1
|
Zhu Q, Sun H, Yang D, Tighe S, Liu Y, Zhu Y, Hu M. Cellular Substrates for Cell-Based Tissue Engineering of Human Corneal Endothelial Cells. Int J Med Sci 2019; 16:1072-1077. [PMID: 31523168 PMCID: PMC6743271 DOI: 10.7150/ijms.34440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022] Open
Abstract
Corneal endothelial tissue engineering aims to find solutions for blindness due to endothelial dysfunction. A suitable combination of endothelial cells, substrates and environmental cues should be deployed for engineering functional endothelial tissues. This manuscript reviews up-to-date topics of corneal endothelial tissue engineering with special emphasis on biomaterial substrates and their properties, efficacy, and mechanisms of supporting functional endothelial cells in vitro.
Collapse
Affiliation(s)
- Qin Zhu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province (Fourth Affiliated Hospital of Kunming Medical University); Yunnan Eye Institute; Key Laboratory of Yunnan Province for the Prevention and Treatment of ophthalmology (2017DG008); Provincial Innovation Team for Cataract and Ocular Fundus Disease (2017HC010); Expert Workstation of Yao Ke (2017IC064), Kunming 650021, China
| | - Hong Sun
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Dongmei Yang
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province (Fourth Affiliated Hospital of Kunming Medical University); Yunnan Eye Institute; Key Laboratory of Yunnan Province for the Prevention and Treatment of ophthalmology (2017DG008); Provincial Innovation Team for Cataract and Ocular Fundus Disease (2017HC010); Expert Workstation of Yao Ke (2017IC064), Kunming 650021, China
| | - Sean Tighe
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33173 USA
| | - Yongsong Liu
- Department of Ophthalmology, Yan' An Hospital of Kunming City, Kunming, 650051, China
| | - Yingting Zhu
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33173 USA
| | - Min Hu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province (Fourth Affiliated Hospital of Kunming Medical University); Yunnan Eye Institute; Key Laboratory of Yunnan Province for the Prevention and Treatment of ophthalmology (2017DG008); Provincial Innovation Team for Cataract and Ocular Fundus Disease (2017HC010); Expert Workstation of Yao Ke (2017IC064), Kunming 650021, China
| |
Collapse
|
2
|
Johnson C, Jahid S, Voelker DR, Fan H. Enhanced proliferation of primary rat type II pneumocytes by Jaagsiekte sheep retrovirus envelope protein. Virology 2011; 412:349-56. [PMID: 21316726 DOI: 10.1016/j.virol.2011.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 12/24/2010] [Accepted: 01/14/2011] [Indexed: 01/05/2023]
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of a contagious lung cancer in sheep. The envelope protein (Env) is the oncogene, as it can transform cell lines in culture and induce tumors in animals, although the mechanisms for transformation are not yet clear because a system to perform transformation assays in differentiated type II pneumocytes does not exist. In this study we report culture of primary rat type II pneumocytes in conditions that favor prolonged expression of markers for type II pneumocytes. Env-expressing cultures formed more colonies that were larger in size and were viable for longer periods of time compared to vector control samples. The cells that remained in culture longer were confirmed to be derived from type II pneumocytes because they expressed surfactant protein C, cytokeratin, displayed alkaline phosphatase activity and were positive for Nile red. This system will be useful to study JSRV Env in the targets of transformation.
Collapse
Affiliation(s)
- Chassidy Johnson
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
3
|
Maślikowski BM, Néel BD, Wu Y, Wang L, Rodrigues NA, Gillet G, Bédard PA. Cellular processes of v-Src transformation revealed by gene profiling of primary cells--implications for human cancer. BMC Cancer 2010; 10:41. [PMID: 20152043 PMCID: PMC2837010 DOI: 10.1186/1471-2407-10-41] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 02/12/2010] [Indexed: 01/05/2023] Open
Abstract
Background Cell transformation by the Src tyrosine kinase is characterized by extensive changes in gene expression. In this study, we took advantage of several strains of the Rous sarcoma virus (RSV) to characterize the patterns of v-Src-dependent gene expression in two different primary cell types, namely chicken embryo fibroblasts (CEF) and chicken neuroretinal (CNR) cells. We identified a common set of v-Src regulated genes and assessed if their expression is associated with disease-free survival using several independent human tumor data sets. Methods CEF and CNR cells were infected with transforming, non-transforming, and temperature sensitive mutants of RSV to identify the patterns of gene expression in response to v-Src-transformation. Microarray analysis was used to measure changes in gene expression and to define a common set of v-Src regulated genes (CSR genes) in CEF and CNR cells. A clustering enrichment regime using the CSR genes and two independent breast tumor data-sets was used to identify a 42-gene aggressive tumor gene signature. The aggressive gene signature was tested for its prognostic value by conducting survival analyses on six additional tumor data sets. Results The analysis of CEF and CNR cells revealed that cell transformation by v-Src alters the expression of 6% of the protein coding genes of the genome. A common set of 175 v-Src regulated genes (CSR genes) was regulated in both CEF and CNR cells. Within the CSR gene set, a group of 42 v-Src inducible genes was associated with reduced disease- and metastasis-free survival in several independent patient cohorts with breast or lung cancer. Gene classes represented within this group include DNA replication, cell cycle, the DNA damage and stress responses, and blood vessel morphogenesis. Conclusion By studying the v-Src-dependent changes in gene expression in two types of primary cells, we identified a set of 42 inducible genes associated with poor prognosis in breast and lung cancer. The identification of these genes provides a set of biomarkers of aggressive tumor behavior and a framework for the study of cancer cells characterized by elevated Src kinase activity.
