1
|
Tran TTY, Lin TT, Chang CP, Chen CH, Nguyen VH, Yeh SD. Generation of Mild Recombinants of Papaya Ringspot Virus to Minimize the Problem of Strain-Specific Cross-Protection. PHYTOPATHOLOGY 2022; 112:708-719. [PMID: 34384243 DOI: 10.1094/phyto-06-21-0272-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Papaya ringspot virus (PRSV) causes severe damage to papaya (Carica papaya L.) and is the primary limiting factor for papaya production worldwide. A nitrous acid-induced mild strain, PRSV HA 5-1, derived from Hawaii strain HA, has been applied to control PRSV by cross-protection for decades. However, the problem of strain-specific protection hampers its application in Taiwan and other geographic regions outside Hawaii. Here, sequence comparison of the genomic sequence of HA 5-1 with that of HA revealed 69 nucleotide changes, resulting in 31 aa changes, of which 16 aa are structurally different. The multiple mutations of HA 5-1 are considered to result from nitrous acid induction because 86% of nucleotide changes are transition mutations. The stable HA 5-1 was used as a backbone to generate recombinants carrying individual 3' fragments of Vietnam severe strain TG5, including NIa, NIb, and CP3' regions, individually or in combination. Our results indicated that the best heterologous fragment for the recombinant is the region of CP3', with which symptom attenuation of the recombinant is like that of HA 5-1. This mild recombinant HA51/TG5-CP3' retained high levels of protection against the homologous HA in papaya plants and significantly increased the protection against the heterologous TG-5. Similarly, HA 5-1 recombinants carrying individual CP3' fragments from Thailand SMK, Taiwan YK, and Vietnam ST2 severe strains also significantly increase protection against the corresponding heterologous strains in papaya plants. Thus, our recombinant approach for mild strain generation is a fast and effective way to minimize the problem of strain-specific protection.
Collapse
Affiliation(s)
- Thi-Thu-Yen Tran
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Southern Horticultural Research Institute, TienGiang, Vietnam
| | - Tzu-Tung Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Chung-Ping Chang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Chun-Hung Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Van-Hoa Nguyen
- Southern Horticultural Research Institute, TienGiang, Vietnam
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Vietnam Overseas Agricultural Science and Technology Innovation Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| |
Collapse
|
2
|
Efficient silencing gene construct for resistance to multiple common bean ( Phaseolus vulgaris L.) viruses. 3 Biotech 2020; 10:278. [PMID: 32537378 DOI: 10.1007/s13205-020-02276-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
One promising strategy to engineer plants that are resistant to plant pathogens involves transforming plants with RNA silencing constructs for resistance to multiple pathogens. Garden bean is significantly damaged by bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV) and cucumber mosaic virus (CMV). In this study, we prepared constructs producing sense, antisense and hairpin RNA (hpRNA) structures to target single as well as multiple viruses. Silencing efficiency of these constructions was analyzed using Agrobacterium (GV3101) transient expression in Nicothinia bethamiana and Phaseolus vulgaris plants. The results showed significantly reduced disease symptoms and virus accumulation in N. bethamiana plants. Generally, the efficiency of the prepared constructs was hairpin, antisense and sense, respectively, and also, there was a significant difference between mono-gene and multiple-gene constructs for reducng virus accumulation and the multiple-gene constructs showed higher effectiveness. Experiments in this study showed that using Agrobacterium harboring binary constructs containing a Caenorhabditis elegans gene, Ced-9, or a plant gene, AtBag-4, anti-apoptosis gene as a mix suspension with an Agrobacterium containing pFGC-BNC.h, a plasmid containing multiple gene fragments consisting of BCMV-CP, BCMNV-HC-Pro and CMV-2b, improved the efficiency of pFGC-BNC.h transformation. We showed reduced virus accumulation in these transgenic bean plans.
Collapse
|
3
|
Catch Me If You Can! RNA Silencing-Based Improvement of Antiviral Plant Immunity. Viruses 2019; 11:v11070673. [PMID: 31340474 PMCID: PMC6669615 DOI: 10.3390/v11070673] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022] Open
Abstract
Viruses are obligate parasites which cause a range of severe plant diseases that affect farm productivity around the world, resulting in immense annual losses of yield. Therefore, control of viral pathogens continues to be an agronomic and scientific challenge requiring innovative and ground-breaking strategies to meet the demands of a growing world population. Over the last decade, RNA silencing has been employed to develop plants with an improved resistance to biotic stresses based on their function to provide protection from invasion by foreign nucleic acids, such as viruses. This natural phenomenon can be exploited to control agronomically relevant plant diseases. Recent evidence argues that this biotechnological method, called host-induced gene silencing, is effective against sucking insects, nematodes, and pathogenic fungi, as well as bacteria and viruses on their plant hosts. Here, we review recent studies which reveal the enormous potential that RNA-silencing strategies hold for providing an environmentally friendly mechanism to protect crop plants from viral diseases.
Collapse
|
4
|
Flores MA, Reyes MI, Robertson DN, Kjemtrup S. Persistent virus-induced gene silencing in asymptomatic accessions of Arabidopsis. Methods Mol Biol 2015; 1284:305-22. [PMID: 25757779 DOI: 10.1007/978-1-4939-2444-8_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Coupled with the advantages afforded by the model plant Arabidopsis, virus-induced gene silencing (VIGS) offers a rapid means to assess gene function. The geminivirus vector based on Cabbage leaf curl virus described here has the benefits of small insert size and persistent silencing of the target gene through the life cycle of the plant. Here, we show that genetic variation in the vast collection of Arabidopsis accessions can be leveraged to ameliorate viral symptomology that accompanies the VIGS procedure. The plasticity of phenotypes under different day lengths or temperature conditions can be exploited to achieve maximum silencing efficacy in either vegetative or inflorescence tissue, according to the question being asked. Protocols and vectors for Agro-infiltration of primary leaves, subapical pricking in older plants, and microprojectile bombardment are described.
Collapse
Affiliation(s)
- Miguel A Flores
- Department of Plant and Microbial Biology, North Carolina State University, Box 7612, Raleigh, NC, 27695-7612, USA
| | | | | | | |
Collapse
|
5
|
Tuttle JR, Haigler CH, Robertson DN. Virus-induced gene silencing of fiber-related genes in cotton. Methods Mol Biol 2015; 1287:219-34. [PMID: 25740368 DOI: 10.1007/978-1-4939-2453-0_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Virus-Induced Gene Silencing (VIGS) is a useful method for transient downregulation of gene expression in crop plants. The geminivirus Cotton leaf crumple virus (CLCrV) has been modified to serve as a VIGS vector for persistent gene silencing in cotton. Here the use of Green Fluorescent Protein (GFP) is described as a marker for identifying silenced tissues in reproductive tissues, a procedure that requires the use of transgenic plants. Suggestions are given for isolating and cloning combinations of target and marker sequences so that the total length of inserted foreign DNA is between 500 and 750 bp. Using this strategy, extensive silencing is achieved with only 200-400 bp of sequence homologous to an endogenous gene, reducing the possibility of off-target silencing. Cotyledons can be inoculated using either the gene gun or Agrobacterium and will continue to show silencing throughout fruit and fiber development. CLCrV is not transmitted through seed, and VIGS is limited to genes expressed in the maternally derived seed coat and fiber in the developing seed. This complicates the use of GFP as a marker for VIGS because cotton fibers must be separated from unsilenced tissue in the seed to determine if they are silenced. Nevertheless, fibers from a large number of seeds can be rapidly screened following placement into 96-well plates. Methods for quantifying the extent of silencing using semiquantitative RT-PCR are given.
Collapse
Affiliation(s)
- John R Tuttle
- Department of Crop Science, North Carolina State University, Box 7620, Raleigh, NC, 27695-7620, USA
| | | | | |
Collapse
|
6
|
Abstract
This chapter represents a travelog of my life and career and the philosophical points I acquired along the way. I was born on a sugar plantation on the island of Hawaii and early on had a stuttering problem. I attended the Kamehameha Schools and received my BS and MS degrees from the University of Hawaii and my Ph.D. from the University of California at Davis. I link my life and career to various principles and events, some of which are: the importance of positioning oneself; going for the big enchilada; music, the international language; the red zone of biotechnology; the human side of biotechnology; the transgenic papaya story; and my leadership time at USDA in Hawaii. The guiding light throughout my career were the words from Drs. Eduardo Trujillo and Robert Shepherd, respectively, "Dennis, don't just be a test tube scientist, do something to help people" and "Now tell me, what have you really accomplished?"
