specific inhibitors of JAK3, a potential new drug target, from large chemical libraries we developed a cell-based screening system. TEL-JAK fusion proteins composed of an oligomerization domain of TEL and kinase and/or pseudokinase domains of JAKs provided constitutive activation of JAKs without receiving a signal from the cytokine receptors. These fusion proteins also induced STAT5b phosphorylation in the absence of cytokine receptors. Both the kinase and pseudokinase domains of JAKs were required for full activation of the JAKs, and four copies of STAT5 response elements provided the greatest luciferase activity. The sensitivity and specificity of the system was evaluated using specific JAK3, JAK2, or MEK inhibitors. Thus, we generated a receptor-independent, cell-based selective screening system for specific JAK3 inhibitors, which is easily convertible to a high-throughput screening platform.
Collapse
Affiliation(s)
- Keunhee Oh
- Laboratory of Immunology, Department of Anatomy, Seoul National University College of Medicine, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Haan C, Behrmann I, Haan S. Perspectives for the use of structural information and chemical genetics to develop inhibitors of Janus kinases. J Cell Mol Med 2010; 14:504-27. [PMID: 20132407 PMCID: PMC3823453 DOI: 10.1111/j.1582-4934.2010.01018.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gain-of-function mutations in the genes encoding Janus kinases have been discovered in various haematologic diseases. Jaks are composed of a FERM domain, an SH2 domain, a pseudokinase domain and a kinase domain, and a complex interplay of the Jak domains is involved in regulation of catalytic activity and association to cytokine receptors. Most activating mutations are found in the pseudokinase domain. Here we present recently discovered mutations in the context of our structural models of the respective domains. We describe two structural hotspots in the pseudokinase domain of Jak2 that seem to be associated either to myeloproliferation or to lymphoblastic leukaemia, pointing at the involvement of distinct signalling complexes in these disease settings. The different domains of Jaks are discussed as potential drug targets. We present currently available inhibitors targeting Jaks and indicate structural differences in the kinase domains of the different Jaks that may be exploited in the development of specific inhibitors. Moreover, we discuss recent chemical genetic approaches which can be applied to Jaks to better understand the role of these kinases in their biological settings and as drug targets.
Collapse
Affiliation(s)
- Claude Haan
- Life Sciences Research Unit, University of Luxembourg, 162A, av. de la Faïencerie, 1511 Luxembourg, Luxembourg.
| | | | | |
Collapse
|
31
|
Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:3720-30. [PMID: 19692638 PMCID: PMC3721354 DOI: 10.4049/jimmunol.0900970] [Citation(s) in RCA: 444] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sera of patients with cancer contain membraneous microvesicles (MV) able to induce apoptosis of activated T cells by activating the Fas/Fas ligand pathway. However, the cellular origin of MV found in cancer patients' sera varies as do their molecular and cellular profiles. To distinguish tumor-derived MV in cancer patients' sera, we used MAGE 3/6(+) present in tumors and MV. Molecular profiles of MAGE 3/6(+) MV were compared in Western blots or by flow cytometry with those of MV secreted by dendritic cells or activated T cells. These profiles were found to be distinct for each cell type. Only tumor-derived MV were MAGE 3/6(+) and were variably enriched in 42-kDa Fas ligand and MHC class I but not class II molecules. Effects of MV on signaling via the TCR and IL-2R and proliferation or apoptosis of activated primary T cells and T cell subsets were also assessed. Functions of activated CD8(+) and CD4(+) T lymphocytes were differentially modulated by tumor-derived MV. These MV inhibited signaling and proliferation of activated CD8(+) but not CD4(+) T cells and induced apoptosis of CD8(+) T cells, including tumor-reactive, tetramer(+)CD8(+) T cells as detected by flow cytometry for caspase activation and annexin V binding or by DNA fragmentation. Tumor-derived but not dendritic cell-derived MV induced the in vitro expansion of CD4(+)CD25(+)FOXP3(+) T regulatory cells and enhanced their suppressor activity. The data suggest that tumor-derived MV induce immune suppression by promoting T regulatory cell expansion and the demise of antitumor CD8(+) effector T cells, thus contributing to tumor escape.