Collapse
Affiliation(s)
- Bart M Maślikowski
- Department of Biology, McMaster University, 1280 Main street West, Hamilton, ON, L8S 4K1, Canada
| | | | | | | | | | | | | |
Collapse
|
4
|
Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1. Proc Natl Acad Sci U S A 2008; 105:6584-9. [PMID: 18451027 DOI: 10.1073/pnas.0802785105] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mad1, a member of the Myc/Max/Mad family, suppresses Myc-mediated transcriptional activity by competing with Myc for heterodimerization with its obligatory partner, Max. The expression of Mad1 suppresses Myc-mediated cell proliferation and transformation. The levels of Mad1 protein are generally low in many human cancers, and Mad1 protein has a very short half-life. However, the mechanism that regulates the turnover of Mad1 protein is poorly understood. In this study, we showed that Mad1 is a substrate of p90 ribosomal kinase (RSK) and p70 S6 kinase (S6K). Both RSK and S6K phosphorylate serine 145 of Mad1 upon serum or insulin stimulation. Ser-145 phosphorylation of Mad1 accelerates the ubiquitination and degradation of Mad1 through the 26S proteasome pathway, which in turn promotes the transcriptional activity of Myc. Our study provides a direct link between the growth factor signaling pathways regulated by PI3 kinase/Akt and MAP kinases with Myc-mediated transcription.
Collapse
|
5
|
Ciuffini L, Castellani L, Salvati E, Galletti S, Falcone G, Alemà S. Delineating v-Src downstream effector pathways in transformed myoblasts. Oncogene 2007; 27:528-39. [PMID: 17637741 DOI: 10.1038/sj.onc.1210665] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this study, we delineate the intracellular signalling pathways modulated by a conditional v-Src tyrosine kinase that lead to unrestrained proliferation and block of differentiation of primary avian myoblasts. By inhibiting Ras-MAPK kinase and phosphatidylinositol 3-kinase with different means, we find that both pathways play crucial roles in controlling v-Src-sustained growth factor and anchorage independence for proliferation. The Ras-MAPK kinase pathway also contributes to block of differentiation independently of cell proliferation since inhibition of this pathway both in proliferating and growth-arrested v-Src-transformed myoblasts induces expression of muscle-specific genes, fusion into multinucleated myotubes and assembly of specialized contractile structures. Importantly, we find that the p38 MAPK pathway is inhibited by v-Src in myoblasts and its forced activation results in growth inhibition and expression of differentiation, indicating p38 MAPK as a critical target of v-Src in growth transformation and myogenic differentiation. Furthermore, we show that downregulation of p38 MAPK activation may occur via Ras-MAPK kinase, thus highlighting a cross-regulation between the two pathways. Finally, we report that the simultaneous inhibition of MAPK kinase and calpain, combined to activation of p38 MAPK, are sufficient to reconstitute largely the differentiation potential of v-Src-transformed myoblasts.
Collapse
Affiliation(s)
- L Ciuffini
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Monterotondo Scalo (RM), Italy
| | | | | | | | | | | |
Collapse
|
6
|
Fukui Y, Tanaka T, Tachikawa H, Ihara S. SWAP-70 is required for oncogenic transformation by v-Src in mouse embryo fibroblasts. Biochem Biophys Res Commun 2007; 356:512-6. [PMID: 17367752 DOI: 10.1016/j.bbrc.2007.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 03/01/2007] [Indexed: 11/23/2022]
Abstract
SWAP-70 is a phosphatidylinositol trisphosphate (PtdIns(3,4,5)P(3)) binding protein, which acts in F-actin rearrangement. The role of SWAP-70 in oncogenic transformation of mouse embryo fibroblasts (MEFs) by v-Src was examined by use of MEFs defective in SWAP-70. v-Src morphologically transformed MEFs lacking SWAP-70, but growth of the transformed cells in culture was slower than that of cells supplemented with exogenous SWAP-70. The v-Src-transformed MEFs deficient in SWAP-70 were unable to grow in soft agar while those expressing SWAP70 readily formed colonies, suggesting that SWAP-70 is required for anchorage independent growth of v-Src transformed MEFs. When transplanted in nude mice, tumors formed by the v-Src transformed SWAP-70(-/-) MEFs were smaller than those formed by cells expressing exogenous SWAP-70. These results suggest that SWAP-70 may be required for oncogenic transformation and contributes to cell growth in MEFs transformed by v-Src.
