1
|
Elaiw AM, Almohaimeed EA. Within-host dynamics of HTLV-2 and HIV-1 co-infection with delay. JOURNAL OF BIOLOGICAL DYNAMICS 2025; 19:2506536. [PMID: 40397961 DOI: 10.1080/17513758.2025.2506536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
This paper formulates a mathematical model for the co-infection of HTLV-2 and HIV-1 with latent reservoirs, four types of distributed-time delays and HIV-1-specific B cells. We establish that the solutions remain bounded and nonnegative, identify the system's steady states, and derive sufficient conditions ensuring both their existence and global asymptotic stability. The system's global stability is confirmed using Lyapunov's method. We provide numerical simulations to support the stability results. Sensitivity analysis of basic reproduction numbers of HTLV-2 mono-infection (R 1 ) and HIV-1 mono-infection (R 2 ) is conducted. We examine how time delays influence the interaction between HIV-1 and HTLV-2. Including delay terms in the model reflects the influence of antiviral treatments, which help decrease R 1 and R 2 , thus limiting the spread of infection. This highlights the potential for designing therapies that prolong delay period. Incorporating such delays improves model precision and supports more effective evaluation of treatment strategies.
Collapse
Affiliation(s)
- A M Elaiw
- Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - E A Almohaimeed
- Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Mathematics, College of Science, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
2
|
Rasi G, Emili E, Conway JM, Cotugno N, Palma P. Mathematical modeling and mechanisms of HIV latency for personalized anti latency therapies. NPJ Syst Biol Appl 2025; 11:64. [PMID: 40506472 PMCID: PMC12162841 DOI: 10.1038/s41540-025-00538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 05/15/2025] [Indexed: 06/16/2025] Open
Abstract
Combination antiretroviral therapy controls human immunodeficiency virus-1 (HIV) but cannot eradicate latent proviruses in immune cells, which reactivate upon treatment interruption. Anti-latency therapies like "shock-and-kill" are being developed but are yet to succeed due to the complexity of latency mechanisms. This review discusses recent advances in understanding HIV latency via mathematical modeling, covering key regulatory factors and models to predict latency reversal, highlighting gaps to guide future therapeutic approaches.
Collapse
Affiliation(s)
- Gianmarco Rasi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Elena Emili
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133, Roma, Italy
| | - Jessica M Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA.
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133, Roma, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133, Roma, Italy.
| |
Collapse
|
3
|
Karuna S, Laher F, Dadabhai S, Yu P, Grove D, Orrell C, Makhema J, Hosseinipour MC, Mathew C, Brumskine W, Mgodi N, Andrew P, Gama L, Karg C, Broder G, Baepanye K, Lucas J, Andrasik M, Takuva S, Villaran M, Takalani A, Tressler R, Soto‐Torres L, Woodward Davis AS, Dhai A, Sanne IM, Cohen MS, Corey L, Gray G, deCamp AC, Bar KJ. Analytical treatment interruption among women with HIV in southern Africa who received VRC01 or placebo in the Antibody Mediated Prevention Study: ATI stakeholder engagement, implementation and early clinical data. J Int AIDS Soc 2025; 28:e26495. [PMID: 40462491 PMCID: PMC12134397 DOI: 10.1002/jia2.26495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 04/30/2025] [Indexed: 06/11/2025] Open
Abstract
INTRODUCTION Antiretroviral therapy (ART) prevents and treats, but does not eradicate, HIV. Early ART initiation is associated with post-ART virologic control, particularly among African women, and anti-HIV-1 broadly neutralizing antibodies (bnAbs) may modulate immune responses to HIV. We evaluate whether early ART with or without anti-HIV-1 bnAb VRC01, present at HIV acquisition, is associated with later ART-free control in African women and we assess potential associations with observed control. METHODS Stakeholder engagement informed analytical treatment interruption (ATI) study design and implementation. Participants who received placebo or VRC01 and acquired HIV in the Antibody Mediated Prevention efficacy trial were assessed for ATI eligibility, including HIV acquisition within 8 weeks of receiving VRC01 or placebo, followed by early ART initiation and ≥1 year of viral suppression. Participation facilitators and barriers were assessed. From May 2021 to February 2024, participants enrolled, stopped ART and received frequent viral load and CD4+ T-cell count monitoring for safety and assessment of meeting ART reinitiation criteria. RESULTS Thirteen women enrolled from southern Africa. No ATI-related serious adverse events (AEs), HIV transmissions, pregnancies or ≥Grade 2 AEs were observed. Eight sexually transmitted infections were diagnosed in seven women during ATI. Two participants had tenofovir levels consistent with use during ATI; 2/11 (18%) who completed ATI without antiretroviral use exhibited ART-free control for ≥32 weeks. The median time to confirmed VL≥200 was 5.4 weeks (range 2.7-112). The most common ART reinitiation criterion met was virologic (n = 7). VRC01 receipt proximate to HIV acquisition was not associated with control. Controllers versus non-controllers did not differ by early post-acquisition viral load kinetics, acquired virus characteristics, or time from estimated acquisition to closest infusion or to ART initiation. CONCLUSIONS In a safe, well-tolerated ATI, 18% of 11 African women exhibited post-intervention control. Design and implementation lessons inform future ATIs in Africa. Analyses of peri-acquisition and post-ATI host and viral characteristics can inform the development of interventions for HIV cure, prevention and treatment. CLINICAL TRIAL REGISTRATION NCT04860323.
Collapse
Affiliation(s)
- Shelly Karuna
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Fatima Laher
- Perinatal HIV Research UnitFaculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Sufia Dadabhai
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBlantyreMalawi
| | - Pei‐Chun Yu
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Doug Grove
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Catherine Orrell
- Desmond Tutu HIV CentreInstitute of Infectious Disease and Molecular Medicine & Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Joseph Makhema
- Botswana Harvard AIDS Institute PartnershipGaboroneBotswana
- Department of Immunology and Infectious DiseasesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Mina C. Hosseinipour
- Department of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- UNC Project MalawiLilongweMalawi
| | | | - William Brumskine
- The Aurum Institute NPCJohannesburgSouth Africa
- Department of MedicineSchool of MedicineVanderbilt UniversityNashvilleTennesseeUSA
| | - Nyaradzo Mgodi
- Clinical Trials Research CentreUniversity of Zimbabwe College of Health SciencesHarareZimbabwe
| | | | - Lucio Gama
- Vaccine Research CenterNational Institute of HealthBethesdaMarylandUSA
| | - Carissa Karg
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Gail Broder
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Kagisho Baepanye
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | | | - Michele Andrasik
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Simbarashe Takuva
- Perinatal HIV Research UnitFaculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
- School of Health Systems and Public HealthFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Manuel Villaran
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Azwidihwi Takalani
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Chris Hani Baragwanath Academic HospitalSowetoSouth Africa
- Department of Family Medicine and Primary CareFaculty of Health SciencesUniversity of WitwatersrandJohannesburgSouth Africa
| | | | - Lydia Soto‐Torres
- Division of AIDSNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | | | - Ames Dhai
- School of Clinical MedicineUniversity of the WitwatersrandJohannesburgSouth Africa
- South African Medical Research CouncilJohannesburgSouth Africa
| | - Ian M. Sanne
- Clinical HIV Research UnitFaculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Myron S. Cohen
- Institute for Global Health and Infectious DiseasesThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Lawrence Corey
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Department of Laboratory MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Glenda Gray
- Perinatal HIV Research UnitFaculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
- South African Medical Research CouncilCape TownSouth Africa
| | - Allan C. deCamp
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Katharine J. Bar
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Cevaal PM, Kan S, Fisher BM, Moso MA, Tan A, Liu H, Ali A, Tanaka K, Shepherd RA, Kim Y, Ong J, Furtado DL, Holz M, Purcell DFJ, Casan JML, Payne T, Zhao W, Fareh M, McMahon JH, Deeks SG, Hoh R, Telwatte S, Pouton CW, Johnston APR, Caruso F, Symons J, Lewin SR, Roche M. Efficient mRNA delivery to resting T cells to reverse HIV latency. Nat Commun 2025; 16:4979. [PMID: 40442114 PMCID: PMC12122926 DOI: 10.1038/s41467-025-60001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 05/12/2025] [Indexed: 06/02/2025] Open
Abstract
A major hurdle to curing HIV is the persistence of integrated proviruses in resting CD4+ T cells that remain in a transcriptionally silent, latent state. One strategy to eradicate latent HIV is to activate viral transcription, followed by elimination of infected cells through virus-mediated cytotoxicity or immune-mediated clearance. We hypothesised that mRNA-lipid nanoparticle (LNP) technology would provide an opportunity to deliver mRNA encoding proteins able to reverse HIV latency in resting CD4+ T cells. Here we develop an LNP formulation (LNP X) with unprecedented potency to deliver mRNA to hard-to-transfect resting CD4+ T cells in the absence of cellular toxicity or activation. Encapsulating an mRNA encoding the HIV Tat protein, an activator of HIV transcription, LNP X enhances HIV transcription in ex vivo CD4+ T cells from people living with HIV. LNP X further enables the delivery of clustered regularly interspaced short palindromic repeats (CRISPR) activation machinery to modulate both viral and host gene transcription. These findings offer potential for the development of a range of nucleic acid-based T cell therapeutics.
Collapse
Affiliation(s)
- Paula M Cevaal
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stanislav Kan
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Bridget M Fisher
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michael A Moso
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Abigail Tan
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Haiyin Liu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Abdalla Ali
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kiho Tanaka
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Rory A Shepherd
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Youry Kim
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jesslyn Ong
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Denzil L Furtado
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Marvin Holz
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Joshua M L Casan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Thomas Payne
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Wei Zhao
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Mohamed Fareh
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - James H McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Sushama Telwatte
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Jori Symons
- Translational Virology, Department of Medical Microbiology, University Medical Center, Utrecht, the Netherlands
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia.
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Ehrenberg PK, Geretz A, Volcic M, Izumi T, Yum LK, Waickman A, Shangguan S, Paquin-Proulx D, Creegan M, Bose M, Machmach K, McGraw A, Narahari A, Currier JR, Sacdalan C, Phanuphak N, Apps R, Corley M, Ndhlovu LC, Slike B, Krebs SJ, Anonworanich J, Tovanabutra S, Robb ML, Eller MA, Laird GM, Cyktor J, Daar ES, Crowell TA, Mellors JW, Vasan S, Michael NL, Kirchhoff F, Thomas R. Single-cell analyses identify monocyte gene expression profiles that influence HIV-1 reservoir size in acutely treated cohorts. Nat Commun 2025; 16:4975. [PMID: 40442100 PMCID: PMC12122806 DOI: 10.1038/s41467-025-59833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 05/06/2025] [Indexed: 06/02/2025] Open
Abstract
Eliminating latent HIV-1 is a major goal of AIDS research but host factors determining the size of these reservoirs are poorly understood. Here, we investigate the role of host gene expression on HIV-1 reservoir size during suppressive antiretroviral therapy (ART). Peripheral blood cells of fourteen males initiating ART during acute infection and demonstrating effective viral suppression but varying magnitudes of total HIV-1 DNA were characterized by single-cell RNA sequencing. Differential expression analysis demonstrates increased CD14+ monocyte activity in participants having undetectable HIV-1 reservoirs, with IL1B expression inversely associating with reservoir size. This is validated in another cohort of 38 males comprised of different ancestry and HIV-1 subtypes, and with intact proviral DNA assay (IPDA®) measurements. Modeling interactions show monocyte IL1B expression associates inversely with reservoir size at higher frequencies of central memory CD4+ T cells, linking monocyte IL1B expression to cell types known to be reservoirs for persistent HIV-1. Functional analyses reveal that IL1B activates NF-κB, thereby promoting productive HIV-1 infection while simultaneously suppressing viral spread, suggesting a natural latency reversing activity to deplete the reservoir in ART-treated individuals. Altogether, scRNA-seq analyses reveal that monocyte IL1B expression could decrease HIV-1 proviral reservoirs in individuals initiating ART during acute infection.
Collapse
Affiliation(s)
- Philip K Ehrenberg
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Aviva Geretz
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Meta Volcic
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Taisuke Izumi
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Department of Biology, College of Arts and Sciences, American University, Washington D.C., USA
- District of Columbia Center for AIDS Research, Washington D.C., USA
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA, USA
| | - Lauren K Yum
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Adam Waickman
- Viral Diseases Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Shida Shangguan
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Matthew Creegan
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Meera Bose
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kawthar Machmach
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Aidan McGraw
- Department of Biology, College of Arts and Sciences, American University, Washington D.C., USA
| | - Akshara Narahari
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA, USA
| | - Jeffrey R Currier
- Viral Diseases Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Carlo Sacdalan
- SEARCH Research Foundation, Bangkok, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Richard Apps
- NIH Center for Human Immunology, National Institutes of Health, Bethesda, MD, USA
| | - Michael Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, NY, USA
- Department of Medicine, Division of Geriatrics, Gerontology and Palliative Care, The Sam and Rose Stein Institute for Research on Aging and Center for Healthy Aging, University of California, San Diego, CA, USA
| | - Lishomwa C Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, NY, USA
| | - Bonnie Slike
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jintanat Anonworanich
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michael A Eller
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Vaccine Research Program, Division of AIDS (DAIDS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Joshua Cyktor
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric S Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Trevor A Crowell
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - John W Mellors
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.
| |
Collapse
|
6
|
Sambaturu N, Fray EJ, Hariharan V, Wu F, Zitzmann C, Simonetti FR, Barouch DH, Siliciano JD, Siliciano RF, Ribeiro RM, Perelson AS, Molina-París C, Leitner T. SIV proviruses seeded later in infection are harbored in short-lived CD4 + T cells. Cell Rep 2025; 44:115663. [PMID: 40327506 PMCID: PMC12160121 DOI: 10.1016/j.celrep.2025.115663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/24/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
The human immunodeficiency virus (HIV) can persist in a latent form as integrated DNA (provirus) in resting CD4+ T cells unaffected by antiretroviral therapy. Despite being a major obstacle for eradication efforts, it remains unclear which infected cells survive, persist, and ultimately enter the long-lived reservoir. Here, we determine the genetic divergence and integration times of simian immunodeficiency virus (SIV) envelope sequences collected from infected macaques. We show that the proviral divergence and the phylogenetically estimated integration times display a biphasic decline over time. Investigating the dynamics of the mutational distributions, we show that SIV genomes in short-lived cells are, on average, more diverged, while long-lived cells contain less diverged virus. The change in the mutational distributions over time explains the observed biphasic decline in the divergence of the proviruses. This suggests that long-lived cells harbor viruses deposited earlier in infection, while short-lived cells predominantly harbor more recent viruses.
