1
|
Interdisciplinary biophysical studies of membrane proteins bacteriorhodopsin and rhodopsin. Biophys Rev 2023; 15:111-125. [PMID: 36909961 PMCID: PMC9995646 DOI: 10.1007/s12551-022-01003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/28/2022] [Indexed: 10/10/2022] Open
Abstract
The centenary of the birth of H. Gobind Khorana provides an auspicious opportunity to review the origins and evolution of parallel advances in biophysical methodology and molecular genetics technology used to study membrane proteins. Interdisciplinary work in the Khorana laboratory in the late 1970s and for the next three decades led to productive collaborations and fostered three subsequent scientific generations whose biophysical work on membrane proteins has led to detailed elucidation of the molecular mechanisms of energy transduction by the light-driven proton pump bacteriorhodopsin (bR) and signal transduction by the G protein-coupled receptor (GPCR) rhodopsin. This review will highlight the origins and advances of biophysical studies of membrane proteins made possible by the application of molecular genetics approaches to engineer site-specific alterations of membrane protein structures.
Collapse
|
2
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
3
|
El Hage K, Brickel S, Hermelin S, Gaulier G, Schmidt C, Bonacina L, van Keulen SC, Bhattacharyya S, Chergui M, Hamm P, Rothlisberger U, Wolf JP, Meuwly M. Implications of short time scale dynamics on long time processes. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061507. [PMID: 29308419 PMCID: PMC5741438 DOI: 10.1063/1.4996448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 05/02/2023]
Abstract
This review provides a comprehensive overview of the structural dynamics in topical gas- and condensed-phase systems on multiple length and time scales. Starting from vibrationally induced dissociation of small molecules in the gas phase, the question of vibrational and internal energy redistribution through conformational dynamics is further developed by considering coupled electron/proton transfer in a model peptide over many orders of magnitude. The influence of the surrounding solvent is probed for electron transfer to the solvent in hydrated I-. Next, the dynamics of a modified PDZ domain over many time scales is analyzed following activation of a photoswitch. The hydration dynamics around halogenated amino acid side chains and their structural dynamics in proteins are relevant for iodinated TyrB26 insulin. Binding of nitric oxide to myoglobin is a process for which experimental and computational analyses have converged to a common view which connects rebinding time scales and the underlying dynamics. Finally, rhodopsin is a paradigmatic system for multiple length- and time-scale processes for which experimental and computational methods provide valuable insights into the functional dynamics. The systems discussed here highlight that for a comprehensive understanding of how structure, flexibility, energetics, and dynamics contribute to functional dynamics, experimental studies in multiple wavelength regions and computational studies including quantum, classical, and more coarse grained levels are required.
Collapse
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sebastian Brickel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sylvain Hermelin
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Geoffrey Gaulier
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Cédric Schmidt
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Luigi Bonacina
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Siri C van Keulen
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | | | - Majed Chergui
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Jean-Pierre Wolf
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Kamiya M, Hayashi S. Photoactivation Intermediates of a G-Protein Coupled Receptor Rhodopsin Investigated by a Hybrid Molecular Simulation. J Phys Chem B 2017; 121:3842-3852. [PMID: 28240904 DOI: 10.1021/acs.jpcb.6b13050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopsin is a G-protein coupled receptor functioning as a photoreceptor for vision through photoactivation of a covalently bound ligand of a retinal protonated Schiff base chromophore. Despite the availability of structural information on the inactivated and activated forms of the receptor, the transition processes initiated by the photoabsorption have not been well understood. Here we theoretically examined the photoactivation processes by means of molecular dynamics (MD) simulations and ab initio quantum mechanical/molecular mechanical (QM/MM) free energy geometry optimizations which enabled accurate geometry determination of the ligand molecule in ample statistical conformational samples of the protein. Structures of the intermediate states of the activation process, blue-shifted intermediate and Lumi, as well as the dark state first generated by MD simulations and then refined by the QM/MM free energy geometry optimizations were characterized by large displacement of the β-ionone ring of retinal along with change in the hydrogen bond of the protonated Schiff base. The ab initio calculations of vibrational and electronic spectroscopic properties of those states well reproduced the experimental observations and successfully identified the molecular origins underlying the spectroscopic features. The structural evolution in the formation of the intermediates provides a molecular insight into the efficient activation processes of the receptor.
