1
|
Sousa RAP, Nunes de Paula JH, Silva RJ, Teixeira SC, França FBF, Gonçalves AHL, Silva TRO, Granero-Rosa MJ, Silva MV, Gomes MDLM, Silva MV, Rodrigues Junior V, Mineo JR, Barbosa BF, Ferro EAV, Oliveira CJF, Gomes AO. Salivary shield: Rhodnius prolixus salivary glandular extract reduces intestinal immunopathology and protects against Toxoplasma gondii infection. Gut Pathog 2025; 17:13. [PMID: 40045369 PMCID: PMC11881255 DOI: 10.1186/s13099-024-00676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/24/2024] [Indexed: 03/09/2025] Open
Abstract
C57BL/6 mice, orally infected with T. gondii, experience pronounced severe intestinal inflammation, causing necrosis, weight loss, and bacterial translocation. In addition, immunomodulatory molecules such as lipocalins, nitrophorins, and apyrases are present in R. prolixus saliva. Our objective was to assess the immunomodulatory effects of the salivary gland extract (SGE) of R. prolixus in mice orally infected by T. gondii. Experimental groups received no treatment (PBS) or SGE (10 µg and 30 µg) in the chronic infection phase and (30 µg) in the acute infection phase. Control groups were non-infected and treated or not treated with SGE (30 µg). SGE was injected intraperitoneally daily, and mice were infected by gavage with 20 cysts of T. gondii (ME-49 strain) on the third treatment day. The treatment duration for the experiment was 23 days for the chronic infection phase (corresponding to 20 days of infection) and 12 days for the acute infection phase (corresponding to 9 days of infection). SGE-treated mice showed reduced small intestine shortening, weight loss, clinical scores, and higher survival rates. Treated mice also exhibited increased secretion of regulatory and protective cytokines (IL-4, IL-2, IL-10, IL-22) and higher levels of IL-4 (chronic phase), IL-2, and IL-22 (acute phase) in the gut. SGE treatment (30 µg) demonstrated protective effects in both the duodenum and ileum of T. gondii-infected mice. Treated animals showed better-preserved villus architecture, increased goblet and Paneth cell counts, and shallower crypts. Correlation data revealed that treated animals exhibited a more regulated and protective immune response. Overall, SGE contributed to the preservation of intestinal integrity and the reduction of inflammation. Thus, we conclude that SGE induces a regulatory response, mitigating inflammation and protecting against T. gondii infection.
Collapse
Affiliation(s)
- Roberto Augusto Pereira Sousa
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | | | - Rafaela José Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Amanda Helena Leão Gonçalves
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Túlio Rodrigues Oliveira Silva
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Maria Julia Granero-Rosa
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Murilo Vieira Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcos de Lucca Moreira Gomes
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Marcos Vinícius Silva
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Virmondes Rodrigues Junior
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - José Roberto Mineo
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Bellisa Freitas Barbosa
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Carlo José Freire Oliveira
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Angelica Oliveira Gomes
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil.
| |
Collapse
|
2
|
El-Kady AM, Elshazly H, Alsulami MN, Albohiri HH, Alshehri EA, Alfaifi MS, Mohamed K, Wakid MH, Gattan HS, Altwaim SA, Al-Megrin WAI, Almalki GH, Abdel-Rahman IAM, Elshabrawy HA, Younis S. Zingiber officinale Ameliorates Acute Toxoplasmosis-Induced Pathology in Mice. Acta Parasitol 2024; 69:1785-1800. [PMID: 39225734 DOI: 10.1007/s11686-024-00884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) infects one third of the world's population with significant illness, mainly among immunocompromised individuals and pregnant women. Treatment options for toxoplasmosis are limited which signifies the need for novel, potent, and safe therapeutic options. The goal of this study was to assess the effectiveness of the ethanolic extract of Zingiber officinale (Z. officinale) in treating mice infected with the RH T. gondii strain. MATERIALS AND METHODS Gas Chromatography/Mass Spectrometry (GC/MS) was used to identify components of ethanolic extract of Z. officinale. A total of 80 mice were randomly allocated into four experimental groups that contained 20 mice each. The first group was left uninfected (uninfected control), while three groups were infected with T. gondii RH virulent strain tachyzoites at 2500 tachyzoites/mouse. One infected group was left untreated (infected, untreated), whereas the other two groups were treated orally with either spiramycin (positive control) or Z. officinale ethanolic extract at doses of 200 mg/kg and 500 mg/kg, respectively for 5 days, starting the day of infection. Ten mice from each group were used to assess mice survival in different groups, whereas the other ten mice in each group were sacrificed on the 5th day post-infectin (dpi) to estimate the treatment efficacy by quantifying liver parasite load, liver function, nitric oxide (NO) production, and levels of antioxidant enzymes. Additionally, histopathological studies were performed to evaluate the therapeutic effect of Z. officinale treatment on toxoplasmosis-induced pathological alterations in liver, brain, and spleen. RESULTS Treatment with Z. officinale ethanolic extract extended the survival of mice till 9th dpi compared to 7th dpi in infected untreated mice. Higher percentage of mice survived in Z. officinale-treated group compared to spiramycin-treatment group at different time points. Liver parasite loads were significantly lower in Z. officinale extract-treated mice and spiramycin-treated mice compared to infected untreated mice which correlated with significantly lower levels of serum liver enzymes (ALT, AST) and nitric oxide (NO), as well as significantly higher catalase (CAT) antioxidant enzyme activity. Scanning electron microscopy (SEM) examination of tachyzoites from the peritoneal fluid revealed marked damage in tachyzoites from Z. officinale-treated group compared to that from infected untreated mice. Moreover, treatment with Z. officinale ethanolic extract alleviated infection-induced pathological alterations and restored normal tissue morphology of liver, brain, and spleen. CONCLUSION Our results demonstrated that Z. officinale treatment reduced parasite burden and reversed histopathological and biochemical alterations in acute murine toxoplasmosis. These findings support the potential utility of Z. officinale as a future effective natural therapeutic for toxoplasmosis. Further studies are needed to determine the effective active ingredient in Z. officinale extract that can be further optimized for treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Asmaa M El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, 83523, Egypt.
| | - Hayam Elshazly
- Department of Biology, Faculty of Sciences-Scientific Departments, Qassim University, Bu-raidah, Qassim, 52571, Saudi Arabia
| | - Muslimah N Alsulami
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Haleema H Albohiri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Eman Abdullah Alshehri
- Department of Zoology, College of Science, King Saud University, Riyadh, 11362, Saudi Arabia
| | - Mashael S Alfaifi
- Department of Epidemiology and Medical Statistics, Faculty of Public Health and Health Informatics, Umm Al-Qura 21 University, Mecca, 21961, Saudi Arabia
| | - Khalil Mohamed
- Department of Epidemiology and Medical Statistics, Faculty of Public Health and Health Informatics, Umm Al-Qura 21 University, Mecca, 21961, Saudi Arabia
| | - Majed H Wakid
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Special Infectious Agents unit, King Fahd Medical Research Center, Jeddah, 21589, Saudi Arabia.
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agents unit, King Fahd Medical Research Center, Jeddah, 21589, Saudi Arabia
| | - Sarah A Altwaim
- Special Infectious Agents unit, King Fahd Medical Research Center, Jeddah, 21589, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wafa Abdullah I Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ghaliah H Almalki
- Department of Biology, College of Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Iman A M Abdel-Rahman
- Department of Pharmacognosy, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Hatem A Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, 77304, USA.
| | - Salwa Younis
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, 21526, Egypt
| |
Collapse
|
3
|
Doherty CM, Patterson PR, Emeanuwa JA, Belmares Ortega J, Fox BA, Bzik DJ, Denkers EY. T lymphocyte-dependent IL-10 down-regulates a cytokine storm driven by Toxoplasma gondii GRA24. mBio 2024; 15:e0145524. [PMID: 39440975 PMCID: PMC11559025 DOI: 10.1128/mbio.01455-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
As a model organism in the study of immunity to infection, Toxoplasma gondii has been instrumental in establishing key principles of host anti-microbial defense and its regulation. Here, we employed an attenuated uracil auxotroph strain of Type I Toxoplasma designated OMP to further untangle the early immune response to this parasitic pathogen. Experiments using αβ T cell-deficient Tcrb-/- mice unexpectedly revealed that an intact αβ T lymphocyte compartment was essential to survive infection with OMP. Subsequent antibody depletion and knockout mouse experiments demonstrated contributions from CD4+ T cells and most predominantly CD8+ T cells in resistance. Using transgenic knockout mice, we found only a partial requirement for IFN-γ and a lack of requirement for Toll-like receptor (TLR) adaptor MyD88 in resistance. In contrast to other studies on Toxoplasma, the ability to survive OMP infection did not require IL-12p40. Surprisingly, T cell-dependent IL-10 was found to be critical for survival, and deficiency of this cytokine triggered an abnormally high systemic inflammatory response. We also found that parasite molecule GRA24, a dense granule protein that triggers TLR-independent IL-12 production, acts as a virulence factor contributing to death of OMP-infected Tcrb-/- and IL-10-/- mice. Furthermore, resistance against OMP was restored in Tcrb-/- mice via monoclonal depletion of IL-12p40, suggesting that GRA24-induced IL-12 underlies the fatal immunopathology observed. Collectively, our studies provide insight into a novel and rapidly arising T lymphocyte-dependent anti-inflammatory response to T. gondii which operates independently of MyD88 and IL-12 and that depends on the function of parasite-dense granule protein GRA24.IMPORTANCEAs a model infectious microbe and an important human pathogen, the apicomplexan Toxoplasma gondii has provided many important insights into innate and adaptive immunity to infection. We show here that a low virulence uracil auxotrophic Toxoplasma strain emerges as a virulent parasite in the absence of an intact T cell compartment. Both CD4+ and CD8+ T lymphocytes are required for optimal protection, in line with previous findings in other models of Toxoplasma infection. Nevertheless, several novel aspects of the response were identified in our study. Protection occurs independently of IL-12 and MyD88 and only partially requires IFN-γ. This is noteworthy particularly because the cytokines IL-12 and IFN-γ have previously been regarded as essential for protective immunity to T. gondii. Instead, we identified the anti-inflammatory effects of T cell-dependent IL-10 as the critical factor enabling host survival. The parasite dense granule protein GRA24, a host-directed mitogen-activated protein kinase activator, was identified as a major virulence factor in T cell-deficient hosts. Collectively, our results provide new and unexpected insights into host resistance to Toxoplasma.