Collapse
Affiliation(s)
- Narmada Sambaturu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; School of Systems Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, NY, USA
| | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vivek Hariharan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carolin Zitzmann
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Carmen Molina-París
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Thomas Leitner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
7
|
Viox EG, Richard J, Grandea AG, Nguyen K, Harper J, Auger J, Ding S, Gasser R, Prévost J, Marchitto L, Medjahed H, Bourassa C, Gaudette F, Pagliuzza A, Trifone CA, Gavegnano C, Hurwitz SJ, Park J, Clark NM, Hammad I, Capuano S, Martin MA, Schinazi RF, Silvestri G, Kulpa DA, Kumar P, Chomont N, Pazgier M, Smith AB, Sodroski J, Evans DT, Finzi A, Paiardini M. Safety, pharmacokinetics, and biological activity of CD4-mimetic BNM-III-170 in SHIV-infected rhesus macaques. J Virol 2025; 99:e0006225. [PMID: 40192306 PMCID: PMC12090809 DOI: 10.1128/jvi.00062-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/10/2025] [Indexed: 05/21/2025] Open
Abstract
Anti-HIV-1 antibodies capable of mediating ADCC are elicited by the majority of people with HIV-1 and preferentially target the "open," CD4-bound conformation of HIV-1 envelope glycoproteins (Env). However, due to the "closed" conformation sampled by unliganded HIV-1-Envs, these antibodies are ineffective at eliminating infected cells. BNM-III-170 is a small-molecule CD4-mimetic compound that binds the Phe43 cavity of the gp120 subunit of Env, forcing Env to "open up," thus exposing epitopes targeted by CD4-induced (CD4i), ADCC-mediating antibodies. Here, we assessed the safety, pharmacokinetics, and biological activity of BNM-III-170 in uninfected and SHIV-AD8-EO-infected rhesus macaques (RMs). In uninfected RMs, single subcutaneous administrations of 3-36 mg/kg BNM-III-170 were well-tolerated, with serum half-lives ranging from 3 to 6 h. In SHIV-infected RMs, four different regimens were evaluated: 2 × 36 mg/kg daily, 1 × 24 mg/kg, 3 × 36 mg/kg every 7 days, and 3 × 36 mg/kg every 3 days. While toxicity was observed with daily doses, all other regimens demonstrated reasonable safety profiles. No changes in plasma viral loads were observed in SHIV-infected RMs following any of the evaluated BNM-III-170 dosing regimens. However, plasma collected following BNM-III-170 administration was shown to have increased binding to infected cells and to sensitize SHIV AD8-EO virions to neutralization by otherwise non-neutralizing antibodies. In addition, the plasma of treated animals mediated ADCC in the presence of BNM-III-170. These results establish a well-tolerated BNM-III-170 dosing regimen in SHIV-infected RMs and serve as proof of concept for its biological activity in promoting the targeting of infected cells by CD4i ADCC-mediating antibodies. Thus, they inform future studies evaluating CD4mc treatment in ART-treated animals.IMPORTANCEA therapeutic regimen able to eradicate or functionally cure HIV-1 remains elusive and may require a "shock-and-kill" approach to reactivate and then purge the latent HIV-1 reservoir. The small-molecule CD4-mimetic compound BNM-III-170 has previously been shown to (i) sensitize HIV-1-infected cells to ADCC mediated by plasma from people with HIV-1 (PWH) in vitro and (ii) significantly delay the time to viral rebound following ART interruption when combined with anti-CoRBS + anti-cluster A Abs or plasma from PWH in humanized mice. To evaluate the use of BNM-III-170 as part of a kill approach, we characterized the safety, pharmacokinetics, and biological activity of BNM-III-170 in uninfected and SHIV-infected RMs. Our study identifies a tolerable BNM-III-170 dosing regimen in SHIV-infected RMs and provides insights into its antiviral activities; as such, it informs future studies evaluating the efficacy of BNM-III-170 in reducing the viral reservoir.
Collapse
Affiliation(s)
- Elise G. Viox
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Andres G. Grandea
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - James Auger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | - Cesar Ariel Trifone
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Christina Gavegnano
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory Center for AIDS Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Selwyn J. Hurwitz
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory Center for AIDS Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jun Park
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Iman Hammad
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saverio Capuano
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Malcolm A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Raymond F. Schinazi
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory Center for AIDS Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Deanna A. Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Sodroski
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Creighton RL, Hughes SM, Hladik F, Gornalusse GG. The intestinal interferon system and specialized enterocytes as putative drivers of HIV latency. Front Immunol 2025; 16:1589752. [PMID: 40438119 PMCID: PMC12116432 DOI: 10.3389/fimmu.2025.1589752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
The barrier to HIV cure is the HIV reservoir, which is composed of latently infected CD4+ T cells and myeloid cells that carry stably integrated and replication-competent provirus. The gastrointestinal tract (GIT) contains a substantial part of the HIV reservoir and its immunophysiology could be especially conducive for HIV persistence and reactivation. However, the exact cellular microenvironment and molecular mechanisms that govern the renewal of provirus-harboring cells and proviral reactivation in the GIT remain unclear. In this review, we outline the evidence supporting an overarching hypothesis that interferon activity driven by specialized enterocytes creates a microenvironment that fosters proliferation of latently infected CD4+ T cells and sporadic HIV reactivation from these cells. First, we describe unique immunologic features of the gastrointestinal associated lymphoid tissue (GALT), specifically highlighting IFN activity in specialized enterocytes and potential interactions between these cells and neighboring HIV susceptible cells. Then, we will describe dysregulation of IFN signaling in HIV infection and how IFN dysregulation in the GALT may contribute to the persistence and reactivation of the latent HIV reservoir. Finally, we will speculate on the clinical implications of this hypothesis for HIV cure strategies and outline the next steps.
Collapse
Affiliation(s)
- Rachel L. Creighton
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Sean M. Hughes
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Florian Hladik
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Germán G. Gornalusse
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Richard K, Yuan Z, Tang HY, Goldman AR, Kuthu R, Raphane B, Register ET, Sharma P, Ross BN, Morris J, Williams DE, Cheney C, Wu G, Mounzer K, Laird GM, Zuck P, Andersen RJ, Simonambango S, Andrae-Marobela K, Tietjen I, Montaner LJ. Ex vivo and in vivo HIV-1 latency reversal by "Mukungulu," a protein kinase C-activating African medicinal plant extract. mBio 2025; 16:e0381624. [PMID: 40265896 PMCID: PMC12077168 DOI: 10.1128/mbio.03816-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
New HIV latency-reversing agents (LRAs) are needed that can reactivate and/or eliminate HIV reservoirs. "Mukungulu," prepared from the plant Croton megalobotrys Müll Arg., is traditionally used for HIV/AIDS management in northern Botswana despite an abundance of protein kinase C-activating phorbol esters ("namushens"). Here, we show that Mukungulu is tolerated in mice at up to 12.5 mg/kg while robustly reversing latency in antiretroviral therapy (ART)-suppressed HIV-infected humanized mice at 5 mg/kg. In primary cells from ART-suppressed people living with HIV-1, 1 µg/mL Mukungulu reverses latency at levels similar to or superior to anti-CD3/CD28 positive control, based on HIV gag-p24 protein expression, while the magnitude of HIV reactivation in peripheral blood mononuclear cells corresponds to intact proviral burden in CD4+ T-cells. Bioassay-guided fractionation identifies five namushen phorbol esters that can reactivate HIV, but when combined, they do not match Mukungulu's activity, suggesting the presence of additional enhancing factors. Together, these results identify Mukungulu as a robust natural LRA that is already in use by humans and which may warrant inclusion in future HIV cure and ART-free remission efforts.IMPORTANCECurrent HIV therapies do not act on the latent viral reservoir, which is the major obstacle toward achieving a drug-free HIV remission and/or an HIV cure. "Mukungulu," a bark preparation from Croton megalobotrys Müll Arg., has been documented for its traditional use for HIV/AIDS management in northern Botswana. Here, we show that Mukungulu activates viral reservoirs, a key step toward identifying and potentially eliminating these reservoirs, in both cells from people living with HIV as well as in HIV-infected humanized mice. The majority of this activity is due to the abundance of five phorbol esters ("namushens"). This reverse pharmacology-based approach has therefore identified a potent activator of viral reservoirs that is already traditionally used by humans, which in turn can inform and advance western HIV cure and drug-free remission efforts.
Collapse
Affiliation(s)
| | - Zhe Yuan
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Hsin-Yao Tang
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Riza Kuthu
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | - Brian N. Ross
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - David E. Williams
- Departments of Chemistry and Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Guoxin Wu
- Merck and Co Inc, Rahway, New Jersey, USA
| | - Karam Mounzer
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, USA
| | | | - Paul Zuck
- Merck and Co Inc, Rahway, New Jersey, USA
| | - Raymond J. Andersen
- Departments of Chemistry and Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Ian Tietjen
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
10
|
Gramatica A, Miller IG, Ward AR, Khan F, Kemmer TJ, Weiler J, Huynh TT, Zumbo P, Kurland AP, Leyre L, Ren Y, Klevorn T, Copertino DC, Chukwukere U, Levinger C, Dilling TR, Linden N, Board NL, Falling Iversen E, Terry S, Mota TM, Bedir S, Clayton KL, Bosque A, MacLaren Ehui L, Kovacs C, Betel D, Johnson JR, Paiardini M, Danesh A, Jones RB. EZH2 inhibition mitigates HIV immune evasion, reduces reservoir formation, and promotes skewing of CD8 + T cells toward less-exhausted phenotypes. Cell Rep 2025; 44:115652. [PMID: 40333189 DOI: 10.1016/j.celrep.2025.115652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/28/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Persistent HIV reservoirs in CD4+ T cells pose a barrier to curing HIV infection. We identify overexpression of enhancer of zeste homolog 2 (EZH2) in HIV-infected CD4+ T cells that survive cytotoxic T lymphocyte (CTL) exposure, suggesting a mechanism of CTL resistance. Inhibition of EZH2 with the US Food and Drug Administration-approved drug tazemetostat increases surface expression of major histocompatibility complex (MHC) class I on CD4+ T cells, counterbalancing HIV Nef-mediated MHC class I downregulation. This improves CTL-mediated elimination of HIV-infected cells and suppresses viral replication in vitro. In a participant-derived xenograft mouse model, tazemetostat elevates MHC class I and the pro-apoptotic protein BIM in CD4+ T cells, facilitating CD8+ T cell-mediated reductions of HIV reservoir seeding. Additionally, tazemetostat promotes sustained skewing of CD8+ T cells toward less-differentiated and exhausted phenotypes. Our findings reveal EZH2 overexpression as a mechanism of CTL resistance and support the clinical evaluation of tazemetostat as a method of enhancing clearance of HIV reservoirs and improving CD8+ T cell function.
Collapse
Affiliation(s)
- Andrea Gramatica
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Itzayana G Miller
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Adam R Ward
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Farzana Khan
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tyler J Kemmer
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jared Weiler
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tan Thinh Huynh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrew P Kurland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Louise Leyre
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Yanqin Ren
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Thais Klevorn
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Dennis C Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Uchenna Chukwukere
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Callie Levinger
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20052, USA
| | - Thomas R Dilling
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Noemi Linden
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Nathan L Board
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Sandra Terry
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Talia M Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Seden Bedir
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kiera L Clayton
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20052, USA
| | | | - Colin Kovacs
- Maple Leaf Medical Clinic and Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jeffry R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, GA 30322 USA; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ali Danesh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
11
|
Crowell TA. "Let's start at the very beginning": studies of acute HIV inform prevention, diagnosis, and treatment. Curr Opin HIV AIDS 2025; 20:183-185. [PMID: 40178435 DOI: 10.1097/coh.0000000000000930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Affiliation(s)
- Trevor A Crowell
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Zhang Y, Wang R, Bu Y, Corona A, Dettori L, Tramontano E, Pannecouque C, De Clercq E, Wang S, Meng G, Chen FE. Design, Synthesis and Biological Evaluation of 3-Hydrazonoindolin-2-one Derivatives as Novel HIV-1 RNase H Inhibitors. Molecules 2025; 30:1868. [PMID: 40363675 PMCID: PMC12073785 DOI: 10.3390/molecules30091868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Targeting ribonuclease H (RNase H) has emerged as a highly promising strategy for treating HIV-1. In this study, a series of novel 3-hydrazonoindolin-2-one derivatives were designed and synthesized as potential inhibitors of HIV-1 RNase H. Notably, several of these derivatives displayed micromolar inhibitory activity. Among the compounds examined, the hit compound demonstrated potent inhibition of HIV-1 RNase H, boasting a Ki value of 2.31 μM. Additionally, the most potent compound of this general structure exhibited remarkable inhibitory activity, with Ki values of 0.55 μM. Through docking studies, the key interactions of this ligand within the active site of RNase H were uncovered. This novel chemical structure can be regarded as a prospective scaffold for the future development of RNase H inhibitors.
Collapse
Affiliation(s)
- Yiying Zhang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (S.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Rao Wang
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.W.); (Y.B.)
| | - Yueyue Bu
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.W.); (Y.B.)
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy; (A.C.); (L.D.); (E.T.)
| | - Laura Dettori
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy; (A.C.); (L.D.); (E.T.)
- National Ph.D. Programme in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy; (A.C.); (L.D.); (E.T.)
| | - Christophe Pannecouque
- Rega Institute for Meical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium; (C.P.); (E.D.C.)
| | - Erik De Clercq
- Rega Institute for Meical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium; (C.P.); (E.D.C.)
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (S.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Ge Meng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (S.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- College of Tea (Pu’er), West Yunnan University of Applied Sciences, Pu’er 665000, China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (S.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
13
|
Said N, Venketaraman V. Neuroinflammation, Blood-Brain Barrier, and HIV Reservoirs in the CNS: An In-Depth Exploration of Latency Mechanisms and Emerging Therapeutic Strategies. Viruses 2025; 17:572. [PMID: 40285014 PMCID: PMC12030944 DOI: 10.3390/v17040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/12/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Despite the success of antiretroviral therapy (ART) in suppressing viral replication in the blood, HIV persists in the central nervous system (CNS) and causes chronic neurocognitive impairment, a hallmark of HIV-associated neurocognitive disorders (HAND). This review looks at the complex interactions among HIV, the blood-brain barrier (BBB), neuroinflammation, and the roles of viral proteins, immune cell trafficking, and pro-inflammatory mediators in establishing and maintaining latent viral reservoirs in the CNS, particularly microglia and astrocytes. Key findings show disruption of the BBB, monocyte infiltration, and activation of CNS-resident cells by HIV proteins like Tat and gp120, contributing to the neuroinflammatory environment and neuronal damage. Advances in epigenetic regulation of latency have identified targets like histone modifications and DNA methylation, and new therapeutic strategies like latency-reversing agents (LRAs), gene editing (CRISPR/Cas9), and nanoparticle-based drug delivery also offer hope. While we have made significant progress in understanding the molecular basis of HIV persistence in the CNS, overcoming the challenges of BBB penetration and neuroinflammation is key to developing effective therapies. Further research into combination therapies and novel drug delivery systems will help improve outcomes for HAND patients and bring us closer to a functional cure for HIV.