Collapse
Affiliation(s)
- Eva U. Wieckowski
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| | - Carmen Visus
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| | - Marta Szajnik
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| | | | - Walter J. Storkus
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| | - Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| |
Collapse
|
32
|
Pesu M, Laurence A, Kishore N, Zwillich SH, Chan G, O'Shea JJ. Therapeutic targeting of Janus kinases. Immunol Rev 2009; 223:132-42. [PMID: 18613833 DOI: 10.1111/j.1600-065x.2008.00644.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SUMMARY Cytokines play pivotal roles in immunity and inflammation, and targeting cytokines and their receptors is an effective means of treating such disorders. Type I and II cytokine receptors associate with Janus family kinases (JAKs) to effect intracellular signaling. These structurally unique protein kinases play essential and specific roles in immune cell development and function. One JAK, JAK3, has particularly selective functions. Mutations of this kinase underlie severe combined immunodeficiency, indicative of its critical role in the development and function of lymphocytes. Because JAK3 appears not to have functions outside of hematopoietic cells, this kinase has been viewed as an excellent therapeutic target for the development of a new class of immunosuppressive drugs. In fact, several companies are developing JAK3 inhibitors, and Phase II studies are underway. Mutations of Tyk2 cause autosomal recessive hyperIgE syndrome, and in principle, Tyk2 inhibitors might also be useful as immunosuppressive drugs. JAK2 gain-of-function mutations (V617F) underlie a subset of disorders collectively referred to as myeloproliferative diseases and phase 2 trials using JAK inhibitors are underway in this setting. Thus, we are learning a great deal about the feasibility and effectiveness of targeting Janus kinases, and it appears likely that this will be a fruitful strategy in a variety of settings.
Collapse
Affiliation(s)
- Marko Pesu
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The Janus family kinases (Jaks), Jak1, Jak2, Jak3, and Tyk2, form one subgroup of the non-receptor protein tyrosine kinases. They are involved in cell growth, survival, development, and differentiation of a variety of cells but are critically important for immune cells and hematopoietic cells. Data from experimental mice and clinical observations have unraveled multiple signaling events mediated by Jaks in innate and adaptive immunity. Deficiency of Jak3 or Tyk2 results in defined clinical disorders, which are also evident in mouse models. A striking phenotype associated with inactivating Jak3 mutations is severe combined immunodeficiency syndrome, whereas mutation of Tyk2 results in another primary immunodeficiency termed autosomal recessive hyperimmunoglobulin E syndrome. By contrast, complete deletion of Jak1 or Jak2 in the mouse are not compatible with life and, unsurprisingly, do not have counterparts in human disease. However, activating mutations of each of the Jaks are found in association with malignant transformation, the most common being gain-of-function mutations of Jak2 in polycythemia vera and other myeloproliferative disorders. Our existing knowledge on Jak signaling pathways and fundamental work on their biochemical structure and intracellular interactions allow us to develop new strategies for controlling autoimmune diseases or malignancies by developing selective Jak inhibitors, which are now coming into clinical use. Despite the fact that Jaks were discovered only a little more than a decade ago, at the time of writing there are 20 clinical trials underway testing the safety and efficacy of Jak inhibitors.
Collapse
Affiliation(s)
- Kamran Ghoreschi
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
34
|
Downregulation of Janus kinase 3 expression by small interfering RNA in rat composite tissue allotransplantation. Transpl Immunol 2009; 21:27-32. [PMID: 19233270 DOI: 10.1016/j.trim.2009.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 01/30/2009] [Accepted: 02/03/2009] [Indexed: 11/21/2022]
Abstract
RNA interference (RNAi) has recently emerged as an efficient method to silence gene expression in mammalian cells by transfection of small interfering RNAs (siRNAs). The Janus kinase 3 (JAK3) is also pertinent to the development of a new immuno-suppressant. This study aimed to inhibit JAK3 expression using RNAi to determine allograft tolerance. To silence JAK3 expression, one dsRNA was tested to incorporate the JAK3 mRNA sequence. The expression vector containing the pre-mRNA expression cassette was transfected into rat basophilic leukemia cell line, RBL-2H3, for RNAi analysis (in vitro). The alloskin and composite tissue allograft were then transplanted to recipients using RNAi protocol to determine the allograft tolerance (in vivo). The results showed effective in vitro and in vivo downregulation of JAK3 expression by RNAi. Moreover, the histology of alloskin graft and composite tissue allograft (in vivo) under the siRNA showed more prominently diminished inflammatory infiltration than the control group. This is the first time in the literature that the suppressive effect of JAK3 silenced by siRNA has been tested both in vitro and in vivo, and shows that siRNA is capable of specific and functional silencing in allograft rejection.