Collapse
Affiliation(s)
- Claire M. Doherty
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Paige R. Patterson
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Julie A. Emeanuwa
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jessica Belmares Ortega
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Eric Y. Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
4
|
Henry B, Phillips AJ, Sibley LD, Rosenberg A. A combination of four Toxoplasma gondii nuclear-targeted effectors protects against interferon gamma-driven human host cell death. mBio 2024; 15:e0212424. [PMID: 39292011 PMCID: PMC11481881 DOI: 10.1128/mbio.02124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
In both mice and humans, Type II interferon gamma (IFNγ) is crucial for the regulation of Toxoplasma gondii (T. gondii) infection, during acute or chronic phases. To thwart this defense, T. gondii secretes protein effectors hindering the host's immune response. For example, T. gondii relies on the MYR translocon complex to deploy soluble dense granule effectors (GRAs) into the host cell cytosol or nucleus. Recent genome-wide loss-of-function screens in IFNγ-primed primary human fibroblasts identified MYR translocon components as crucial for parasite resistance against IFNγ-driven vacuole clearance. However, these screens did not pinpoint specific MYR-dependent GRA proteins responsible for IFNγ signaling blockade, suggesting potential functional redundancy. Our study reveals that T. gondii depends on the MYR translocon complex to prevent parasite premature egress and host cell death in human cells stimulated with IFNγ post-infection, a unique phenotype observed in various human cell lines but not in murine cells. Intriguingly, inhibiting parasite egress did not prevent host cell death, indicating this mechanism is distinct from those described previously. Genome-wide loss-of-function screens uncovered TgIST, GRA16, GRA24, and GRA28 as effectors necessary for a complete block of IFNγ response. GRA24 and GRA28 directly influenced IFNγ-driven transcription, GRA24's action depended on its interaction with p38 MAPK, while GRA28 disrupted histone acetyltransferase activity of CBP/p300. Given the intricate nature of the immune response to T. gondii, it appears that the parasite has evolved equally elaborate mechanisms to subvert IFNγ signaling, extending beyond direct interference with the JAK/STAT1 pathway, to encompass other signaling pathways as well.IMPORTANCEToxoplasma gondii, an intracellular parasite, affects nearly one-third of the global human population, posing significant risks for immunocompromised patients and infants infected in utero. In murine models, the core mechanisms of IFNγ-mediated immunity against T. gondii are consistently preserved, showcasing a remarkable conservation of immune defense mechanisms. In humans, the recognized restriction mechanisms vary among cell types, lacking a universally applicable mechanism. This difference underscores a significant variation in the genes employed by T. gondii to shield itself against the IFNγ response in human vs murine cells. Here, we identified a specific combination of four parasite-secreted effectors deployed into the host cell nucleus, disrupting IFNγ signaling. This disruption is crucial in preventing premature egress of the parasite and host cell death. Notably, this phenotype is exclusive to human cells, highlighting the intricate and unique mechanisms T. gondii employs to modulate host responses in the human cellular environment.
Collapse
Affiliation(s)
- Brittany Henry
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Aubrey J. Phillips
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex Rosenberg
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Kreimendahl S, Pernas L. Metabolic immunity against microbes. Trends Cell Biol 2024; 34:496-508. [PMID: 38030541 DOI: 10.1016/j.tcb.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Pathogens, including viruses, bacteria, fungi, and parasites, remodel the metabolism of their host to acquire the nutrients they need to proliferate. Thus, host cells are often perceived as mere exploitable nutrient pools during infection. Mounting reports challenge this perception and instead suggest that host cells can actively reprogram their metabolism to the detriment of the microbial invader. In this review, we present metabolic mechanisms that host cells use to defend against pathogens. We highlight the contribution of domesticated microbes to host defenses and discuss examples of host-pathogen arms races that are derived from metabolic conflict.
Collapse
Affiliation(s)
| | - Lena Pernas
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Nayeri T, Sarvi S, Daryani A. Effective factors in the pathogenesis of Toxoplasmagondii. Heliyon 2024; 10:e31558. [PMID: 38818168 PMCID: PMC11137575 DOI: 10.1016/j.heliyon.2024.e31558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a cosmopolitan protozoan parasite in humans and animals. It infects about 30 % of the human population worldwide and causes potentially fatal diseases in immunocompromised hosts and neonates. For this study, five English-language databases (ScienceDirect, ProQuest, Web of Science, PubMed, and Scopus) and the internet search engine Google Scholar were searched. This review was accomplished to draw a global perspective of what is known about the pathogenesis of T. gondii and various factors affecting it. Virulence and immune responses can influence the mechanisms of parasite pathogenesis and these factors are in turn influenced by other factors. In addition to the host's genetic background, the type of Toxoplasma strain, the routes of transmission of infection, the number of passages, and different phases of parasite life affect virulence. The identification of virulence factors of the parasite could provide promising insights into the pathogenesis of this parasite. The results of this study can be an incentive to conduct more intensive research to design and develop new anti-Toxoplasma agents (drugs and vaccines) to treat or prevent this infection. In addition, further studies are needed to better understand the key agents in the pathogenesis of T. gondii.
Collapse
Affiliation(s)
- Tooran Nayeri
- Infectious and Tropical Diseases Research Center, Dezful University of Medical Sciences, Dezful, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
7
|
Hasan T, Shimoda N, Nakamura S, Fox BA, Bzik DJ, Ushio-Watanabe N, Nishikawa Y. Protective efficacy of recombinant Toxoplasma gondii dense granule protein 15 against toxoplasmosis in C57BL/6 mice. Vaccine 2024; 42:2299-2309. [PMID: 38429153 DOI: 10.1016/j.vaccine.2024.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Toxoplasma gondii is a pervasive protozoan parasite that is responsible for significant zoonoses. A wide array of vaccines using different effector molecules of T. gondii have been studied worldwide to control toxoplasmosis. None of the existing vaccines are sufficiently effective to confer protective immunity. Among the different Toxoplasma-derived effector molecules, T. gondii dense granule protein 15 from the type II strain (GRA15 (II)) was recently characterized as an immunomodulatory molecule that induced host immunity via NF-κB. Therefore, we assessed the immunostimulatory and protective efficacy of recombinant GRA15 (II) (rGRA15) against T. gondii infection in a C57BL/6 mouse model. We observed that rGRA15 treatment increased the production of IL-12p40 from mouse peritoneal macrophages in vitro. Immunization of mice with rGRA15 induced the production of anti-TgGRA15-specific IgG, IgG1 and IgG2c antibodies. The rGRA15-sensitized spleen cells from mice inoculated with the same antigen strongly promoted spleen cell proliferation and IFN-γ production. Immunization with rGRA15 significantly enhanced the survival rate of mice and dramatically decreased parasite burden in mice challenged with the Pru (type II) strain. These results suggested that rGRA15 triggered humoral and cellular immune responses to control infection. However, all of the immunized mice died when challenged with the GRA15-deficient Pru strain or the RH (type I) strain. These results suggest that GRA15 (II)-dependent immunity plays a crucial role in protection against challenge infection with the type II strain of T. gondii. This study is the first report to show GRA15 (II) as a recombinant vaccine antigen against Toxoplasma infection.
Collapse
Affiliation(s)
- Tanjila Hasan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi 4225, Chattogram, Bangladesh.
| | - Naomi Shimoda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| | - Shu Nakamura
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | - David J Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | - Nanako Ushio-Watanabe
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
8
|
Zhao XY, Lempke SL, Urbán Arroyo JC, Brown IG, Yin B, Magaj MM, Holness NK, Smiley J, Redemann S, Ewald SE. iNOS is necessary for GBP-mediated T. gondii clearance in murine macrophages via vacuole nitration and intravacuolar network collapse. Nat Commun 2024; 15:2698. [PMID: 38538595 PMCID: PMC10973475 DOI: 10.1038/s41467-024-46790-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite of rodents and humans. Interferon-inducible guanylate binding proteins (GBPs) are mediators of T. gondii clearance, however, this mechanism is incomplete. Here, using automated spatially targeted optical micro proteomics we demonstrate that inducible nitric oxide synthetase (iNOS) is highly enriched at GBP2+ parasitophorous vacuoles (PV) in murine macrophages. iNOS expression in macrophages is necessary to limit T. gondii load in vivo and in vitro. Although iNOS activity is dispensable for GBP2 recruitment and PV membrane ruffling; parasites can replicate, egress and shed GBP2 when iNOS is inhibited. T. gondii clearance by iNOS requires nitric oxide, leading to nitration of the PV and collapse of the intravacuolar network of membranes in a chromosome 3 GBP-dependent manner. We conclude that reactive nitrogen species generated by iNOS cooperate with GBPs to target distinct structures in the PV that are necessary for optimal parasite clearance in macrophages.
Collapse
Affiliation(s)
- Xiao-Yu Zhao
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Samantha L Lempke
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jan C Urbán Arroyo
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Isabel G Brown
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bocheng Yin
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Magdalena M Magaj
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nadia K Holness
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jamison Smiley
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Stefanie Redemann
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Lüder CGK. IFNs in host defence and parasite immune evasion during Toxoplasma gondii infections. Front Immunol 2024; 15:1356216. [PMID: 38384452 PMCID: PMC10879624 DOI: 10.3389/fimmu.2024.1356216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Interferons (IFNs) are a family of cytokines with diverse functions in host resistance to pathogens and in immune regulation. Type II IFN, i.e. IFN-γ, is widely recognized as a major mediator of resistance to intracellular pathogens, including the protozoan Toxoplasma gondii. More recently, IFN-α/β, i.e. type I IFNs, and IFN-λ (type III IFN) have been identified to also play important roles during T. gondii infections. This parasite is a widespread pathogen of humans and animals, and it is a model organism to study cell-mediated immune responses to intracellular infection. Its success depends, among other factors, on the ability to counteract the IFN system, both at the level of IFN-mediated gene expression and at the level of IFN-regulated effector molecules. Here, I review recent advances in our understanding of the molecular mechanisms underlying IFN-mediated host resistance and immune regulation during T. gondii infections. I also discuss those mechanisms that T. gondii has evolved to efficiently evade IFN-mediated immunity. Knowledge of these fascinating host-parasite interactions and their underlying signalling machineries is crucial for a deeper understanding of the pathogenesis of toxoplasmosis, and it might also identify potential targets of parasite-directed or host-directed supportive therapies to combat the parasite more effectively.
Collapse
Affiliation(s)
- Carsten G. K. Lüder
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Henry B, Sibley LD, Rosenberg A. A Combination of Four Nuclear Targeted Effectors Protects Toxoplasma Against Interferon Gamma Driven Human Host Cell Death During Acute Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.24.573224. [PMID: 38234811 PMCID: PMC10793417 DOI: 10.1101/2023.12.24.573224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In both mice and humans, Type II interferon-gamma (IFNγ) is crucial for regulation of Toxoplasma gondii (T. gondii) infection, during acute or chronic phases. To thwart this defense, T. gondii secretes protein effectors hindering the hosťs immune response. For example, T. gondii relies on the MYR translocon complex to deploy soluble dense granule effectors (GRAs) into the host cell cytosol or nucleus. Recent genome-wide loss-of-function screens in IFNγ-primed primary human fibroblasts identified MYR translocon components as crucial for parasite resistance against IFNγ driven vacuole clearance. However, these screens did not pinpoint specific MYR-dependent GRA proteins responsible for IFNγ signaling blockade, suggesting potential functional redundancy. Our study reveals that T. gondii depends on the MYR translocon complex to prevent host cell death and parasite premature egress in human cells stimulated with IFNγ postinfection, a unique phenotype observed in various human cell lines but not in murine cells. Intriguingly, inhibiting parasite egress did not prevent host cell death, indicating this mechanism is distinct from those described previously. Genome-wide loss-of-function screens uncovered TgIST, GRA16, GRA24, and GRA28 as effectors necessary for a complete block of IFNγ response. GRA24 and GRA28 directly influenced IFNγ driven transcription, GRA24's action depended on its interaction with p38 MAPK, while GRA28 disrupted histone acetyltransferase activity of CBP/p300. Given the intricate nature of the immune response to T. gondii, it appears that the parasite has evolved equally elaborate mechanisms to subvert IFNγ signaling, extending beyond direct interference with the JAK/STAT1 pathway, to encompass other signaling pathways as well.