Collapse
Affiliation(s)
- Dennis Gonsalves
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, College of Agriculture and Life Sciences, Cornell University, Geneva, New York 14456;
| |
Collapse
|
7
|
Development of transgenic sweet potato with multiple virus resistance in South Africa (SA). Transgenic Res 2013; 23:377-88. [PMID: 24158330 DOI: 10.1007/s11248-013-9759-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
Multiple infections of Sweet potato feathery mottle virus (SPFMV), Sweet potato chlorotic stunt virus (SPCSV), Sweet potato virus G (SPVG) and Sweet potato mild mottle virus (SPMMV) cause a devastating synergistic disease complex of sweet potato (Ipomoea batatas Lam.) in KwaZulu-Natal, South Africa. In order to address the problem of multiple virus infections and synergism, this study aimed to develop transgenic sweet potato (cv. Blesbok) plants with broad virus resistance. Coat protein gene segments of SPFMV, SPCSV, SPVG and SPMMV were used to induce gene silencing in transgenic sweet potato. Transformation of apical tips of sweet potato cv. Blesbok was achieved by using Agrobacterium tumefaciens strain LBA4404 harboring the expression cassette. Polymerase chain reaction and Southern blot analyses showed integration of the transgenes occurred in six of the 24 putative transgenic plants and that all plants seemed to correspond to the same transformation event. The six transgenic plants were challenged by graft inoculation with SPFMV, SPCSV, SPVG and SPMMV-infected Ipomoea setosa Ker. Although virus presence was detected using nitrocellulose enzyme-linked immunosorbent assay, all transgenic plants displayed delayed and milder symptoms of chlorosis and mottling of lower leaves when compared to the untransformed control plants. These results warrant further investigation on resistance to virus infection under field conditions.
Collapse
|
8
|
Mitter N, Koundal V, Williams S, Pappu H. Differential expression of tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants. PLoS One 2013; 8:e76276. [PMID: 24143182 PMCID: PMC3797105 DOI: 10.1371/journal.pone.0076276] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/21/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Viral small RNAs (vsiRNAs) in the infected host can be generated from viral double-stranded RNA replicative intermediates, self-complementary regions of the viral genome or from the action of host RNA-dependent RNA polymerases on viral templates. The vsiRNA abundance and profile as well as the endogenous small RNA population can vary between different hosts infected by the same virus influencing viral pathogenicity and host response. There are no reports on the analysis of vsiRNAs of Tomato spotted wilt virus (TSWV), a segmented negative stranded RNA virus in the family Bunyaviridae, with two of its gene segments showing ambisense gene arrangement. The virus causes significant economic losses to numerous field and horticultural crops worldwide. PRINCIPAL FINDINGS Tomato spotted wilt virus (TSWV)-specific vsiRNAs were characterized by deep sequencing in virus-infected experimental host Nicotiana benthamiana and a commercial, susceptible host tomato. The total small (s) RNA reads in TSWV-infected tomato sample showed relatively equal distribution of 21, 22 and 24 nt, whereas N. benthamiana sample was dominated by 24 nt total sRNAs. The number of vsiRNA reads detected in tomato was many a magnitude (~350:1) higher than those found in N. benthamiana, however the profile of vsiRNAs in terms of relative abundance 21, 22 and 24 nt class size was similar in both the hosts. Maximum vsiRNA reads were obtained for the M RNA segment of TSWV while the largest L RNA segment had the least number of vsiRNAs in both tomato and N. benthamiana. Only the silencing suppressor, NSs, of TSWV recorded higher antisense vsiRNA with respect to the coding frame among all the genes of TSWV. SIGNIFICANCE Details of the origin, distribution and abundance of TSWV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. It also has major implications toward our understanding of the differential processing of vsiRNAs in antiviral defense and viral pathogenicity.
Collapse
Affiliation(s)
- Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, the University of Queensland, St. Lucia, Australia
| | - Vikas Koundal
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
| | - Sarah Williams
- Institute for Molecular Biology, The University of Queensland, St Lucia, Australia
| | - Hanu Pappu
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
9
|
Soler N, Plomer M, Fagoaga C, Moreno P, Navarro L, Flores R, Peña L. Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:597-608. [PMID: 22405601 DOI: 10.1111/j.1467-7652.2012.00691.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Citrus tristeza virus (CTV), the causal agent of the most devastating viral disease of citrus, has evolved three silencing suppressor proteins acting at intra- (p23 and p20) and/or intercellular level (p20 and p25) to overcome host antiviral defence. Previously, we showed that Mexican lime transformed with an intron-hairpin construct including part of the gene p23 and the adjacent 3' untranslated region displays partial resistance to CTV, with a fraction of the propagations from some transgenic lines remaining uninfected. Here, we transformed Mexican lime with an intron-hairpin vector carrying full-length, untranslatable versions of the genes p25, p20 and p23 from CTV strain T36 to silence the expression of these critical genes in CTV-infected cells. Three transgenic lines presented complete resistance to viral infection, with all their propagations remaining symptomless and virus-free after graft inoculation with CTV-T36, either in the nontransgenic rootstock or in the transgenic scion. Accumulation of transgene-derived siRNAs was necessary but not sufficient for CTV resistance. Inoculation with a divergent CTV strain led to partially breaking the resistance, thus showing the role of sequence identity in the underlying mechanism. Our results are a step forward to developing transgenic resistance to CTV and also show that targeting simultaneously by RNA interference (RNAi) the three viral silencing suppressors appears critical for this purpose, although the involvement of concurrent RNAi mechanisms cannot be excluded.
Collapse
Affiliation(s)
- Nuria Soler
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias-IVIA, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Application of RNA silencing to plant disease resistance. SILENCE 2012; 3:5. [PMID: 22650989 PMCID: PMC3503840 DOI: 10.1186/1758-907x-3-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/27/2012] [Indexed: 01/23/2023]
Abstract
To reduce the losses caused by plant pathogens, plant biologists have adopted numerous methods to engineer resistant plants. Among them, RNA silencing-based resistance has been a powerful tool that has been used to engineer resistant crops during the last two decades. Based on this mechanism, diverse approaches were developed. In this review, we focus on the application of RNA silencing to produce plants that are resistant to plant viruses such as RNA and DNA viruses, viroids, insects, and the recent expansion to fungal pathogens.
Collapse
|
11
|
Lin CY, Tsai WS, Ku HM, Jan FJ. Evaluation of DNA fragments covering the entire genome of a monopartite begomovirus for induction of viral resistance in transgenic plants via gene silencing. Transgenic Res 2012; 21:231-41. [PMID: 21597979 DOI: 10.1007/s11248-011-9523-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
Tomato-infecting begomoviruses, a member of whitefly-transmitted geminivirus, cause the most devastating virus disease complex of cultivated tomato crops in the tropical and subtropical regions. Numerous strategies have been used to engineer crops for their resistance to geminiviruses. However, nearly all have concentrated on engineering the replication-associated gene (Rep), but not on a comprehensive evaluation of the entire virus genome. In this study, Tomato leaf curl Taiwan virus (ToLCTWV), a predominant tomato-infecting begomovirus in Taiwan, was subjected to the investigation of the viral gene fragments conferring resistance to geminiviruses in transgenic plants. Ten transgenic constructs covering the entire ToLCTWV genome were fused to a silencer DNA, the middle half of N gene of Tomato spot wilt virus (TSWV), to induce gene silencing and these constructs were transformed into Nicotiana benthamiana plants. Two constructs derived from IRC1 (intergenic region flanked with 5' end Rep) and C2 (partial C2 ORF) were able to render resistance to ToLCTWV in transgenic N. benthamiana plants. Transgenic plants transformed with two other constructs, C2C3 (overlapping region of C2 and C3 ORFs) and Rep2 (3' end of the C1 ORF), significantly delayed the symptom development. Detection of siRNA confirmed that the mechanism of resistance was via gene silencing. This study demonstrated for the first time the screening of the entire genome of a monopartite begomovirus to discover viral DNA fragments that might be suitable for conferring virus resistance, and which could be potential candidates for developing transgenic plants with durable and broad-spectrum resistance to a DNA virus via a gene silencing approach.