Collapse
|
35
|
Heller NM, Qi X, Junttila IS, Shirey KA, Vogel SN, Paul WE, Keegan AD. Type I IL-4Rs selectively activate IRS-2 to induce target gene expression in macrophages. Sci Signal 2008; 1:ra17. [PMID: 19109239 DOI: 10.1126/scisignal.1164795] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Although interleukin-4 (IL-4) and IL-13 participate in allergic inflammation and share a receptor subunit (IL-4Ralpha), they have different functions. We compared cells expressing type I and II IL-4Rs with cells expressing only type II receptors for their responsiveness to these cytokines. IL-4 induced highly efficient, gammaC-dependent tyrosine phosphorylation of insulin receptor substrate 2 (IRS-2), whereas IL-13 was less effective, even when phosphorylation of signal transducer and activator of transcription 6 (STAT6) was maximal. Only type I receptor, gammaC-dependent signaling induced efficient association of IRS-2 with the p85 subunit of phosphoinositide 3-kinase or the adaptor protein growth factor receptor-bound protein 2. In addition, IL-4 signaling through type I IL-4Rs induced more robust expression of a subset of genes associated with alternatively activated macrophages than did IL-13. Thus, IL-4 activates signaling pathways through type I IL-4Rs qualitatively differently from IL-13, which cooperate to induce optimal gene expression.
Collapse
Affiliation(s)
- Nicola M Heller
- Center for Vascular and Inflammatory Diseases, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
In 1951 William Dameshek classified polycythemia vera (PV), essential thombocytosis (ET), and primary myelofibrosis (PMF) as pathogenetically related myeloproliferative disorders (MPD). Subsequent studies demonstrated that PV, ET, and PMF are clonal disorders of multipotent hematopoietic progenitors. In 2005, a somatic activating mutation in the JAK2 nonreceptor tyrosine kinase (JAK2V617F) was identified in most patients with PV and in a significant proportion of patients with ET and PMF. Subsequent studies identified additional mutations in the JAK-STAT pathway in some patients with JAK2V617F(-) MPD, suggesting that constitutive activation of this signaling pathway is a unifying feature of these disorders. Although the discovery of mutations in the JAK-STAT pathway is important from a pathogenetic and diagnostic perspective, important questions remain regarding the role of this single disease allele in 3 related but clinically distinct disorders, and the role of additional genetic events in MPD disease pathogenesis. In addition, these observations provide a foundation for development of small molecule inhibitors of JAK2 that are currently being tested in clinical trials. This review will discuss our understanding of the pathogenesis of PV, ET, and PMF, the potential role of JAK2-targeted therapy, and the important unanswered questions that need to be addressed to improve clinical outcome.
Collapse
Affiliation(s)
- Ross L Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | |
Collapse
|
37
|
Jak2 FERM domain interaction with the erythropoietin receptor regulates Jak2 kinase activity. Mol Cell Biol 2007; 28:1792-801. [PMID: 18160720 DOI: 10.1128/mcb.01447-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Janus kinases are essential for signal transduction by a variety of cytokine receptors and when inappropriately activated can cause hematopoietic disorders and oncogenesis. Consequently, it can be predicted that the interaction of the kinases with receptors and the events required for activation are highly controlled. In a screen to identify phosphorylation events regulating Jak2 activity in EpoR signaling, we identified a mutant (Jak2-Y613E) which has the property of being constitutively activated, as well as an inactivating mutation (Y766E). Although no evidence was obtained to indicate that either site is phosphorylated in signaling, the consequences of the Y613E mutation are similar to those observed with recently described activating mutations in Jak2 (Jak2-V617F and Jak2-L611S). However, unlike the V617F or L611S mutant, the Y613E mutant requires the presence of the receptor but not Epo stimulation for activation and downstream signaling. The properties of the Jak2-Y613E mutant suggest that under normal conditions, Jak2 that is not associated with a receptor is locked into an inactive state and receptor binding through the FERM domain relieves steric constraints, allowing the potential to be activated with receptor engagement.
Collapse
|
38
|
O'Sullivan LA, Liongue C, Lewis RS, Stephenson SEM, Ward AC. Cytokine receptor signaling through the Jak–Stat–Socs pathway in disease. Mol Immunol 2007; 44:2497-506. [PMID: 17208301 DOI: 10.1016/j.molimm.2006.11.025] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 11/21/2006] [Accepted: 11/22/2006] [Indexed: 12/31/2022]
Abstract
The complexity of multicellular organisms is dependent on systems enabling cells to respond to specific stimuli. Cytokines and their receptors are one such system, whose perturbation can lead to a variety of disease states. This review represents an overview of our current understanding of the cytokine receptors, Janus kinases (Jaks), Signal transducers and activators of transcription (Stats) and Suppressors of cytokine signaling (Socs), focussing on their contribution to diseases of an immune or hematologic nature.