Collapse
Affiliation(s)
- Brittany Henry
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Alex Rosenberg
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
11
|
Zhao XY, Lempke SL, Urbán Arroyo JC, Yin B, Holness NK, Smiley J, Ewald SE. Inducible nitric oxide synthase (iNOS) is necessary for GBP-mediated T. gondii restriction in murine macrophages via vacuole nitration and intravacuolar network collapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.549965. [PMID: 37546987 PMCID: PMC10402109 DOI: 10.1101/2023.07.24.549965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Toxoplasma gondii is an obligate intracellular, protozoan pathogen of rodents and humans. T. gondii's ability to grow within cells and evade cell-autonomous immunity depends on the integrity of the parasitophorous vacuole (PV). Interferon-inducible guanylate binding proteins (GBPs) are central mediators of T. gondii clearance, however, the precise mechanism linking GBP recruitment to the PV and T. gondii restriction is not clear. This knowledge gap is linked to heterogenous GBP-targeting across a population of vacuoles and the lack of tools to selectively purify the intact PV. To identify mediators of parasite clearance associated with GBP2-positive vacuoles, we employed a novel protein discovery tool automated spatially targeted optical micro proteomics (autoSTOMP). This approach identified inducible nitric oxide synthetase (iNOS) enriched at levels similar to the GBPs in infected bone marrow-derived myeloid cells. iNOS expression on myeloid cells was necessary for mice to control T. gondii growth in vivo and survive acute infection. T. gondii infection of IFNγ-primed macrophage was sufficient to robustly induce iNOS expression. iNOS restricted T. gondii infection through nitric oxide synthesis rather than arginine depletion, leading to robust and selective nitration of the PV. Optimal parasite restriction by iNOS and vacuole nitration depended on the chromosome 3 GBPs. Notably, GBP2 recruitment and ruffling of the PV membrane occurred in iNOS knockouts, however, these vacuoles contained dividing parasites. iNOS activity was necessary for the collapse of the intravacuolar network of nanotubular membranes which connects parasites to each other and the host cytosol. Based on these data we conclude reactive nitrogen species generated by iNOS cooperate with the chromosome 3 GBPs to target distinct biology of the PV that are necessary for optimal parasite clearance in murine myeloid cells.
Collapse
Affiliation(s)
- Xiao-Yu Zhao
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Samantha L. Lempke
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jan C. Urbán Arroyo
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Bocheng Yin
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Nadia K. Holness
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jamison Smiley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Sarah E. Ewald
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Denton SL, Mejia A, Nevarez LL, Soares MP, Fox BA, Bzik DJ, Gigley JP. Theft of Host Transferrin Receptor-1 by Toxoplasma gondii is required for infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546322. [PMID: 39372795 PMCID: PMC11451604 DOI: 10.1101/2023.06.23.546322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Nutrient acquisition by apicomplexan parasites is essential to drive their intracellular replication, yet the mechanisms that underpin essential nutrient acquisition are not defined. Using the apicomplexan model Toxoplasma gondii , we show that host cell proteins including the transferrin receptor 1, transferrin, ferritin heavy and light chains, and clathrin light chain are robustly taken up by tachyzoites. Tachyzoite acquisition of host cell protein was not related to host cell type or parasite virulence phenotypes. Bradyzoites possessed little capacity to acquire host cell proteins consistent with the cyst wall representing a barrier to host cell protein cargo. Increased trafficking of host cell transferrin receptor 1 and transferrin to endolysosomes boosted tachyzoite acquisition of host proteins and growth rate. Theft of host transferrin 1 and transferrin did not significantly affect iron levels in the tachyzoite. This study provides insight into essential functions associated with parasite theft of host iron sequestration and storage proteins.
Collapse
|
13
|
Saad AE, Ashour DS, Rashad E. Immunomodulatory effects of chronic trichinellosis on Toxoplasma gondii RH virulent strain in experimental rats. Pathog Glob Health 2023; 117:417-434. [PMID: 36922743 PMCID: PMC10177679 DOI: 10.1080/20477724.2023.2191233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Mixed parasitic infections could affect the host immunological responses and re-design the pathogenesis of each other. The impact of Toxoplasma gondii (T. gondii) and Trichinella spiralis (T. spiralis) co-infection on the immune response remains unclear. The objective of the present study was to investigate the possible effect of chronic trichinellosis on the immune response of rats infected with T. gondii virulent RH strain. Animals were divided into four groups: group I: non-infected negative control; group II: infected with T. spiralis; group III: infected with T. gondii and group IV: infected with T. spiralis then infected with T. gondii 35 days post T. spiralis infection (co-infected group). The interaction between T. spiralis and T. gondii was evaluated by histopathological examination of liver and brain tissues, immunohistochemical expression of inducible nitric oxide synthase (iNOS), and β-catenin in the brain tissues, and CD4+ and CD8+ T cells percentages, and tumor necrosis factor (TNF)-alpha expression in the spleen tissues. Along with, splenic interleukin (IL)-4 and IL-10 mRNA expression levels were measured 15 days post-Toxoplasma infection. Our study revealed that prior infection with T. spiralis leads to attenuation of Th1 response against T. gondii, including iNOS, TNF-α, and CD8+ T-cell response with improvement of the histopathological changes in the tissues. In conclusion, in the co-infected rats, a balanced immune response has been developed with the end result, improvement of the histopathological changes in the liver and brain.
Collapse
Affiliation(s)
- Abeer E. Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Medical Parasitology sub-unit, Pathology Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Dalia S. Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
14
|
Lu YN, Shen XY, Lu JM, Jin GN, Lan HW, Xu X, Piao LX. Resveratrol inhibits Toxoplasma gondii-induced lung injury, inflammatory cascade and evidences of its mechanism of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154522. [PMID: 36332392 DOI: 10.1016/j.phymed.2022.154522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Toxoplasma gondii is an opportunistic protozoan that can infect host to cause toxoplasmosis. We have previously reported that resveratrol (RSV) has protective effects against liver damage in T. gondii infected mice. However, the effect of RSV on lung injury caused by T. gondii infection and its mechanism of action remain unclear. PURPOSE In this work, we studied the protective effects of RSV on lung injury caused by T. gondii infection and explored the underlying mechanism. METHODS Molecular docking and localized surface plasmon resonance assay were used to detect the molecular interactions between RSV and target proteins. In vitro, the anti-T. gondii effects and potential anti-inflammatory mechanisms of RSV were investigated by quantitative competitive-PCR, RT-PCR, ELISA, Western blotting and immunofluorescence using RAW 264.7 cells infected with tachyzoites of T. gondii RH strain. In vivo, the effects of RSV on lung injury caused by T. gondii infection were assessed by observing pathological changes and the expression of inflammatory factors of lung. RESULTS RSV inhibited T. gondii loads and T. gondii-derived heat shock protein 70 (T.g.HSP70) expression in RAW 264.7 cells and lung tissues. Moreover, RSV interacts with T.g.HSP70 and toll-like receptor 4 (TLR4), respectively, and interferes with the interaction between T.g.HSP70 and TLR4. It also inhibited the overproduction of inducible nitric oxide synthase, TNF-α and high mobility group protein 1 (HMGB1) by down-regulating TLR4/nuclear factor kappa B (NF-κB) signaling pathway, which is consistent with the effect of TLR4 inhibitor CLI-095. In vivo, RSV improved the pathological lung damage produced by T. gondii infection, as well as decreased the number of inflammatory cells in bronchoalveolar lavage fluid and the release of HMGB1 and TNF-α. CONCLUSION These findings indicate that RSV can inhibit the proliferation of T. gondii and T.g.HSP70 expression both in vitro and in vivo. RSV can inhibit excessive inflammatory response by intervening T.g.HSP70 and HMGB1 mediated TLR4/NF-κB signaling pathway activation, thereby ameliorating lung injury caused by T. gondii infection. The present study provides new data that may be useful for the development of RSV as a new agent for the treatment of lung damage caused by T. gondii infection.
Collapse
Affiliation(s)
- Yu Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China
| | - Xin Yu Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China
| | - Jing Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China
| | - Guang Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China
| | - Hui Wen Lan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China.
| | - Lian Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China.
| |
Collapse
|
15
|
Fereig RM, Omar MA, Alsayeqh AF. Exploiting the Macrophage Production of IL-12 in Improvement of Vaccine Development against Toxoplasma gondii and Neospora caninum Infections. Vaccines (Basel) 2022; 10:vaccines10122082. [PMID: 36560492 PMCID: PMC9783364 DOI: 10.3390/vaccines10122082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Toxoplasmosis and neosporosis are major protozoan diseases of global distribution. Toxoplasma gondii is the cause of toxoplasmosis, which affects almost all warm-blooded animals, including humans, while Neospora caninum induces neosporosis in many animal species, especially cattle. The current defective situation with control measures is hindering all efforts to overcome the health hazards and economic losses of toxoplasmosis and neosporosis. Adequate understanding of host-parasite interactions and host strategies to combat such infections can be exploited in establishing potent control measures, including vaccine development. Macrophages are the first defense line of innate immunity, which is responsible for the successful elimination of T.gondii or N. caninum. This action is exerted via the immunoregulatory interleukin-12 (IL-12), which orchestrates the production of interferon gamma (IFN-γ) from various immune cells. Cellular immune response and IFN-γ production is the hallmark for successful vaccine candidates against both T. gondii and N. caninum. However, the discovery of potential vaccine candidates is a highly laborious, time-consuming and expensive procedure. In this review, we will try to exploit previous knowledge and our research experience to establish an efficient immunological approach for exploring potential vaccine candidates against T. gondii and N. caninum. Our previous studies on vaccine development against both T. gondii and N. caninum revealed a strong association between the successful and potential vaccine antigens and their ability to promote the macrophage secretion of IL-12 using a murine model. This phenomenon was emphasized using different recombinant antigens, parasites, and experimental approaches. Upon these data and research trials, IL-12 production from murine macrophages can be used as an initial predictor for judgment of vaccine efficacy before further evaluation in time-consuming and laborious in vivo experiments. However, more studies and research are required to conceptualize this immunological approach.
Collapse
Affiliation(s)
- Ragab M. Fereig
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
- Correspondence: (R.M.F.); (A.F.A.)
| | - Mosaab A. Omar
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Saudi Arabia
| | - Abdullah F. Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Saudi Arabia
- Correspondence: (R.M.F.); (A.F.A.)
| |
Collapse
|
16
|
Omar M, Abdelal HO. Nitric oxide in parasitic infections: a friend or foe? J Parasit Dis 2022; 46:1147-1163. [PMID: 36457767 PMCID: PMC9606182 DOI: 10.1007/s12639-022-01518-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
The complex interaction between the host and the parasite remains a puzzling question. Control of parasitic infections requires an efficient immune response that must be balanced against destructive pathological consequences. Nitric oxide is a nitrogenous free radical which has many molecular targets and serves diverse functions. Apart from being a signaling messenger, nitric oxide is critical for controlling numerous infections. There is still controversy surrounding the exact role of nitric oxide in the immune response against different parasitic species. It proved protective against intracellular protozoa, as well as extracellular helminths. At the same time, it plays a pivotal role in stimulating detrimental pathological changes in the infected hosts. Several reports have discussed the anti-parasitic and immunoregulatory functions of nitric oxide, which could directly influence the control of the infection. Nevertheless, there is scarce literature addressing the harmful cytotoxic impacts of this mediator. Thus, this review provides insights into the most updated concepts and controversies regarding the dual nature and opposing sides of nitric oxide during the course of different parasitic infections.