Collapse
MESH Headings
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Disease Resistance
- Gene Fusion
- Gene Silencing
- Genome, Viral
- Open Reading Frames
- Plant Diseases/immunology
- Plant Diseases/virology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/virology
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Taiwan
- Nicotiana/genetics
- Nicotiana/immunology
- Nicotiana/metabolism
- Nicotiana/virology
- Tospovirus/genetics
- Tospovirus/immunology
- Tospovirus/metabolism
- Tospovirus/pathogenicity
- Transformation, Genetic
- Transgenes
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, 402, Taiwan
| | | | | | | |
Collapse
|
12
|
Tan X, Zhang D, Wintgens C, Willingmann P, Adam G, Heinze C. A Comparative Testing of <i>Cucumber mosaic virus</i> (CMV)-Based Constructs to Generate Virus Resistant Plants. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ajps.2012.34055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Lin CY, Ku HM, Chiang YH, Ho HY, Yu TA, Jan FJ. Development of transgenic watermelon resistant to Cucumber mosaic virus and Watermelon mosaic virus by using a single chimeric transgene construct. Transgenic Res 2011; 21:983-93. [PMID: 22203520 DOI: 10.1007/s11248-011-9585-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
Watermelon, an important fruit crop worldwide, is prone to attack by several viruses that often results in destructive yield loss. To develop a transgenic watermelon resistant to multiple virus infection, a single chimeric transgene comprising a silencer DNA from the partial N gene of Watermelon silver mottle virus (WSMoV) fused to the partial coat protein (CP) gene sequences of Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV) and Watermelon mosaic virus (WMV) was constructed and transformed into watermelon (cv. Feeling) via Agrobacterium-mediated transformation. Single or multiple transgene copies randomly inserted into various locations in the genome were confirmed by Southern blot analysis. Transgenic watermelon R(0) plants were individually challenged with CMV, CGMMV or WMV, or with a mixture of these three viruses for resistance evaluation. Two lines were identified to exhibit resistance to CMV, CGMMV, WMV individually, and a mixed inoculation of the three viruses. The R(1) progeny of the two resistant R(0) lines showed resistance to CMV and WMV, but not to CGMMV. Low level accumulation of transgene transcripts in resistant plants and small interfering (si) RNAs specific to CMV and WMV were readily detected in the resistant R(1) plants by northern blot analysis, indicating that the resistance was established via RNA-mediated post-transcriptional gene silencing (PTGS). Loss of the CGMMV CP-transgene fragment in R1 progeny might be the reason for the failure to resistant CGMMV infection, as shown by the absence of a hybridization signal and no detectable siRNA specific to CGMMV in Southern and northern blot analyses. In summary, this study demonstrated that fusion of different viral CP gene fragments in transgenic watermelon contributed to multiple virus resistance via PTGS. The construct and resistant watermelon lines developed in this study could be used in a watermelon breeding program for resistance to multiple viruses.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, 402, Taiwan
| | | | | | | | | | | |
Collapse
|
14
|
Negative-strand RNA viruses: the plant-infecting counterparts. Virus Res 2011; 162:184-202. [PMID: 21963660 DOI: 10.1016/j.virusres.2011.09.028] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 11/21/2022]
Abstract
While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome organization, while others have just recently been/or are still classified in floating genera. In most cases, at least two striking differences can still be discerned between the animal/human-infecting viruses and their plant-infecting counterparts which for the latter relate to their adaptation to plants as hosts. The first one is the capacity to modify plasmodesmata to facilitate systemic spread of infectious viral entities throughout the plant host. The second one is the capacity to counteract RNA interference (RNAi, also referred to as RNA silencing), the innate antiviral defence system of plants and insects. In this review an overview will be presented on the negative-strand RNA plant viruses classified within the families Bunyaviridae, Rhabdoviridae, Ophioviridae and floating genera Tenuivirus and Varicosavirus. Genetic differences with the animal-infecting counterparts and their evolutionary descendants will be described in light of the above processes.
Collapse
|
15
|
Simón-Mateo C, García JA. Antiviral strategies in plants based on RNA silencing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:722-31. [PMID: 21652000 DOI: 10.1016/j.bbagrm.2011.05.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 01/25/2023]
Abstract
One of the challenges being faced in the twenty-first century is the biological control of plant viral infections. Among the different strategies to combat virus infections, those based on pathogen-derived resistance (PDR) are probably the most powerful approaches to confer virus resistance in plants. The application of the PDR concept not only revealed the existence of a previously unknown sequence-specific RNA-degradation mechanism in plants, but has also helped to design antiviral strategies to engineer viral resistant plants in the last 25 years. In this article, we review the different platforms related to RNA silencing that have been developed during this time to obtain plants resistant to viruses and illustrate examples of current applications of RNA silencing to protect crop plants against viral diseases of agronomic relevance. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
|
16
|
Lin CY, Ku HM, Tsai WS, Green SK, Jan FJ. Resistance to a DNA and a RNA virus in transgenic plants by using a single chimeric transgene construct. Transgenic Res 2011; 20:261-70. [PMID: 20559871 DOI: 10.1007/s11248-010-9412-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 05/26/2010] [Indexed: 11/25/2022]
Abstract
Tomato leaf curl Taiwan virus (ToLCTWV) and Tomato spotted wilt virus (TSWV) are two major tomato viruses that cause serious economic losses. In this study, a partial C2 gene from ToLCTWV and the middle half of the N gene of TSWV were fused as a chimeric transgene to develop multiple virus resistance in transgenic plants. This construct was introduced into Nicotiana benthamiana and tomato by Agrobacterium-mediated transformation. Several transgenic lines showed no symptom post agro-inoculation with ToLCTWV and displayed high resistance to TSWV. The detection of siRNAs indicated that the resistance was via RNA silencing. This study demonstrated that linkage of gene segments from two viruses with distinct genomic organization, one DNA and the other RNA, can confer multiple virus resistance in transgenic plants via gene silencing.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, 402, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Hassani-Mehraban A, Brenkman AB, van den Broek NJF, Goldbach R, Kormelink R. RNAi-mediated transgenic Tospovirus resistance broken by intraspecies silencing suppressor protein complementation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1250-7. [PMID: 19737098 DOI: 10.1094/mpmi-22-10-1250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Extension of an inverted repeat transgene cassette, containing partial nucleoprotein (N) gene sequences from four different tomato-infecting Tospovirus spp. with a partial N gene sequence from the tomato strain of Tomato yellow ring virus (TYRV-t), renders transgenic Nicotiana benthamiana plants additionally resistant to this strain but not to the soybean strain of this Tospovirus sp. (TYRV-s), both strains exhibiting 14.4% nucleotide sequence divergence in their N genes. Surprisingly, coinoculation of the TYRV-t-resistant transgenic lines with both TYRV-t and TYRV-s resulted in rescue of the former. Mass-spectrometric analysis of the viral ribonucleocapsids accumulating in the transgenic plants showed the presence of the N proteins of both strains excluding hetero-encapsidation as rescue mechanism and indicating suppression of TYRV-t N gene transcript breakdown by RNA interference. Prior (Potato virus X [PVX]-vector-mediated) expression of the TYRV-s silencing suppressor (NS(s)) gene also allowed TYRV-t to break the resistance. This phenomenon was also observed when the homologous (TYRV-t) NS(s) gene was provided from a PVX replicon, demonstrating that TYRV can break RNA-mediated host resistance upon a priori expression of its NS(s) protein. Remarkably, mixed inoculation of TYRV-t with other Tospovirus spp. or nonrelated viruses did not result in resistance breaking, indicating that the rescuing activity of NS(s)-though based on suppressing RNA silencing-is species-dependent.
Collapse
Affiliation(s)
- Afshin Hassani-Mehraban
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Hily JM, Singer SD, Yang Y, Liu Z. A transformation booster sequence (TBS) from Petunia hybrida functions as an enhancer-blocking insulator in Arabidopsis thaliana. PLANT CELL REPORTS 2009; 28:1095-104. [PMID: 19373469 DOI: 10.1007/s00299-009-0700-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/20/2009] [Accepted: 03/29/2009] [Indexed: 05/18/2023]
Abstract
Several matrix-attachment regions (MARs) from animals have been shown to block interactions between an enhancer and promoter when situated between the two. Since a similar function for plant MARs has not been discerned, we tested the Zea mays ADH1 5' MAR, Nicotiana tabacum Rb7 3' MAR and a transformation booster sequence (TBS) MAR from Petunia hybrida for their ability to impede enhancer-promoter interactions in Arabidopsis thaliana. Stable transgenic lines containing vectors in which one of the three MAR elements or a 4 kb control sequence were interposed between the cauliflower mosaic virus 35S enhancer and a flower-specific AGAMOUS second intron-derived promoter (AGIP)::beta-glucuronidase (GUS) fusion were assayed for GUS expression in vegetative tissues. We demonstrate that the TBS MAR element, but not the ADH1 or Rb7 MARs, is able to block interactions between the 35S enhancer and AGIP without compromising the function of either with elements from which they are not insulated.