Collapse
Affiliation(s)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA;
| |
Collapse
|
14
|
Fisher BM, Cevaal PM, Roche M, Lewin SR. HIV Tat as a latency reversing agent: turning the tables on viral persistence. Front Immunol 2025; 16:1571151. [PMID: 40292298 PMCID: PMC12021871 DOI: 10.3389/fimmu.2025.1571151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
The 'shock and kill' approach to an HIV cure involves the use of latency reversing agents (LRAs) to reactivate latent HIV, with the aim to induce death of infected cells through virus induced cytolysis or immune mediated clearance. Most LRAs tested to date have been unable to overcome the blocks to transcription elongation and splicing that persist in resting CD4+ T cells. Furthermore, most LRAs target host factors and therefore have associated toxicities. Therefore, there remains a high need for HIV-specific LRAs that can also potently upregulate expression of multiply-spliced HIV RNA and viral protein. The HIV Transactivator of Transcription (Tat) protein plays an important role in viral replication - amplifying transcription from the viral promoter - but it is present at low to negligible levels in latently infected cells. As such, it has been hypothesized that providing Tat in trans could result in efficient HIV reactivation from latency. Recent studies exploring different types of Tat-based LRAs have used different nanoparticles for Tat delivery and describe potent, HIV-specific induction of multiply-spliced HIV RNA and protein ex vivo. However, there are several potential challenges to using Tat as a therapeutic, including the ability of Tat to cause systemic toxicities in vivo, limited delivery of Tat to the HIV reservoir due to poor uptake of nucleic acid by resting cells, and challenges in activating truly transcriptionally silent viruses. Identifying ways to mitigate these challenges will be critical to developing effective Tat-based LRA approaches towards an HIV cure.
Collapse
Affiliation(s)
- Bridget M. Fisher
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Paula M. Cevaal
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- ATRACT Research Centre, Infectious and Inflammatory Diseases Theme, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Hariharan V, White JA, Dragoni F, Fray EJ, Pathoulas N, Moskovljevic M, Zhang H, Singhal A, Lai J, Beg SA, Scully EP, Gilliams EA, Block DS, Keruly J, Moore RD, Siliciano JD, Simonetti FR, Siliciano RF. Superinfection with intact HIV-1 results in conditional replication of defective proviruses and nonsuppressible viremia in people living with HIV-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647291. [PMID: 40236094 PMCID: PMC11996531 DOI: 10.1101/2025.04.04.647291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
During replication of some RNA viruses, defective particles can spontaneously arise and interfere with wild-type (WT) virus replication. Recently, engineered versions of these defective interfering particles (DIPs) have been proposed as an HIV-1 therapeutic. However, DIPs have yet to be reported in people with HIV-1 (PWH). Here, we find DIPs in PWH who have a rare, polyclonal form of non-suppressible viremia (NSV). While antiretroviral therapy (ART) rapidly reduces viremia to undetectable levels, some individuals experience sustained viremia due to virus production from cell clones harboring intact or defective proviruses. We characterized the source of NSV in two PWH who never reached undetectable viral load despite ART adherence. Remarkably, in each participant, we found a diverse set of defective viral genomes all sharing the same fatal deletions. We found that this paradoxical accumulation of mutations by viruses with fatal defects was driven by superinfection with intact viruses, resulting in mobilization of defective genomes and accumulation of additional mutations during untreated infection. We show that these defective proviruses interfere with WT virus replication, conditionally replicate, and, in one case, have an R 0 > 1, enabling in vivo spread. Despite this, clinical outcomes show no evidence of a beneficial effect of these DIPs.
Collapse
|
16
|
Feist WN, Luna SE, Ben-Efraim K, Filsinger Interrante MV, Amorin A, Johnston NM, Bruun TUJ, Utz A, Ghanim HY, Lesch BJ, McLaughlin TM, Dudek AM, Porteus MH. Multilayered HIV-1 resistance in HSPCs through CCR5 Knockout and B cell secretion of HIV-inhibiting antibodies. Nat Commun 2025; 16:3103. [PMID: 40164595 PMCID: PMC11958643 DOI: 10.1038/s41467-025-58371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Allogeneic transplantation of CCR5 null hematopoietic stem and progenitor cells (HSPCs) is the only known cure for HIV-1 infection. However, this treatment is limited because of the rarity of CCR5-null matched donors, the morbidities associated with allogeneic transplantation, and the prevalence of HIV-1 strains resistant to CCR5 knockout (KO) alone. Here, we propose a one-time therapy through autologous transplantation of HSPCs genetically engineered ex vivo to produce both CCR5 KO cells and long-term secretion of potent HIV-1 inhibiting antibodies from B cell progeny. CRISPR-Cas9-engineered HSPCs engraft and reconstitute multiple hematopoietic lineages in vivo and can be engineered to express multiple antibodies simultaneously (in pre-clinical models). Human B cells engineered to express each antibody secrete neutralizing concentrations capable of inhibiting HIV-1 pseudovirus infection in vitro. This work lays the foundation for a potential one-time functional cure for HIV-1 through combining the long-term delivery of therapeutic antibodies against HIV-1 and the known efficacy of CCR5 KO HSPC transplantation.
Collapse
Affiliation(s)
- William N Feist
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sofia E Luna
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Kaya Ben-Efraim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria V Filsinger Interrante
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Alvaro Amorin
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole M Johnston
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Theodora U J Bruun
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Ashley Utz
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Hana Y Ghanim
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin J Lesch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Amanda M Dudek
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Matthew H Porteus
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
17
|
Nühn MM, Gumbs SBH, Schipper PJ, Drosou I, Gharu L, Buchholtz NVEJ, Snijders GJLJ, Gigase FAJ, Wensing AMJ, Symons J, de Witte LD, Nijhuis M. Microglia Exhibit a Unique Intact HIV Reservoir in Human Postmortem Brain Tissue. Viruses 2025; 17:467. [PMID: 40284910 PMCID: PMC12030925 DOI: 10.3390/v17040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
A proviral reservoir persists within the central nervous system (CNS) of people with HIV, but its characteristics remain poorly understood. Research has primarily focused on cerebrospinal fluid (CSF), as acquiring brain tissue is challenging. We examined size, cellular tropism, and infection-dynamics of the viral reservoir in post-mortem brain tissue from five individuals on and off antiretroviral therapy (ART) across three brain regions. Microglia-enriched fractions (CD11b+) were isolated and levels of intact proviral DNA were quantified (IPDA). Full-length envelope reporter viruses were generated and characterized in CD4+ T cells and monocyte-derived microglia. HIV DNA was observed in microglia-enriched fractions of all individuals, but intact proviruses were identified only in one ART-treated individual, representing 15% of the total proviruses. Phenotypic analyses of clones from this individual showed that 80% replicated efficiently in microglia and CD4+ T cells, while the remaining viruses replicated only in CD4+ T cells. No region-specific effects were observed. These results indicate a distinct HIV brain reservoir in microglia for all individuals, although intact proviruses were detected in only one. Given the unique immune environment of the CNS, the characteristics of microglia, and the challenges associated with targeting these cells, the CNS reservoir should be considered in cure strategies.
Collapse
Affiliation(s)
- Marieke M. Nühn
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Stephanie B. H. Gumbs
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Pauline J. Schipper
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Irene Drosou
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Ninée V. E. J. Buchholtz
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Gijsje J. L. J. Snijders
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (F.A.J.G.); (L.D.d.W.)
| | - Frederieke A. J. Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (F.A.J.G.); (L.D.d.W.)
| | - Annemarie M. J. Wensing
- Translational Virology, Department of Global Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Jori Symons
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Lot D. de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (F.A.J.G.); (L.D.d.W.)
- Department of Psychiatry, Radboud UMC, 6525 GA Nijmegen, The Netherlands
- Department of Human Genetics, Radboud UMC, 6525 GA Nijmegen, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| |
Collapse
|
18
|
Trifone C, Richard C, Pagliuzza A, Dufour C, Lemieux A, Clark NM, Janaka SK, Fennessey CM, Keele BE, Fromentin R, Estes JD, Kaufmann DE, Finzi A, Evans DT, Chomont N. Contribution of intact viral genomes persisting in blood and tissues during ART to plasma viral rebound in SHIV-infected rhesus macaques. iScience 2025; 28:111998. [PMID: 40104070 PMCID: PMC11914814 DOI: 10.1016/j.isci.2025.111998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 11/26/2024] [Accepted: 02/07/2025] [Indexed: 03/20/2025] Open
Abstract
Persistent SIV/HIV reservoirs are the primary obstacle to a cure and the source of viral rebound after ART interruption (ATI). However, the anatomical source of viral rebound remains elusive. Here, we characterized the proviral landscape in the blood, inguinal, and axillary lymph nodes and colon biopsies of five SHIV-infected rhesus macaques (RMs), under ART for 28 weeks. From the 144 near full-length (NFL) proviral sequences obtained pre-ATI, 35% were genetically intact and only 2.8% were found in multiple copies. Envelope sequences of plasma rebounding viruses after ATI, more frequently matched pre-ATI intact proviruses retrieved from lymph nodes compared to sequences isolated from the blood or the colon (4, 1, and 1 pair of matched sequences, respectively). Our results suggest that clonal expansion of infected cells rare in this model, and that intact proviruses persisting in the lymph nodes may be a preferential source of viral rebound upon ATI.
Collapse
Affiliation(s)
- César Trifone
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | | | | | - Audrée Lemieux
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Natasha M Clark
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53707, USA
| | - Sanath K Janaka
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53707, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Brandon E Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Rémi Fromentin
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97239, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97239, USA
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - David T Evans
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53707, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
19
|
Janssens J, Wedrychowski A, Kim SJ, Isbell C, Hoh R, Pillai SK, Henrich TJ, Deeks SG, Roan NR, Lee SA, Yukl SA. Longitudinal changes in the transcriptionally active and intact HIV reservoir after starting ART during acute infection. J Virol 2025; 99:e0143124. [PMID: 39907283 PMCID: PMC11915860 DOI: 10.1128/jvi.01431-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/25/2024] [Indexed: 02/06/2025] Open
Abstract
Even in antiretroviral therapy (ART)-suppressed human immunodeficiency virus (HIV)-infected individuals, there are heterogeneous populations of HIV-expressing cells exhibiting variable degrees of progression through blocks to HIV transcriptional initiation, elongation, completion, and splicing. These HIV-transcribing cells likely contribute to HIV-associated immune activation and inflammation as well as the viral rebound that occurs after stopping ART. However, it is unclear whether the blocks to HIV transcription are present before ART and how the timing and duration of ART may affect the clearance of cells expressing HIV transcripts that differ in their processivity and/or presence of mutations. To investigate these questions, we quantified different types of HIV transcripts and the corresponding HIV DNA regions/proviruses in longitudinal blood samples obtained before ART initiation (T1) and after 6 months (T2) and 1 year (T3) of ART in 16 individuals who initiated ART during acute HIV infection. Before ART, the pattern of HIV transcripts suggested blocks to elongation and splicing, and only ~10% of intact proviruses were transcribing intact HIV RNA. During the first 6 months of ART, we detected progressively greater reductions in initiated, 5'-elongated, mid-transcribed, completed, and multiply spliced HIV transcripts. Completed HIV RNA decayed faster than initiated or 5'-elongated HIV RNA, and intact HIV RNA tended to decay faster than defective HIV RNA. HIV DNA and RNA levels at T1-T3 correlated inversely with baseline CD4+ T-cell counts. Our findings suggest the existence of immune responses that act selectively to reduce HIV transcriptional completion and/or preferentially kill cells making completed or intact HIV RNA.IMPORTANCEEven in virologically suppressed HIV-infected individuals, expression of viral products from both intact and defective proviruses may contribute to HIV-associated immune activation and inflammation, which are thought to underlie the organ damage that persists despite suppressive ART. We investigated how the timing of ART initiation and the duration of ART affect the heterogeneous populations of HIV-transcribing cells, including a detailed characterization of the different HIV transcripts produced before ART and the rate at which they decay after ART initiation during acute HIV infection. Even during untreated infection, most cells (~90%) have blocks at some stage of transcription. Furthermore, different HIV transcripts decline at different rates on ART, with the fastest decay of cells making completed and intact HIV RNA. Our results suggest that intrinsic or extrinsic immune responses act selectively to either reduce particular stages of HIV transcription or cause selective killing of cells making particular HIV transcripts.
Collapse
Affiliation(s)
- Julie Janssens
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Adam Wedrychowski
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Sun Jin Kim
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Cordelia Isbell
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Satish K. Pillai
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
- Vitalant Research Institute, San Francisco, California, USA
| | - Timothy J. Henrich
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Nadia R. Roan
- Department of Urology, University of California, San Francisco (UCSF), San Francisco, California, USA
- Gladstone Institutes, San Francisco, California, USA
| | - Sulggi A. Lee
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Steven A. Yukl
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
20
|
Vlaming KE, Jansen J, de Bree GJ, Kootstra NA, Geijtenbeek TBH. Synergistic Activity of Second Mitochondrial-Derived Activator of Caspases Mimetic with Toll-like Receptor 8 Agonist Reverses HIV-1-Latency and Enhances Antiviral Immunity. Int J Mol Sci 2025; 26:2575. [PMID: 40141220 PMCID: PMC11941979 DOI: 10.3390/ijms26062575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
HIV-1 infection is successfully treated by antiretroviral therapy; however, it is not curative as HIV-1 remains present in the viral reservoir. A strategy to eliminate the viral reservoir relies on the reactivation of the latent provirus to subsequently trigger immune-mediated clearance. Here, we investigated whether the activation of Toll-like receptor 8 (TLR8) or RIG-I-like receptor (RLR) together with the latency reversal agent (LRA) second mitochondrial-derived activator of caspases mimetics (SMACm) leads to HIV-1 reservoir reduction and antiviral immune activation. The TLR8 and RLR agonist elicited a robust pro-inflammatory cytokine response in PBMCs from both PWH and uninfected people. Notably, co-stimulation with SMACm specifically enhanced TLR8 induced pro-inflammatory cytokine as well as CD8 T cell responses. Ex vivo treatment of PBMCs from PWH with SMACm significantly decreased the size of the inducible HIV-1 reservoir, whereas targeting TLR8 or RLR reduced the HIV-1 reservoir in 50% of PWH ex vivo. Although co-stimulation with TLR8/RLR agonists further reduced the HIV-1 reservoir in 25% of PWH ex vivo, effectively inducing antiviral immunity may help eliminate reactivated HIV-1 cells in vivo. Our findings strongly suggest that LRAs can be used in combination with agonists for pattern recognition receptors to reactivate HIV-1 and induce antiviral immunity.