Collapse
Affiliation(s)
- Marwa Omar
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Gameyet Almohafza St. 1, Menya Al-Kamh, City of Zagazig, 44511 Sharkia Governorate Egypt
| | - Heba O. Abdelal
- LIS: Cross-National Data Center, Maison des Sciences Humaines - 5e étage, 11- porte des Sciences, L-4366 Esch-Belval, Luxembourg
| |
Collapse
|
17
|
Sardinha-Silva A, Alves-Ferreira EVC, Grigg ME. Intestinal immune responses to commensal and pathogenic protozoa. Front Immunol 2022; 13:963723. [PMID: 36211380 PMCID: PMC9533738 DOI: 10.3389/fimmu.2022.963723] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The physical barrier of the intestine and associated mucosal immunity maintains a delicate homeostatic balance between the host and the external environment by regulating immune responses to commensals, as well as functioning as the first line of defense against pathogenic microorganisms. Understanding the orchestration and characteristics of the intestinal mucosal immune response during commensal or pathological conditions may provide novel insights into the mechanisms underlying microbe-induced immunological tolerance, protection, and/or pathogenesis. Over the last decade, our knowledge about the interface between the host intestinal mucosa and the gut microbiome has been dominated by studies focused on bacterial communities, helminth parasites, and intestinal viruses. In contrast, specifically how commensal and pathogenic protozoa regulate intestinal immunity is less well studied. In this review, we provide an overview of mucosal immune responses induced by intestinal protozoa, with a major focus on the role of different cell types and immune mediators triggered by commensal (Blastocystis spp. and Tritrichomonas spp.) and pathogenic (Toxoplasma gondii, Giardia intestinalis, Cryptosporidium parvum) protozoa. We will discuss how these various protozoa modulate innate and adaptive immune responses induced in experimental models of infection that benefit or harm the host.
Collapse
|
18
|
Histopathological, Immunohistochemical and Biochemical Studies of Murine Hepatosplenic Tissues Affected by Chronic Toxoplasmosis. J Parasitol Res 2022; 2022:2165205. [PMID: 35755604 PMCID: PMC9225867 DOI: 10.1155/2022/2165205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Toxoplasmosis is a serious health problem in humans and animals resulting from obligatory intracellular invasion of reticuloendothelial tissue by Toxoplasma gondii. The profound pathologic effect of toxoplasmosis is confined to nervous tissue, but many other organs, including the liver and spleen, are insulted. Many molecules like caspase-3, CD3, and CD138 are implicated in the tissue immune response in a trial to alleviate hazardous toxoplasmosis impact. This study aimed to investigate the effect of chronic toxoplasmosis on the liver and spleen tissues of mice using biochemical and histopathological techniques and to detect the activity and level of expression of caspase-3, CD3, and CD138 in these tissues using immunohistochemical labeling. Compared with normal control, altered normal histological features accompanied by inflammatory reaction were recorded in hepatosplenic reticuloendothelial tissues in chronically infected mice. The biochemical profile of the liver has been changed in the form of increased liver enzymes, and oxidative stress has been evidenced by elevated nitric oxide (NO) concentration in liver homogenate. The levels of caspase3, CD3, and CD138 were markedly expressed in the liver and spleen of infected mice. Our findings revealed the persistent effect of latent toxoplasmosis on the host's histological architecture, metabolic, and immunological profile, creating a continued challenging host-parasite relationship.
Collapse
|
19
|
Oliveira FMS, Kraemer L, Cavalcanti da Silva C, Nogueira DS, Gazzinelli-Guimarães AC, Gazzinelli-Guimarães PH, Barbosa FS, Resende NM, Caliari MV, Gaze ST, Bartholomeu DC, Fujiwara RT, Bueno LL. Nitric oxide contributes to liver inflammation and parasitic burden control in Ascaris suum infection. Exp Parasitol 2022; 238:108267. [PMID: 35550886 DOI: 10.1016/j.exppara.2022.108267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Human ascariasis is one of the most prevalent neglected tropical diseases worldwide. The immune response during human ascariasis is characterized by Th2 polarization and a mixed Th2/Th17 response during the pathogenesis of experimental larval ascariasis. Cytokines and other pro-inflammatory mediators, such as nitric oxide (NO), are involved in helminthic infections. However, the role of NO in ascariasis remains unclear. OBJECTIVES Given the importance of NO in inflammation, we aimed to determine the immunological and histopathological alterations in the livers of C57BL/6 iNOS-/- mice during A. suum infection. METHODS In this study, parasitic load was evaluated in the livers of wild type C57BL/6 and C57BL/6 iNOS-/- mice infected with A. suum. Histopathological and morphometric analyses and analysis of serum cytokines via Cytometric Bead Array were performed, and the activity of eosinophil peroxidase and myeloperoxidase of neutrophils in the tissues were determined. RESULTS The results showed that NO is important for controlling parasitic load during infection by A. suum. C57BL/6iNOS-/- mice showed reduced inflammatory processes and less tissue damage during liver larval migration of A. suum, which is associated with a reduction in serum levels of pro-inflammatory cytokines. CONCLUSIONS We demonstrated that NO is a crucial inflammatory molecule during Ascaris sp. infection and controls the establishment of the parasite and the development of the host immune response in the liver.
Collapse
Affiliation(s)
- Fabrício Marcus Silva Oliveira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Lucas Kraemer
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Caroline Cavalcanti da Silva
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Denise Silva Nogueira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Ana Clara Gazzinelli-Guimarães
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Pedro Henrique Gazzinelli-Guimarães
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | | | - Nathalia Maria Resende
- Laboratory of Sciences Applied to Immunology and Biochemistry of Health and Sport. Department of of Physical Education, Universidade Federal de Lavras, Brazil
| | - Marcelo Vidigal Caliari
- Laboratory of Protozooses, Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Soraya Torres Gaze
- Cellular and Molecular Immunology Group, René Rachou Institute, Oswaldo Cruz Foundation - FIOCRUZ, Brazil
| | - Daniella Castanheira Bartholomeu
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
20
|
Jiang L, Liu B, Hou S, Su T, Fan Q, Alyafeai E, Tang Y, Wu M, Liu X, Li J, Hu Y, Li W, Zheng Z, Liu Y, Wu J. Discovery and evaluation of chalcone derivatives as novel potential anti-Toxoplasma gondii agents. Eur J Med Chem 2022; 234:114244. [DOI: 10.1016/j.ejmech.2022.114244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/20/2022] [Accepted: 02/26/2022] [Indexed: 01/08/2023]
|
21
|
Nayeri T, Sarvi S, Daryani A. Toxoplasmosis: Targeting neurotransmitter systems in psychiatric disorders. Metab Brain Dis 2022; 37:123-146. [PMID: 34476718 DOI: 10.1007/s11011-021-00824-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/14/2021] [Indexed: 12/30/2022]
Abstract
The most common form of the disease caused by Toxoplasma gondii (T. gondii) is latent toxoplasmosis due to the formation of tissue cysts in various organs, such as the brain. Latent toxoplasmosis is probably a risk factor in the development of some neuropsychiatric disorders. Behavioral changes after infection are caused by the host immune response, manipulation by the parasite, central nervous system (CNS) inflammation, as well as changes in hormonal and neuromodulator relationships. The present review focused on the exact mechanisms of T. gondii effect on the alteration of behavior and neurotransmitter levels, their catabolites and metabolites, as well as the interaction between immune responses and this parasite in the etiopathogenesis of psychiatric disorders. The dysfunction of neurotransmitters in the neural transmission is associated with several neuropsychiatric disorders. However, further intensive studies are required to determine the effect of this parasite on altering the level of neurotransmitters and the role of neurotransmitters in the etiology of host behavioral changes.
Collapse
Affiliation(s)
- Tooran Nayeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
22
|
Rinkenberger N, Abrams ME, Matta SK, Schoggins JW, Alto NM, Sibley LD. Overexpression screen of interferon-stimulated genes identifies RARRES3 as a restrictor of Toxoplasma gondii infection. eLife 2021; 10:e73137. [PMID: 34871166 PMCID: PMC8789288 DOI: 10.7554/elife.73137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
Abstract
Toxoplasma gondii is an important human pathogen infecting an estimated one in three people worldwide. The cytokine interferon gamma (IFNγ) is induced during infection and is critical for restricting T. gondii growth in human cells. Growth restriction is presumed to be due to the induction of interferon-stimulated genes (ISGs) that are upregulated to protect the host from infection. Although there are hundreds of ISGs induced by IFNγ, their individual roles in restricting parasite growth in human cells remain somewhat elusive. To address this deficiency, we screened a library of 414 IFNγ induced ISGs to identify factors that impact T. gondii infection in human cells. In addition to IRF1, which likely acts through the induction of numerous downstream genes, we identified RARRES3 as a single factor that restricts T. gondii infection by inducing premature egress of the parasite in multiple human cell lines. Overall, while we successfully identified a novel IFNγ induced factor restricting T. gondii infection, the limited number of ISGs capable of restricting T. gondii infection when individually expressed suggests that IFNγ-mediated immunity to T. gondii infection is a complex, multifactorial process.
Collapse
Affiliation(s)
- Nicholas Rinkenberger
- Department of Molecular Microbiology, Washington University in St. LouisSt LouisUnited States
| | - Michael E Abrams
- Department of Microbiology, University of Texas SouthwesternDallasUnited States
| | - Sumit K Matta
- Department of Molecular Microbiology, Washington University in St. LouisSt LouisUnited States
| | - John W Schoggins
- Department of Microbiology, University of Texas SouthwesternDallasUnited States
| | - Neal M Alto
- Department of Microbiology, University of Texas SouthwesternDallasUnited States
| | - L David Sibley
- Department of Molecular Microbiology, Washington University in St. LouisSt LouisUnited States
| |
Collapse
|
23
|
Effect of spiramycin versus aminoguanidine and their combined use in experimental toxoplasmosis. J Parasit Dis 2021; 45:1014-1025. [PMID: 34789985 DOI: 10.1007/s12639-021-01396-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/17/2021] [Indexed: 10/21/2022] Open
Abstract
Toxoplasmosis is one of the widest spread parasitic infections which is caused by Toxoplasma gondii protozoon. Many experimental studies have evaluated the effect of aminoguanidine upon parasitic load and inflammatory process. However, few reports have illustrated the impact of combining aminoguanidine with spiramycin in the treatment of toxoplasmosis. Therefore, our study aimed to explore the possible effects of spiramycin used alone and combined with aminoguanidine against the avirulent (ME49) Toxoplasma gondii strain in experimental toxoplasmosis. Fifty-five Swiss albino mice were included in the study and were divided into five groups: (GI): non-infected control group; (GII): infected untreated control group; (GIII): infected- spiramycin treated group; (GIV): infected-aminoguanidine treated group; (GV): infected and received combination of spiramycin and aminoguanidine. Obtained results exhibited a significant increase in brain cysts numbers in aminoguanidine treated groups compared to infected untreated control groups. Histopathological studies denoted that combination between spiramycin and aminoguanidine improved the pathological features only in liver and heart tissues of the studied groups. Moreover, it was noticed that spiramycin administered alone had no effect on nitric oxide expression, whereas its combination with aminoguanidine had an inhibitory effect on inducible nitric oxide synthase enzyme in brain, liver and heart tissues of different study groups. In conclusion, the combination of spiramycin and aminoguanidine significantly reduced the parasitic burden, yet, it failed to resolve the pathological sequels in brain tissues of Toxoplasma gondii infected mice.
Collapse
|
24
|
Sikorski PM, Commodaro AG, Grigg ME. A Protective and Pathogenic Role for Complement During Acute Toxoplasma gondii Infection. Front Cell Infect Microbiol 2021; 11:634610. [PMID: 33692968 PMCID: PMC7937796 DOI: 10.3389/fcimb.2021.634610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
The infection competence of the protozoan pathogen Toxoplasma gondii is critically dependent on the parasite’s ability to inactivate the host complement system. Toxoplasma actively resists complement-mediated killing in non-immune serum by recruiting host-derived complement regulatory proteins C4BP and Factor H (FH) to the parasite surface to inactivate surface-bound C3 and limit formation of the C5b-9 membrane attack complex (MAC). While decreased complement activation on the parasite surface certainly protects Toxoplasma from immediate lysis, the biological effector functions of C3 split products C3b and C3a are maintained, which includes opsonization of the parasite for phagocytosis and potent immunomodulatory effects that promote pro-inflammatory responses and alters mucosal defenses during infection, respectively. In this review, we discuss how complement regulation by Toxoplasma controls parasite burden systemically but drives exacerbated immune responses locally in the gut of genetically susceptible C57BL/6J mice. In effect, Toxoplasma has evolved to strike a balance with the complement system, by inactivating complement to protect the parasite from immediate serum killing, it generates sufficient C3 catabolites that signal through their cognate receptors to stimulate protective immunity. This regulation ultimately controls tachyzoite proliferation and promotes host survival, parasite persistence, and transmissibility to new hosts.