Collapse
Affiliation(s)
- Jean-Michel Hily
- USDA-ARS Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | | | | | | |
Collapse
|
19
|
Pal A, Chakrabarti A, Basak J. New motifs within the NB-ARC domain of R proteins: probable mechanisms of integration of geminiviral signatures within the host species of Fabaceae family and implications in conferring disease resistance. J Theor Biol 2007; 246:564-73. [PMID: 17320114 DOI: 10.1016/j.jtbi.2007.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 12/30/2006] [Accepted: 01/13/2007] [Indexed: 10/23/2022]
Abstract
The Gemini viruses are a group of plant infectious agents, of which mungbean yellow mosaic India virus (MYMIV) belongs to the bipartite subgroup of Gemini virus and causes serious yield penalty in the leguminous group of plants. In this investigation we have isolated two resistant gene homologues (RGHs; AY301990, AY301991) from two MYMIV-resistant lines of Vigna mungo and V. radiata that have high homology with a MYMIV-resistant linked marker, VMYR1 (AY 297425). These three resistance factors also have similarity with 221 reported R gene/RGH sequences in the NB-ARC domain of the family Fabaceae. NB-ARC domain is an ancient, highly conserved domain of a class of plant disease resistance genes/proteins. Out of 221 in silico translated protein sequences, multialignment of 188 sequences without large insertion or truncation, unlike that of the rest 33, illustrated presence of both TIR and non-TIR subfamilies of NB-ARC domain. A critical analysis of these sequences revealed eight new conserved motifs, in addition to the reported conserved motifs within the NB-ARC domains, which are hitherto not reported. Further analysis of these eight motifs with the aid of PRINTS and PROSITE databases revealed signatures of geminiviral coat protein (GVCP) within the favoured allele, R gene or RGHs. GVCP signatures are absent within the NB-ARC domain of three species of Medicago, which are non-host to Gemini virus. These observations tempted us to predict probable mechanism of integration of GVCP within the plant R gene/RGHs and their implications in conferring geminiviral disease resistance to the host plants. Our conjecture is that these signatures were integrated during plant pathogen interaction and are being maintained within this conserved domain through active selection of the favoured allele. We comprehensively addressed the biological significance of GVCP signatures, which probably provides additional defense against Gemini viruses through degradation of homologous transcript of the virus.
Collapse
Affiliation(s)
- Amita Pal
- Plant Molecular and Cellular Genetics, Bose Institute, P 1/12 CIT Scheme VIIM, Kolkata 700054, India.
| | | | | |
Collapse
|
20
|
Bucher E, Lohuis D, van Poppel PMJA, Geerts-Dimitriadou C, Goldbach R, Prins M. Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 2006; 87:3697-3701. [PMID: 17098987 DOI: 10.1099/vir.0.82276-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA silencing is a natural antiviral defence in plants, which can be exploited in transgenic plants for preprogramming virus recognition and ensuring enhanced resistance. By arranging viral transgenes as inverted repeats it is thus possible to obtain strong repression of incoming viruses. Due to the high sequence specificity of RNA silencing, this technology has hitherto been limited to the targeting of single viruses. Here it is shown that efficient simultaneous targeting of four different tospoviruses can be achieved by using a single small transgene based on the production of minimal sized chimaeric cassettes. Due to simultaneous RNA silencing, as demonstrated by specific siRNA accumulation, the transgenic expression of these cassettes rendered up to 82 % of the transformed plant lines heritably resistant against all four viruses. Thus RNA silencing can be further improved for high frequency multiple virus resistance by combining small RNA fragments from a series of target viruses.
Collapse
Affiliation(s)
- Etienne Bucher
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Dick Lohuis
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Pieter M J A van Poppel
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | | | - Rob Goldbach
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Marcel Prins
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| |
Collapse
|
21
|
Levin JS, Thompson WF, Csinos AS, Stephenson MG, Weissinger AK. Matrix attachment regions increase the efficiency and stability of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco. Transgenic Res 2005; 14:193-206. [PMID: 16022390 DOI: 10.1007/s11248-004-5413-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Matrix attachment regions (MARs) are DNA elements that can increase and stabilize transgene expression. We investigated the effect of the RB7 MAR on transgenic virus resistance. Constructs for resistance to tomato spotted wilt virus (TSWV) with and without flanking RB7 MARs were used to transform tobacco and produce homozygous lines. The population with the MAR construct had a significantly higher percentage of TSWV resistant plants in the R1 generation than the nonMAR population. Each resistant line was advanced to the R4 generation, and significantly fewer MAR lines lost resistance over generations compared to the nonMAR population. Lines with TSWV resistance in growth chamber tests were also resistant in field trials. Two lines that were resistant in the R1 generation and susceptible in the R4 were examined in more detail in order to determine if transcriptional silencing of the transgene was occurring in the later generation. Short interfering 21-25 nt RNAs from the transgene that are characteristic of post-transcriptional gene silencing (PTGS) were present in the resistant R1 plants, but not the susceptible R4 plants, indicating that virus resistance was associated with PTGS of the transgene. Loss of resistance was accompanied by an increase in promoter methylation in both lines. In line M41, the transgene was fully silenced at the transcriptional level in the R4 as shown by nuclear run-on assays. In line NM13, transgene transcription and RNA accumulation was still present in the R4 generation, but the level of transcription was not sufficient to trigger PTGS, suggesting that this line may have partial transcriptional silencing. These results are consistent with the concept that MARs may prevent transcriptional silencing.
Collapse
Affiliation(s)
- Jennifer S Levin
- Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620, USA.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Viruses are significant threats to agricultural crops worldwide and the limited sources of natural resistance warrant the development of novel resistance sources. Several methods of transgenic protection have been successfully applied, including protein- and RNA-mediated approaches. Increased understanding of the molecular biology of virus infection is starting to bear fruit, enabling specific strategies to be designed for virus resistance in crops.
Collapse
Affiliation(s)
- Marcel Prins
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands.
| |
Collapse
|
23
|
Gonsalves D. Coat protein transgenic papaya: "acquired" immunity for controlling papaya ringspot virus. Curr Top Microbiol Immunol 2002; 266:73-83. [PMID: 12014204 DOI: 10.1007/978-3-662-04700-2_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- D Gonsalves
- Department of Plant Pathology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456-0462, USA
| |
Collapse
|
24
|
Hoffmann K, Qiu WP, Moyer JW. Overcoming host- and pathogen-mediated resistance in tomato and tobacco maps to the M RNA of Tomato spotted wilt virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:242-9. [PMID: 11204788 DOI: 10.1094/mpmi.2001.14.2.242] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A viral genetic system was used to map the determinants of the ability of Tomato spotted wilt virus (TSWV) to overcome the R gene (Sw-5) in tomato and the resistance conferred by the nucleocapsid gene of TSWV (N gene) in tobacco. A complete set of reassortant genotypes was generated from TSWV isolates A and D. TSWV-A was able to overcome the Sw-5 gene in tomato and the TSWV N gene in tobacco, whereas TSWV-D was repressed by both forms of resistance. The ability to overcome both forms of resistance was associated with the M RNA segment of TSWV-A (M(A)). Overcoming the Sw-5 gene was linked solely to the presence of M(A), and the ability of M(A) to overcome the TSWV N gene was modified by the L RNA and the S RNA of TSWV-A, which is consistent with previous reports that suggest that the nucleocapsid gene is not the primary determinant for overcoming the nucleocapsid-mediated resistance. Sequence analysis of the M RNA segment of TSWV-A, -D, and the type isolate BR-01 revealed multiple differences in the coding and noncoding regions, which prevented identification of the resistance-breaking nucleotide sequences.