Collapse
Affiliation(s)
- Killian E. Vlaming
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jade Jansen
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Godelieve J. de Bree
- Amsterdam Institute for Immunology and Infectious Diseases, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
21
|
Yu KL, Shin Y, Kim DE, Kim JA, Kang JE, Singh P, Lee KW, Park CM, Kwon H, Kim S, Bae S, Yoon CH. Identification of a novel small-molecule inhibitor of the HIV-1 reverse transcriptase activity with a non-nucleoside mode of action. Virol J 2025; 22:65. [PMID: 40055750 PMCID: PMC11887385 DOI: 10.1186/s12985-025-02680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/23/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Human immunodeficiency virus-1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome, which is a major global health problem. Although combination antiretroviral therapy (cART) successfully expands the lifespan of HIV-1-infected patients, long-term cART often increases drug resistance and adverse effects. Therefore, efforts are ongoing to develop novel anti-HIV-1 drugs. METHODS The anti-HIV-1 activities of compounds were investigated using TZM-bl reporter cell line, A3.01 T cell line, and peripheral blood mononuclear cells infected with several HIV-1 strains, including wild type and drug-resistance associated mutants. Next-generation sequencing analysis and in silico molecular docking studies were employed to determine the mode of action of the compound. RESULTS We identified a small-molecule inhibitor consisting of a thiadiazole core appended to two pyrazoles (BPPT), which exerted a highly potent inhibitory effect on HIV-1 infectivity, with a half-maximal effective concentration (EC50) of 60 nM, without causing cytotoxicity. In experiments with various HIV-1 strains and cell types, the potency of BPPT was found to be comparable to that of commercial antiretroviral agents (azidothymidine, nevirapine, and others). Further analysis of the mode of action demonstrated that BPPT is a novel type of HIV-1 non-nucleoside reverse transcriptase inhibitor (NNRTI). Analysis of viruses harboring drug-resistance-associated mutations showed that BPPT was potent against G190A (C or S) mutations in reverse transcriptase (RTase), exhibiting high-level resistance to other NNRTIs. Next-generation sequencing analysis of long-term treatment with BPPT displayed an RTase mutation profile different from that in the case of established NNRTIs. Given these data, in silico molecular docking studies demonstrated the molecular mechanism underlying the BPPT-mediated inhibition of RTase. CONCLUSION Our data suggest that BPPT is a novel small-molecule inhibitor of HIV-1 RTase and could serve as a promising chemical scaffold to complement or replace conventional treatments, particularly for overcoming resistance associated with the G190 mutation.
Collapse
Affiliation(s)
- Kyung-Lee Yu
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 28159, Republic of Korea
| | - YoungHyun Shin
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 28159, Republic of Korea
| | - Dong-Eun Kim
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 28159, Republic of Korea
| | - Jeong-Ah Kim
- Division of Emerging Infectious Diseases, Department of Laboratory Diagnosis and Analysis, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Cheongju, 28159, Republic of Korea
| | - Jeong-Eun Kang
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 28159, Republic of Korea
| | - Pooja Singh
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Keun Woo Lee
- Angel i-Drug Design (AiDD), 33-3 Jinyangho-ro 44, Jinju, 52650, Republic of Korea
- Quantum-AI Lab, Korea Quantum Computing (KQC), 55 Centumjungang-ro, Busan, 48058, Republic of Korea
| | - Chul Min Park
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hojin Kwon
- Drug Information Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Sunwoo Kim
- Drug Information Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Songmee Bae
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 28159, Republic of Korea
| | - Cheol-Hee Yoon
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 28159, Republic of Korea.
| |
Collapse
|
22
|
Xiao Q, He S, Wang C, Zhou Y, Zeng C, Liu J, Liu T, Li T, Quan X, Wang L, Zhai L, Liu Y, Li J, Zhang X, Liu Y. Deep Thought on the HIV Cured Cases: Where Have We Been and What Lies Ahead? Biomolecules 2025; 15:378. [PMID: 40149913 PMCID: PMC11940578 DOI: 10.3390/biom15030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Antiretroviral therapy (ART) can effectively suppress the replication of human immunodeficiency virus (HIV), but it cannot completely eradicate the virus. The persistent existence of the HIV reservoir is a major obstacle in the quest for a cure. To date, there have been a total of seven cured cases of HIV worldwide. These patients all cleared HIV while undergoing allogeneic stem cell transplantation (allo-HSCT) for hematological malignancies. However, in these cases, the specific mechanism by which allo-HSCT leads to the eradication of HIV remains unclear, so it is necessary to conduct an in-depth analysis. Due to the difficulty in obtaining donors and the risks associated with transplantation, this treatment method is not applicable to all HIV patients. There is still a need to explore new treatment strategies. In recent years, emerging therapies such as neutralizing antibody immunotherapy, chimeric antigen receptor T cell (CAR-T) therapy, gene editing, and antiviral therapies targeting the reservoir have attracted wide attention due to their ability to effectively inhibit HIV replication. This article first elaborates on the nature of the HIV reservoir, then deeply explores the treatment modalities and potential success factors of HIV cured cases, and finally discusses the current novel treatment methods, hoping to provide comprehensive and feasible strategies for achieving the cure of HIV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
23
|
Lamsira HK, Sabatini A, Ciolfi S, Ciccosanti F, Sacchi A, Piacentini M, Nardacci R. Autophagy and Programmed Cell Death Modalities Interplay in HIV Pathogenesis. Cells 2025; 14:351. [PMID: 40072080 PMCID: PMC11899401 DOI: 10.3390/cells14050351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/15/2025] Open
Abstract
Human immunodeficiency virus (HIV) infection continues to be a major global health challenge, affecting 38.4 million according to the Joint United Nations Program on HIV/AIDS (UNAIDS) at the end of 2021 with 1.5 million new infections. New HIV infections increased during the 2 years after the COVID-19 pandemic. Understanding the intricate cellular processes underlying HIV pathogenesis is crucial for developing effective therapeutic strategies. Among these processes, autophagy and programmed cell death modalities, including apoptosis, necroptosis, pyroptosis, and ferroptosis, play pivotal roles in the host-virus interaction dynamics. Autophagy, a highly conserved cellular mechanism, acts as a double-edged sword in HIV infection, influencing viral replication, immune response modulation, and the fate of infected cells. Conversely, apoptosis, a programmed cell death mechanism, is a critical defense mechanism against viral spread and contributes to the depletion of CD4+ T cells, a hallmark of HIV/AIDS progression. This review aims to dissect the complex interplay between autophagy and these programmed cell death modalities in HIV-induced pathogenesis. It highlights the molecular mechanisms involved, their roles in viral persistence and immune dysfunction, and the challenges posed by the viral reservoir and drug resistance, which continue to impede effective management of HIV pathology. Targeting these pathways holds promise for novel therapeutic strategies to mitigate immune depletion and chronic inflammation, ultimately improving outcomes for individuals living with HIV.
Collapse
Affiliation(s)
- Harpreet Kaur Lamsira
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Andrea Sabatini
- Department of Science, University ‘Roma Tre’, 00146 Rome, Italy (S.C.); (A.S.)
| | - Serena Ciolfi
- Department of Science, University ‘Roma Tre’, 00146 Rome, Italy (S.C.); (A.S.)
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, 00149 Rome, Italy; (F.C.)
| | - Alessandra Sacchi
- Department of Science, University ‘Roma Tre’, 00146 Rome, Italy (S.C.); (A.S.)
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, 00149 Rome, Italy; (F.C.)
- Department of Biology, University ‘Tor Vergata’, 00133 Rome, Italy
| | - Roberta Nardacci
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, 00149 Rome, Italy; (F.C.)
| |
Collapse
|
24
|
Council OD, Tyers L, Moeser M, Sondgeroth A, Spielvogel E, Richardson BD, Doolabh D, Zhou S, Emery A, Archin NM, Shook-Sa B, Margolis DM, Abdool Karim SS, Kosakovsky Pond S, Garrett N, Abrahams MR, Joseph SB, Williamson C, Swanstrom R. The persistent pool of HIV-1-infected cells is formed episodically during untreated infection. J Virol 2025; 99:e0097924. [PMID: 39723838 PMCID: PMC11852786 DOI: 10.1128/jvi.00979-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Previous studies have shown that the majority of long-lived cells harboring persistent HIV-1 proviral genomes originates from viruses circulating in the year prior to antiretroviral therapy (ART) initiation, but a smaller proportion originates from viruses circulating much earlier in untreated infection. These observations suggest that discrete biological factors influence the entry and persistence of viruses into the persistent proviral pool, and there may be periods earlier in untreated infection with increased seeding. Therefore, we examined the timing of formation of the long-lived pool of infected cells that persists during ART in seven women (after a median of 5.1 years of suppressive ART) by comparing the phylogenetic distance between unique 3' half genome on-ART proviral sequences and longitudinally sampled pre-ART viral RNA sequences, focusing on the period >1 year prior to ART initiation (i.e., the "early" proviral pool). We constructed models of continuous entry into the persistent proviral pool prior to ART initiation and analyzed the fit of our experimentally derived data to these models. We found that the pattern of persistent proviral pool formation in five of seven participants is incongruent with a model of continuous entry, implying that persistent proviral pool formation can occur episodically during untreated infection. Notably, increased entry into the persistent proviral pool was not universally observed during acute infection, and the timing of enhanced early entry differed across the participants.IMPORTANCECells harboring HIV-1 proviruses that persist on antiretroviral therapy (ART) constitute the main barrier to an HIV-1 cure. Recent work has elucidated that the majority of persisting proviruses harbor HIV-1 variants circulating near the time of ART initiation, whether the proviruses are intact or defective, though a portion forms earlier in untreated infection. We examined the formation of the "early-forming" persistent proviral pool and found that in 5/7 participants, persistent proviral pool formation was episodic, rather than continuous, suggesting that there are host/biological factors that periodically enhance the formation of the persistent proviral pool. Further characterization of these factors will aid in the development of methods to abrogate their effect, thereby reducing the size of the persistent proviral pool.
Collapse
Affiliation(s)
- Olivia D. Council
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lynn Tyers
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch, Western Cape, South Africa
| | - Matthew Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amy Sondgeroth
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ean Spielvogel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian D. Richardson
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Deelan Doolabh
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch, Western Cape, South Africa
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ann Emery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nancie M. Archin
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Bonnie Shook-Sa
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Salim S. Abdool Karim
- Center for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Sergei Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Nigel Garrett
- Center for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
- Division of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch, Western Cape, South Africa
- Center for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Sarah B. Joseph
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch, Western Cape, South Africa
- Center for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
- National Health Laboratory Services of South Africa, Johannesburg, Gauteng, South Africa
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
Harkess M, Kumari S, Bagarti T, Kumar N. HIV transactivation: Stochastic modeling for studying the effects of BET inhibitors on the modulation of P-TEFb levels. J Theor Biol 2025; 599:112011. [PMID: 39643031 DOI: 10.1016/j.jtbi.2024.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/20/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Latency is the major obstacle in eradicating HIV from infected patients. Recent studies have shown that BET protein inhibitors can successfully reverse this latency by inhibiting the binding of BET proteins with positive cellular cofactor P-TEFb. Thus, availability of P-TEFbs plays an important role in HIV transactivation. However, in cells of our immune system which are primarily infected by the virus, number of P-TEFb is very low and is considered as one of the factors in inducing viral latency. At such small numbers of P-TEFb, the internal fluctuations can have a decisive role in the cell fate decision and fluctuations in the P-TEFb levels can switch the HIV to either a state of active replication or to a state of latency. Aimed at quantitative understanding of how BET inhibitors affect the statistics of P-TEFb level, we develop a coarse-grained stochastic model. However, the interaction between P-TEFb and BET proteins makes the problem analytically challenging. To address the nonlinearity arising due to such interactions, we use Langevin equation based approach to study the statistics of steady-state P-TEFb levels and explore the variations of some of the important quantities such as noise and fano factor associated with P-TEFb as well as correlations between BET and P-TEFb levels with model parameters. The analytic results derived exhibit that these quantities, in general, show non-monotonic response with respect to the parameters of the model. The results derived will be helpful in estimating the model parameters as well in identifying the pathways that can be intervened for effective HIV transactivation.
Collapse
Affiliation(s)
- Miranda Harkess
- Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA
| | | | | | - Niraj Kumar
- Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA.
| |
Collapse
|
26
|
Reddy K, Lee GQ, Reddy N, Chikowore TJB, Baisley K, Dong KL, Walker BD, Yu XG, Lichterfeld M, Ndung'u T. Differences in HIV-1 reservoir size, landscape characteristics, and decay dynamics in acute and chronic treated HIV-1 Clade C infection. eLife 2025; 13:RP96617. [PMID: 39976231 PMCID: PMC11841988 DOI: 10.7554/elife.96617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Persisting HIV reservoir viruses in resting CD4 T cells and other cellular subsets are a barrier to cure efforts. Early antiretroviral therapy (ART) enables post-treatment viral control in some cases, but mechanisms remain unclear. We hypothesised that ART initiated before peak viremia impacts HIV-1 subtype C reservoirs. We studied 35 women at high risk of infection from Durban, South Africa, identified with hyperacute HIV by twice-weekly HIV-RNA testing. Participants included 11 starting ART at a median of 456 (297-1203) days post-onset of viremia (DPOV) and 24 at 1 (1-3) DPOV. Peripheral blood mononuclear cells (PBMCs) were used to measured total HIV-1 DNA by droplet digital PCR (ddPCR) and sequence viral reservoir genomes by full-length proviral sequencing (FLIP-seq). ART during hyperacute infection blunted peak viremia (p<0.0001), but contemporaneous total HIV-1 DNA did not differ (p=0.104). Over 1 year, a decline of total HIV-1 DNA was observed in early treated persons (p=0.0004), but not late treated. Among 697 viral genome sequences, the proviral genetic landscape differed between untreated, late treated, and early treated groups. Intact genomes after 1 year were higher in untreated (31%) versus late treated (14%) and early treated (0%). Treatment in both late and early infection caused more rapid decay of intact (13% and 51% per month) versus defective (2% and 35%) viral genomes. However, intact genomes persisted 1 year post chronic treatment but were undetectable with early ART. Early ART also reduced phylogenetic diversity of intact genomes and limited cytotoxic T lymphocyte immune escape variants in the reservoir. Overall, ART initiated in hyperacute HIV-1 subtype C infection did not impact reservoir seeding but was associated with rapid intact viral genome decay, reduced genetic complexity, and limited immune escape, which may accelerate reservoir clearance in combination with other interventional strategies.