Collapse
Affiliation(s)
- Patricia M Sikorski
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Microbiology and Immunology, Georgetown University Medical Center, Georgetown University, Washington, DC, United States
| | - Alessandra G Commodaro
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Snyder LM, Denkers EY. From Initiators to Effectors: Roadmap Through the Intestine During Encounter of Toxoplasma gondii With the Mucosal Immune System. Front Cell Infect Microbiol 2021; 10:614701. [PMID: 33505924 PMCID: PMC7829212 DOI: 10.3389/fcimb.2020.614701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
The gastrointestinal tract is a major portal of entry for many pathogens, including the protozoan parasite Toxoplasma gondii. Billions of people worldwide have acquired T. gondii at some point in their life, and for the vast majority this has led to latent infection in the central nervous system. The first line of host defense against Toxoplasma is located within the intestinal mucosa. Appropriate coordination of responses by the intestinal epithelium, intraepithelial lymphocytes, and lamina propria cells results in an inflammatory response that controls acute infection. Under some conditions, infection elicits bacterial dysbiosis and immune-mediated tissue damage in the intestine. Here, we discuss the complex interactions between the microbiota, the epithelium, as well as innate and adaptive immune cells in the intestinal mucosa that induce protective immunity, and that sometimes switch to inflammatory pathology as T. gondii encounters tissues of the gut.
Collapse
Affiliation(s)
- Lindsay M Snyder
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Eric Y Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
26
|
Yu Z, Zhou T, Luo Y, Dong L, Li C, Liu J, Luo J, Yan R, Xu L, Song X, Li X. Modulation Effects of Toxoplasma gondii Histone H2A1 on Murine Macrophages and Encapsulation with Polymer as a Vaccine Candidate. Vaccines (Basel) 2020; 8:vaccines8040731. [PMID: 33287313 PMCID: PMC7761694 DOI: 10.3390/vaccines8040731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is the most common zoonotic protozoa and has infected about one-third of the population worldwide. Recombinant epitopes encapsulated in nanospheres have advantages over traditional T. gondii vaccines. For an efficient delivery system, poly (DL-lactide-co-glycolide) (PLGA) and chitosan are the most frequently used biodegradable polymeric nanospheres with strong safety profiles. In the present study, we first expressed and purified histone H2A1 of T. gondii using the prokaryotic expression system. The effects of recombinant TgH2A1 on the functions of murine macrophages were then studied. Purified recombinant TgH2A1 was then encapsulated in nanospheres with PLGA and chitosan. After subcutaneous vaccination in mice, the immune response was evaluated by double antibody sandwich ELISA kits. The results from this study showed that PLGA and chitosan loaded with rTgH2A1 could trigger a stronger Th1 oriented immune response and prolong the survival time of mice effectively. In conclusion, PLGA and chitosan nanospheres loaded with histone H2A1 are an effective method for the development of vaccines against T. gondii. Further studies should focus on evaluating the regulatory mechanism of TgH2A1, vaccine potency, and cellular response in chronic T. gondii infections.
Collapse
Affiliation(s)
- Zhengqing Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Tianyuan Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Yanxin Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Lu Dong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Chunjing Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.L.); (J.L.)
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.L.); (J.L.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
- Correspondence:
| |
Collapse
|
27
|
Melchor SJ, Saunders CM, Sanders I, Hatter JA, Byrnes KA, Coutermarsh-Ott S, Ewald SE. IL-1R Regulates Disease Tolerance and Cachexia in Toxoplasma gondii Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:3329-3338. [PMID: 32350081 PMCID: PMC7323938 DOI: 10.4049/jimmunol.2000159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that establishes life-long infection in a wide range of hosts, including humans and rodents. To establish a chronic infection, pathogens often exploit the trade-off between resistance mechanisms, which promote inflammation and kill microbes, and tolerance mechanisms, which mitigate inflammatory stress. Signaling through the type I IL-1R has recently been shown to control disease tolerance pathways in endotoxemia and Salmonella infection. However, the role of the IL-1 axis in T. gondii infection is unclear. In this study we show that IL-1R-/- mice can control T. gondii burden throughout infection. Compared with wild-type mice, IL-1R-/- mice have more severe liver and adipose tissue pathology during acute infection, consistent with a role in acute disease tolerance. Surprisingly, IL-1R-/- mice had better long-term survival than wild-type mice during chronic infection. This was due to the ability of IL-1R-/- mice to recover from cachexia, an immune-metabolic disease of muscle wasting that impairs fitness of wild-type mice. Together, our data indicate a role for IL-1R as a regulator of host homeostasis and point to cachexia as a cost of long-term reliance on IL-1-mediated tolerance mechanisms.
Collapse
Affiliation(s)
- Stephanie J Melchor
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Claire M Saunders
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Imani Sanders
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jessica A Hatter
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - Kari A Byrnes
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908;
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
28
|
Park J, Hunter CA. The role of macrophages in protective and pathological responses to Toxoplasma gondii. Parasite Immunol 2020; 42:e12712. [PMID: 32187690 DOI: 10.1111/pim.12712] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
The ability of Toxoplasma gondii to cause clinical disease in immune-competent and immune-deficient hosts coupled with its ease of use in vitro and availability of murine models has led to its use as a model organism to study how the immune system controls an intracellular infection. This article reviews the studies that established the role of the cytokine IFN-γ in the activation of macrophages to control T gondii and the events that lead to the mobilization and expansion of macrophage populations and their ability to limit parasite replication. Macrophages also have pro-inflammatory functions that promote protective NK and T-cell activities as well as regulatory properties that facilitate the resolution of inflammation. Nevertheless, while macrophages are important in determining the outcome of infection, T gondii has evolved mechanisms to subvert macrophage activation and can utilize their migratory activities to promote dissemination and these two properties underlie the ability of this parasite to persist and cause disease.
Collapse
Affiliation(s)
- Jeongho Park
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.,Kangwon National University College of Veterinary Medicine and Institute of Veterinary Science, Chuncheon, Korea
| | | |
Collapse
|
29
|
Sasai M, Yamamoto M. Innate, adaptive, and cell-autonomous immunity against Toxoplasma gondii infection. Exp Mol Med 2019; 51:1-10. [PMID: 31827072 PMCID: PMC6906438 DOI: 10.1038/s12276-019-0353-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
Hosts have been fighting pathogens throughout the evolution of all infectious diseases. Toxoplasma gondii is one of the most common infectious agents in humans but causes only opportunistic infection in healthy individuals. Similar to antimicrobial immunity against other organisms, the immune response against T. gondii activates innate immunity and in turn induces acquired immune responses. After activation of acquired immunity, host immune cells robustly produce the proinflammatory cytokine interferon-γ (IFN-γ), which activates a set of IFN-γ-inducible proteins, including GTPases. IFN-inducible GTPases are essential for cell-autonomous immunity and are specialized for effective clearance and growth inhibition of T. gondii by accumulating in parasitophorous vacuole membranes. Recent studies suggest that the cell-autonomous immune response plays a protective role in host defense against not only T. gondii but also various intracellular bacteria. Moreover, the negative regulatory mechanisms of such strong immune responses are also important for host survival after infection. In this review, we will discuss in detail recent advances in the understanding of host defenses against T. gondii and the roles played by cell-autonomous immune responses. Researchers are extensively studying immune responses to the single-celled parasite Toxoplasma gondii, which infects around one-third of humans, often harmlessly, but can cause life-threatening toxoplasmosis infections in patients with weakened immune systems. Masahiro Yamamoto and Miwa Sasai at Osaka University in Japan review recent advances in understanding the interactions between the immune system and the parasite. They consider non-specific ‘innate’ immune responses and also the ‘acquired’ responses that target specific parts of the parasite, referred to as antigens. Methods that selectively switch off genes in mice are revealing details presumed to also be relevant for humans. Significant molecules, molecular signaling pathways and immune-regulating processes are being identified. Recent studies suggest cell-autonomous immunity, the ability of host cells to defend themselves against attack, plays a significant role in fighting Toxoplasma gondii infection.
Collapse
Affiliation(s)
- Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan. .,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
30
|
IRG1 and Inducible Nitric Oxide Synthase Act Redundantly with Other Interferon-Gamma-Induced Factors To Restrict Intracellular Replication of Legionella pneumophila. mBio 2019; 10:mBio.02629-19. [PMID: 31719183 PMCID: PMC6851286 DOI: 10.1128/mbio.02629-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Legionella pneumophila is one example among many species of pathogenic bacteria that replicate within mammalian macrophages during infection. The immune signaling factor interferon gamma (IFN-γ) blocks L. pneumophila replication in macrophages and is an essential component of the immune response to L. pneumophila and other intracellular pathogens. However, to date, no study has identified the exact molecular factors induced by IFN-γ that are required for its activity. We generated macrophages lacking different combinations of IFN-γ-induced genes in an attempt to find a genetic background in which there is a complete loss of IFN-γ-mediated restriction of L. pneumophila. We identified six genes that comprise the totality of the IFN-γ-dependent restriction of L. pneumophila replication in macrophages. Our results clarify the molecular basis underlying the potent effects of IFN-γ and highlight how redundancy downstream of IFN-γ is key to prevent exploitation of macrophages by pathogens. Interferon gamma (IFN-γ) restricts the intracellular replication of many pathogens, but the mechanism by which IFN-γ confers cell-intrinsic pathogen resistance remains unclear. For example, intracellular replication of the bacterial pathogen Legionella pneumophila in macrophages is potently curtailed by IFN-γ. However, consistent with prior studies, no individual genetic deficiency that we tested completely abolished IFN-γ-mediated control. Intriguingly, we observed that the glycolysis inhibitor 2-deoxyglucose (2DG) partially rescued L. pneumophila replication in IFN-γ-treated macrophages. 2DG inhibits glycolysis and triggers the unfolded protein response, but unexpectedly, it appears these effects are not responsible for perturbing the antimicrobial activity of IFN-γ. Instead, we found that 2DG rescues bacterial replication by inhibiting the expression of two key antimicrobial factors, inducible nitric oxide synthase (iNOS) and immune-responsive gene 1 (IRG1). Using immortalized and primary macrophages deficient in iNOS and IRG1, we confirmed that loss of both iNOS and IRG1, but not individual deficiency in either gene, partially reduced IFN-γ-mediated restriction of L. pneumophila. Further, using a combinatorial CRISPR/Cas9 mutagenesis approach, we found that mutation of iNOS and IRG1 in combination with four other genes (CASP11, IRGM1, IRGM3, and NOX2) resulted in a total loss of L. pneumophila restriction by IFN-γ in primary bone marrow macrophages. Our study defines a complete set of cell-intrinsic factors required for IFN-γ-mediated restriction of an intracellular bacterial pathogen and highlights the combinatorial strategy used by hosts to block bacterial replication in macrophages.