Collapse
Affiliation(s)
- K Hoffmann
- Department of Virology, DLO Research Institute for Plant Protection (IPO-DLO), Wageningen, The Netherlands
| | | | | |
Collapse
|
25
|
Thomas CL, Jones L, Baulcombe DC, Maule AJ. Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a potato virus X vector. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:417-25. [PMID: 11260498 DOI: 10.1046/j.1365-313x.2001.00976.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Using a recombinant potato virus X (PVX) vector, we investigated the relationship between the length of RNA sequence identity with a transgene and the ability to promote post-transcriptional gene silencing (PTGS) and transgene methylation. The lower size limit required for targeting reporter transgene mRNA de novo using PTGS was 23 nucleotides (nt) of complete identity, a size corresponding to that of small RNAs associated with PTGS in plants and RNA interference (RNAi) in animals. The size and sequence specificity were also explored for PTGS-associated transgene methylation and for the targeting of the vector RNA. The PTGS-competent short sequences resulted in similar patterns of methylation. In all cases, including specific sequences of 33 nt with or without symmetrical cytosine residues, the methylation was distributed throughout the transcribed region of the transgene. In contrast, short sequences lacking symmetrical cytosines were less efficient at promoting PTGS of the transgene mRNA. Short gfp sequences in the PVX vector provided as effective a target for the degradation of viral RNA as was found for PVX carrying the complete gfp cDNA. Short sequences were able to initiate PTGS of an endogenous gene, phyotene desaturase, although this occurred in the absence of DNA methylation. This experimental approach provides important insights into the relationship between short RNA sequences and PTGS.
Collapse
Affiliation(s)
- C L Thomas
- Department of Virus Research, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
26
|
Jan FJ, Pang SZ, Tricoli DM, Gonsalves D. Evidence that resistance in squash mosaic comovirus coat protein-transgenic plants is affected by plant developmental stage and enhanced by combination of transgenes from different lines. J Gen Virol 2000; 81:2299-2306. [PMID: 10950989 DOI: 10.1099/0022-1317-81-9-2299] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three transgenic lines of squash hemizygous for the coat protein genes of squash mosaic virus (SqMV) were shown previously to have resistant (SqMV-127), susceptible (SqMV-22) or recovery (SqMV-3) phenotypes. Post-transcriptional gene silencing (PTGS) was the underlying mechanism for resistance of SqMV-127. Here, experiments conducted to determine the mechanism of the recovery phenotype and whether enhanced resistance could be obtained by combining transgenes from susceptible and recovery plants are reported. Upper leaves of SqMV-3 plants were sampled for Northern analysis at 17, 31 and 45 days after germination (DAG) and a proportion of plants were inoculated with SqMV. SqMV-3 plants inoculated at a young stage (17 DAG) showed susceptible or recovery phenotypes. However, a number of plants inoculated at later developmental stages (31 or 45 DAG) were resistant to infection. Resistance of recovery plants was due to PTGS that was activated at a later developmental stage, independent of virus infection. Similar results were observed with plants grown under field conditions. To investigate the interactions of transgenes, progeny of crosses between SqMV-127, -3 and -22 were inoculated with SqMV. Progeny with the transgene of line 127 were resistant. However, a number of plants with transgenes from the recovery and susceptible lines or the self-pollinated recovery line were resistant even when inoculated at a young stage. Northern analysis suggested that resistance was due to PTGS. The results reveal that the timing of PTGS and consequent resistance of the transgenic plants were affected by their developmental stage and the interaction of transgene inserts.
Collapse
Affiliation(s)
- Fuh-Jyh Jan
- Department of Plant Pathology, Cornell University, NYSAES, Geneva, NY 14456, USA1
| | - Sheng-Zhi Pang
- Department of Plant Pathology, Cornell University, NYSAES, Geneva, NY 14456, USA1
| | - David M Tricoli
- Seminis Vegetable Seeds, 37437 State Highway 16, Woodland, CA 95695, USA2
| | - Dennis Gonsalves
- Department of Plant Pathology, Cornell University, NYSAES, Geneva, NY 14456, USA1
| |
Collapse
|
27
|
Jan FJ, Fagoaga C, Pang SZ, Gonsalves D. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J Gen Virol 2000; 81:2103-2109. [PMID: 10900050 DOI: 10.1099/0022-1317-81-8-2103] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We showed previously that 218 and 110 bp N gene segments of tomato spotted wilt virus (TSWV) that were fused to the non-target green fluorescent protein (GFP) gene were able to confer resistance to TSWV via post-transcriptional gene silencing (PTGS). N gene segments expressed alone did not confer resistance. Apparently, the GFP DNA induced PTGS that targetted N gene segments and the incoming homologous TSWV for degradation, resulting in a resistant phenotype. These observations suggested that multiple resistance could be obtained by replacing the GFP DNA with a viral DNA that induces PTGS. The full-length coat protein (CP) gene of turnip mosaic virus (TuMV) was linked to 218 or 110 bp N gene segments and transformed into Nicotiana benthamiana. A high proportion (4 of 18) of transgenic lines with the 218 bp N gene segment linked to the TuMV CP gene were resistant to both viruses, and resistance was transferred to R(2) plants. Nuclear run-on and Northern experiments confirmed that resistance was via PTGS. In contrast, only one of 14 transgenic lines with the TuMV CP linked to a 110 bp N gene segment yielded progeny with multiple resistance. Only a few R(1) plants were resistant and resistance was not observed in R(2) plants. These results clearly show the applicability of multiple virus resistance through the fusion of viral segments to DNAs that induce PTGS.
Collapse
Affiliation(s)
- Fuh-Jyh Jan
- Department of Plant Pathology, Cornell University, NYSAES, Geneva, NY 14456, USA1
| | - Carmen Fagoaga
- Department of Plant Pathology, Cornell University, NYSAES, Geneva, NY 14456, USA1
| | - Sheng-Zhi Pang
- Department of Plant Pathology, Cornell University, NYSAES, Geneva, NY 14456, USA1
| | - Dennis Gonsalves
- Department of Plant Pathology, Cornell University, NYSAES, Geneva, NY 14456, USA1
| |
Collapse
|
28
|
Varrelmann M, Palkovics L, Maiss E. Transgenic or plant expression vector-mediated recombination of Plum Pox Virus. J Virol 2000; 74:7462-9. [PMID: 10906199 PMCID: PMC112266 DOI: 10.1128/jvi.74.16.7462-7469.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1999] [Accepted: 05/26/2000] [Indexed: 11/20/2022] Open
Abstract
Different mutants of an infectious full-length clone (p35PPV-NAT) of Plum pox virus (PPV) were constructed: three mutants with mutations of the assembly motifs RQ and DF in the coat protein gene (CP) and two CP chimeras with exchanges in the CP core region of Zucchini yellow mosaic virus and Potato virus Y. The assembly mutants were restricted to single infected cells, whereas the PPV chimeras were able to produce systemic infections in Nicotiana benthamiana plants. After passages in different transgenic N. benthamiana plants expressing the PPV CP gene with a complete (plant line 4.30.45.) or partially deleted 3'-nontranslated region (3'-NTR) (plant line 17.27. 4.), characterization of the viral progeny of all mutants revealed restoration of wild-type virus by recombination with the transgenic CP RNA only in the presence of the complete 3'-NTR (4.30.45.). Reconstitution of wild-type virus was also observed following cobombardment of different assembly-defective p35PPV-NAT together with a movement-defective plant expression vector of Potato virus X expressing the intact PPV-NAT CP gene transiently in nontransgenic N. benthamiana plants. Finally, a chimeric recombinant virus was detected after cobombardment of defective p35PPV-NAT with a plant expression vector-derived CP gene from the sour cherry isolate of PPV (PPV-SoC). This chimeric virus has been established by a double recombination event between the CP-defective PPV mutant and the intact PPV-SoC CP gene. These results demonstrate that viral sequences can be tested for recombination events without the necessity for producing transgenic plants.
Collapse
Affiliation(s)
- M Varrelmann
- Institute of Plant Diseases and Plant Protection, University of Hannover, 30419 Hanover, Germany
| | | | | |
Collapse
|
29
|
van Boxtel J, Thomas CL, Maule AJ. Phylogenetic analysis of two potyvirus pathogens of commercial cowpea lines: implications for obtaining pathogen-derived resistance. Virus Genes 2000; 20:71-7. [PMID: 10766309 DOI: 10.1023/a:1008164324663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
As a prelude to developing engineered resistance to two important potyvirus pathogens of cowpea, a phylogenetic analysis of strains of Cowpea aphid-borne mosaic virus (CAbMV) and Bean common mosaic virus--blackeye cowpea strain (BCMV-B1C) was undertaken. Nucleotide sequences for the coat protein genes and 3'-untranslated regions of four CAbMV and one BCMV-B1C strains were determined and included in an analysis with published sequences. While all the newly sequenced viruses showed strong homology with the existing respective sequences in the database, the CAbMV group showed a divergence into two subgroups. These groups differed from each other by more than some CAbMV strains differed from the South African Passiflora virus (CAbMV-SAP), which has distinct biological characteristics. The implications of the sequence analyses are discussed with respect to a strategy for the generation of engineered resistance to both groups of viruses.