Collapse
Affiliation(s)
| | | | - Nicole Reddy
- Africa Health Research InstituteDurbanSouth Africa
- University of KwaZulu-NatalDurbanSouth Africa
| | - Tatenda JB Chikowore
- Africa Health Research InstituteDurbanSouth Africa
- University College LondonLondonUnited Kingdom
| | - Kathy Baisley
- Africa Health Research InstituteDurbanSouth Africa
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Krista L Dong
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-NatalDurbanSouth Africa
- Harvard Medical SchoolBostonUnited States
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-NatalDurbanSouth Africa
- Harvard Medical SchoolBostonUnited States
| | - Xu G Yu
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
- Brigham and Women's HospitalBostonUnited States
| | - Thumbi Ndung'u
- Africa Health Research InstituteDurbanSouth Africa
- University of KwaZulu-NatalDurbanSouth Africa
- University College LondonLondonUnited Kingdom
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-NatalDurbanSouth Africa
| |
Collapse
|
27
|
Kulsuptrakul J, Emerman M, Mitchell PS. CARD8 inflammasome activation during HIV-1 cell-to-cell transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.21.608981. [PMID: 39229127 PMCID: PMC11370340 DOI: 10.1101/2024.08.21.608981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Our previous work demonstrated that CARD8 detects HIV-1 infection by sensing the enzymatic activity of the HIV protease, resulting in CARD8-dependent inflammasome activation (Kulsuptrakul et al., 2023). CARD8 harbors a motif in its N-terminus that functions as a HIV protease substrate mimic, permitting innate immune recognition of HIV-1 protease activity, which when cleaved by HIV protease triggers CARD8 inflammasome activation. Here, we sought to understand CARD8 responses in the context of HIV-1 cell-to-cell transmission via a viral synapse. We observed that cell-to-cell transmission of HIV-1 between infected T cells and primary human monocyte-derived macrophages induces CARD8 inflammasome activation in a manner that is dependent on viral protease activity and largely independent of the NLRP3 inflammasome. Additionally, to further evaluate the viral determinants of CARD8 sensing, we tested a panel of HIV protease inhibitor resistant clones to establish how variation in HIV protease affects CARD8 activation. We identified mutant HIV-1 proteases that differentially cleave and activate CARD8 compared to wildtype HIV-1, thus indicating that natural variation in HIV protease affects not only the cleavage of the viral Gag-Pol polyprotein but also likely impacts innate sensing and inflammation.
Collapse
Affiliation(s)
- Jessie Kulsuptrakul
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Patrick S. Mitchell
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
28
|
Zhang TH, Shi Y, Komarova NL, Wordaz D, Kostelny M, Gonzales A, Abbaali I, Chen H, Bresson-Tan G, Dimapasoc M, Harvey W, Oh C, Carmona C, Seet C, Du Y, Sun R, Zack JA, Kim JT. Barcoded HIV-1 reveals viral persistence driven by clonal proliferation and distinct epigenetic patterns. Nat Commun 2025; 16:1641. [PMID: 39952916 PMCID: PMC11829055 DOI: 10.1038/s41467-025-56771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
The HIV reservoir consists of infected cells in which the HIV-1 genome persists as provirus despite effective antiretroviral therapy (ART). Studies exploring HIV cure therapies often measure intact proviral DNA levels, time to rebound after ART interruption, or ex vivo stimulation assays of latently infected cells. This study utilizes barcoded HIV to analyze the reservoir in humanized mice. Using bulk PCR and deep sequencing methodologies, we retrieve 890 viral RNA barcodes and 504 proviral barcodes linked to 15,305 integration sites at the single RNA or DNA molecule in vivo. We track viral genetic diversity throughout early infection, ART, and rebound. The proviral reservoir retains genetic diversity despite cellular clonal proliferation and viral seeding by rebounding virus. Non-proliferated cell clones are likely the result of elimination of proviruses associated with transcriptional activation and viremia. Elimination of proviruses associated with viremia is less prominent among proliferated cell clones. Proliferated, but not massively expanded, cell clones contribute to proviral expansion and viremia, suggesting they fuel viral persistence. This approach enables comprehensive assessment of viral levels, lineages, integration sites, clonal proliferation and proviral epigenetic patterns in vivo. These findings highlight complex reservoir dynamics and the role of proliferated cell clones in viral persistence.
Collapse
Affiliation(s)
- Tian-Hao Zhang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Natalia L Komarova
- Department of Mathematics, University of California San Diego, La Jolla, CA, USA
| | - Dominik Wordaz
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA, USA
| | - Matthew Kostelny
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Alexander Gonzales
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Izra Abbaali
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Hongying Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Gabrielle Bresson-Tan
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Melanie Dimapasoc
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - William Harvey
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Christopher Oh
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Camille Carmona
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Christopher Seet
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, California, USA
| | - Yushen Du
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jerome A Zack
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, California, USA
| | - Jocelyn T Kim
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California, 90095, USA.
| |
Collapse
|
29
|
Vegas Rodriguez A, Velez de Mendizábal N, Girish S, Trocóniz IF, Feigelman JS. Modeling the Interplay Between Viral and Immune Dynamics in HIV: A Review and Mrgsolve Implementation and Exploration. Clin Transl Sci 2025; 18:e70160. [PMID: 39980203 PMCID: PMC11842467 DOI: 10.1111/cts.70160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Since its initial discovery, HIV has infected more than 70 million individuals globally, leading to the deaths of 35 million. At present, the annual number of deaths has significantly decreased due to 75% of HIV-positive individuals being on antiretroviral therapy. Although there is no cure yet, available treatments extend life expectancy, enhance quality of life, and reduce transmission by maintaining viral load below the detection limit of 50 copies/mL, making the individual's levels undetectable and untransmittable. HIV has attracted considerable attention in the computational modeling area, with various models having been developed with different degrees of complexity in an attempt to explain the viral dynamics of the disease. It is important to note that no single model can fully incorporate and predict all the critical factors influencing the dynamics of the disease and its response to treatments. Since the number of published models is large, the purpose of this article is to review several relevant models found in the literature that describe biologically plausible scenarios of HIV infection, including key features of disease progression with or without treatment. A total of 15 models are described, with some implemented in the mrgsolve package in R Studio and shared for the benefit of the scientific community. The modeling framework concerning HIV infection aids in identifying the most impactful parameters within the system and their implications in the model outcomes. Insights provided by these models may help in confirming targets for current and novel therapies, thereby contributing to the exploration of new strategies.
Collapse
Affiliation(s)
- Alberto Vegas Rodriguez
- Department of Pharmaceutical Sciences, School of Pharmacy and NutritionUniversity of NavarraPamplonaSpain
| | | | | | - Iñaki F. Trocóniz
- Department of Pharmaceutical Sciences, School of Pharmacy and NutritionUniversity of NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Institute of Data Science and Artificial Intelligence (DATAI)University of NavarraPamplonaSpain
| | | |
Collapse
|
30
|
Bowden-Reid E, Moles E, Kelleher A, Ahlenstiel C. Harnessing antiviral RNAi therapeutics for pandemic viruses: SARS-CoV-2 and HIV. Drug Deliv Transl Res 2025:10.1007/s13346-025-01788-x. [PMID: 39833468 DOI: 10.1007/s13346-025-01788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Using the knowledge from decades of research into RNA-based therapies, the COVID-19 pandemic response saw the rapid design, testing and production of the first ever mRNA vaccines approved for human use in the clinic. This breakthrough has been a significant milestone for RNA therapeutics and vaccines, driving an exponential growth of research into the field. The development of novel RNA therapeutics targeting high-threat pathogens, that pose a substantial risk to global health, could transform the future of health delivery. In this review, we provide a detailed overview of the two RNA interference (RNAi) pathways and how antiviral RNAi therapies can be used to treat acute or chronic diseases caused by the pandemic viruses SARS-CoV-2 and HIV, respectively. We also provide insights into short-interfering RNA (siRNA) delivery systems, with a focus on how lipid nanoparticles can be functionalized to achieve targeted delivery to specific sites of disease. This review will provide the current developments of SARS-CoV-2 and HIV targeted siRNAs, highlighting strategies to advance the progression of antiviral siRNA along the clinical development pathway.
Collapse
Affiliation(s)
| | - Ernest Moles
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, 2052, Australia.
- Australian Centre for Nanomedicine, Faculty of Engineering, UNSW Sydney, Sydney, 2052, Australia.
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney, 2052, Australia.
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia.
| | - Anthony Kelleher
- The Kirby Institute, UNSW Sydney, Sydney, 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia
| | - Chantelle Ahlenstiel
- The Kirby Institute, UNSW Sydney, Sydney, 2052, Australia.
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia.
| |
Collapse
|
31
|
Frouard J, Telwatte S, Luo X, Elphick N, Thomas R, Arneson D, Roychoudhury P, Butte AJ, Wong JK, Hoh R, Deeks SG, Lee SA, Roan NR, Yukl S. HIV-SEQ REVEALS GLOBAL HOST GENE EXPRESSION DIFFERENCES BETWEEN HIV-TRANSCRIBING CELLS FROM VIREMIC AND SUPPRESSED PEOPLE WITH HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.629023. [PMID: 39763963 PMCID: PMC11702770 DOI: 10.1101/2024.12.17.629023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
"Active" reservoir cells transcribing HIV can perpetuate chronic inflammation in virally suppressed people with HIV (PWH) and likely contribute to viral rebound after antiretroviral therapy (ART) interruption, so they represent an important target for new therapies. These cells, however, are difficult to study using single-cell RNA-seq (scRNA-seq) due to their low frequency and low levels of HIV transcripts, which are usually not polyadenylated. Here, we developed "HIV-seq" to enable more efficient capture of HIV transcripts - including non-polyadenylated ones - for scRNA-seq analysis of cells from PWH. By spiking in a set of custom-designed capture sequences targeting conserved regions of the HIV genome during scRNA-seq, we increased our ability to find HIV RNA+ cells from PWH by up to 44%. Implementing HIV-seq in conjunction with surface phenotyping by CITE-seq on paired blood specimens from PWH before vs. after ART suppression, we found that HIV RNA+ cells were enriched among T effector memory (Tem) cells during both viremia and ART suppression, but exhibited a cytotoxic signature during viremia only. By contrast, HIV RNA+ cells from the ART-suppressed timepoints exhibited a distinct anti-inflammatory signature involving elevated TGF-β and diminished IFN signaling. Overall, these findings demonstrate that active reservoir cells exhibit transcriptional features distinct from HIV RNA+ cells during viremia, and underscore HIV-seq as a useful tool to better understand the mechanisms by which HIV-transcribing cells can persist during ART.
Collapse
Affiliation(s)
- Julie Frouard
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, CA 94158, USA
| | - Sushama Telwatte
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco, CA, USA
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Melbourne, Australia
| | - Xiaoyu Luo
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, CA 94158, USA
| | | | | | - Douglas Arneson
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Viral and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph K Wong
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco, CA, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, USA
| | - Sulggi A Lee
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco, USA
| | - Nadia R Roan
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, CA 94158, USA
| | - Steven Yukl
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco, CA, USA
| |
Collapse
|
32
|
Gomez-Rivera F, Terry VH, Chen C, Painter MM, Virgilio MC, Yaple-Maresh ME, Collins KL. Variation in HIV-1 Tat activity is a key determinant in the establishment of latent infection. JCI Insight 2024; 10:e184711. [PMID: 39636695 PMCID: PMC11790021 DOI: 10.1172/jci.insight.184711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024] Open
Abstract
Despite effective treatment, human immunodeficiency virus (HIV) persists in optimally treated people as a transcriptionally silent provirus. Latently infected cells evade the immune system and the harmful effects of the virus, thereby creating a long-lasting reservoir of HIV. To gain a deeper insight into the molecular mechanisms of HIV latency establishment, we constructed a series of HIV-1 fluorescent reporter viruses that distinguish active versus latent infection. We unexpectedly observed that the proportion of active to latent infection depended on a limiting viral factor, which created a bottleneck that could be overcome by superinfection of the cell, T cell activation, or overexpression of HIV-1 transactivator of transcription (Tat). In addition, we found that tat and regulator of expression of virion proteins (Rev) expression levels varied among HIV molecular clones and that tat levels were an important variable in latency establishment. Lower rev levels limited viral protein expression whereas lower Tat levels or mutation of the Tat binding element promoted latent infection that was resistant to reactivation even in fully activated primary T cells. Nevertheless, we found that combinations of latency reversal agents targeting both cellular activation and histone acetylation pathways overcame deficiencies in the Tat/TAR axis of transcription regulation. These results provide additional insight into the mechanisms of latency establishment and inform Tat-centered approaches to cure HIV.
Collapse
Affiliation(s)
| | | | | | | | - Maria C. Virgilio
- Department of Computational Medicine and Bioinformatics
- Cellular and Molecular Biology Program, and
| | | | - Kathleen L. Collins
- Graduate Program in Immunology
- Department of Internal Medicine
- Cellular and Molecular Biology Program, and
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Maikoo S, Palstra RJ, Dong KL, Mahmoudi T, Ndung'u T, Madlala P. Development of a latency model for HIV-1 subtype C and the impact of long terminal repeat element genetic variation on latency reversal. J Virus Erad 2024; 10:100575. [PMID: 39811575 PMCID: PMC11730875 DOI: 10.1016/j.jve.2024.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Sub-Saharan Africa accounts for almost 70 % of people living with HIV (PLWH) worldwide, with the greatest numbers centred in South Africa where 98 % of infections are caused by subtype C (HIV-1C). However, HIV-1 subtype B (HIV-1B), prevalent in Europe and North America, has been the focus of most cure research and testing despite making up only 12 % of HIV-1 infections globally. Development of latency models for non-subtype B viruses is a necessary step to address this disproportionate focus. Furthermore, the impact of genetic variation between viral subtypes, specifically within the long terminal repeat (LTR) element of the viral transcriptional promoter on latency reversal, remains unclear. To address this scientific gap, we constructed a minimal genome retroviral vector expressing HIV-1C consensus transactivator of transcription protein (Tat) and green fluorescent protein (GFP) under the control of either HIV-1C consensus LTR (C731CC) or the transmitted/founder (T/F) LTRs derived from PLWH (CT/F731CC), produced corresponding LTR pseudotyped viruses using a vesicular stomatitis virus (VSV-G) pseudotyped Envelope vector and the pCMVΔR8.91 packaging vector containing HIV-1 accessory and rev genes. Viruses produced in this way were used to infect Jurkat E6 and primary CD4+ T cells in vitro. By enriching for latently infected cells, and treating them with different latency reversing agents, we developed an HIV-1C latency model that demonstrated that the HIV-1C consensus LTR has lower reactivation potential compared to its HIV-1B counterpart. Furthermore, HIV-1C T/F LTR pseudotyped proviral genetic variants exhibited a heterogenous reactivation response which was modulated by host cell (genetic) variation. Our data suggests that genetic variation both within and between HIV-1 subtypes influences latency reversal. Future studies should investigate the specific role of variation in host cellular environment on reactivation differences.