Collapse
|
31
|
Ufermann CM, Domröse A, Babel T, Tersteegen A, Cengiz SC, Eller SK, Spekker-Bosker K, Sorg UR, Förster I, Däubener W. Indoleamine 2,3-Dioxygenase Activity During Acute Toxoplasmosis and the Suppressed T Cell Proliferation in Mice. Front Cell Infect Microbiol 2019; 9:184. [PMID: 31231617 PMCID: PMC6561234 DOI: 10.3389/fcimb.2019.00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite and belongs to the phylum Apicomplexa. T. gondii is of medical and veterinary importance, because T. gondii causes the parasitic disease toxoplasmosis. In human cells, the interferon-gamma inducible indoleamine 2,3-dioxygenase 1 (IDO1) is an antimicrobial effector mechanism that degrades tryptophan to kynurenine and thus limits pathogen proliferation in vitro. Furthermore, IDO is described to have immunosuppressive properties, e.g., regulatory T cell differentiation and T cell suppression in humans and mice. However, there is only little known about the role of IDO1 in mice during acute toxoplasmosis. To shed further light on the role of mIDO1 in vivo, we have used a specifically adjusted experimental model. Therein, we infected mIDO1-deficient (IDO−/−) C57BL/6 mice and appropriate wild-type (WT) control mice with a high dose of T. gondii ME49 tachyozoites (type II strain) via the intraperitoneal route and compared the phenotype of IDO−/− and WT mice during acute toxoplasmosis. During murine T. gondii infection, we found mIDO1 mRNA and mIDO1 protein, as well as mIDO1-mediated tryptophan degradation in lungs of WT mice. IDO−/− mice show no tryptophan degradation in the lung during infection. Even though T. gondii is tryptophan auxotroph and rapidly replicates during acute infection, the parasite load was similar in IDO−/− mice compared to WT mice 7 days post-infection. IDO1 is described to have immunosuppressive properties, and since T cell suppression is observed during acute toxoplasmosis, we analyzed the possible involvement of mIDO1. Here, we did not find differences in the intensity of ex vivo mitogen stimulated T cell proliferation between WT and IDO−/− mice. Concomitant nitric oxide synthase inhibition and interleukin-2 supplementation increased the T cell proliferation from both genotypes drastically, but not completely. In sum, we analyzed the involvement of mIDO1 during acute murine toxoplasmosis in our specifically adjusted experimental model and found a definite mIDO1 induction. Nevertheless, mIDO1 seems to be functional redundant as an antiparasitic defense mechanism during acute toxoplasmosis in mice. Furthermore, we suggest that the systemic T cell suppression observed during acute toxoplasmosis is influenced by nitric oxide activity and IL-2 deprivation.
Collapse
Affiliation(s)
- Christoph-Martin Ufermann
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Andreas Domröse
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Timo Babel
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anne Tersteegen
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sevgi Can Cengiz
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Silvia Kathrin Eller
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Katrin Spekker-Bosker
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ursula Regina Sorg
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Walter Däubener
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
32
|
Wang S, El-Fahmawi A, Christian DA, Fang Q, Radaelli E, Chen L, Sullivan MC, Misic AM, Ellringer JA, Zhu XQ, Winter SE, Hunter CA, Beiting DP. Infection-Induced Intestinal Dysbiosis Is Mediated by Macrophage Activation and Nitrate Production. mBio 2019; 10:e00935-19. [PMID: 31138751 PMCID: PMC6538788 DOI: 10.1128/mbio.00935-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023] Open
Abstract
Oral infection of C57BL/6J mice with Toxoplasma gondii results in a marked bacterial dysbiosis and the development of severe pathology in the distal small intestine that is dependent on CD4+ T cells and interferon gamma (IFN-γ). This dysbiosis and bacterial translocation contribute to the development of ileal pathology, but the factors that support the bloom of bacterial pathobionts are unclear. The use of microbial community profiling and shotgun metagenomics revealed that Toxoplasma infection induces a dysbiosis dominated by Enterobacteriaceae and an increased potential for nitrate respiration. In vivo experiments using bacterial metabolic mutants revealed that during this infection, host-derived nitrate supports the expansion of Enterobacteriaceae in the ileum via nitrate respiration. Additional experiments with infected mice indicate that the IFN-γ/STAT1/iNOS axis, while essential for parasite control, also supplies a pool of nitrate that serves as a source for anaerobic respiration and supports overgrowth of Enterobacteriaceae Together, these data reveal a trade-off in intestinal immunity after oral infection of C57BL/6J mice with T. gondii, in which inducible nitric oxide synthase (iNOS) is required for parasite control, while this host enzyme is responsible for specific modification of the composition of the microbiome that contributes to pathology.IMPORTANCEToxoplasma gondii is a protozoan parasite and a leading cause of foodborne illness. Infection is initiated when the parasite invades the intestinal epithelium, and in many host species, this leads to intense inflammation and a dramatic disruption of the normal microbial ecosystem that resides in the healthy gut (the so-called microbiome). One characteristic change in the microbiome during infection with Toxoplasma-as well as numerous other pathogens-is the overgrowth of Escherichia coli or similar bacteria and a breakdown of commensal containment leading to seeding of peripheral organs with gut bacteria and subsequent sepsis. Our findings provide one clear explanation for how this process is regulated, thereby improving our understanding of the relationship between parasite infection, inflammation, and disease. Furthermore, our results could serve as the basis for the development of novel therapeutics to reduce the potential for harmful bacteria to bloom in the gut during infection.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ayah El-Fahmawi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qun Fang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Longfei Chen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Megan C Sullivan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ana M Misic
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jodi A Ellringer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Sasai M, Pradipta A, Yamamoto M. Host immune responses to Toxoplasma gondii. Int Immunol 2019; 30:113-119. [PMID: 29408976 DOI: 10.1093/intimm/dxy004] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/19/2018] [Indexed: 12/24/2022] Open
Abstract
Toxoplasma gondii can infect homoeothermic animals including humans and cause lethal toxoplasmosis in immunocompromised individuals. When hosts are infected with T. gondii, the cells induce immune responses against T. gondii. The pathogen infection is recognized by immune sensors that directly detect T. gondii structural components, leading to production of pro-inflammatory cytokines and chemokines. Antigen-presenting cells such as macrophages and dendritic cells strongly activate T cells and induce development of Th1 cells and antigen-specific killer CD8 T cells. These T cells and Group 1 innate lymphoid cells are main producers of IFN-γ, which robustly stimulates cell-autonomous immunity in cells infected with T. gondii. IFN-γ-inducible effectors such as IFN-inducible GTPases, inducible nitric oxide synthase and indoleamine-2,3-dioxygenase differentially play important roles in suppression of T. gondii growth and its direct killing in anti-T. gondii cell-autonomous immune responses. In this review, we will describe our current knowledge of innate, adaptive and IFN-γ-mediated cell-autonomous immunity against T. gondii infection.
Collapse
Affiliation(s)
- Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Ariel Pradipta
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
34
|
El-Tantawy NL, Soliman AF, Abdel-Magied A, Ghorab D, Khalil AT, Naeem ZM, Shimizu K, El-Sharkawy SH. Could Araucaria heterophylla resin extract be used as a new treatment for toxoplasmosis? Exp Parasitol 2018; 195:44-53. [PMID: 30339984 DOI: 10.1016/j.exppara.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/25/2018] [Accepted: 10/13/2018] [Indexed: 11/18/2022]
Abstract
Toxoplasmosis is a worldwide parasitic disease responsible for serious health problems to human. The currently available drugs used for toxoplasmosis treatment showed a limited efficacy and cause serious host toxicity. The in vitro screening for toxoplasmicidal activity of Araucaria heterophylla resin (AHR) extract and its major component 13-epi-cupressic acid (CUP) showed that both AHR (EC50 = 3.90) and CUP (EC50 = 3.69) have high toxoplasmicidal activity in comparison with standard cotrimoxazole (EC50 = 4.28). The antiprotozoal effects of AHR and CUP were investigated against acute and chronic toxoplasmosis using mice models. Two groups of Swiss albino mice were infected by RH Toxoplasma strain intraperitoneally and by Me49 strain orally. Both groups were treated with AHR and CUP in different doses. Their effects were evaluated by survival rate, peritoneal, spleen and liver parasite burdens, brain cyst burden, NO serum level and histopathological lesions. The ultrastructural changes of tachyzoites of acutely infected mice were studied using scanning electron microscopy (SEM). There is an evidence of toxoplasmicidal activity of AHR and CUP in acute and chronic experimental toxoplasmosis. In the acute model, mice treated with AHR and CUP showed prolonged survival rates, a significant decrease in the parasite density in peritoneal lavage and pathological insult in both liver and spleen compared with that of untreated ones. SEM results denote evident morphological alterations of treated tachyzoites. In chronic experimental toxoplasmosis, AHR and CUP treated groups could significantly reduce brain cyst burden by 96.05% and 98.02% respectively. This study indicates that AHR and CUP showed potent toxoplasmicidal activities experimentally and could be used as a potential natural nontoxic agent for treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Nora L El-Tantawy
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Amal F Soliman
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Aida Abdel-Magied
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Ghorab
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ashraf T Khalil
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Zein M Naeem
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Kuniyoshi Shimizu
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, 812-8581, Japan
| | - Saleh H El-Sharkawy
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
35
|
Cabral GRDA, Wang ZT, Sibley LD, DaMatta RA. Inhibition of Nitric Oxide Production in Activated Macrophages Caused by Toxoplasma gondii Infection Occurs by Distinct Mechanisms in Different Mouse Macrophage Cell Lines. Front Microbiol 2018; 9:1936. [PMID: 30177926 PMCID: PMC6109688 DOI: 10.3389/fmicb.2018.01936] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/31/2018] [Indexed: 12/23/2022] Open
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, is a widespread intracellular parasite able to infect virtually any nucleated cell. T. gondii infection of activated macrophages inhibits nitric oxide (NO) production; however, parasite effectors responsible for this block have not been defined. Macrophage populations are extremely heterogeneous, responding differently to stimuli and to parasite infection. Here we evaluated the inhibition of NO production caused by T. gondii infection of J774-A1 and RAW 264.7 macrophages and assessed the role of several known parasite virulence factors in this phenotype. Infection of activated macrophages from both macrophage lines reduced NO production, however, the mechanism of this decrease was different. Consistent with previous reports, infected J774-A1 macrophages had reduced iNOS expression and lower number of iNOS positive cells. In contrast, T. gondii infection of RAW 264.7 macrophages did not alter iNOS expression or the number of iNOS positive cells, and yet it led to lower levels of NO production. Deletion of a number of previously defined virulence factors including ROP kinases that disrupt innate immune factors, TgIST which blocks STAT1 activation, as well as the secretory trafficking proteins ASP5 and MYR1, did not alter the phenotype of decreased NO production. Taken together our findings indicate that T. gondii infection inhibits NO production of activated macrophages by different mechanisms that involve reduction of iNOS expression vs. iNOS impairment, and suggest that a novel parasite effector is involved in modulating this important host defense pathway.
Collapse
Affiliation(s)
- Gabriel R de Abreu Cabral
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.,Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Zi T Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - L D Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Renato A DaMatta
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.,Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| |
Collapse
|
36
|
Guimarães-Pinto K, Nascimento DO, Corrêa-Ferreira A, Morrot A, Freire-de-Lima CG, Lopes MF, DosReis GA, Filardy AA. Trypanosoma cruzi Infection Induces Cellular Stress Response and Senescence-Like Phenotype in Murine Fibroblasts. Front Immunol 2018; 9:1569. [PMID: 30038622 PMCID: PMC6047053 DOI: 10.3389/fimmu.2018.01569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Trypanosoma cruzi infects and replicates within a wide variety of immune and non-immune cells. Here, we investigated early cellular responses induced in NIH-3T3 fibroblasts upon infection with trypomastigote forms of T. cruzi. We show that fibroblasts were susceptible to T. cruzi infection and started to release trypomastigotes to the culture medium after 4 days of infection. Also, we found that T. cruzi infection reduced the number of fibroblasts in 3-day cell cultures, by altering fibroblast proliferation. Infected fibroblasts displayed distinctive phenotypic alterations, including enlarged and flattened morphology with a nuclei accumulation of senescence-associated heterochromatin foci. In addition, infection induced an overexpression of the enzyme senescence-associated β-galactosidase (SA-β-gal), an activation marker of the cellular senescence program, as well as the production of cytokines and chemokines involved with the senescence-associated secretory phenotype (SASP) such as IL-6, TNF-α, IL-1β, and MCP-1. Infected fibroblasts released increased amounts of stress-associated factors nitric oxide (NO) and reactive oxygen species (ROS), and the treatment with antioxidants deferoxamine (DFO) and N-acetylcysteine reduced ROS generation, secretion of SASP-related cytokine IL-6, SA-β-gal activity, and parasite load by infected fibroblasts. Taken together, our data suggest that T. cruzi infection triggers a rapid cellular stress response followed by induction of a senescent-like phenotype in NIH-3T3 fibroblasts, enabling them to act as reservoirs of parasites during the early stages of the Chagas disease.