Collapse
Affiliation(s)
- Motoshi Kamiya
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Brunk E, Rothlisberger U. Mixed Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations of Biological Systems in Ground and Electronically Excited States. Chem Rev 2015; 115:6217-63. [PMID: 25880693 DOI: 10.1021/cr500628b] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elizabeth Brunk
- †Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.,‡Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94618, United States
| | - Ursula Rothlisberger
- †Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.,§National Competence Center of Research (NCCR) MARVEL-Materials' Revolution: Computational Design and Discovery of Novel Materials, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Campomanes P, Neri M, Horta BAC, Röhrig UF, Vanni S, Tavernelli I, Rothlisberger U. Origin of the Spectral Shifts among the Early Intermediates of the Rhodopsin Photocycle. J Am Chem Soc 2014; 136:3842-51. [DOI: 10.1021/ja411303v] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Pablo Campomanes
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| | - Marilisa Neri
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| | - Bruno A. C. Horta
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| | - Ute F. Röhrig
- Molecular Modeling
Group, Swiss Institute of
Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Stefano Vanni
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| | - Ivano Tavernelli
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Kaila VRI, Send R, Sundholm D. The effect of protein environment on photoexcitation properties of retinal. J Phys Chem B 2012; 116:2249-58. [PMID: 22166007 DOI: 10.1021/jp205918m] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinal is the photon absorbing chromophore of rhodopsin and other visual pigments, enabling the vertebrate vision process. The effects of the protein environment on the primary photoexcitation process of retinal were studied by time-dependent density functional theory (TDDFT) and the algebraic diagrammatic construction through second order (ADC(2)) combined with our recently introduced reduction of virtual space (RVS) approximation method. The calculations were performed on large full quantum chemical cluster models of the bluecone (BC) and rhodopsin (Rh) pigments with 165-171 atoms. Absorption wavelengths of 441 and 491 nm were obtained at the B3LYP level of theory for the respective models, which agree well with the experimental values of 414 and 498 nm. Electrostatic rather than structural strain effects were shown to dominate the spectral tuning properties of the surrounding protein. The Schiff base retinal and a neighboring Glu-113 residue were found to have comparable proton affinities in the ground state of the BC model, whereas in the excited state, the proton affinity of the Schiff base is 5.9 kcal/mol (0.26 eV) higher. For the ground and excited states of the Rh model, the proton affinity of the Schiff base is 3.2 kcal/mol (0.14 eV) and 7.9 kcal/mol (0.34 eV) higher than for Glu-113, respectively. The protein environment was found to enhance the bond length alternation (BLA) of the retinyl chain and blueshift the first absorption maxima of the protonated Schiff base in the BC and Rh models relative to the chromophore in the gas phase. The protein environment was also found to decrease the intensity of the second excited state, thus improving the quantum yield of the photoexcitation process. Relaxation of the BC model on the excited state potential energy surface led to a vanishing BLA around the isomerization center of the conjugated retinyl chain, rendering the retinal accessible for cis-trans isomerization. The energy of the relaxed excited state was found to be 30 kcal/mol (1.3 eV) above the minimum ground state energy, and might be related to the transition state of the thermal activation process.
Collapse
Affiliation(s)
- Ville R I Kaila
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
8
|
Brown MF, Salgado GFJ, Struts AV. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:177-93. [PMID: 19716801 DOI: 10.1016/j.bbamem.2009.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/25/2009] [Accepted: 08/12/2009] [Indexed: 11/28/2022]
Abstract
Rhodopsin is a canonical member of class A of the G protein-coupled receptors (GPCRs) that are implicated in many of the drug interventions in humans and are of great pharmaceutical interest. The molecular mechanism of rhodopsin activation remains unknown as atomistic structural information for the active metarhodopsin II state is currently lacking. Solid-state (2)H NMR constitutes a powerful approach to study atomic-level dynamics of membrane proteins. In the present application, we describe how information is obtained about interactions of the retinal cofactor with rhodopsin that change with light activation of the photoreceptor. The retinal methyl groups play an important role in rhodopsin function by directing conformational changes upon transition into the active state. Site-specific (2)H labels have been introduced into the methyl groups of retinal and solid-state (2)H NMR methods applied to obtain order parameters and correlation times that quantify the mobility of the cofactor in the inactive dark state, as well as the cryotrapped metarhodopsin I and metarhodopsin II states. Analysis of the angular-dependent (2)H NMR line shapes for selectively deuterated methyl groups of rhodopsin in aligned membranes enables determination of the average ligand conformation within the binding pocket. The relaxation data suggest that the beta-ionone ring is not expelled from its hydrophobic pocket in the transition from the pre-activated