Collapse
Affiliation(s)
- Shreyal Maikoo
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, the Netherlands
- Department of Urology, Erasmus University Medical Center, the Netherlands
| | - Krista L. Dong
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Infectious Disease Division, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, the Netherlands
- Department of Urology, Erasmus University Medical Center, the Netherlands
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
- Africa Health Research Institute, Durban, KwaZulu-Natal, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Paradise Madlala
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
34
|
Ehrenberg PK, Geretz A, Volcic M, Izumi T, Yum L, Waickman A, Shangguan S, Paquin-Proulx D, Creegan M, Bose M, Machmach K, McGraw A, Narahari A, Currier JR, Sacdalan C, Phanuphak N, Apps R, Corley M, Ndhlovu LC, Slike B, Krebs SJ, Anonworanich J, Tovanabutra S, Robb ML, Eller MA, Laird GM, Cyktor J, Daar ES, Crowell TA, Mellors JW, Vasan S, Michael NL, Kirchhoff F, Thomas R. Single-cell analyses reveal that monocyte gene expression profiles influence HIV-1 reservoir size in acutely treated cohorts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623270. [PMID: 39605411 PMCID: PMC11601329 DOI: 10.1101/2024.11.12.623270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Elimination of latent HIV-1 is a major goal of AIDS research but the host factors determining the size of these reservoirs are poorly understood. Here, we investigated whether differences in host gene expression modulate the size of the HIV-1 reservoir during suppressive ART. Peripheral blood mononuclear cells (PBMC) from fourteen individuals initiating ART during acute infection who demonstrated effective viral suppression but varying magnitude of total HIV-1 DNA were characterized by single-cell RNA sequencing (scRNA-seq). Differentially expressed genes and enriched pathways demonstrated increased monocyte activity in participants with undetectable HIV-1 reservoirs. IL1B expression in CD14+ monocytes showed the greatest fold difference. The inverse association of IL1B with reservoir size was validated in an independent cohort comprised of 38 participants with different genetic backgrounds and HIV-1 subtype infections, and further confirmed with intact proviral DNA assay (IPDA®) measurements of intact HIV-1 proviruses in a subset of the samples. Modeling interactions with cell population frequencies showed that monocyte IL1B expression associated inversely with reservoir size in the context of higher frequencies of central memory CD4+ T cells, implicating an indirect effect of IL1B via the cell type well established to be a reservoir for persistent HIV-1. Signatures consisting of co-expressed genes including IL1B were highly enriched in the "TNFα signaling via NF-κB" geneset. Functional analyses in cell culture revealed that IL1B activates NF-κB, thereby promoting productive HIV-1 infection while simultaneously suppressing viral spread, suggesting a natural latency reversing activity to deplete the reservoir in ART treated individuals. Altogether, unbiased high throughput scRNA-seq analyses revealed that monocyte IL1B variation could decrease HIV-1 proviral reservoirs in individuals initiating ART during acute infection.
Collapse
Affiliation(s)
- Philip K. Ehrenberg
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Aviva Geretz
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Meta Volcic
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Taisuke Izumi
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Department of Biology, College of Arts and Sciences, American University, Washington D.C., USA
- District of Columbia Center for AIDS Research, Washington D.C., USA
- Department of Biology, College of Arts and Sciences, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Lauren Yum
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Adam Waickman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Shida Shangguan
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Matthew Creegan
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Meera Bose
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kawthar Machmach
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Aidan McGraw
- Department of Biology, College of Arts and Sciences, American University, Washington D.C., USA
| | - Akshara Narahari
- Department of Biology, College of Arts and Sciences, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Jeffrey R. Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Carlo Sacdalan
- SEARCH Research Foundation, Bangkok, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Richard Apps
- NIH Center for Human Immunology, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Bonnie Slike
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jintanat Anonworanich
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michael A. Eller
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | - Joshua Cyktor
- Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Eric S. Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Trevor A. Crowell
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Nelson L. Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
35
|
Richard J, Sannier G, Zhu L, Prévost J, Marchitto L, Benlarbi M, Beaudoin-Bussières G, Kim H, Sun Y, Chatterjee D, Medjahed H, Bourassa C, Delgado GG, Dubé M, Kirchhoff F, Hahn BH, Kumar P, Kaufmann DE, Finzi A. CD4 downregulation precedes Env expression and protects HIV-1-infected cells from ADCC mediated by non-neutralizing antibodies. mBio 2024; 15:e0182724. [PMID: 39373535 PMCID: PMC11559134 DOI: 10.1128/mbio.01827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
HIV-1 envelope glycoprotein (Env) conformation substantially impacts antibody-dependent cellular cytotoxicity (ADCC). Envs from primary HIV-1 isolates adopt a prefusion "closed" conformation, which is targeted by broadly neutralizing antibodies (bnAbs). CD4 binding drives Env into more "open" conformations, which are recognized by non-neutralizing Abs (nnAbs). To better understand Env-Ab and Env-CD4 interaction in CD4+ T cells infected with HIV-1, we simultaneously measured antibody binding and HIV-1 mRNA expression using multiparametric flow cytometry and RNA flow fluorescent in situ hybridization (FISH) techniques. We observed that env mRNA is almost exclusively expressed by HIV-1 productively infected cells that already downmodulated CD4. This suggests that CD4 downmodulation precedes env mRNA expression. Consequently, productively infected cells express "closed" Envs on their surface, which renders them resistant to nnAbs. Cells recognized by nnAbs were all env mRNA negative, indicating Ab binding through shed gp120 or virions attached to their surface. Consistent with these findings, treatment of HIV-1-infected humanized mice with the ADCC-mediating nnAb A32 failed to lower viral replication or reduce the size of the viral reservoir. These findings confirm the resistance of productively infected CD4+ T cells to nnAbs-mediated ADCC and question the rationale of immunotherapy approaches using this strategy. IMPORTANCE Antibody-dependent cellular cytotoxicity (ADCC) represents an effective immune response for clearing virally infected cells, making ADCC-mediating antibodies promising therapeutic candidates for HIV-1 cure strategies. Broadly neutralizing antibodies (bNAbs) target epitopes present on the native "closed" envelope glycoprotein (Env), while non-neutralizing antibodies (nnAbs) recognize epitopes exposed upon Env-CD4 interaction. Here, we provide evidence that env mRNA is predominantly expressed by productively infected cells that have already downmodulated cell-surface CD4. This indicates that CD4 downmodulation by HIV-1 precedes Env expression, making productively infected cells resistant to ADCC mediated by nnAbs but sensitive to those mediated by bnAbs. These findings offer critical insights for the development of immunotherapy-based strategies aimed at targeting and eliminating productively infected cells in people living with HIV.
Collapse
Affiliation(s)
- Jonathan Richard
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Gérémy Sannier
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Li Zhu
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Hongil Kim
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yaping Sun
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | - Mathieu Dubé
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Beatrice H. Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel E. Kaufmann
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
36
|
Nel C, Frater J. Enhancing broadly neutralising antibody suppression of HIV by immune modulation and vaccination. Front Immunol 2024; 15:1478703. [PMID: 39575236 PMCID: PMC11578998 DOI: 10.3389/fimmu.2024.1478703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024] Open
Abstract
Although HIV infection can be managed with antiretroviral drugs, there is no cure and therapy has to be taken for life. Recent successes in animal models with HIV-specific broadly neutralising antibodies (bNAbs) have led to long-term virological remission and even possible cures in some cases. This has resulted in substantial investment in human studies to explore bNAbs as a curative intervention for HIV infection. Emerging data are encouraging, but suggest that combinations of bNAbs with other immunomodulatory agents may be needed to induce and sustain long-term viral control. As a result, a number of clinical trials are currently underway exploring these combinations. If successful, the impact for the millions of people living with HIV could be substantial. Here, we review the background to the use of bNAbs in the search for an HIV cure and how different adjunctive agents might be used together to enhance their efficacy.
Collapse
Affiliation(s)
- Carla Nel
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- The National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
37
|
Ismail SD, Sebaa S, Abrahams B, Nason MC, Mumby MJ, Dikeakos JD, Joseph SB, Moeser M, Swanstrom R, Garrett N, Williamson C, Quinn TC, Abrahams MR, Redd AD. The role of Nef in the long-term persistence of the replication-competent HIV reservoir in South African women. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621615. [PMID: 39554110 PMCID: PMC11565997 DOI: 10.1101/2024.11.01.621615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
HIV-1 Nef mediates immune evasion and viral pathogenesis in part through downregulation of cell surface cluster of differentiation 4 (CD4) and major histocompatibility complex class I (MHC-I) on infected cells. While Nef function of circulating viral populations found early in infection has been associated with reservoir size in early-treated cohorts, there is limited research on how its activity impacts reservoir size in people initiating treatment during chronic infection. In addition, there is little research on its role in persistence of viral variants during long-term antiretroviral therapy (ART). Phylogenetically distinct nef genes (n=82) with varying estimated times of reservoir entry were selected from viral outgrowth variants stimulated from the reservoir of South African women living with HIV who initiated ART during chronic infection (n=16). These nef genes were synthesized and used in a pseudovirus infection assay that measures CD4 and MHC-I downregulation via flow cytometry. Downregulation measures were compared to the size of the replication-competent viral reservoir (RC-VR), estimated by quantitative viral outgrowth assay (QVOA) at 5 years after treatment initiation, as well as proviral survival time. Maximum Nef-mediated MHC-I downregulation was significantly associated with RC-VR size (p=0.034), but this association was not observed for CD4 downregulation. Conversely, we did not find a consistent association between intraparticipant MHC-I or CD4 downregulation and the variant timing of entry into the reservoir. These data support a role for Nef-mediated MHC-I downregulation in determining RC-VR size, but more work is needed to determine Nef's role in the survival of individual viral variants over time.
Collapse
Affiliation(s)
- Sherazaan D. Ismail
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shorok Sebaa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Bianca Abrahams
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Martha C. Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Mitchell J. Mumby
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sarah B. Joseph
- Department of Microbiology & Immunology; University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew Moeser
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Swanstrom
- Department of Microbiology & Immunology; University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, University of Kwazulu-Natal, Durban, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of Kwazulu-Natal, Durban, South Africa
- National Health Laboratory Services of South Africa, Johannesburg, South Africa
| | - Thomas C. Quinn
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa-Rose Abrahams
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Andrew D. Redd
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| |
Collapse
|
38
|
Reddy K, Lee GQ, Reddy N, Chikowore TJ, Baisley K, Dong KL, Walker BD, Yu XG, Lichterfeld M, Ndung’u T. Differences in HIV-1 reservoir size, landscape characteristics and decay dynamics in acute and chronic treated HIV-1 Clade C infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.16.24302713. [PMID: 38947072 PMCID: PMC11213047 DOI: 10.1101/2024.02.16.24302713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Persisting HIV reservoir viruses in resting CD4 T cells and other cellular subsets are the main barrier to cure efforts. Antiretroviral therapy (ART) intensification by early initiation has been shown to enable post-treatment viral control in some cases but the underlying mechanisms are not fully understood. We hypothesized that ART initiated during the hyperacute phase of infection before peak will affect the size, decay dynamics and landscape characteristics of HIV-1 subtype C viral reservoirs. Methods We studied 35 women at high risk of infection from Durban, South Africa identified with hyperacute HIV infection by twice weekly testing for plasma HIV-1 RNA. Study participants included 11 who started ART at a median of 456 (297-1203) days post onset of viremia (DPOV), and 24 who started ART at a median of 1 (1-3) DPOV. We used peripheral blood mononuclear cells (PBMC) to measure total HIV-1 DNA by ddPCR and to sequence reservoir viral genomes by full length individual proviral sequencing (FLIP-seq) from onset of detection of HIV up to 1 year post treatment initiation. Results Whereas ART in hyperacute infection blunted peak viremia compared to untreated individuals (p<0.0001), there was no difference in total HIV-1 DNA measured contemporaneously (p=0.104). There was a steady decline of total HIV DNA in early treated persons over 1 year of ART (p=0.0004), with no significant change observed in the late treated group. Total HIV-1 DNA after one year of treatment was lower in the early treated compared to the late treated group (p=0.02). Generation of 697 single viral genome sequences revealed a difference in the longitudinal proviral genetic landscape over one year between untreated, late treated, and early treated infection: the relative contribution of intact genomes to the total pool of HIV-1 DNA after 1 year was higher in untreated infection (31%) compared to late treated (14%) and early treated infection (0%). Treatment initiated in both late and early infection resulted in a more rapid decay of intact (13% and 51% per month) versus defective (2% and 35% per month) viral genomes. However, intact genomes were still observed one year post chronic treatment initiation in contrast to early treatment where intact genomes were no longer detectable. Moreover, early ART reduced phylogenetic diversity of intact genomes and limited the seeding and persistence of cytotoxic T lymphocyte immune escape variants in the reservoir. Conclusions Overall, our results show that whereas ART initiated in hyperacute HIV-1 subtype C infection did not impact reservoir seeding, it was nevertheless associated with more rapid decay of intact viral genomes, decreased genetic complexity and immune escape in reservoirs, which could accelerate reservoir clearance when combined with other interventional strategies.