Collapse
Affiliation(s)
- Kamila Guimarães-Pinto
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Antonia Corrêa-Ferreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Celio G Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela F Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - George A DosReis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Rio de Janeiro, Brazil
| | - Alessandra A Filardy
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Zhang X, Zhang H, Fu Y, Liu J, Liu Q. Effects of Estradiol and Progesterone-Induced Intracellular Calcium Fluxes on Toxoplasma gondii Gliding, Microneme Secretion, and Egress. Front Microbiol 2018; 9:1266. [PMID: 29946311 PMCID: PMC6005879 DOI: 10.3389/fmicb.2018.01266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/24/2018] [Indexed: 01/07/2023] Open
Abstract
Research has shown that estrogen is present and plays a critical role in vertebrate reproduction and metabolism, but the influence of steroids on Toxoplasma gondii has received less attention. Our data showed that estradiol and progesterone induced parasitic cytosolic Ca2+ fluxes. This process required estrogen to enter the cytoplasm of T. gondii, and cGMP-dependent protein kinase G (PKG) and phosphoinositide-phospholipase C (PI-PLC) emerged as important factors controlling parasitic intracellular (IC) Ca2+ signals. Cytosolic Ca2+, which is regulated by estradiol, was mostly mobilized from acidic organelles. Moreover, cytosolic Ca2+ slightly increased MIC2 protein secretion and promoted the gliding motility and egress of parasites, thus enhancing the pathogenicity of T. gondii, as shown in our previous research. We subsequently determined that the main source of Ca2+ regulated by progesterone was a neutral store. In contrast to the findings of estradiol, progesterone reduced MIC2 protein secretion and inhibited the gliding motility of parasites, which may decrease their pathogenicity. Additionally, unlike in mammals, estradiol and progesterone had no effect on nitric oxide (NO) or reactive oxygen species (ROS) production in T. gondii.
Collapse
Affiliation(s)
- Xiao Zhang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Heng Zhang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yong Fu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Watanabe PDS, Trevizan AR, Silva-Filho SE, Góis MB, Garcia JL, Cuman RKN, Breithaupt-Faloppa AC, Sant`Ana DDMG, Nogueira de Melo GDA. Immunocompetent host develops mild intestinal inflammation in acute infection with Toxoplasma gondii. PLoS One 2018; 13:e0190155. [PMID: 29324806 PMCID: PMC5764246 DOI: 10.1371/journal.pone.0190155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is the causative agent of toxoplasmosis, common zoonosis among vertebrates and high incidence worldwide. During the infection, the parasite needs to transpose the intestinal barrier to spread throughout the body, which may be a trigger for an inflammatory reaction. This work evaluated the inflammatory alterations of early T. gondii infection in peripheral blood cells, in the mesenteric microcirculation, and small intestinal tissue by measurement of MPO (myeloperoxidase) activity and NO (nitric oxide) level in rats. Animals were randomly assigned into control group (CG) that received saline orally and groups infected with 5,000 oocysts for 6 (G6), 12 (G12), 24 (G24), 48 (G48) and 72 hours (G72). Blood samples were collected for total and differential leukocyte count. Intravital microscopy was performed in the mesentery to evaluate rolling and adhesion of leukocytes. After euthanasia, 0.5cm of the duodenum, jejunum and ileum were collected for the determination of MPO activity, NO level and PCR to identify the parasite DNA and also the mesentery were collected to perform immunohistochemistry on frozen sections to quantify adhesion molecules ICAM-1, PECAM-1 and P-Selectin. The parasite DNA was identified in all infected groups and there was an increase in leukocytes in the peripheral blood and in expression of ICAM-1 and PECAM-1 in G6 and G12, however, the expression of P-selectin was reduced in G12. Leukocytes are in rolling process during the first 12 hours and they are adhered at 24 hours post-infection. The activity of MPO increased in the duodenum at 12 hours, and NO increased in the jejunum in G72 and ileum in G24, G48 and G72. Our study demonstrated that T. gondii initiates the infection precociously (at 6 hours) leading to a systemic activation of innate immune response resulting in mild inflammation in a less susceptible experimental model.
Collapse
Affiliation(s)
- Paulo da Silva Watanabe
- Biosciences and Physiopathology Program, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Aline Rosa Trevizan
- Biosciences and Physiopathology Program, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | - Marcelo Biondaro Góis
- Biosciences and Physiopathology Program, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Young R, Bush SJ, Lefevre L, McCulloch MEB, Lisowski ZM, Muriuki C, Waddell LA, Sauter KA, Pridans C, Clark EL, Hume DA. Species-Specific Transcriptional Regulation of Genes Involved in Nitric Oxide Production and Arginine Metabolism in Macrophages. Immunohorizons 2018; 2:27-37. [PMID: 30467554 PMCID: PMC6245571 DOI: 10.4049/immunohorizons.1700073] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Activated mouse macrophages metabolize arginine via NO synthase (NOS2) to produce NO as an antimicrobial effector. Published gene expression datasets provide little support for the activation of this pathway in human macrophages. Generation of NO requires the coordinated regulation of multiple genes. We have generated RNA-sequencing data from bone marrow-derived macrophages from representative rodent (rat), monogastric (pig and horse), and ruminant (sheep, goat, cattle, and water buffalo) species, and analyzed the expression of genes involved in arginine metabolism in response to stimulation with LPS. In rats, as in mice, LPS strongly induced Nos2, the arginine transporter Slc7a2, arginase 1 (Arg1), GTP cyclohydrolase (Gch1), and argininosuccinate synthase (Ass1). None of these responses was conserved across species. Only cattle and water buffalo showed substantial NOS2 induction. The species studied also differed in expression and regulation of arginase (ARG2, rather than ARG1), and amino acid transporters. Variation between species was associated with rapid promoter evolution. Differential induction of NOS2 and ARG2 between the ruminant species was associated with insertions of the Bov-A2 retrotransposon in the promoter region. Bov-A2 was shown to possess LPS-inducible enhancer activity in transfected RAW264.7 macrophages. Consistent with a function in innate immunity, NO production and arginine metabolism vary greatly between species and differences may contribute to pathogen host restriction.
Collapse
Affiliation(s)
- Rachel Young
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Stephen J. Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Mary E. B. McCulloch
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Zofia M. Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Charity Muriuki
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Lindsey A. Waddell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Kristin A. Sauter
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Clare Pridans
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Emily L. Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - David A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
- Mater Research–University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland 4102, Australia
| |
Collapse
|
40
|
Vicentino-Vieira SL, Góis MB, Trevizan AR, de Lima LL, Leatte EP, Nogueira de Melo GDA, Garcia JL, Araújo EJDA, Sant'Ana DDMG. Toxoplasma gondii infection causes structural changes in the jejunum of rats infected with different inoculum doses. Life Sci 2017; 191:141-149. [DOI: 10.1016/j.lfs.2017.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/04/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
|
41
|
Interleukin-17A-Deficient Mice Are Highly Susceptible to Toxoplasma gondii Infection Due to Excessively Induced T. gondii HSP70 and Interferon Gamma Production. Infect Immun 2017; 85:IAI.00399-17. [PMID: 28893913 DOI: 10.1128/iai.00399-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/01/2017] [Indexed: 11/20/2022] Open
Abstract
Interleukin17A (IL-17A) is known to be involved in the host defense against pathogens and the pathogenesis of autoimmune diseases. Previously, we showed that excessive amounts of interferon gamma (IFN-γ) play an important role in the pathogenesis of the lethal effects of Toxoplasma gondii by inducing anaphylactic responses. In the study described in this report, we examined the effects of IL-17A deficiency on murine host defense against oral T. gondii infection. IL-17A-deficient C57BL/6 (B6) mice exhibited higher rates of mortality than wild-type (WT) mice during the acute phase of T. gondii infection. CD4+ T cells in the mesenteric lymph nodes (mLNs) and ileum of T. gondii-infected IL-17A-deficient mice produced higher levels of IFN-γ than did those of WT mice. In addition, the level of T. gondii HSP70 (T.gHSP70) expression was also significantly increased in the ileum, mLNs, liver, and spleen of infected IL-17A-deficient mice compared with that in WT mice. These elevated levels of expression of T.gHSP70 and IFN-γ in infected IL-17A-deficient mice were presumably linked to the IL-17A defect since they decreased to WT levels after treatment with recombinant IL-17A. Furthermore, IL-17A-deficient mice were highly susceptible to the anaphylactic effect of T.gHSP70, and the survival of IL-17A-deficient mice during the acute phase was improved by treatment with an anti-T.gHSP70 monoclonal antibody. These results suggest that IL-17A plays an important role in host survival against T. gondii infection by protecting the host from an anaphylactic reaction via the downregulation of T.gHSP70 and IFN-γ production.
Collapse
|
42
|
Czarnewski P, Araújo ECB, Oliveira MC, Mineo TWP, Silva NM. Recombinant TgHSP70 Immunization Protects against Toxoplasma gondii Brain Cyst Formation by Enhancing Inducible Nitric Oxide Expression. Front Cell Infect Microbiol 2017; 7:142. [PMID: 28487847 PMCID: PMC5403831 DOI: 10.3389/fcimb.2017.00142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/06/2017] [Indexed: 11/17/2022] Open
Abstract
Toxoplasma gondii is known to cause congenital infection in humans and animals and severe disease in immunocompromised individuals; consequently development of vaccines against the parasite is highly necessary. Under stress conditions, T. gondii expresses the highly immunogenic heat shock protein 70 (TgHSP70). Here, we assessed the protective efficacy of rTgHSP70 immunization combined with Alum in oral ME-49 T. gondii infection and the mechanisms involved on it. It was observed that immunized mice with rTgHSP70 or rTgHSP70 adsorbed in Alum presented a significantly reduced number of cysts in the brain that was associated with increased iNOS+ cell numbers in the organ, irrespective the use of the adjuvant. Indeed, ex vivo experiments showed that peritoneal macrophages pre-stimulated with rTgHSP70 presented increased NO production and enhanced parasite killing, and the protein was able to directly stimulate B cells toward antibody producing profile. In addition, rTgHSP70 immunization leads to high specific antibody titters systemically and a mixed IgG1/IgG2a response, with predominance of IgG1 production. Nonetheless, it was observed that the pretreatment of the parasite with rTgHSP70 immune sera was not able to control T. gondii internalization and replication by NIH fibroblast neither peritoneal murine macrophages, nor anti-rTgHSP70 antibodies were able to kill T. gondii by complement-mediated lysis, suggesting that these mechanisms are not crucial to resistance. Interestingly, when in combination with Alum, rTgHSP70 immunization was able to reduce inflammation in the brain of infected mice and in parallel anti-rTgHSP70 immune complexes in the serum. In conclusion, immunization with rTgHSP70 induces massive amounts of iNOS expression and reduced brain parasitism, suggesting that iNOS expression and consequently NO production in the brain is a protective mechanism induced by TgHSP70 immunization, therefore rTgHSP70 can be a good candidate for vaccine development against toxoplasmosis.