Collapse
Affiliation(s)
- Lynda A O'Sullivan
- School of Life & Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | | | | | | | | |
Collapse
|
39
|
Huang HM, Lee YL, Chang TW. JAK1 N-terminus binds to conserved Box 1 and Box 2 motifs of cytokine receptor common beta subunit but signal activation requires JAK1 C-terminus. J Cell Biochem 2006; 99:1078-84. [PMID: 16767694 DOI: 10.1002/jcb.20942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The human interleukin-3 receptor (hIL-3R) consists of a unique alpha subunit (hIL-3Ralpha) and a common beta subunit (betac). Binding of IL-3 to IL-3R activates Janus kinases JAK1 and JAK2. Our previously study showed that JAK2 and JAK1 were constitutively associated with the hIL-3Ralpha and betac subunits, respectively. In this study, we further demonstrate that JAK2 binds to the intracellular domain of hIL-3Ralpha and JAK1 binds to the Box 1 and Box 2 motifs of betac using GST-hIL-3R fusion proteins in pull-down assays. JAK1 mutational analysis revealed that its JH7-3 domains bound directly to the Box 1 and Box 2 motifs of betac. We further examined the role of JAK1 JH7-3 domains in JAK1 and JAK2-mediated signaling using the CDJAKs fusion proteins, which consisted of a CD16 extracellular domain, a CD7 transmembrane domain, and either JAK1 (CDJAK1), JAK2 (CDJAK2), or JAK1-JH7-3 domains (CDJAK1-JH7-3) as intracellular domains. Anti-CD16 antibody crosslinking of wild type fusion proteins CDJAK1 with CDJAK2 could mimic IL-3 signaling, however, the crosslinking of fusion proteins CDJAK1-JH7-3 with CDJAK2 failed to activate downstream proteins. These results suggest that the JAK1-JH7-3 domains are required for betac interaction and abolish wild type JAK1 and JAK2-mediated signaling.
Collapse
Affiliation(s)
- Huei-Mei Huang
- Graduate Institute of Cell and Molecular Biology, Taipei Medical University, Taipei, Taiwan.
| | | | | |
Collapse
|
40
|
Funakoshi-Tago M, Pelletier S, Matsuda T, Parganas E, Ihle JN. Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2. EMBO J 2006; 25:4763-72. [PMID: 17024180 PMCID: PMC1618111 DOI: 10.1038/sj.emboj.7601365] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 08/30/2006] [Indexed: 01/17/2023] Open
Abstract
The tyrosine kinase, Janus kinase-2 (Jak2), plays a pivotal role in signal transduction through a variety of cytokine receptors, including the receptor for erythropoietin (Epo). Although the physiological relevance of Jak2 has been definitively established, less is known about its regulation. In studies assessing the roles of sites of tyrosine phosphorylation, we identified Y(119) in the FERM (band 4.1, Ezrin, radixin and moesin) domain as a phosphorylation site. In these studies, we demonstrate that the phosphorylation of Y(119) in response to Epo downregulates Jak2 kinase activity. Using a phosphorylation mimic mutation (Y(119)E), downregulation is shown to involve dissociation of Jak2 from the receptor complex. Conversely, a Y(119)F mutant is more stably associated with the receptor complex. Thus, in cytokine responses, ligand binding induces activation of receptor associated Jak2, autophosphorylation of Y(119) in the FERM domain and the subsequent dissociation of the activated Jak2 from the receptor and degradation. This regulation occurs with the receptors for Epo, thrombopoietin and growth hormone but not with the receptor for interferon-gamma.