metarhodopsin I to the active metarhodopsin II state. Rather, the major structural changes of the retinal cofactor occur already at the metarhodopsin I state in the activation process. The metarhodopsin I to metarhodopsin II transition involves mainly conformational changes of the protein within the membrane lipid bilayer rather than the ligand. The dynamics of the retinylidene methyl groups upon isomerization are explained by an activation mechanism involving cooperative rearrangements of extracellular loop E2 together with transmembrane helices H5 and H6. These activating movements are triggered by steric clashes of the isomerized all-trans retinal with the beta4 strand of the E2 loop and the side chains of Glu(122) and Trp(265) within the binding pocket. The solid-state (2)H NMR data are discussed with regard to the pathway of the energy flow in the receptor activation mechanism.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
9
|
Brown MF, Martínez-Mayorga K, Nakanishi K, Salgado GFJ, Struts AV. Retinal conformation and dynamics in activation of rhodopsin illuminated by solid-state H NMR spectroscopy. Photochem Photobiol 2009; 85:442-53. [PMID: 19267870 DOI: 10.1111/j.1751-1097.2008.00510.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Solid-state NMR spectroscopy gives a powerful avenue for investigating G protein-coupled receptors and other integral membrane proteins in a native-like environment. This article reviews the use of solid-state (2)H NMR to study the retinal cofactor of rhodopsin in the dark state as well as the meta I and meta II photointermediates. Site-specific (2)H NMR labels have been introduced into three regions (methyl groups) of retinal that are crucially important for the photochemical function of rhodopsin. Despite its phenomenal stability (2)H NMR spectroscopy indicates retinal undergoes rapid fluctuations within the protein binding cavity. The spectral lineshapes reveal the methyl groups spin rapidly about their three-fold (C(3)) axes with an order parameter for the off-axial motion of SC(3) approximately 0.9. For the dark state, the (2)H NMR structure of 11-cis-retinal manifests torsional twisting of both the polyene chain and the beta-ionone ring due to steric interactions of the ligand and the protein. Retinal is accommodated within the rhodopsin binding pocket with a negative pretwist about the C11=C12 double bond. Conformational distortion explains its rapid photochemistry and reveals the trajectory of the 11-cis to trans isomerization. In addition, (2)H NMR has been applied to study the retinylidene dynamics in the dark and light-activated states. Upon isomerization there are drastic changes in the mobility of all three methyl groups. The relaxation data support an activation mechanism whereby the beta-ionone ring of retinal stays in nearly the same environment, without a large displacement of the ligand. Interactions of the beta-ionone ring and the retinylidene Schiff base with the protein transmit the force of the retinal isomerization. Solid-state (2)H NMR thus provides information about the flow of energy that triggers changes in hydrogen-bonding networks and helix movements in the activation mechanism of the photoreceptor.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry, University of Arizona, Tucson, AZ, USA.
| | | | | | | | | |
Collapse
|
10
|
Brown MF, Heyn MP, Job C, Kim S, Moltke S, Nakanishi K, Nevzorov AA, Struts AV, Salgado GFJ, Wallat I. Solid-state 2H NMR spectroscopy of retinal proteins in aligned membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:2979-3000. [PMID: 18021739 PMCID: PMC5233718 DOI: 10.1016/j.bbamem.2007.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/10/2007] [Accepted: 10/10/2007] [Indexed: 11/21/2022]
Abstract
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the "business end" of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the beta-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Salgado GFJ, Struts AV, Tanaka K, Krane S, Nakanishi K, Brown MF. Solid-state 2H NMR structure of retinal in metarhodopsin I. J Am Chem Soc 2007; 128:11067-71. [PMID: 16925423 DOI: 10.1021/ja058738+] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural and photochemical changes in rhodopsin due to absorption of light are crucial for understanding the process of visual signaling. We investigated the structure of trans-retinal in the metarhodopsin I photointermediate (MI), where the retinylidene cofactor functions as an antagonist. Rhodopsin was regenerated using retinal that was (2)H-labeled at the C5, C9, or C13 methyl groups and was reconstituted with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. Membranes were aligned by isopotential centrifugation, and rhodopsin in the supported bilayers was then bleached and cryotrapped in the MI state. Solid-state (2)H NMR spectra of oriented rhodopsin in the low-temperature lipid gel state were analyzed in terms of a static uniaxial distribution (Nevzorov, A. A.; Moltke, S.; Heyn, M. P.; Brown, M. F. J. Am. Chem. Soc. 1999, 121, 7636-7643). The line shape analysis allowed us to obtain the methyl bond orientations relative to the membrane normal in the presence of substantial alignment disorder (mosaic spread). Relative orientations of the methyl groups were used to calculate effective torsional angles between the three different planes that represent the polyene chain and the beta-ionone ring of retinal. Assuming a three-plane model, a less distorted structure was found for retinal in MI compared to the dark state. Our results are pertinent to how photonic energy is channeled within the protein to allow the strained retinal conformation to relax, thereby forming the activated state of the receptor.