Collapse
Affiliation(s)
- Yasuhisa Fukui
- Division of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | |
Collapse
|
7
|
Abstract
Retroviruses have played profound roles in our understanding of the genetic and molecular basis of cancer. Jaagsiekte sheep retrovirus (JSRV) is a simple retrovirus that causes contagious lung tumors in sheep, known as ovine pulmonary adenocarcinoma (OPA). Intriguingly, OPA resembles pulmonary adenocarcinoma in humans, and may provide a model for this frequent human cancer. Distinct from the classical mechanisms of retroviral oncogenesis by insertional activation of or virus capture of host oncogenes, the native envelope (Env) structural protein of JSRV is itself the active oncogene. A major pathway for Env transformation involves interaction of the Env cytoplasmic tail with as yet unidentified cellular adaptor(s), leading to the activation of PI3K/Akt and MAPK signaling cascades. Another potential mechanism involves the cell-entry receptor for JSRV, Hyaluronidase 2 (Hyal2), and the RON receptor tyrosine kinase, but the exact roles of these proteins in JSRV Env transformation remain to be better understood. Recently, a mouse model of lung cancer induced by JSRV Env has been developed, and the tumors in mice resemble those seen in sheep infected with JSRV and in humans. In this review, we summarize recent progress in our understanding the molecular mechanisms of oncogenic transformation by JSRV Env protein, and discuss the relevance to human lung cancer.
Collapse
Affiliation(s)
- S-L Liu
- Department of Microbiology and Immunology, McGill University, Montreal, Canada.
| | | |
Collapse
|
8
|
Anazawa Y, Nakagawa H, Furihara M, Ashida S, Tamura K, Yoshioka H, Shuin T, Fujioka T, Katagiri T, Nakamura Y. PCOTH, a novel gene overexpressed in prostate cancers, promotes prostate cancer cell growth through phosphorylation of oncoprotein TAF-Ibeta/SET. Cancer Res 2005; 65:4578-86. [PMID: 15930275 DOI: 10.1158/0008-5472.can-04-4564] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Through genome-wide cDNA microarray analysis coupled with microdissection of prostate cancer cells, we identified a novel gene, prostate collagen triple helix (PCOTH), showing overexpression in prostate cancer cells and its precursor cells, prostatic intraepithelial neoplasia (PIN). Immunohistochemical analysis using polyclonal anti-PCOTH antibody confirmed elevated expression of PCOTH, a 100-amino-acid protein containing collagen triple-helix repeats, in prostate cancer cells and PINs. Knocking down PCOTH expression by small interfering RNA (siRNA) resulted in drastic attenuation of prostate cancer cell growth, and concordantly, LNCaP derivative cells that were designed to constitutively express exogenous PCOTH showed higher growth rate than LNCaP cells transfected with mock vector, suggesting the growth-promoting effect of PCOTH on prostate cancer cell. To investigate the biological mechanisms of this growth-promoting effect, we applied two-dimensional differential gel electrophoresis (2D-DIGE) to analyze the phospho-protein fractions in LNCaP cells transfected with PCOTH. We found that the phosphorylation level of oncoprotein TAF-Ibeta/SET was significantly elevated in LNCaP cells transfected with PCOTH than control LNCaP cells, and these findings were confirmed by Western blotting and in-gel kinase assay. Furthermore, knockdown of endogenous TAF-Ibeta expression by siRNA also attenuated viability of prostate cancer cells as well. These findings suggest that PCOTH is involved in growth and survival of prostate cancer cells thorough, in parts, the TAF-Ibeta pathway, and that this molecule should be a promising target for development of new therapeutic strategies for prostate cancers.