Collapse
Affiliation(s)
- Kavidha Reddy
- Africa Health Research Institute, Durban, South Africa
| | | | - Nicole Reddy
- Africa Health Research Institute, Durban, South Africa
- University of KwaZulu-Natal, Durban, South Africa
| | - Tatenda J.B. Chikowore
- Africa Health Research Institute, Durban, South Africa
- University College of London, London, UK
| | - Kathy Baisley
- Africa Health Research Institute, Durban, South Africa
- London School of Hygiene and Tropical Medicine, London, UK
| | - Krista L. Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Harvard Medical School, Boston, Massachusetts, USA
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | - Thumbi Ndung’u
- Africa Health Research Institute, Durban, South Africa
- University of KwaZulu-Natal, Durban, South Africa
- University College of London, London, UK
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
39
|
Howard JN, Levinger C, Deletsu S, Fromentin R, Chomont N, Bosque A, for the AIDS Clinical Trials Group (ACTG) A5325 Team. Isotretinoin promotes elimination of translation-competent HIV latent reservoirs in CD4T cells. PLoS Pathog 2024; 20:e1012601. [PMID: 39401241 PMCID: PMC11501018 DOI: 10.1371/journal.ppat.1012601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/24/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
Development of novel therapeutic strategies that reactivate latent HIV and sensitize reactivated cells to apoptosis is crucial towards elimination of the latent viral reservoir. Among the clinically relevant latency reversing agents (LRA) under investigation, the γc-cytokine IL-15 and the superagonist N-803 have been shown to reactivate latent HIV ex vivo and in vivo. However, their clinical benefit can be hindered by IL-15 promoting survival of infected cells. We previously identified a small molecule, HODHBt, that sensitizes latently infected cells to death upon reactivation with γc-cytokines through a STAT-dependent pathway. In here, we aimed to identify and evaluate FDA-approved compounds that could also sensitize HIV-infected cells to apoptosis. Using the Connectivity Map (CMap), we identified the retinol derivative 13-cis-retinoic acid (Isotretinoin) causes similar transcriptional changes as HODHBt. Isotretinoin enhances IL-15-mediated latency reversal without inducing proliferation of memory CD4 T cells. Ex vivo analysis of PBMCs from ACTG A5325, where Isotretinoin was administered to ART-suppressed people with HIV, showed that Isotretinoin treatment enhances IL-15-mediated latency reversal. Furthermore, we showed that a combination of IL-15 with Isotretinoin promotes the reduction of translation-competent reservoirs ex vivo. Mechanistically, combination of IL-15 and Isotretinoin increases caspase-3 activation specifically in HIV-infected cells but not uninfected cells. Our results suggest that Isotretinoin can be a novel approach to target and eliminate translation-competent HIV reservoirs.
Collapse
Affiliation(s)
- J. Natalie Howard
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, United States of America
| | - Callie Levinger
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, United States of America
| | - Selase Deletsu
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, United States of America
| | - Rémi Fromentin
- Centre de recherche du CHUM et Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Nicolas Chomont
- Centre de recherche du CHUM et Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, United States of America
| | | |
Collapse
|
40
|
Manzanares M, Ramos-Martín F, Rodríguez-Mora S, Casado-Fernández G, Sánchez-Menéndez C, Simón-Rueda A, Mateos E, Cervero M, Spivak AM, Planelles V, Torres M, García-Gutiérrez V, Coiras M. Sustained antiviral response against in vitro HIV-1 infection in peripheral blood mononuclear cells from people with chronic myeloid leukemia treated with ponatinib. Front Pharmacol 2024; 15:1426974. [PMID: 39380908 PMCID: PMC11460598 DOI: 10.3389/fphar.2024.1426974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
HIV-1 infection cannot be cured due to long-lived viral reservoirs formed by latently infected CD4+ T cells. "Shock and Kill" strategy has been considered to eliminate the viral reservoir and achieve a functional cure but the stimulation of cytotoxic immunity is necessary. Ponatinib is a tyrosine kinase inhibitor (TKI) clinically used against chronic myeloid leukemia (CML) that has demonstrated to be effective against HIV-1 infection in vitro. Several TKIs may induce a potent cytotoxic response against cancer cells that makes possible to discontinue treatment in people with CML who present long-term deep molecular response. In this longitudinal study, we analyzed the capacity of ponatinib to induce an antiviral response against HIV-1 infection in peripheral blood mononuclear cells (PBMCs) obtained from people with CML previously treated with imatinib for a median of 10 years who changed to ponatinib for 12 months to boost the anticancer response before discontinuing any TKI as part of the clinical trial NCT04043676. Participants were followed-up for an additional 12 months in the absence of treatment. PBMCs were obtained at different time points and then infected in vitro with HIV-1. The rate of infection was determined by quantifying the intracellular levels of p24-gag in CD4+ T cells. The levels of p24-gag+ CD4+ T-cells were lower when these cells were obtained during and after treatment with ponatinib in comparison with those obtained during treatment with imatinib. Cytotoxicity of PBMCs against HIV-infected target cells was significantly higher during treatment with ponatinib than during treatment with imatinib, and it was maintained at least 12 months after discontinuation. There was a significant negative correlation between the lower levels of p24-gag+ CD4+ T-cells and the higher cytotoxicity induced by PBMCs when cells were obtained during and after treatment with ponatinib. This cytotoxic immunity was mostly based on higher levels of Natural Killer and Tγδ cells seemingly boosted by ponatinib. In conclusion, transient treatment with immunomodulators like ponatinib along with ART could be explored to boost the antiviral activity of cytotoxic cells and contribute to the elimination of HIV-1 reservoir.
Collapse
Affiliation(s)
- Mario Manzanares
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Fernando Ramos-Martín
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Rodríguez-Mora
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Guiomar Casado-Fernández
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Sciences, Universidad de Alcalá, Madrid, Spain
| | - Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alicia Simón-Rueda
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Cervero
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Madrid, Spain
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Adam M. Spivak
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt LakeCity, UT, United States
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt LakeCity, UT, United States
| | - Montserrat Torres
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Valentín García-Gutiérrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
41
|
Holmberg CS, Levinger C, Abongwa M, Ceriani C, Archin NM, Siegel M, Ghosh M, Bosque A. HIV-1 latency reversal and immune enhancing activity of IL-15 is not influenced by sex hormones. JCI Insight 2024; 9:e180609. [PMID: 39078714 PMCID: PMC11389825 DOI: 10.1172/jci.insight.180609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
The role of different biological variables including biological sex, age, and sex hormones in Human immunodeficiency virus (HIV) cure approaches is not well understood. The γc-cytokine IL-15 is a clinically relevant cytokine that promotes immune activation and mediates HIV reactivation from latency. In this work, we examined the interplay that biological sex, age, and sex hormones 17β-estradiol, progesterone, and testosterone may have on the biological activity of IL-15. We found that IL-15-mediated CD4+ T cell activation was higher in female donors than in male donors. This difference was abrogated at high 17β-estradiol concentration. Additionally, there was a positive correlation between age and both IL-15-mediated CD8+ T cell activation and IFN-γ production. In a primary cell model of latency, biological sex, age, or sex hormones did not influence the ability of IL-15 to reactivate latent HIV. Finally, 17β-estradiol did not consistently affect reactivation of translation-competent reservoirs in CD4+ T cells from people living with HIV who are antiretroviral therapy (ART) suppressed. Our study has found that biological sex and age, but not sex hormones, may influence some of the biological activities of IL-15. Understanding how different biological variables may affect HIV cure therapies will help us evaluate current and future clinical trials aimed toward HIV cure in diverse populations.
Collapse
Affiliation(s)
- Carissa S Holmberg
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, USA
| | - Callie Levinger
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, USA
| | - Marie Abongwa
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, USA
| | - Cristina Ceriani
- UNC HIV Cure Center and
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nancie M Archin
- UNC HIV Cure Center and
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marc Siegel
- The George Washington School of Medicine and Health Sciences, Washington DC, USA
| | - Mimi Ghosh
- Department of Epidemiology, George Washington University, Washington DC, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, USA
| |
Collapse
|
42
|
Semenova L, Wang Y, Falcinelli S, Archin N, Cooper-Volkheimer AD, Margolis DM, Goonetilleke N, Murdoch DM, Rudin CD, Browne EP. Machine learning approaches identify immunologic signatures of total and intact HIV DNA during long-term antiretroviral therapy. eLife 2024; 13:RP94899. [PMID: 39250423 PMCID: PMC11383529 DOI: 10.7554/elife.94899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Understanding the interplay between the HIV reservoir and the host immune system may yield insights into HIV persistence during antiretroviral therapy (ART) and inform strategies for a cure. Here, we applied machine learning (ML) approaches to cross-sectional high-parameter HIV reservoir and immunology data in order to characterize host-reservoir associations and generate new hypotheses about HIV reservoir biology. High-dimensional immunophenotyping, quantification of HIV-specific T cell responses, and measurement of genetically intact and total HIV proviral DNA frequencies were performed on peripheral blood samples from 115 people with HIV (PWH) on long-term ART. Analysis demonstrated that both intact and total proviral DNA frequencies were positively correlated with T cell activation and exhaustion. Years of ART and select bifunctional HIV-specific CD4 T cell responses were negatively correlated with the percentage of intact proviruses. A leave-one-covariate-out inference approach identified specific HIV reservoir and clinical-demographic parameters, such as age and biological sex, that were particularly important in predicting immunophenotypes. Overall, immune parameters were more strongly associated with total HIV proviral frequencies than intact proviral frequencies. Uniquely, however, expression of the IL-7 receptor alpha chain (CD127) on CD4 T cells was more strongly correlated with the intact reservoir. Unsupervised dimension reduction analysis identified two main clusters of PWH with distinct immune and reservoir characteristics. Using reservoir correlates identified in these initial analyses, decision tree methods were employed to visualize relationships among multiple immune and clinical-demographic parameters and the HIV reservoir. Finally, using random splits of our data as training-test sets, ML algorithms predicted with approximately 70% accuracy whether a given participant had qualitatively high or low levels of total or intact HIV DNA . The techniques described here may be useful for assessing global patterns within the increasingly high-dimensional data used in HIV reservoir and other studies of complex biology.
Collapse
Affiliation(s)
| | - Yingfan Wang
- Department of Computer Science, Duke UniversityDurhamUnited States
| | - Shane Falcinelli
- UNC HIV Cure Center UNC Chapel HillChapel HillUnited States
- Department of Microbiology and Immunology, UNC Chapel HillChapel HillUnited States
| | - Nancie Archin
- UNC HIV Cure Center UNC Chapel HillChapel HillUnited States
- Department of Medicine, UNC Chapel HillChapel HillUnited States
| | | | - David M Margolis
- UNC HIV Cure Center UNC Chapel HillChapel HillUnited States
- Department of Microbiology and Immunology, UNC Chapel HillChapel HillUnited States
- Department of Medicine, UNC Chapel HillChapel HillUnited States
| | - Nilu Goonetilleke
- UNC HIV Cure Center UNC Chapel HillChapel HillUnited States
- Department of Microbiology and Immunology, UNC Chapel HillChapel HillUnited States
| | | | - Cynthia D Rudin
- Department of Computer Science, Duke UniversityDurhamUnited States
| | - Edward P Browne
- UNC HIV Cure Center UNC Chapel HillChapel HillUnited States
- Department of Microbiology and Immunology, UNC Chapel HillChapel HillUnited States
- Department of Medicine, UNC Chapel HillChapel HillUnited States
| |
Collapse
|
43
|
Scott GY, Worku D. HIV vaccination: Navigating the path to a transformative breakthrough-A review of current evidence. Health Sci Rep 2024; 7:e70089. [PMID: 39319247 PMCID: PMC11420300 DOI: 10.1002/hsr2.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Background and Aim Human immunodeficiency virus (HIV) remains a significant global health challenge, with approximately 39 million people living with HIV worldwide as of 2022. Despite progress in antiretroviral therapy, achieving the UNAIDS "95-95-95" target to end the HIV epidemic by 2025 faces challenges, particularly in sub-Saharan Africa. The pursuit of an HIV vaccine is crucial, offering durable immunity and the potential to end the epidemic. Challenges in vaccine development include the lack of known immune correlates, suitable animal models, and HIV's high mutation rate. This study aims to explore the current state of HIV vaccine development, focusing on the challenges and innovative approaches being investigated. Methods In writing this review, we conducted a search of medical databases such as PubMed, ResearchGate, Web of Science, Google Scholar, and Scopus. The exploration of messenger ribonucleic acid vaccines, which have proven successful in the SARS-CoV-2 pandemic, presents a promising avenue for HIV vaccine development. Understanding HIV-1's ability to infiltrate various bodily compartments, establish reservoirs, and manipulate immune responses is critical. Robust cytotoxic T lymphocytes and broadly neutralizing antibodies are identified as key components, though their production faces challenges. Innovative approaches, including computational learning and advanced drug delivery systems, are being investigated to effectively activate the immune system. Results and Conclusions Discrepancies between animal models and human responses have hindered the progress of vaccine development. Despite these challenges, ongoing research is focused on overcoming these obstacles through advanced methodologies and technologies. Addressing the challenges in HIV vaccine development is paramount to realizing an effective HIV-1 vaccine and achieving the goal of ending the epidemic. The integration of innovative approaches and a deeper understanding of HIV-1's mechanisms are essential steps toward this transformative breakthrough.
Collapse
Affiliation(s)
- Godfred Yawson Scott
- Department of Medical DiagnosticsKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Dominic Worku
- Infectious Diseases DepartmentMorriston Hospital, Heol Maes EglwysMorristonUnited Kingdom
- Public Health WalesCardiffUnited Kingdom
| |
Collapse
|
44
|
Margolis DM. Advancing Toward a Human Immunodeficiency Virus Cure: Initial Progress on a Difficult Path. Infect Dis Clin North Am 2024; 38:487-497. [PMID: 38969530 PMCID: PMC11410351 DOI: 10.1016/j.idc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Therapies to eradicate human immunodeficiency virus (HIV) infection, sparing lifelong antiviral therapy, are a still-distant goal. But significant advances have been made to reverse HIV latency while antiretroviral therapy (ART) is maintained to allow targeting of the persistent viral reservoir, to test interventions that could clear cells emerging from latent infection, and to improve HIV cure research assays and infrastructure. Steady progress gives hope that future therapies to clear HIV infection may relieve individuals and society of the burden of HIV.
Collapse
Affiliation(s)
- David M Margolis
- Medicine, Microbiology & Immunology, Epidemiology; UNC HIV Cure Center; University of North Carolina at Chapel Hill, 2016 Genetic Medicine Building, 120 Mason Farm Road, CB 7042, Chapel Hill, NC 27599-7042, USA.
| |
Collapse
|
45
|
Dias J, Fabozzi G, Fourati S, Chen X, Liu C, Ambrozak DR, Ransier A, Laboune F, Hu J, Shi W, March K, Maximova AA, Schmidt SD, Samsel J, Talana CA, Ernste K, Ko SH, Lucas ME, Radecki PE, Boswell KL, Nishimura Y, Todd JP, Martin MA, Petrovas C, Boritz EA, Doria-Rose NA, Douek DC, Sékaly RP, Lifson JD, Asokan M, Gama L, Mascola JR, Pegu A, Koup RA. Administration of anti-HIV-1 broadly neutralizing monoclonal antibodies with increased affinity to Fcγ receptors during acute SHIV AD8-EO infection. Nat Commun 2024; 15:7461. [PMID: 39198422 PMCID: PMC11358508 DOI: 10.1038/s41467-024-51848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through their Fab and Fc domains, respectively. So far, bNAbs with enhanced Fc effector functions in vitro have only been tested in NHPs during chronic simian-HIV (SHIV) infection. Here, we investigate the effects of administering in acute SHIVAD8-EO infection either wild-type (WT) bNAbs or bNAbs carrying the S239D/I332E/A330L (DEL) mutation, which increases binding to FcγRs. Emergence of virus in plasma and lymph nodes (LNs) was delayed by bNAb treatment and occurred earlier in monkeys given DEL bNAbs than in those given WT bNAbs, consistent with faster clearance of DEL bNAbs from plasma. DEL bNAb-treated monkeys had higher levels of circulating virus-specific IFNγ single-producing CD8+ CD69+ T cells than the other groups. In LNs, WT bNAbs were evenly distributed between follicular and extrafollicular areas, but DEL bNAbs predominated in the latter. At week 8 post-challenge, LN monocytes and NK cells from DEL bNAb-treated monkeys upregulated proinflammatory signaling pathways and LN T cells downregulated TNF signaling via NF-κB. Overall, bNAbs with increased affinity to FcγRs shape innate and adaptive cellular immunity, which may be important to consider in future strategies of passive bNAb therapy.