Collapse
Affiliation(s)
- Gilmar F J Salgado
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lau PW, Grossfield A, Feller SE, Pitman MC, Brown MF. Dynamic structure of retinylidene ligand of rhodopsin probed by molecular simulations. J Mol Biol 2007; 372:906-917. [PMID: 17719606 PMCID: PMC5233727 DOI: 10.1016/j.jmb.2007.06.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/13/2007] [Accepted: 06/18/2007] [Indexed: 11/22/2022]
Abstract
Rhodopsin is currently the only available atomic-resolution template for understanding biological functions of the G protein-coupled receptor (GPCR) family. The structural basis for the phenomenal dark state stability of 11-cis-retinal bound to rhodopsin and its ultrafast photoreaction are active topics of research. In particular, the beta-ionone ring of the retinylidene inverse agonist is crucial for the activation mechanism. We analyzed a total of 23 independent, 100 ns all-atom molecular dynamics simulations of rhodopsin embedded in a lipid bilayer in the microcanonical (N,V,E) ensemble. Analysis of intramolecular fluctuations predicts hydrogen-out-of-plane (HOOP) wagging modes of retinal consistent with those found in Raman vibrational spectroscopy. We show that sampling and ergodicity of the ensemble of simulations are crucial for determining the distribution of conformers of retinal bound to rhodopsin. The polyene chain is rigidly locked into a single, twisted conformation, consistent with the function of retinal as an inverse agonist in the dark state. Most surprisingly, the beta-ionone ring is mobile within its binding pocket; interactions are non-specific and the cavity is sufficiently large to enable structural heterogeneity. We find that retinal occupies two distinct conformations in the dark state, contrary to most previous assumptions. The beta-ionone ring can rotate relative to the polyene chain, thereby populating both positively and negatively twisted 6-s-cis enantiomers. This result, while unexpected, strongly agrees with experimental solid-state (2)H NMR spectra. Correlation analysis identifies the residues most critical to controlling mobility of retinal; we find that Trp265 moves away from the ionone ring prior to any conformational transition. Our findings reinforce how molecular dynamics simulations can challenge conventional assumptions for interpreting experimental data, especially where existing models neglect conformational fluctuations.
Collapse
Affiliation(s)
- Pick-Wei Lau
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | - Alan Grossfield
- IBM TJ Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Scott E. Feller
- Department of Chemistry, Wabash College, Crawfordsville, Indiana 47933, USA
| | - Michael C. Pitman
- IBM TJ Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Michael F. Brown
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
- Corresponding author. Present address: Pick-Wei Lau, Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
13
|
Struts AV, Salgado GFJ, Tanaka K, Krane S, Nakanishi K, Brown MF. Structural analysis and dynamics of retinal chromophore in dark and meta I states of rhodopsin from 2H NMR of aligned membranes. J Mol Biol 2007; 372:50-66. [PMID: 17640664 PMCID: PMC5233725 DOI: 10.1016/j.jmb.2007.03.046] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 03/02/2007] [Accepted: 03/19/2007] [Indexed: 11/29/2022]
Abstract
Rhodopsin is a prototype for G protein-coupled receptors (GPCRs) that are implicated in many biological responses in humans. A site-directed (2)H NMR approach was used for structural analysis of retinal within its binding cavity in the dark and pre-activated meta I states. Retinal was labeled with (2)H at the C5, C9, or C13 methyl groups by total synthesis, and was used to regenerate the opsin apoprotein. Solid-state (2)H NMR spectra were acquired for aligned membranes in the low-temperature lipid gel phase versus the tilt angle to the magnetic field. Data reduction assumed a static uniaxial distribution, and gave the retinylidene methyl bond orientations plus the alignment disorder (mosaic spread). The dark-state (2)H NMR structure of 11-cis-retinal shows torsional twisting of the polyene chain and the beta-ionone ring. The ligand undergoes restricted motion, as evinced by order parameters of approximately 0.9 for the spinning C-C(2)H(3) groups, with off-axial fluctuations of approximately 15 degrees . Retinal is accommodated within the rhodopsin binding pocket with a negative pre-twist about the C11=C12 double bond that explains its rapid photochemistry and the trajectory of 11-cis to trans isomerization. In the cryo-trapped meta I state, the (2)H NMR structure shows a reduction of the polyene strain, while torsional twisting of the beta-ionone ring is maintained. Distortion of the retinal conformation is interpreted through substituent control of receptor activation. Steric hindrance between trans retinal and Trp265 can trigger formation of the subsequent activated meta II state. Our results are pertinent to quantum and molecular mechanics simulations of ligands bound to GPCRs, and illustrate how (2)H NMR can be applied to study their biological mechanisms of action.
Collapse
Affiliation(s)
- Andrey V. Struts
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Gilmar F. J. Salgado
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | - Katsunori Tanaka
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Sonja Krane
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Koji Nakanishi
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Michael F. Brown
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
- Corresponding author:
| |
Collapse
|
14
|
Roberts NW. The optics of vertebrate photoreceptors: anisotropy and form birefringence. Vision Res 2006; 46:3259-66. [PMID: 16707145 DOI: 10.1016/j.visres.2006.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 03/17/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
The optics of vertebrate photoreceptors have been investigated with specific reference to the effect of form birefringence. The complex dielectric tensor of the lamellar-like outer segment structure has been derived, allowing the transverse spectral absorbance to be calculated for different incident polarizations. These results were used to calculate the changes in the cellular dichroic ratio as a function of both the volume occupied by the bilayers and the real and complex parts of the intrinsic birefringence of the bilayers. Physiologically realistic values of these parameters show the cellular dichroic ratio to be greater than the bilayer dichroic ratio by a factor of approximately 1.3. Furthermore, the calculations of spectral absorbance indicate that form birefringence may affect measurements of optical density in transversely orientated outer segments.