Collapse
Affiliation(s)
| | - Stephane Pelletier
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Tadashi Matsuda
- Department of Immunology, Hokkaido University, Sapporo, Japan
| | - Evan Parganas
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - James N Ihle
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN 38120, USA. Tel.: +1 901 495 3422; Fax: +1 901 525 8025; E-mail:
| |
Collapse
|
41
|
Frenzel K, Wallace TA, McDoom I, Xiao HD, Capecchi MR, Bernstein KE, Sayeski PP. A functional Jak2 tyrosine kinase domain is essential for mouse development. Exp Cell Res 2006; 312:2735-44. [PMID: 16887119 DOI: 10.1016/j.yexcr.2006.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/02/2006] [Accepted: 05/02/2006] [Indexed: 12/19/2022]
Abstract
Jak2 is a member of the Janus family of tyrosine kinases and is involved in cytokine signaling. As a part of a study to determine biological functions of Jak2, we used molecular modeling to identify W1038 as a residue that is critical for tyrosine kinase function. Mutation of W1038, in tandem with E1046, generates a dominant-negative form of the Jak2 protein. Mice that were engineered to express two copies of this dominant-negative Jak2 protein died in utero. Additionally, heterozygous mice expressing Jak2 with kinase activity that is moderately reduced when compared to wild-type activity appear phenotypically normal. Collectively, these data suggest that Jak2 kinase activity is essential for normal mammalian development.
Collapse
Affiliation(s)
- Kristen Frenzel
- Department of Pathology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Haan C, Kreis S, Margue C, Behrmann I. Jaks and cytokine receptors--an intimate relationship. Biochem Pharmacol 2006; 72:1538-46. [PMID: 16750817 DOI: 10.1016/j.bcp.2006.04.013] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 04/11/2006] [Accepted: 04/12/2006] [Indexed: 11/24/2022]
Abstract
Most cytokine receptors lack intrinsic kinase activity and many of them signal via Janus kinases (Jaks). These tyrosine kinases are associated with cytokine receptor subunits, they become activated upon receptor triggering and subsequently activate downstream signalling events, e.g. the phosphorylation of STAT transcription factors. The successful interplay between cytokines, their receptors and the connected Jaks not only determines signalling competence but is also vital for intracellular traffic, stability, and fate of the cognate receptors. Here, we will discuss underlying mechanisms as well as some structural features with a focus on Jak1 and two of the signal transducing receptor subunits of interleukin (IL)-6 type cytokines, gp130 and OSMR. Regions that are critically involved in Jak-binding have been identified for many cytokine receptor subunits. In most cases the membrane-proximal parts comprising the box1 and box2 regions within the receptor are involved in this association while, within Jaks, the N-terminal FERM domain, possibly together with the SH2-like domain, are pivotal for binding to the relevant receptors. The exclusive membrane localisation of Jaks depends on their ability to associate with cytokine receptors. For gp130 and Jak1, it was shown that the cytokine receptor/Jak complex can be regarded as a receptor tyrosine kinase since both molecules have the same diffusion dynamics and are virtually undissociable. Furthermore, Jaks take an active role in the regulation of the surface expression of at least some cytokine receptors, including the OSMR and this may provide a quality control mechanism ensuring that only signalling-competent receptors (i.e. those with an associated Jak) would be enriched at the cell surface.
Collapse
Affiliation(s)
- Claude Haan
- Laboratoire de Biologie et Physiologie Intégrée (LBPI), University of Luxembourg, 162a avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
| | | | | | | |
Collapse
|
43
|
Linwong W, Hirasawa N, Aoyama S, Hamada H, Saito T, Ohuchi K. Inhibition of the antigen-induced activation of rodent mast cells by putative Janus kinase 3 inhibitors WHI-P131 and WHI-P154 in a Janus kinase 3-independent manner. Br J Pharmacol 2005; 145:818-28. [PMID: 15852029 PMCID: PMC1576194 DOI: 10.1038/sj.bjp.0706240] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 03/21/2005] [Accepted: 03/21/2005] [Indexed: 02/06/2023] Open
Abstract
We analyzed the effects of the Janus kinase 3 (Jak3)-specific inhibitor WHI-P131 (4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline) and the Jak3/Syk inhibitor WHI-P154 (4-(3'-bromo-4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline) on the antigen-induced activation of mast cells. In the rat mast cell line RBL-2H3, both WHI-P131 and WHI-P154 inhibited the antigen-induced degranulation and phosphorylation of p44/42 mitogen-activated protein kinase (MAPK), p38 MAPK and c-Jun N-terminal kinase (JNK). The phosphorylation of Gab2, Akt and Vav was also inhibited by WHI-P131 and WHI-P154, indicating that these inhibitors suppress the activation of phosphatidylinositol 3-kinase (PI3K). In bone marrow-derived mast cells (BMMCs) from Jak3-deficient (Jak3-/-) mice, degranulation and activation of MAPKs were induced by the antigen in almost the same extent as in BMMCs from wild-type mice. In addition, the antigen-induced degranulation and activation of MAPKs were inhibited by WHI-P131 and WHI-P154 in both groups of BMMCs, indicating that these compounds inhibit a certain step except for Jak3. The antigen-induced increase in the activity of Fyn, a probable tyrosine kinase of Gab2, was also inhibited by WHI-P131 and WHI-P154 in RBL-2H3 cells. In BMMCs from Jak3-/- mice, the antigen stimulation induced tyrosine phosphorylation of Fyn, which was inhibited by WHI-P131, as well as in BMMCs from wild-type mice and in RBL-2H3 cells. These findings suggest that Jak3 does not play a significant role in the antigen-induced degranulation and phosphorylation of MAPKs, and that WHI-P131 and WHI-P154 inhibit the PI3K pathway by preventing the antigen-induced activation of Fyn, thus inhibiting the antigen-induced degranulation and phosphorylation of MAPKs in mast cells.