Collapse
Affiliation(s)
- Joana Dias
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Giulia Fabozzi
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Slim Fourati
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Xuejun Chen
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cuiping Liu
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David R Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Farida Laboune
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jianfei Hu
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wei Shi
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kylie March
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna A Maximova
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen D Schmidt
- Humoral Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jakob Samsel
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Institute for Biomedical Sciences, George Washington University, Washington, D.C., USA
| | - Chloe A Talana
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Keenan Ernste
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sung Hee Ko
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Margaret E Lucas
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierce E Radecki
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristin L Boswell
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John-Paul Todd
- Translational Research Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Malcolm A Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eli A Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Humoral Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rafick-Pierre Sékaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mangaiarkarasi Asokan
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lucio Gama
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Amarendra Pegu
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
46
|
Richard J, Grunst MW, Niu L, Díaz-Salinas MA, Tolbert WD, Marchitto L, Zhou F, Bourassa C, Yang D, Chiu TJ, Chen HC, Benlarbi M, Guillaume-Beaudoin-Buissières, Gottumukkala S, Li W, Dionne K, Bélanger É, Chatterjee D, Medjahed H, Hendrickson WA, Sodroski J, Lang ZC, Morton AJ, Huang RK, Matthies D, Smith AB, Mothes W, Munro JB, Pazgier M, Finzi A. The asymmetric opening of HIV-1 Env by a potent CD4 mimetic enables anti-coreceptor binding site antibodies to mediate ADCC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609961. [PMID: 39253431 PMCID: PMC11383012 DOI: 10.1101/2024.08.27.609961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
HIV-1 envelope glycoproteins (Env) from primary HIV-1 isolates typically adopt a pretriggered "closed" conformation that resists to CD4-induced (CD4i) non-neutralizing antibodies (nnAbs) mediating antibody-dependent cellular cytotoxicity (ADCC). CD4-mimetic compounds (CD4mcs) "open-up" Env allowing binding of CD4i nnAbs, thereby sensitizing HIV-1-infected cells to ADCC. Two families of CD4i nnAbs, the anti-cluster A and anti-coreceptor binding site (CoRBS) Abs, are required to mediate ADCC in combination with the indane CD4mc BNM-III-170. Recently, new indoline CD4mcs with improved potency and breadth have been described. Here, we show that the lead indoline CD4mc, CJF-III-288, sensitizes HIV-1-infected cells to ADCC mediated by anti-CoRBS Abs alone, contributing to improved ADCC activity. Structural and conformational analyses reveal that CJF-III-288, in combination with anti-CoRBS Abs, potently stabilizes an asymmetric "open" State-3 Env conformation, This Env conformation orients the anti-CoRBS Ab to improve ADCC activity and therapeutic potential.
Collapse
Affiliation(s)
- Jonathan Richard
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Michael W. Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Ling Niu
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Marco A. Díaz-Salinas
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - William D. Tolbert
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Fei Zhou
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | | | - Derek Yang
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ta Jung Chiu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Hung-Ching Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume-Beaudoin-Buissières
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Suneetha Gottumukkala
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Katrina Dionne
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Debashree Chatterjee
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | - Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zabrina C. Lang
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, USA
| | - Abraham J. Morton
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, USA
| | - Rick K. Huang
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, USA
| | - Doreen Matthies
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - James B. Munro
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
47
|
Janssens J, Kim P, Kim SJ, Wedrychowski A, Kadiyala GN, Hunt PW, Deeks SG, Wong JK, Yukl SA. Mechanisms and efficacy of small molecule latency-promoting agents to inhibit HIV reactivation ex vivo. JCI Insight 2024; 9:e183084. [PMID: 39163135 PMCID: PMC11466185 DOI: 10.1172/jci.insight.183084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Drugs that inhibit HIV transcription and/or reactivation of latent HIV have been proposed as a strategy to reduce HIV-associated immune activation or to achieve a functional cure, yet comparative studies are lacking. We evaluated 26 drugs, including drugs previously reported to inhibit HIV transcription (inhibitors of Tat-dependent HIV transcription, Rev, HSF-1/PTEF-b, HSP90, Jak/Stat, or SIRT1/Tat deacetylation) and other agents that were not tested before (inhibitors of PKC, NF-κB, SP-1, or histone acetyltransferase; NR2F1 agonists), elongation (inhibitors of CDK9/ PTEF-b), completion (inhibitors of PolyA-polymerase), or splicing (inhibitors of human splice factors). To investigate if those drugs would vary in their ability to affect different blocks to HIV transcription, we measured levels of initiated, elongated, midtranscribed, completed, and multiply spliced HIV RNA in PBMCs from antiretroviral therapy-suppressed individuals following ex vivo treatment with each drug and subsequent T cell activation. We identified new drugs that prevent HIV reactivation, including CDK and splicing inhibitors. While some drugs inhibited 1 or 2 steps, other drugs (CDK inhibitors, splicing inhibitors, tanespimycin, and triptolide) inhibited multiple stages of HIV transcription and blocked the production of supernatant viral RNA. These drugs and targets deserve further study in strategies aimed at reducing HIV-associated immune activation or achieving a functional cure.
Collapse
Affiliation(s)
- Julie Janssens
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Peggy Kim
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Sun Jin Kim
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Adam Wedrychowski
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gayatri N. Kadiyala
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Peter W. Hunt
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Joseph K. Wong
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Steven A. Yukl
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
48
|
Jarmoluk P, Sviercz FA, Cevallos C, Freiberger RN, López CA, Poli G, Delpino MV, Quarleri J. SARS-CoV-2 Modulation of HIV Latency Reversal in a Myeloid Cell Line: Direct and Bystander Effects. Viruses 2024; 16:1310. [PMID: 39205284 PMCID: PMC11359691 DOI: 10.3390/v16081310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) might impact disease progression in people living with HIV (PLWH), including those on effective combination antiretroviral therapy (cART). These individuals often experience chronic conditions characterized by proviral latency or low-level viral replication in CD4+ memory T cells and tissue macrophages. Pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-6, and IFN-γ, can reactivate provirus expression in both primary cells and cell lines. These cytokines are often elevated in individuals infected with SARS-CoV-2, the virus causing COVID-19. However, it is still unknown whether SARS-CoV-2 can modulate HIV reactivation in infected cells. Here, we report that exposure of the chronically HIV-1-infected myeloid cell line U1 to two different SARS-CoV-2 viral isolates (ancestral and BA.5) reversed its latent state after 24 h. We also observed that SARS-CoV-2 exposure of human primary monocyte-derived macrophages (MDM) initially drove their polarization towards an M1 phenotype, which shifted towards M2 over time. This effect was associated with soluble factors released during the initial M1 polarization phase that reactivated HIV production in U1 cells, like MDM stimulated with the TLR agonist resiquimod. Our study suggests that SARS-CoV-2-induced systemic inflammation and interaction with macrophages could influence proviral HIV-1 latency in myeloid cells in PLWH.
Collapse
Affiliation(s)
- Patricio Jarmoluk
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Laboratorio de Inmunopatología Viral, Universidad de Buenos Aires (UBA), Buenos Aires C1121ABG, Argentina; (P.J.); (F.A.S.); (C.C.); (R.N.F.); (C.A.L.); (M.V.D.)
| | - Franco Agustín Sviercz
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Laboratorio de Inmunopatología Viral, Universidad de Buenos Aires (UBA), Buenos Aires C1121ABG, Argentina; (P.J.); (F.A.S.); (C.C.); (R.N.F.); (C.A.L.); (M.V.D.)
| | - Cintia Cevallos
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Laboratorio de Inmunopatología Viral, Universidad de Buenos Aires (UBA), Buenos Aires C1121ABG, Argentina; (P.J.); (F.A.S.); (C.C.); (R.N.F.); (C.A.L.); (M.V.D.)
| | - Rosa Nicole Freiberger
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Laboratorio de Inmunopatología Viral, Universidad de Buenos Aires (UBA), Buenos Aires C1121ABG, Argentina; (P.J.); (F.A.S.); (C.C.); (R.N.F.); (C.A.L.); (M.V.D.)
| | - Cynthia Alicia López
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Laboratorio de Inmunopatología Viral, Universidad de Buenos Aires (UBA), Buenos Aires C1121ABG, Argentina; (P.J.); (F.A.S.); (C.C.); (R.N.F.); (C.A.L.); (M.V.D.)
| | - Guido Poli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - M. Victoria Delpino
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Laboratorio de Inmunopatología Viral, Universidad de Buenos Aires (UBA), Buenos Aires C1121ABG, Argentina; (P.J.); (F.A.S.); (C.C.); (R.N.F.); (C.A.L.); (M.V.D.)
| | - Jorge Quarleri
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Laboratorio de Inmunopatología Viral, Universidad de Buenos Aires (UBA), Buenos Aires C1121ABG, Argentina; (P.J.); (F.A.S.); (C.C.); (R.N.F.); (C.A.L.); (M.V.D.)
| |
Collapse
|
49
|
Zaman F, Smith ML, Balagopal A, Durand CM, Redd AD, Tobian AAR. Spatial technologies to evaluate the HIV-1 reservoir and its microenvironment in the lymph node. mBio 2024; 15:e0190924. [PMID: 39058091 PMCID: PMC11324018 DOI: 10.1128/mbio.01909-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
The presence of the HIV-1 reservoir, a group of immune cells that contain intact, integrated, and replication-competent proviruses, is a major challenge to cure HIV-1. HIV-1 reservoir cells are largely unaffected by the cytopathic effects of viruses, antiviral immune responses, or antiretroviral therapy (ART). The HIV-1 reservoir is seeded early during HIV-1 infection and augmented during active viral replication. CD4+ T cells are the primary target for HIV-1 infection, and recent studies suggest that memory T follicular helper cells within the lymph node, more precisely in the B cell follicle, harbor integrated provirus, which contribute to viral rebound upon ART discontinuation. The B cell follicle, more specifically the germinal center, possesses a unique environment because of its distinct property of being partly immune privileged, potentially allowing HIV-1-infected cells within the lymph nodes to be protected from CD8+ T cells. This modified immune response in the germinal center of the follicle is potentially explained by the exclusion of CD8+ T cells and the presence of T regulatory cells at the junction of the follicle and extrafollicular region. The proviral makeup of HIV-1-infected cells is similar in lymph nodes and blood, suggesting trafficking between these compartments. Little is known about the cell-to-cell interactions, microenvironment of HIV-1-infected cells in the follicle, and trafficking between the lymph node follicle and other body compartments. Applying a spatiotemporal approach that integrates genomics, transcriptomics, and proteomics to investigate the HIV-1 reservoir and its neighboring cells in the lymph node has promising potential for informing HIV-1 cure efforts.
Collapse
Affiliation(s)
- Fatima Zaman
- Department of
Pathology, Johns Hopkins University School of
Medicine, Baltimore,
Maryland, USA
| | - Melissa L. Smith
- Department of
Biochemistry and Molecular Genetics, University of Louisville School of
Medicine, Louisville,
Kentucky, USA
| | - Ashwin Balagopal
- Division of Infectious
Diseases, Department of Medicine, Johns Hopkins
University, Baltimore,
Maryland, USA
| | - Christine M. Durand
- Division of Infectious
Diseases, Department of Medicine, Johns Hopkins
University, Baltimore,
Maryland, USA
| | - Andrew D. Redd
- Division of Infectious
Diseases, Department of Medicine, Johns Hopkins
University, Baltimore,
Maryland, USA
- Laboratory of
Immunoregulation, National Institute of Allergy and Infectious Diseases,
National Institutes of Health,
Bethesda, Maryland, USA
- Institute of
Infectious Disease and Molecular Medicine, University of Cape
Town, Cape Town,
South Africa
| | - Aaron A. R. Tobian
- Department of
Pathology, Johns Hopkins University School of
Medicine, Baltimore,
Maryland, USA
- Division of Infectious
Diseases, Department of Medicine, Johns Hopkins
University, Baltimore,
Maryland, USA
| |
Collapse
|
50
|
Howard JN, Zaikos TD, Levinger C, Rivera E, McMahon EK, Holmberg CS, Terao J, Sanz M, Copertino DC, Wang W, Soriano-Sarabia N, Jones RB, Bosque A. The HIV latency reversing agent HODHBt inhibits the phosphatases PTPN1 and PTPN2. JCI Insight 2024; 9:e179680. [PMID: 39115957 PMCID: PMC11457865 DOI: 10.1172/jci.insight.179680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Nonreceptor tyrosine phosphatases (NTPs) play an important role in regulating protein phosphorylation and have been proposed as attractive therapeutic targets for cancer and metabolic diseases. We have previously identified that 3-Hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) enhanced STAT activation upon cytokine stimulation, leading to increased reactivation of latent HIV and effector functions of NK and CD8 T cells. Here, we demonstrate that HODHBt interacted with and inhibited the NTPs PTPN1 and PTPN2 through a mixed inhibition mechanism. We also confirm that PTPN1 and PTPN2 specifically controlled the phosphorylation of different STATs. The small molecule ABBV-CLS-484 (AC-484) is an active site inhibitor of PTPN1 and PTPN2 currently in clinical trials for advanced solid tumors. We compared AC-484 and HODHBt and found similar effects on STAT5 and immune activation, albeit with different mechanisms of action leading to varying effects on latency reversal. Our studies provide the first specific evidence to our knowledge that enhancing STAT phosphorylation via inhibition of PTPN1 and PTPN2 is an effective tool against HIV.
Collapse
Affiliation(s)
- J. Natalie Howard
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Thomas D. Zaikos
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Callie Levinger
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Esteban Rivera
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Elyse K. McMahon
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Carissa S. Holmberg
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Joshua Terao
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Marta Sanz
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Dennis C. Copertino
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Weisheng Wang
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Natalia Soriano-Sarabia
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - R. Brad Jones
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| |
Collapse
|