Collapse
Affiliation(s)
- Paulo Czarnewski
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| | - Ester C B Araújo
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| | - Mário C Oliveira
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| | - Tiago W P Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| | - Neide M Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of UberlândiaUberlândia, Brazil
| |
Collapse
|
43
|
Peroxiredoxin 3 promotes IL-12 production from macrophages and partially protects mice against infection with Toxoplasma gondii. Parasitol Int 2016; 65:741-748. [DOI: 10.1016/j.parint.2016.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 02/08/2023]
|
44
|
STAT1 Signaling in Astrocytes Is Essential for Control of Infection in the Central Nervous System. mBio 2016; 7:mBio.01881-16. [PMID: 27834206 PMCID: PMC5101356 DOI: 10.1128/mbio.01881-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The local production of gamma interferon (IFN-γ) is important to control Toxoplasma gondii in the brain, but the basis for these protective effects is not fully understood. The studies presented here reveal that the ability of IFN-γ to inhibit parasite replication in astrocytes in vitro is dependent on signal transducer and activator of transcription 1 (STAT1) and that mice that specifically lack STAT1 in astrocytes are unable to limit parasite replication in the central nervous system (CNS). This susceptibility is associated with a loss of antimicrobial pathways and increased cyst formation in astrocytes. These results identify a critical role for astrocytes in limiting the replication of an important opportunistic pathogen. Astrocytes are the most numerous cell type in the brain, and they are activated in response to many types of neuroinflammation, but their function in the control of CNS-specific infection is unclear. The parasite Toxoplasma gondii is one of the few clinically relevant microorganisms that naturally infects astrocytes, and the studies presented here establish that the ability of astrocytes to inhibit parasite replication is essential for the local control of this opportunistic pathogen. Together, these studies establish a key role for astrocytes as effector cells and in the coordination of many aspects of the protective immune response that operates in the brain.
Collapse
|
45
|
Riddle MS, DuPont HL, Connor BA. ACG Clinical Guideline: Diagnosis, Treatment, and Prevention of Acute Diarrheal Infections in Adults. Am J Gastroenterol 2016; 111:602-22. [PMID: 27068718 DOI: 10.1038/ajg.2016.126] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/16/2016] [Indexed: 12/11/2022]
Abstract
Acute diarrheal infections are a common health problem globally and among both individuals in the United States and traveling to developing world countries. Multiple modalities including antibiotic and non-antibiotic therapies have been used to address these common infections. Information on treatment, prevention, diagnostics, and the consequences of acute diarrhea infection has emerged and helps to inform clinical management. In this ACG Clinical Guideline, the authors present an evidence-based approach to diagnosis, prevention, and treatment of acute diarrhea infection in both US-based and travel settings.
Collapse
Affiliation(s)
- Mark S Riddle
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Herbert L DuPont
- University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Bradley A Connor
- Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
46
|
Antiparasitic effects of oxymatrine and matrine against Toxoplasma gondii in vitro and in vivo. Exp Parasitol 2016; 165:95-102. [PMID: 26993085 DOI: 10.1016/j.exppara.2016.03.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/07/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii (T. gondii) is an important pathogen which can causes serious public health problems. Since the current therapeutic drugs for toxoplasmosis present serious host toxicity, research on effective and new substances of relatively low toxicity is urgently needed. This study was carried out to evaluate the anti-parasitic effect of oxymatrine (OM) and matrine (ME) against T. gondii in vitro and in vivo. In our study, the anti-T. gondii activities of ME and OM were evaluated in vitro using cell counting kit-8 assay, morphological observation and trypan blue exclusion assay. In vivo, mice were sacrificed four days post-infection and ascites were drawn out to determine the extent of tachyzoite proliferation. Viscera indexes and liver biochemical parameters, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutathione (GSH) and malondialdehyde (MDA), were examined to evaluate the toxicity of compounds to mice. As a result, OM and ME showed anti-T. gondii activity but low selectivity toxicity to HeLa cells. Both compounds also significantly decreased the number of tachyzoites in peritoneal cavity and recovered the levels of ALT, AST, GSH and MDA in liver. Moreover, the mice treated with OM or ME achieved better results in viscera index and survival rate than that of spiramycin. These results suggest that OM and ME are likely the sources of new drugs for toxoplasmosis, and further studies will be necessary to compare the efficacy of drug combination, as well as identify its action of mechanism.
Collapse
|
47
|
MIF Promotes Classical Activation and Conversion of Inflammatory Ly6C(high) Monocytes into TipDCs during Murine Toxoplasmosis. Mediators Inflamm 2016; 2016:9101762. [PMID: 27057101 PMCID: PMC4789477 DOI: 10.1155/2016/9101762] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/27/2015] [Indexed: 11/19/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) mediates immunity against Toxoplasma gondii infection by inducing inflammatory cytokines required to control the parasite replication. However, the role of this inflammatory mediator in the cell-mediated immune response against this infection is still poorly understood. Here, we used T. gondii-infected WT and Mif−/− mice to analyze the role of MIF in the maturation of CD11b+ and CD8α+ dendritic cells (DCs). We found that MIF promotes maturation of CD11b+ but not CD8α+ DCs, by inducing IL-12p70 production and CD86 expression. Infected Mif−/− mice showed significantly lower numbers of TNF and inducible nitric oxide synthase- (iNOS-) producing DCs (TipDCs) compared to infected WT mice. The adoptive transfer of Ly6Chigh monocytes into infected WT or Mif−/− mice demonstrated that MIF participates in the differentiation of Ly6Chigh monocytes into TipDCs. In addition, infected Mif−/− mice display a lower percentage of IFN-γ-producing natural killer (NK) cells compared to WT mice, which is associated with reducing numbers of TipDCs in Mif−/− mice. Furthermore, administration of recombinant MIF (rMIF) into T. gondii-infected Mif−/− mice restored the numbers of TipDCs and reversed the susceptible phenotype of Mif−/− mice. Collectively, these results demonstrate an important role for MIF inducing cell-mediated immunity to T. gondii infection.
Collapse
|
48
|
Dukaczewska A, Tedesco R, Liesenfeld O. Experimental Models of Ocular Infection with Toxoplasma Gondii. Eur J Microbiol Immunol (Bp) 2015; 5:293-305. [PMID: 26716018 PMCID: PMC4681357 DOI: 10.1556/1886.2015.00045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/11/2015] [Indexed: 01/12/2023] Open
Abstract
Ocular toxoplasmosis is a vision-threatening disease and the major cause of posterior uveitis worldwide. In spite of the continuing global burden of ocular toxoplasmosis, many critical aspects of disease including the therapeutic approach to ocular toxoplasmosis are still under debate. To assist in addressing many aspects of the disease, numerous experimental models of ocular toxoplasmosis have been established. In this article, we present an overview on in vitro, ex vivo, and in vivo models of ocular toxoplasmosis available to date. Experimental studies on ocular toxoplasmosis have recently focused on mice. However, the majority of murine models established so far are based on intraperitoneal and intraocular infection with Toxoplasma gondii. We therefore also present results obtained in an in vivo model using peroral infection of C57BL/6 and NMRI mice that reflects the natural route of infection and mimics the disease course in humans. While advances have been made in ex vivo model systems or larger animals to investigate specific aspects of ocular toxoplasmosis, laboratory mice continue to be the experimental model of choice for the investigation of ocular toxoplasmosis.
Collapse
Affiliation(s)
- Agata Dukaczewska
- Institut für Mikrobiologie und Hygiene, Charité UniversitätsmedizinBerlin, Germany
| | - Roberto Tedesco
- Disciplina de Anatomia Descritiva e Topográfica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil, Germany
| | - Oliver Liesenfeld
- Institut für Mikrobiologie und Hygiene, Charité UniversitätsmedizinBerlin, Germany
| |
Collapse
|
49
|
Heimesaat MM, Fischer A, Kühl AA, Göbel UB, Gozes I, Bereswill S. Anti-Inflammatory Properties of NAP in Acute Toxoplasma Gondii-Induced Ileitis in Mice. Eur J Microbiol Immunol (Bp) 2015; 5:210-20. [PMID: 26495132 PMCID: PMC4598889 DOI: 10.1556/1886.2015.00025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/23/2015] [Indexed: 01/31/2023] Open
Abstract
The octapeptide NAP has been shown to exert neuroprotective properties. Here, we investigated potential anti-inflammatory effects of NAP in an acute ileitis model. To address this, C57BL/6j mice were perorally infected with Toxoplasma gondii (day 0). Within 1 week postinfection (p.i.), placebo (PLC)-treated mice developed acute ileitis due to Th1-type immune responses. Mice that were subjected to intraperitoneal NAP treatment from day 1 until day 6 p.i., however, developed less distinct macroscopic and microscopic disease as indicated by less body weight loss, less distinct histopathological ileal changes, and lower ileal apoptotic, but higher proliferating cell numbers, less abundance of neutrophils, macrophages, monocytes, and T lymphocytes, but higher numbers of regulatory T cells in the ileal mucosa and lamina propria, and lower concentrations of pro-inflammatory mediators in the ilea as compared to PLC controls at day 7 p.i. Remarkably, NAP-mediated anti-inflammatory effects could also be observed in extra-intestinal compartments including liver and spleen. Strikingly, lower MCP-1, TNF, and IL-12p70 serum concentrations in NAP as compared to PLC-treated mice at day 7 p.i. indicate a pronounced systemic anti-inflammatory effect of NAP in acute ileitis. These findings provide first evidence for NAP as a potential novel treatment option in intestinal inflammation.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin , Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Illana Gozes
- Department of Clinical Biochemistry, Sackler School of Medicine, Aviv University , Aviv, Israel
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
50
|
Yan X, Ji Y, Liu X, Suo X. Nitric oxide stimulates early egress of Toxoplasma gondii tachyzoites from Human foreskin fibroblast cells. Parasit Vectors 2015; 8:420. [PMID: 26264067 PMCID: PMC4534117 DOI: 10.1186/s13071-015-1037-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Egress is a vital step in the life cycle of Toxoplasma gondii which attracts attentions of many groups. Previous studies have shown that exogenous nitric oxide (NO) stimulates the early egress of T. gondii from infected peritoneal macrophages, a kind of immune cells. However, because Toxoplasma forms cysts in brain and muscle tissues, the development of autonomous immunity in non-immune cells is vital for limiting parasite burden and cyst formation. Therefore, we attempted to investigate whether exogenous NO could induce the early egress of T. gondii from infected non-immune cells. METHODS T. gondii tachyzoites were cultured in human foreskin fibroblast (HFF) cells and were then treated with NO released by sodium nitroferricyanide (III) dihydrate (SNP). The egressed parasites were analysed by flow cytometry. RESULTS The results showed that NO induced the early egress of parasites from HFF cells before completing their intracellular life cycles. We also found that the occurrence of egress was dependent on intracellular calcium (Ca(2+)) levels and the mobility of the parasite. Compared with freshly isolated tachyzoites, the developmental ability and virulence of egressed tachyzoites presented no difference. CONCLUSIONS Taken together, our findings demonstrate a novel assay for the analysis of egress signalling mechanisms and an avenue of parasite clearance by hosts of T. gondii.
Collapse
Affiliation(s)
- Xinlei Yan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China. .,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Yongsheng Ji
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China. .,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China. .,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. .,Key Laboratory of Zoonosis of Ministry of Agriculture & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China. .,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. .,Key Laboratory of Zoonosis of Ministry of Agriculture & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|