Collapse
Affiliation(s)
- Watchara Linwong
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Suzue Aoyama
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hirofumi Hamada
- Department of Molecular Medicine, Sapporo Medical University, S1 W17 Chuo-ku, Sapporo 060-8556, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology (RCAI), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kazuo Ohuchi
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
44
|
Kovanen PE, Leonard WJ. Cytokines and immunodeficiency diseases: critical roles of the gamma(c)-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol Rev 2005; 202:67-83. [PMID: 15546386 DOI: 10.1111/j.0105-2896.2004.00203.x] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review, we discuss the role of cytokines and their signaling pathways in immunodeficiency. We focus primarily on severe combined immunodeficiency (SCID) diseases as the most severe forms of primary immunodeficiencies, reviewing the different genetic causes of these diseases. We focus in particular on the range of forms of SCID that result from defects in cytokine-signaling pathways. The most common form of SCID, X-linked SCID, results from mutations in the common cytokine receptor gamma-chain, which is shared by the receptors for interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21, underscoring that X-linked SCID is indeed a disease of defective cytokine signaling. We also review the signaling pathways used by these cytokines and the phenotypes in humans and mice with defects in the cytokines or signaling pathways. We also briefly discuss other cytokines, such as interferon-gamma and IL-12, where mutations in the ligand or receptor or signaling components also cause clinical disease in humans.
Collapse
Affiliation(s)
- Panu E Kovanen
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | | |
Collapse
|
45
|
Moriguchi M, Hissong BD, Gadina M, Yamaoka K, Tiffany HL, Murphy PM, Candotti F, O'Shea JJ. CXCL12 Signaling Is Independent of Jak2 and Jak3. J Biol Chem 2005; 280:17408-14. [PMID: 15611059 DOI: 10.1074/jbc.m414219200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Janus kinases (Jaks) are a small family of cytoplasmic tyrosine kinases, critical for signaling by Type I and II cytokine receptors. The importance of Jaks in signaling by these receptors has been firmly established by analysis of mutant cell lines, the generation of Jak knock-out mice, and the identification of patients with Jak3 mutations. While a number of other ligands that do not bind Type I and II cytokine receptors have also been reported to activate Jaks, the requirement for Jaks in signaling by these receptors is less clear. Chemokines for example, which bind seven transmembrane receptors, have been reported to activate Jaks, and principally through the use of pharmacological inhibitors, it has been argued that Jaks are essential for chemokine signaling. In the present study, we focused on CXCR4, which binds the chemokine CXCL12 or stromal cell-derived factor-1, a chemokine that has been reported to activate Jak2 and Jak3. We found that the lack of Jak3 had no effect on CXCL12 signaling or chemotaxis nor did overexpression of wild-type versions of the kinase. Similarly, overexpression of wild-type or catalytically inactive Jak2 or "knocking-down" Jak2 expression using siRNA also had no effect. We also found that in primary lymphocytes, CXCL12 did not induce appreciable phosphorylation of any of the Jaks compared with cytokines for which these kinases are required. Additionally, little or no Stat (signal transducer and activator of transcription) phosphorylation was detected. Thus, we conclude that in contrast to previous reports, Jaks, especially Jak3, are unlikely to play an essential role in chemokine signaling.