Collapse
Affiliation(s)
- N W Roberts
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
15
|
Gascón JA, Sproviero EM, Batista VS. Computational studies of the primary phototransduction event in visual rhodopsin. Acc Chem Res 2006; 39:184-93. [PMID: 16548507 DOI: 10.1021/ar050027t] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This Account addresses recent advances in the elucidation of the detailed molecular rearrangements due to the primary photochemical event in rhodopsin, a prototypical G-protein-coupled receptor (GPCR) responsible for the signal transmission cascade in the vertebrate vision process. The reviewed studies provide fundamental insight on long-standing problems regarding the assembly and function of the individual residues and bound water molecules that form the rhodopsin active site, a center that catalyzes the 11-cis/all-trans isomerization of the retinyl chromophore in the primary step of the phototransduction mechanism. Emphasis is placed on the authors' recent computational studies, based on state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, addressing the structural refinement of the retinyl chromophore binding site in high-resolution X-ray structures of bovine visual rhodopsin, the energy storage mechanism, and the molecular origin of spectroscopic changes due to the primary photochemical event.
Collapse
Affiliation(s)
- José A Gascón
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, CT 06520-8107, USA
| | | | | |
Collapse
|
16
|
Squillacote ME, Liang F. Conformational Thermodynamic and Kinetic Parameters of Methyl-Substituted 1,3-Butadienes. J Org Chem 2005; 70:6564-73. [PMID: 16095272 DOI: 10.1021/jo0500277] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The s-trans/s-cis conformational equilibria of 10 methyl-substituted 1,3-butadienes [(E)- and (Z)-1,3-pentadiene; 2-methyl-1,3-butadiene; (E)-2-methyl-1,3-pentadiene; 2,3-dimethyl-1,3-butadiene; (E,E)-, (E,Z)-, and (Z,Z)-2,4-hexadiene; 2,5-dimethyl-2,4-hexadiene; and (E,E)-2,4-dimethyl-2,4-hexadiene] were explored by trapping high-temperature conformational equilibria by cryogenic deposition. The vapor state enthalpy differences of these s-trans/s-cis conformers, DeltaH(t equilibrium c), were determined by varying the equilibrating temperature and integrating the resulting matrix isolated IR spectra. The results obtained are in good agreement with ab initio calculations at the G3 level. From these thermodynamic parameters, methyl group nonbonded interactions in conjugated 1,3-butadienes were delineated. Rates of decay of s-cis conformers to their s-trans rotamers were obtained in the solid-state by warming up trapped high-temperature equilibrated samples formed from neat depositions. These data were analyzed in terms of dispersive kinetics with matrix site effects in the solid-state modeled by a Gaussian distribution of activation energies. The activation barriers thus obtained were compared with G3 calculations of the enthalpies of activation.
Collapse
|
17
|
Gascón JA, Sproviero EM, Batista VS. QM/MM Study of the NMR Spectroscopy of the Retinyl Chromophore in Visual Rhodopsin. J Chem Theory Comput 2005; 1:674-85. [DOI: 10.1021/ct0500850] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- José A. Gascón
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - Eduardo M. Sproviero
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - Victor S. Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| |
Collapse
|
18
|
Fel'dman TB, Fedorovich IB, Ostrovskii MA. Characteristics of the photoconversion of rhodopsin in the early stages of photolysis. ACTA ACUST UNITED AC 2004; 34:735-42. [PMID: 15526430 DOI: 10.1023/b:neab.0000036015.85880.9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Low-temperature spectrophotometry was used to study the primary stages of rhodopsin photolysis. A digitonin extract of rhodopsin was irradiated at -155 degrees C with blue light of wavelength 436 nm. The stage of the bathorhodopsin --> lumirhodopsin conversion was accompanied by the simultaneous formation of several products. Formation of an intermediate product spectrally similar to the known "blue-shifted intermediate" (BSI) was demonstrated. It is suggested that the appearance of more than one intermediate product at each stage of photolysis reflects the existence of several conformational states of the rhodopsin molecule during its photoconversion.
Collapse
Affiliation(s)
- T B Fel'dman
- Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119991 Moscow, Russia
| | | | | |
Collapse
|
19
|
Roberts NW, Gleeson HF. The absorption of polarized light by vertebrate photoreceptors. Vision Res 2004; 44:2643-52. [PMID: 15358059 DOI: 10.1016/j.visres.2004.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 06/09/2004] [Indexed: 11/19/2022]
Abstract
A physiologically realistic model has been constructed for a theoretical study of the mechanisms by which the vertebrate visual system absorbs linearly polarized light. Using a 4 x 4 matrix technique, analytic solutions to Maxwell's equations have been deduced for rod and cone photoreceptors, allowing calculation of the absorbance as a function of wavelength for a variety of illumination geometries. With the use of experimentally measured optical parameters, the calculated absorbance spectra show excellent agreement in both magnitude and form with microspectrophotometric data. Moreover, failing to correct for the true nature of reflection or scattering in the sample, results in the elevated absorbance commonly seen at shorter wavelengths in experimental measurements. Finally, calculated dichroic ratios also accurately predict experimental results, mirroring the differences seen between rods and cones.