Collapse
Affiliation(s)
- J van Boxtel
- Department of Virus Research, John Innes Centre, Norwich Research Park, UK
| | | | | |
Collapse
|
30
|
Abstract
Post-transcriptional gene-silencing (PTGS) was first discovered in plants and results from the sequence-specific degradation of RNA. Degradation can be activated by introducing transgenes, RNA viruses or DNA sequences that are homologous to expressed genes. A similar RNA degradation mechanism which is inducible by double-stranded RNA (dsRNAs), has been discovered recently in vertebrates, invertebrates and protozoa. dsRNAs may also be potent activators of PTGS in plants. PTGS is not cell autonomous, suggesting the synthesis of sequence-specific silencing signals which are not only moving through the plant but are also amplified and an RNA-directed RNA Polymerase which has recently been cloned from various plant species is a candidate enzyme for amplifying silencing signals. The natural role of PTGS seems to be as a defence against plant viruses, so what first appeared to be RNAs on the attack may now be considered RNAs on the defense. BioEssays 22:520-531, 2000.
Collapse
Affiliation(s)
- T Sijen
- Department of Developmental Genetics, Institute for Molecular Biological Sciences, BioCentrum Amsterdam, Vrije Universiteit, HV Amsterdam, The Netherlands
| | | |
Collapse
|
31
|
Király L. The silencing of (trans)gens – A mechanism of virus resistance in plants. ACTA ACUST UNITED AC 2000. [DOI: 10.1556/aphyt.34.1999.4.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Adkins S. Tomato spotted wilt virus-positive steps towards negative success. MOLECULAR PLANT PATHOLOGY 2000; 1:151-7. [PMID: 20572961 DOI: 10.1046/j.1364-3703.2000.00022.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Abstract Taxonomy: Tomato spotted wilt virus (TSWV) is the type member of the plant-infecting Tospovirus genus in the family Bunyaviridae, a large group of predominantly vertebrate- and insect-infecting RNA viruses. Physical properties: Virions are 80-120-nm pleomorphic particles with surface projections composed of two viral glycoproteins, G1 and G2 (Fig. 1). Virion composition is 5% nucleic acid, 70% protein, 5% carbohydrate and 20% lipid. The genome consists of three negative or ambisense ssRNAs designated S (2.9 kb), M (4.8 kb) and L (8.9 kb), with partially complementary terminal sequences that allow the RNA to adopt a pseudocircular or panhandle conformation. Each genomic RNA is encapsidated by multiple copies of the viral nucleocapsid (N) protein to form ribonucleoprotein structures also known as nucleocapsids. The nucleocapsids are enclosed in a host-derived membrane bilayer along with an estimated 10-20 copies of the L protein, the putative RNA-dependent RNA polymerase. Hosts: Over 800 plant species, both dicots and monocots, in more than 80 plant families are susceptible to TSWV (Goldbach and Peters, 1994). The Solanaceae and Compositae families contain the largest numbers of susceptible plant species (Prins and Kormelink, 1998). TSWV also replicates in its insect vector, thrips (Thysanoptera: Thripidae) (Ullman et al., 1993; Wijkamp et al., 1993). Useful web site: http://www4.ncbi.nlm.nih.gov/ICTVdb/ICTVdB/11050003.htm.
Collapse
Affiliation(s)
- S Adkins
- United States Department of Agriculture, Agricultural Research Service, US Horticultural Research Laboratory, 2001 S. Rock Rd., Ft. Pierce, FL 34945, USA
| |
Collapse
|
33
|
Varrelmann M, Maiss E. Mutations in the coat protein gene of plum pox virus suppress particle assembly, heterologous encapsidation and complementation in transgenic plants of Nicotiana benthamiana. J Gen Virol 2000; 81:567-76. [PMID: 10675394 DOI: 10.1099/0022-1317-81-3-567] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two different motifs in the coat protein (CP) of Plum pox virus (PPV) (R(3015)Q(3016), D(3059)) were mutated by replacing the respective amino acids with others possessing different chemical properties. The mutated CP genes were introduced into an infectious full-length clone of PPV (p35PPV-NAT) to investigate their influence on systemic infection of transgenic wild-type PPV CP-expressing and non-transgenic plants of Nicotiana benthamiana. All mutants failed to establish systemic infections in non-transgenic N. benthamiana plants, but were complemented by intact CP in transgenic plants. Moreover, the CP-RQ-D mutant (carrying mutations in both the RQ and D motifs) was introduced into p35PPV-NAT engineered to express beta-glucuronidase (GUS) for direct observation of systemic movement and particle assembly in N. benthamiana leaves. GUS-staining revealed that the CP mutant (RQ-D) was restricted to initially infected cells without forming virions. Systemic movement and particle assembly were restored in CP-transgenic N. benthamiana plants. Finally, transgenic N. benthamiana plants were generated that expressed each of the three mutated CP genes. Homozygous T(2) lines were selected and tested for resistance to PPV. Immunogold labelling and electron microscopy revealed that heterologous encapsidation with challenging Chilli veinal mottle virus and Potato virus Y was suppressed in these lines. In addition, assembly mutants did not complement CP-defective p35PPV-NAT. The possible use of modified viral CP genes for the production of virus-resistant transgenic plants, thereby reducing the putative risks of heterologous encapsidation and complementation, is discussed.
Collapse
Affiliation(s)
- M Varrelmann
- Institute of Plant Diseases and Plant Protection, University of Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | | |
Collapse
|
34
|
Herrero S, Culbreath AK, Csinos AS, Pappu HR, Rufty RC, Daub ME. Nucleocapsid Gene-Mediated Transgenic Resistance Provides Protection Against Tomato spotted wilt virus Epidemics in the Field. PHYTOPATHOLOGY 2000; 90:139-147. [PMID: 18944602 DOI: 10.1094/phyto.2000.90.2.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Transformation of plants with the nucleocapsid (N) gene of Tomato spotted wilt tospovirus (TSWV) provides resistance to disease development; however, information is lacking on the response of plants to natural inoculum in the field. Three tobacco cultivars were transformed with the N gene of a dahlia isolate of TSWV (TSWV-D), and plants were evaluated over several generations in the greenhouse. The resistant phenotype was more frequently observed in 'Burley 21' than in 'KY-14' or 'K-326', but highly resistant 'Burley 21' transgenic lines were resistant to only 44% of the heterologous TSWV isolates tested. Advanced generation (R(3) and R(4)) transgenic resistant lines of 'Burley 21' and a 'K-326' F(1) hybrid containing the N genes of two TSWV isolates were evaluated in the field near Tifton, GA, where TSWV is endemic. Disease development was monitored by symptom expression and enzyme-linked immunosorbent assay (ELISA) analysis. Whereas incidence of TSWV infection in 'Burley 21' susceptible controls was 20% in 1996 and 62% in 1997, the mean incidence in transgenic lines was reduced to 4 and 31%, respectively. Three transgenic 'Burley 21' lines were identified that had significantly lower incidence of disease than susceptible controls over the two years of the study. In addition, the rate of disease increase at the onset of the 1997 epidemic was reduced for all the 'Burley 21' transgenic lines compared with the susceptible controls. The 'K-326' F(1) hybrid was as susceptible as the 'K-326' nontransformed control. ELISA analysis demonstrated that symptomless plants from the most resistant 'Burley 21' transgenic lines accumulated detectable nucleocapsid protein, whereas symptomless plants from more susceptible lines did not. We conclude that transgenic resistance to TSWV is effective in reducing incidence of the disease in the field, and that accumulation of transgene protein may be important in broad-spectrum resistance.