Collapse
MESH Headings
- Blotting, Western
- Calcium/metabolism
- Catalysis
- Cell Line
- Cell Line, Transformed
- Chemokine CXCL12
- Chemokines/metabolism
- Chemokines, CXC/metabolism
- Cytokines/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Humans
- Immunoprecipitation
- Interleukin-2/metabolism
- Janus Kinase 2
- Janus Kinase 3
- Jurkat Cells
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Ligands
- Lymphocytes/metabolism
- Mutation
- Mutation, Missense
- Phosphorylation
- Plasmids/metabolism
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- RNA, Small Interfering/metabolism
- Signal Transduction
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Masato Moriguchi
- Molecular Immunology and Inflammation Branch, NIAMS, Laboratory of Host Defenses, NIAID, and Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Pesu M, Candotti F, Husa M, Hofmann SR, Notarangelo LD, O'Shea JJ. Jak3, severe combined immunodeficiency, and a new class of immunosuppressive drugs. Immunol Rev 2005; 203:127-42. [PMID: 15661026 DOI: 10.1111/j.0105-2896.2005.00220.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The recent elucidation of the multiple molecular mechanisms underlying severe combined immunodeficiency (SCID) is an impressive example of the power of molecular medicine. Analysis of patients and the concomitant generation of animal models mimicking these disorders have quickly provided great insights into the pathophysiology of these potentially devastating illnesses. In this review, we summarize the discoveries that led to the understanding of the role of cytokine receptors and a specific tyrosine kinase, Janus kinase 3 (Jak3), in the pathogenesis of SCID. We discuss how the identification of mutations of Jak3 in autosomal recessive SCID has facilitated the diagnosis of these disorders, offered new insights into the biology of this kinase, permitted new avenues for therapy, and provided the rationale for a generation of a new class of immunosuppressants.
Collapse
Affiliation(s)
- Marko Pesu
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892-1820, USA
| | | | | | | | | | | |
Collapse
|
47
|
Hofmann SR, Lam AQ, Frank S, Zhou YJ, Ramos HL, Kanno Y, Agnello D, Youle RJ, O'Shea JJ. Jak3-independent trafficking of the common gamma chain receptor subunit: chaperone function of Jaks revisited. Mol Cell Biol 2004; 24:5039-49. [PMID: 15143194 PMCID: PMC416416 DOI: 10.1128/mcb.24.11.5039-5049.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Janus kinases (Jaks) play an essential role in cytokine signaling and have been reported to regulate plasma membrane expression of their cognate receptors. In this study, we examined whether Jak3 and the common gamma chain (gamma(c)) reciprocally regulate their plasma membrane expression. In contrast to interleukin-2Ralpha, gamma(c) localized poorly to the plasma membrane and accumulated in endosomal-lysosomal compartments. However, gamma(c) was expressed at comparable levels on the surface of cells lacking Jak3, and plasma membrane turnover of gamma(c) was independent of Jak3. Nonetheless, overexpression of Jak3 enhanced accumulation of gamma(c) at the plasma membrane. Without gamma(c), Jak3 localized in the cytosol, whereas in the presence of the receptor, it colocalized with gamma(c) in endosomes and at the plasma membrane. Although the Jak FERM domain is necessary and sufficient for receptor binding, the requirement for full-length Jak3 in gamma(c) membrane trafficking was remarkably stringent; using truncation and deletion mutants, we showed that the entire Jak3 molecule was required, although kinase activity was not. Thus, unlike other cytokine receptors, gamma(c) does not require Jak3 for receptor membrane expression. However, full-length Jak3 is required for normal trafficking of this cytokine receptor/Jak pair, a finding that has important structural and clinical implications.
Collapse
Affiliation(s)
- Sigrun R Hofmann
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, 10 Center Dr., Bldg. 10, Rm. 9N256, Bethesda, MD 20892-1820, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Roberts JL, Lengi A, Brown SM, Chen M, Zhou YJ, O'Shea JJ, Buckley RH. Janus kinase 3 (JAK3) deficiency: clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation. Blood 2004; 103:2009-18. [PMID: 14615376 DOI: 10.1182/blood-2003-06-2104] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
We found 10 individuals from 7 unrelated families among 170 severe combined immunodeficiency (SCID) patients who exhibited 9 different Janus kinase 3 (JAK3) mutations. These included 3 missense and 2 nonsense mutations, 1 insertion, and 3 deletions. With the exception of 1 individual with persistence of transplacentally transferred maternal lymphocytes, all infants presented with a T–B+NK– phenotype. The patient mutations all resulted in abnormal B-cell Janus kinase 3 (JAK3)–dependent interleukin-2 (IL-2)–induced signal transducer and activator of transcription-5 (STAT5) phosphorylation. Additional analyses of mutations permitting protein expression revealed the N-terminal JH7 (del58A) and JH6 (D169E) domain mutations each inhibited receptor binding and catalytic activity, whereas the G589S JH2 mutation abrogated kinase activity but did not affect γc association. Nine of the 10 patients are currently alive from between 4 years and 18 years following stem cell transplantation, with all exhibiting normal T-cell function. Reconstitution of antibody function was noted in only 3 patients. Natural killer (NK) function was severely depressed at presentation in the 4 patients studied, whereas after transplantation the only individuals with normal NK lytic activity were patients 1 and 5. Hence, bone marrow transplantation is an effective means for reconstitution of T-cell immunity in this defect but is less successful for restoration of B-cell and NK cell functions.