Collapse
Affiliation(s)
- N W Roberts
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK.
| | | |
Collapse
|
20
|
Wang Y, Botelho AV, Martinez GV, Brown MF. Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction. J Am Chem Soc 2002; 124:7690-701. [PMID: 12083922 DOI: 10.1021/ja0200488] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Changes in lipid composition have recently been shown to exert appreciable influences on the activities of membrane-bound proteins and peptides. We tested the hypothesis that the conformational states of rhodopsin linked to visual signal transduction are related to biophysical properties of the membrane lipid bilayer. For bovine rhodopsin, the meta I-meta II conformational transition was studied in egg phosphatidylcholine (PC) recombinants versus the native rod outer segment (ROS) membranes by means of flash photolysis. Formation of metarhodopsin II was observed by the change in absorbance at 478 nm after a single actinic flash was delivered to the sample. The meta I/meta II ratio was investigated as a function of both temperature and pH. The data clearly demonstrated thermodynamic reversibility of the transition for both the egg PC recombinants and the native ROS membranes. A significant shift of the apparent pK(a) for the acid-base equilibrium to lower values was evident in the egg PC recombinant, with little meta II produced under physiological conditions. Calculations of the membrane surface pH using a Poisson-Boltzmann model suggested the free energies of the meta I and meta II states were significantly affected by electrostatic properties of the bilayer lipids. In the ROS membranes, phosphatidylserine (PS) is needed for full formation of meta II, in combination with phosphatidylethanolamine (PE) and polyunsaturated docosahexaenoic acid (DHA; 22:6omega3) chains. We propose that the PS surface potential leads to an accumulation of hydronium ions, H(3)O(+), in the electrical double layer, which drive the reaction together with the large negative spontaneous curvature (H(0)) conferred by PE plus DHA chains. The elastic stress/strain of the bilayer arises from an interplay of the approximately zero H(0) from PS and the negative H(0) due to the PE headgroups and polyunsaturated chains. The lipid influences are further explained in terms of matching of the bilayer spontaneous curvature to the curvature at the lipid/rhodopsin interface, as formulated by the Helfrich bending energy. These new findings guide current ideas as to how bilayer properties govern the conformational energetics of integral membrane proteins. Moreover, they yield knowledge of how membrane lipid-protein interactions involving acidic phospholipids such as PS and neutral polyunsaturated DHA chains are implicated in key biological functions such as vision.
Collapse
Affiliation(s)
- Yin Wang
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
21
|
Pan D, Ganim Z, Kim JE, Verhoeven MA, Lugtenburg J, Mathies RA. Time-resolved resonance Raman analysis of chromophore structural changes in the formation and decay of rhodopsin's BSI intermediate. J Am Chem Soc 2002; 124:4857-64. [PMID: 11971736 PMCID: PMC1440918 DOI: 10.1021/ja012666e] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time-resolved resonance Raman microchip flow experiments are performed to obtain the vibrational spectrum of the chromophore in rhodopsin's BSI intermediate and to probe structural changes in the bathorhodopsin-to-BSI and BSI-to-lumirhodopsin transitions. Kinetic Raman spectra from 250 ns to 3 micros identify the key vibrational features of BSI. BSI exhibits relatively intense HOOP modes at 886 and 945 cm(-1) that are assigned to C(14)H and C(11)H=C(12)H A(u) wags, respectively. This result suggests that in the bathorhodopsin-to-BSI transition the highly strained all-trans chromophore has relaxed in the C(10)-C(11)=C(12)-C(13) region, but is still distorted near C(14). The low frequency of the 11,12 A(u) HOOP mode in BSI compared with that of lumirhodopsin and metarhodopsin I indicates weaker coupling between the 11H and 12H wags due to residual distortion of the BSI chromophore near C(11)=C(12). The C=NH(+) stretching mode in BSI at 1653 cm(-1) exhibits a normal deuteriation induced downshift of 23 cm(-1), implying that there is no significant structural rearrangement of the Schiff base counterion region in the transition of bathorhodopsin to BSI. However, a dramatic Schiff base environment change occurs in the BSI-to-lumirhodopsin transition, because the 1638 cm(-1) C=NH(+) stretching mode in lumirhodopsin is unusually low and shifts only 7 cm(-1) in D(2)O, suggesting that it has essentially no H-bonding acceptor. With these data we can for the first time compare and discuss the room temperature resonance Raman vibrational structure of all the key intermediates in visual excitation.