Collapse
|
35
|
Inserting the Nucleoprotein Gene of Tomato Spotted Wilt Virus in Different Plant Species, and Screening for Virus Resistance. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0168-7972(00)80023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Jan FJ, Fagoaga C, Pang SZ, Gonsalves D. A minimum length of N gene sequence in transgenic plants is required for RNA-mediated tospovirus resistance. J Gen Virol 2000; 81:235-42. [PMID: 10640563 DOI: 10.1099/0022-1317-81-1-235] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We showed previously that transgenic plants with the green fluorescent protein (GFP) gene fused to segments of the nucleocapsid (N) gene of tomato spotted wilt virus (TSWV) displayed post-transcriptional gene silencing of the GFP and N gene segments and resistance to TSWV. These results suggested that a chimeric transgene composed of viral gene segments might confer multiple virus resistance in transgenic plants. To test this hypothesis and to determine the minimum length of the N gene that could trans-inactivate the challenging TSWV, transgenic plants were developed that contained GFP fused with N gene segments of 24-453 bp. Progeny from these plants were challenged with: (i) a chimeric tobacco mosaic virus containing the GFP gene, (ii) a chimeric tobacco mosaic virus with GFP plus the N gene of TSWV and (iii) TSWV. A number of transgenic plants expressing the transgene with GFP fused to N gene segments from 110 to 453 bp in size were resistant to these viruses. Resistant plants exhibited post-transcriptional gene silencing. In contrast, all transgenic lines with transgenes consisting of GFP fused to N gene segments of 24 or 59 bp were susceptible to TSWV, even though the transgene was post-transcriptionally silenced. Thus, virus resistance and post-transcriptional gene silencing were uncoupled when the N gene segment was 59 bp or less. These results provide evidence that multiple virus resistance is possible through the simple strategy of linking viral gene segments to a silencer DNA such as GFP.
Collapse
Affiliation(s)
- F J Jan
- Department of Plant Pathology, Cornell University, NYSAES, Geneva, NY 14456, USA
| | | | | | | |
Collapse
|
37
|
Hammond J, Lecoq H, Raccah B. Epidemiological risks from mixed virus infections and transgenic plants expressing viral genes. Adv Virus Res 1999; 54:189-314. [PMID: 10547677 DOI: 10.1016/s0065-3527(08)60368-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- J Hammond
- USDA-ARS, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, Maryland 20705, USA
| | | | | |
Collapse
|
38
|
Jacobs JJ, Sanders M, Bots M, Andriessen M, Litière K, Cornelissen M. Sequences throughout the basic beta-1,3-glucanase mRNA coding region are targets for homology dependent post-transcriptional gene silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:143-152. [PMID: 10571874 DOI: 10.1046/j.1365-313x.1999.00582.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the transgenic tobacco line T17, plants homozygous for the gn1 transgene display developmentally regulated post-transcriptional silencing of basic beta-1,3-glucanase genes. Previously, it has been shown that silencing involves a markedly increased turnover of silencing-target glucanase mRNAs. Using a two-component viral reporter system facilitated a comparison, in a quantitat- ive manner, of the relative silencing efficiencies of various sequences derived from the gn1 transgene. The results show that target sites for the silencing mechanism are present throughout the coding region of the gn1 mRNA. Similar-sized coding region sequences along the entire gn1 mRNA display a similar susceptibility to the silencing mechanism. The susceptibility to silencing increases as the coding region elements increase in size. Relative to internal sequences, the 5' and 3' terminal regions of the gn1 mRNA are inefficient targets for the silencing machinery. Importantly, sequences of the gn1 transgene that are not part of the mature gn1 mRNA are not recognized by the silencing machinery when expressed in chimeric viral RNAs. These results show that the glucanase silencing mechanism in T17 plants is primarily directed against gn1 mRNA-internal sequences and that terminal sequences of the gn1 mRNA are relatively unaffected by the silencing mechanism.
Collapse
|
39
|
Crété P, Vaucheret H. Expression and sequence requirements for nitrite reductase co-suppression. PLANT MOLECULAR BIOLOGY 1999; 41:105-14. [PMID: 10561072 DOI: 10.1023/a:1006364323494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have previously reported that the introduction of a full-length tobacco nitrite reductase Nii1 cDNA under the control of the 35S promoter triggers co-suppression of endogenous Nii genes in 25% of tobacco transformants. Here we show that introduction of chimeric Nii1-uidA, uidA-Nii1 and Nii1-uidA-Nii1 transgenes carrying 186 bp of the 5' end and/or 241 bp of the 3' end of the Nii1 cDNA do not trigger co-suppression of endogenous Nii genes. In addition, we show that when introduced by crossing or transformation into co-suppressed transgenic tobacco lines carrying full-length Nii1 transgenes, these chimeric transgenes are not silenced. These results therefore suggest that the 5' and 3' ends of the Nii1 cDNA are not sufficient to trigger co-suppression and are not targets for homology-dependent RNA degradation. Surprisingly, co-suppression was released in a double transformant obtained by introduction of one of these constructs into the co-suppressed transgenic tobacco line 461-2.1 homozygous for a full-length Nii1 transgene, and in one plant regenerated from untransformed leaf discs (plant 461-2.1*). The reappearance of co-suppression at very low frequency (less than 10(-3)) in the F2 progeny of plant 461-2.1* and the apparent absence of structural modification of the transgene locus suggest a metastable epigenetic modification. The steady-state level of Nii mRNAs in the plant 461-2-.1* was higher than in wild-type plants but lower than in hemizygous plants 461-2.1 which never trigger silencing. These results therefore confirm that transcription of the transgene above a particular threshold is required to trigger co-suppression.
Collapse
MESH Headings
- DNA Methylation
- DNA, Complementary/genetics
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Epistasis, Genetic
- Gene Expression Regulation, Plant
- Glucuronidase/genetics
- Nitrite Reductases/genetics
- Plants, Genetically Modified
- Plants, Toxic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Nicotiana/enzymology
- Nicotiana/genetics
- Transformation, Genetic
Collapse
Affiliation(s)
- P Crété
- Laboratoire de Biologie Cellulaire, INRA, Versailles, France
| | | |
Collapse
|
40
|
Qiu W, Moyer JW. Tomato Spotted Wilt Tospovirus Adapts to the TSWV N Gene-Derived Resistance by Genome Reassortment. PHYTOPATHOLOGY 1999; 89:575-82. [PMID: 18944693 DOI: 10.1094/phyto.1999.89.7.575] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ABSTRACT Pathogen- and host-derived resistance have been shown to suppress infection by many plant viruses. Tomato spotted wilt tospovirus (TSWV) is among these systems; however, it has easily overcome nearly all host resistance genes and has recently been shown to overcome resistance mediated by the TSWV N gene. To better understand the resistance-breaking mechanisms, we have chosen TSWV N gene-derived resistance (TNDR) as a model to study how plant viruses defeat resistance genes. A defined viral population of isolates TSWV-D and TSWV-10, both suppressed by TNDR, was subjected to TNDR selection by serial passage in an N-gene transgenic plant. The genotype analysis demonstrated that the mixed viral population was driven to form a specific reassortant, L(10)M(10)S(D), in the presence of TNDR selection, but remained as a heterogeneous mixture in the absence of the selection. A genotype assay of 120 local lesion isolates from the first, fourth, and seventh transfers confirmed the shift of genomic composition. Further analysis demonstrated that the individual L(10), M(10), and S(D) RNA segments were each selected independently in response to TNDR selection rather than to a mutation or recombination event. Following the seventh transfer on the N-gene transgenic plants, TSWV S RNA remained essentially identical to the S RNA from TSWV-D, indicating that no intermolecular recombination occurred between the two S RNAs from TSWV-10 and TSWV-D nor with the transferred N gene. These results support the hypothesis that TSWV utilizes genome reassortment to adapt to new host genotypes rapidly and that elements from two or more segments of the genome are involved in suppression of the resistance reaction.
Collapse
|
41
|
Jan FJ, Pang SZ, Fagoaga C, Gonsalves D. Turnip mosaic potyvirus resistance in Nicotiana benthamiana derived by post-transcriptional gene silencing. Transgenic Res 1999; 8:203-13. [PMID: 10478490 DOI: 10.1023/a:1008915007271] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The coat protein (CP) gene of turnip mosaic potyvirus isolate ESC8 (TuMV-ESC8) was cloned and sequenced. Comparisons of the 867-nucleotide (nt) CP region with those of 11 TuMV isolates showed 86.7-89.3% nucleotide identity and 92.4-95.5% amino acid identity. The CP gene was cloned into a plant expression vector and transformed into Nicotiana benthamiana plants via Agrobacterium tumefaciens-mediated leaf disk transformation. Progeny from R0 lines was screened for resistance to TuMV-ESC8. Five of 29 tested lines showed TuMV protection in more than 50% of their progeny. Interestingly, some of the resistant plants transformed with the CP gene of TuMV displayed mild mosaicism in the new growing leaves at the later stages of evaluation; but these mosaic symptoms disappeared when the leaves were fully expanded. Collective data from steady-state RNA analysis and nuclear run-on assay of a line showed that the resistance was RNA-mediated through the post-transcriptional gene silencing mechanism.