Collapse
Affiliation(s)
- Joseph L Roberts
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Shaw MH, Boyartchuk V, Wong S, Karaghiosoff M, Ragimbeau J, Pellegrini S, Muller M, Dietrich WF, Yap GS. A natural mutation in the Tyk2 pseudokinase domain underlies altered susceptibility of B10.Q/J mice to infection and autoimmunity. Proc Natl Acad Sci U S A 2003; 100:11594-9. [PMID: 14500783 PMCID: PMC208803 DOI: 10.1073/pnas.1930781100] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The B10.Q/J strain of mice was serendipitously discovered to be highly susceptible to infection by the intracellular protozoan parasite, Toxoplasma gondii but markedly resistant to induction of autoimmune arthritis. We have previously shown that the B10.Q/J phenotype is controlled by a single recessive locus and is associated with lymphocyte hyporesponsiveness to IL-12. Using genetic approaches, we have now localized the B10.Q/J locus to chromosome 9 and established its identity as Tyk2, a Janus kinase essential for IL-12 and IFN-alpha/beta cytokine signaling. The B10.Q/J Tyk2 gene contained a single missense mutation resulting in a nonconservative amino acid substitution (E775K) in an invariant motif of the pseudokinase (Janus kinase homology 2) domain. This mutation appeared to result in the absence of the B10.Q/J-encoded Tyk2 protein, despite presence of Tyk2-specific transcripts. Phenotypically, B10.Q/J cells were indistinguishable from Tyk2-deficient cells, showing impaired signaling and biologic responses to IL-12, IL-23, and type I IFNs. The analogous E782K mutant of human Tyk2 failed to restore IFN-alpha responsiveness in Tyk2 null 11,1 cells. Our results indicate a crucial role for Tyk2 in T helper 1-mediated protective and pathogenic immune responses. An additional implication of our findings is that naturally occurring mutations in the Tyk2 gene may underlie altered susceptibilities to infectious or autoimmune diseases in human and animal populations.
Collapse
Affiliation(s)
- Michael H Shaw
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Aringer M, Hofmann SR, Frucht DM, Chen M, Centola M, Morinobu A, Visconti R, Kastner DL, Smolen JS, O'Shea JJ. Characterization and analysis of the proximal Janus kinase 3 promoter. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6057-64. [PMID: 12794134 DOI: 10.4049/jimmunol.170.12.6057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Janus kinase 3 (Jak3) is a nonreceptor tyrosine kinase essential for signaling via cytokine receptors that comprise the common gamma-chain (gammac), i.e., the receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Jak3 is preferentially expressed in hemopoietic cells and is up-regulated upon cell differentiation and activation. Despite the importance of Jak3 in lymphoid development and immune function, the mechanisms that govern its expression have not been defined. To gain insight into this issue, we set out to characterize the Jak3 promoter. The 5'-untranslated region of the Jak3 gene is interrupted by a 3515-bp intron. Upstream of this intron and the transcription initiation site, we identified an approximately 1-kb segment that exhibited lymphoid-specific promoter activity and was responsive to TCR signals. Truncation of this fragment revealed that core promoter activity resided in a 267-bp fragment that contains putative Sp-1, AP-1, Ets, Stat, and other binding sites. Mutation of the AP-1 sites significantly diminished, whereas mutation of the Ets sites abolished, the inducibility of the promoter construct. Chromatin immunoprecipitation assays showed that histone acetylation correlates with mRNA expression and that Ets-1/2 binds this region. Thus, transcription factors that bind these sites, especially Ets family members, are likely to be important regulators of Jak3 expression.
Collapse
Affiliation(s)
- Martin Aringer
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|