Collapse
Affiliation(s)
- Duohai Pan
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The crystal structure of rod cell visual pigment rhodopsin was recently solved at 2.8-A resolution. A critical evaluation of a decade of structure-function studies is now possible. It is also possible to begin to explain the structural basis for several unique physiological properties of the vertebrate visual system, including extremely low dark noise levels as well as high gain and color detection. The ligand-binding pocket of rhodopsin is remarkably compact, and several apparent chromophore-protein interactions were not predicted from extensive mutagenesis or spectroscopic studies. The transmembrane helices are interrupted or kinked at multiple sites. An extensive network of interhelical interactions stabilizes the ground state of the receptor. The helix movement model of receptor activation, which might apply to all G protein-coupled receptors (GPCRs) of the rhodopsin family, is supported by several structural elements that suggest how light-induced conformational changes in the ligand-binding pocket are transmitted to the cytoplasmic surface. The cytoplasmic domain of the receptor is remarkable for a carboxy-terminal helical domain extending from the seventh transmembrane segment parallel to the bilayer surface. Thus the cytoplasmic surface appears to be approximately the right size to bind to the transducin heterotrimer in a one-to-one complex. Future high-resolution structural studies of rhodopsin and other GPCRs will form a basis to elucidate the detailed molecular mechanism of GPCR-mediated signal transduction.
Collapse
Affiliation(s)
- S T Menon
- Howard Hughes Medical Institute, Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
23
|
Gröbner G, Burnett IJ, Glaubitz C, Choi G, Mason AJ, Watts A. Observations of light-induced structural changes of retinal within rhodopsin. Nature 2000; 405:810-3. [PMID: 10866205 DOI: 10.1038/35015604] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photo-isomerization of the 11-cis retinal chromophore activates the mammalian light-receptor rhodopsin, a representative member of a major superfamily of transmembrane G-protein-coupled receptor proteins (GPCRs) responsible for many cell signal communication pathways. Although low-resolution (5 A) electron microscopy studies confirm a seven transmembrane helix bundle as a principal structural component of rhodopsin, the structure of the retinal within this helical bundle is not known in detail. Such information is essential for any theoretical or functional understanding of one of the fastest occurring photoactivation processes in nature, as well as the general mechanism behind GPCR activation. Here we determine the three-dimensional structure of 11-cis retinal bound to bovine rhodopsin in the ground state at atomic level using a new high-resolution solid-state NMR method. Significant structural changes are observed in the retinal following activation by light to the photo-activated M(I) state of rhodopsin giving the all-trans isomer of the chromophore. These changes are linked directly to the activation of the receptor, providing an insight into the activation mechanism of this class of receptors at a molecular level.
Collapse
Affiliation(s)
- G Gröbner
- Department of Biochemistry, University of Oxford, UK
| | | | | | | | | | | |
Collapse
|
24
|
Degrip W, Rothschild K. Chapter 1 Structure and mechanism of vertebrate visual pigments. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1383-8121(00)80004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
25
|
Borucki B, Otto H, Heyn MP. Reorientation of the Retinylidene Chromophore in the K, L, and M Intermediates of Bacteriorhodopsin from Time-Resolved Linear Dichroism: Resolving Kinetically and Spectrally Overlapping Intermediates of Chromoproteins. J Phys Chem B 1999. [DOI: 10.1021/jp990679x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Berthold Borucki
- Biophysics Group, Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Harald Otto
- Biophysics Group, Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Maarten P. Heyn
- Biophysics Group, Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
26
|
Hudson BS, Birge RR. Angular Orientation of the Retinyl Chromophore of Bacteriorhodopsin: Reconciliation of 2H NMR and Optical Measurements. J Phys Chem A 1999. [DOI: 10.1021/jp9836271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruce S. Hudson
- Department of Chemistry, Syracuse University, Syracuse, New York 13244-4100
| | - Robert R. Birge
- Department of Chemistry, Syracuse University, Syracuse, New York 13244-4100
| |
Collapse
|
27
|
Abdulaev NG, Ridge KD. Light-induced exposure of the cytoplasmic end of transmembrane helix seven in rhodopsin. Proc Natl Acad Sci U S A 1998; 95:12854-9. [PMID: 9789004 PMCID: PMC23631 DOI: 10.1073/pnas.95.22.12854] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key step in signal transduction in the visual cell is the light-induced conformational change of rhodopsin that triggers the binding and activation of the guanine nucleotide-binding protein. Site-directed mAbs against bovine rhodopsin were produced and used to detect and characterize these conformational changes upon light activation. Among several antibodies that bound exclusively to the light-activated state, an antibody (IgG subclass) with the highest affinity (Ka approximately 6 x 10(-9) M) was further purified and characterized. The epitope of this antibody was mapped to the amino acid sequence 304-311. This epitope extends from the central region to the cytoplasmic end of the seventh transmembrane helix and incorporates a part of a highly conserved NPXXY motif, a critical region for signaling and agonist-induced internalization of several biogenic amine and peptide receptors. In the dark state, no binding of the antibody to rhodopsin was detected. Accessibility of the epitope to the antibody correlated with formation of the metarhodopsin II photointermediate and was reduced significantly at the metarhodopsin III intermediate. Further, incubation of the antigen-antibody complex with 11-cis-retinal failed to regenerate the native rhodopsin chromophore. These results suggest significant and reversible conformational changes in close proximity to the cytoplasmic end of the seventh transmembrane helix of rhodopsin that might be important for folding and signaling.