Collapse
Affiliation(s)
- F J Jan
- Department of Plant Pathology, Cornell University, NYSAES, Geneva, NY 14456, USA
| | | | | | | |
Collapse
|
42
|
Abstract
BACKGROUND In plants, post-transcriptional gene silencing results in RNA degradation after transcription. Among tobacco transformants carrying a nitrate reductase (Nia) construct under the control of the cauliflower mosaic virus 35S promoter (35S-Nia2), one class of transformants spontaneously triggers Nia post-transcriptional gene silencing (class II) whereas another class does not (class I). Non-silenced plants of both classes become silenced when grafted onto silenced stocks, indicating the existence of a systemic silencing signal. Graft-transmitted silencing is maintained in class II but not in class I plants when removed from silenced stocks, indicating similar requirements for spontaneous triggering and maintenance. RESULTS Introduction of 35S-Nia2 DNA by the gene transfer method called biolistics led to localised acquired silencing (LAS) in bombarded leaves of wild-type, class I and class II plants, and to systemic acquired silencing (SAS) in class II plants. SAS occurred even if the targeted leaf was removed 2 days after bombardment, indicating that the systemic signal is produced, transmitted and amplified rapidly. SAS was activated by sense, antisense and promoterless Nia2 DNA constructs, indicating that transcription is not required although it does stimulate SAS. CONCLUSIONS SAS was activated by biolistic introduction of promoterless constructs, indicating that the DNA itself is a potent activator of post-transcriptional gene silencing. The systemic silencing signal invaded the whole plant by cell-to-cell and long-distance propagation, and reamplification of the signal.
Collapse
Affiliation(s)
- J C Palauqui
- Laboratoire de Biologie Cellulaire, INRA- Centre de Versailles F-78026,Versailles, Cedex, France.
| | | |
Collapse
|
43
|
Schiebel W, Pélissier T, Riedel L, Thalmeir S, Schiebel R, Kempe D, Lottspeich F, Sänger HL, Wassenegger M. Isolation of an RNA-directed RNA polymerase-specific cDNA clone from tomato. THE PLANT CELL 1998; 10:2087-101. [PMID: 9836747 PMCID: PMC143969 DOI: 10.1105/tpc.10.12.2087] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A 3600-bp RNA-directed RNA polymerase (RdRP)-specific cDNA comprising an open reading frame (ORF) of 1114 amino acids was isolated from tomato. The putative protein encoded by this ORF does not share homology with any characterized proteins. Antibodies that were raised against synthetic peptides whose sequences have been deduced from the ORF were shown to specifically detect the 127-kD tomato RdRP protein. The immunoresponse to the antibodies correlated with the enzymatic activity profile of the RdRP after chromatography on Q-, poly(A)-, and poly(U)-Sepharose, hydroxyapatite, and Sephadex G-200 columns. DNA gel blot analysis revealed a single copy of the RdRP gene in tomato. RdRP homologs from petunia, Arabidopsis, tobacco, and wheat were identified by using polymerase chain reaction. A sequence comparison indicated that sequences homologous to RdRP are also present in the yeast Schizosaccharomyces pombe and in the nematode Caenorhabditis elegans. The previously described induction of RdRP activity upon viroid infection is shown to be correlated with an increased steady state level of the corresponding mRNA. The possible involvement of this heretofore functionally elusive plant RNA polymerase in homology-dependent gene silencing is discussed.
Collapse
Affiliation(s)
- W Schiebel
- Max-Planck-Institut für Biochemie, Abteilung Viroidforschung, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schiebel W, Pélissier T, Riedel L, Thalmeir S, Schiebel R, Kempe D, Lottspeich F, Sänger HL, Wassenegger M. Isolation of an RNA-directed RNA polymerase-specific cDNA clone from tomato. THE PLANT CELL 1998. [PMID: 9836747 DOI: 10.2307/3870786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A 3600-bp RNA-directed RNA polymerase (RdRP)-specific cDNA comprising an open reading frame (ORF) of 1114 amino acids was isolated from tomato. The putative protein encoded by this ORF does not share homology with any characterized proteins. Antibodies that were raised against synthetic peptides whose sequences have been deduced from the ORF were shown to specifically detect the 127-kD tomato RdRP protein. The immunoresponse to the antibodies correlated with the enzymatic activity profile of the RdRP after chromatography on Q-, poly(A)-, and poly(U)-Sepharose, hydroxyapatite, and Sephadex G-200 columns. DNA gel blot analysis revealed a single copy of the RdRP gene in tomato. RdRP homologs from petunia, Arabidopsis, tobacco, and wheat were identified by using polymerase chain reaction. A sequence comparison indicated that sequences homologous to RdRP are also present in the yeast Schizosaccharomyces pombe and in the nematode Caenorhabditis elegans. The previously described induction of RdRP activity upon viroid infection is shown to be correlated with an increased steady state level of the corresponding mRNA. The possible involvement of this heretofore functionally elusive plant RNA polymerase in homology-dependent gene silencing is discussed.
Collapse
Affiliation(s)
- W Schiebel
- Max-Planck-Institut für Biochemie, Abteilung Viroidforschung, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wassenegger M, Pélissier T. A model for RNA-mediated gene silencing in higher plants. PLANT MOLECULAR BIOLOGY 1998; 37:349-62. [PMID: 9617806 DOI: 10.1023/a:1005946720438] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Homology-dependent gene silencing (HdGS) which is the generic term for transcriptional gene silencing (TGS), post-transcriptional gene silencing (PTGS) and RNA-mediated virus-resistance (RmVR) has been shown to frequently occur in transgenic plants. The role of RNA as a target and initiator of PTGS and RmVR is more and more manifested. Because TGS is assumed to be induced by a DNA-DNA interaction-mediated promoter methylation, a possible involvement of RNA in TGS was not really considered up to now. In this review we attempt to demonstrate that all three types of HdGS could be triggered by one RNA-based mechanism. A model proposing TGS as a consequence of RNA-directed DNA methylation (RdDM) and a refined mRNA threshold mechanism are presented. In contrast to the view that high amounts of mRNA are required we assume that the concentration of RNAs that can serve as efficient templates for a plant-encoded RNA-directed RNA polymerase (RdRP) plays a key role in HdGS and possibly also in natural gene regulation of non-transformed cells. According to this idea a particular information must be encoded to render mRNA turn-over products a suitable RdRP substrate. It will be discussed that such a mechanism could account for the silencing phenomena of poorly transcribed transgenes. Finally, an explanation for the coherency between PTGS and DNA methylation is documented.
Collapse
Affiliation(s)
- M Wassenegger
- Abteilung Viroidforschung, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
46
|
Pappu H, Pappu S, Jain R, Bertrand P, Culbreath A, McPherson R, Csinos A. Sequence characteristics of natural populations of tomato spotted wilt tospovirus infecting flue-cured tobacco in Georgia. Virus Genes 1998; 17:169-77. [PMID: 9857990 DOI: 10.1023/a:1008072825152] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using primers from conserved regions, the nucleocapsid (Nc) gene sequences of naturally occurring tomato spotted wilt tospovirus (TSWV) isolates from flue-cured tobacco (Nicotiana tabacum) grown in several Georgia counties were amplified by immunocapture-reverse transcription-polymerase chain reaction. The resulting amplicons were cloned and sequenced. Sequence analyses showed a high degree of sequence conservation among the Nc genes of the tobacco isolates, and those reported from other parts of the world. However, distinct differences that were unique to these tobacco isolates as well as the previously studied peanut, tomato and pepper isolates from Georgia were present. The Georgia isolates formed a distinct cluster that was clearly resolved from the rest of the TSWV isolates based on sequence phylograms.
Collapse
Affiliation(s)
- H Pappu
- Department of Plant Pathology, University of Georgia, Coastal Plain Experiment Station, Tifton 31793, USA.
| | | | | | | | | | | | | |
Collapse
|