Collapse
Affiliation(s)
- N G Abdulaev
- Center for Advanced Research in Biotechnology, National Institute of Standards and Technology and the University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | |
Collapse
|
28
|
Cordfunke R, Kort R, Pierik A, Gobets B, Koomen GJ, Verhoeven JW, Hellingwerf KJ. Trans/cis (Z/E) photoisomerization of the chromophore of photoactive yellow protein is not a prerequisite for the initiation of the photocycle of this photoreceptor protein. Proc Natl Acad Sci U S A 1998; 95:7396-401. [PMID: 9636160 PMCID: PMC22629 DOI: 10.1073/pnas.95.13.7396] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The chromophore of photoactive yellow protein (PYP) (i.e., 4-hydroxycinnamic acid) has been replaced by an analogue with a triple bond, rather than a double bond (by using 4-hydroxyphenylpropiolic acid in the reconstitution, yielding hybrid I) and by a "locked" chromophore (through reconstitution with 7-hydroxycoumarin-3-carboxylic acid, in which a covalent bridge is present across the vinyl bond, resulting in hybrid II). These hybrids absorb maximally at 464 and 443 nm, respectively, which indicates that in both hybrids the deprotonated chromophore does fit into the chromophore-binding pocket. Because the triple bond cannot undergo cis/trans (or E/Z) photoisomerization and because of the presence of the lock across the vinyl double bond in hybrid II, it was predicted that these two hybrids would not be able to photocycle. Surprisingly, both are able. We have demonstrated this ability by making use of transient absorption, low-temperature absorption, and Fourier-transform infrared (FTIR) spectroscopy. Both hybrids, upon photoexcitation, display authentic photocycle signals in terms of a red-shifted intermediate; hybrid I, in addition, goes through a blue-shifted-like intermediate state, with very slow kinetics. We interpret these results as further evidence that rotation of the carbonyl group of the thioester-linked chromophore of PYP, proposed in a previous FTIR study and visualized in recent time-resolved x-ray diffraction experiments, is of critical importance for photoactivation of PYP.
Collapse
Affiliation(s)
- R Cordfunke
- Laboratory for Microbiology, E.C. Slater Institute, BioCentrum, Achtergracht 127, 1018 WS Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Gröbner G, Choi G, Burnett IJ, Glaubitz C, Verdegem PJ, Lugtenburg J, Watts A. Photoreceptor rhodopsin: structural and conformational study of its chromophore 11-cis retinal in oriented membranes by deuterium solid state NMR. FEBS Lett 1998; 422:201-4. [PMID: 9490006 DOI: 10.1016/s0014-5793(97)01591-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rhodopsin is the retinal photoreceptor responsible for visual signal transduction. To determine the orientation and conformation of retinal within the binding pocket of this membrane bound receptor, an ab initio solid state 2H NMR approach was used. Bovine rhodopsin containing 11-cis retinal, specifically deuterated at its methyl groups at the C19 or C20 position, was uniaxially oriented in DMPC bilayers. Integrity of the membranes and quality of alignment were monitored by 31P NMR. Analysis of the obtained 2H NMR spectra provided angles for the individual labelled chemical bond vectors leading to an overall picture for the three dimensional structure of the polyene chain of the chromophore in the protein binding pocket around the Schiff base attachment site.
Collapse
Affiliation(s)
- G Gröbner
- Department of Biochemistry, University of Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Lewis JW, Jäger S, Kliger DS. Absorbance changes by aromatic amino acid side chains in early rhodopsin photointermediates. Photochem Photobiol 1997; 66:741-6. [PMID: 9421960 DOI: 10.1111/j.1751-1097.1997.tb03218.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Absorbance changes were monitored from 250 to 650 nm during the first microsecond after photolysis of detergent suspensions of bovine rhodopsin at 20 degrees C. Global analysis of the resulting data produced difference spectra for bathorhodopsin, BSI and lumirhodopsin which give the change in absorbance of the aromatic amino acid side chains in these photointermediates relative to rhodopsin. These spectra show that the significant bleaching of absorbance near 280 nm, which has been seen previously for the lumirhodopsin, metarhodopsin I and metarhodopsin II intermediates, extends to times as early as bathorhodopsin. Because no corresponding absorbance increase is observed in the 250-275 nm region, the earliest bleaching of the 280 nm absorbance in rhodopsin is attributed to disruption of a hyperchromic interaction affecting Trp265. Partial decay of this 280 nm bleaching as bathorhodopsin converts to BSI takes place maximally near 290 nm, where Trp265 has been shown to absorb, and could be due to the ring of the retinylidene chromophore resuming a position at the BSI stage that reestablishes the hyperchromic interaction with Trp265. A subsequent change in the 250-300 nm region, which has no counterpart in the visible chromophore bands, indicates the possible presence of a protein-localized process as lumirhodopsin is formed.
Collapse
Affiliation(s)
- J W Lewis
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064, USA
| | | | | |
Collapse
|