Collapse
Affiliation(s)
- Yoshio Anazawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Moissoglu K, Sachdev S, Gelman IH. Enhanced v-Src-induced oncogenic transformation in the absence of focal adhesion kinase is mediated by phosphatidylinositol 3-kinase. Biochem Biophys Res Commun 2005; 330:673-84. [PMID: 15809050 DOI: 10.1016/j.bbrc.2005.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Indexed: 11/21/2022]
Abstract
We showed previously [K. Moissoglu, I.H. Gelman, J. Biol. Chem. 278 (2003) 47946-47959] that oncogenic v-Src could induce 7- to 10-fold greater anchorage-independent growth (AIG) in FAK-null mouse embryo fibroblasts (MEF) compared to those expressing FAK. Here, we demonstrate that the enhanced AIG (eAIG) correlates with increased activation levels of phosphatidylinositol 3-kinase (PI3K) and not with changes in the protein levels of the p85 regulatory subunit of PI3K, PDK1 or PTEN- modulators, and/or mediators of PI3K activity. eAIG could be blunted selectively by treatment with the PI3K inhibitor, LY294002, or by overexpression of either the PI3K antagonist, PTEN, dominant-interfering alleles of PI3K or a downstream PI3K mediator, AKT, but not by the MEK inhibitor, PD98059, dominant-interfering alleles of MEK or the signal transducer and activator of transcription (STAT)-3. In contrast, RNAi-mediated knockdown of FAK resulted in increased v-Src-induced AIG. Expression of a constitutively active PI3K allele was sufficient to induce higher levels of AIG, whereas overexpression of v-Src produced only larger-sized colonies in soft agar. Interestingly, FAK was required for full activation of PI3K by PDGF whereas the activation of PI3K by insulin was significantly increased in FAK-/- cells. Thus, although FAK is dispensable for v-Src-induced oncogenic transformation in vitro, it may exert either positive or negative effects on signaling or motility depending on which pathways are activated in cancer cells.
Collapse
Affiliation(s)
- Konstadinos Moissoglu
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14623, USA
| | | | | |
Collapse
|
10
|
Westhoff MA, Serrels B, Fincham VJ, Frame MC, Carragher NO. SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol Cell Biol 2004; 24:8113-33. [PMID: 15340073 PMCID: PMC515031 DOI: 10.1128/mcb.24.18.8113-8133.2004] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Integrin-associated focal adhesions not only provide adhesive links between cellular actin and extracellular matrix but also are sites of signal transmission into the cell interior. Many cell responses signal through focal adhesion kinase (FAK), often by integrin-induced autophosphorylation of FAK or phosphorylation by Src family kinases. Here, we used an interfering FAK mutant (4-9F-FAK) to show that Src-dependent FAK phosphorylation is required for focal adhesion turnover and cell migration, by controlling assembly of a calpain 2/FAK/Src/p42ERK complex, calpain activation, and proteolysis of FAK. Expression of 4-9F-FAK in FAK-deficient fibroblasts also disrupts F-actin assembly associated with normal adhesion and spreading. In addition, we found that FAK's ability to regulate both assembly and disassembly of the actin and adhesion networks may be linked to regulation of the protease calpain. Surprisingly, we also found that the same interfering 4-9F-FAK mutant protein causes apoptosis of serum-deprived, transformed cells and suppresses anchorage-independent growth. These data show that Src-mediated phosphorylation of FAK acts as a pivotal regulator of both actin and adhesion dynamics and survival signaling, which, in turn, control apparently distinct processes such as cell migration and anchorage-independent growth. This also highlights that dynamic regulation of actin and adhesions (which include the integrin matrix receptors) is critical to signaling output and biological responses.
Collapse
Affiliation(s)
- M A Westhoff
- The Beatson Institute for Cancer Research, Cancer Research UK, Glasgow G61 1BD, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Boerner JL, Danielsen AJ, Lovejoy CA, Wang Z, Juneja SC, Faupel-Badger JM, Darce JR, Maihle NJ. Grb2 regulation of the actin-based cytoskeleton is required for ligand-independent EGF receptor-mediated oncogenesis. Oncogene 2003; 22:6679-89. [PMID: 14555981 DOI: 10.1038/sj.onc.1206830] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutations within members of the EGF/ErbB receptor family frequently release the oncogenic potential of these receptors, resulting in the activation of downstream signaling events independent of ligand regulatory constraints. We previously have demonstrated that the signal transduction events originating from S3-v-ErbB, a ligand-independent, oncogenic EGF receptor mutant, are qualitatively distinct from the ligand-dependent mitogenic signaling pathways associated with the wild-type EGF receptor. Specifically, expression of S3-v-ErbB in primary fibroblasts results in anchorage-independent growth, increased invasive potential, and the formation of a transformation-specific phosphoprotein signaling complex, all in a Ras-independent manner. Here we demonstrate the transformation-specific interaction between two components of this complex: the adaptor protein Grb2 and the cytoskeletal regulatory protein caldesmon. This interaction is mediated via both the amino-terminal SH3 and central SH2 domains of Grb2, and the amino-terminal (myosin-binding) domain of caldesmon. Expression of a dominant-negative Grb2 deletion mutant, which lacks the carboxy-terminal SH3 domain, in fibroblasts expressing S3-v-ErbB results in a reduction in phosphoprotein complex formation, the loss of anchorage-independent growth, and a reduction in invasive potential. Together, these results demonstrate a Ras-independent role for Grb2 in modulating cytoskeletal function during ligand-independent EGF receptor-mediated transformation, and provide further support for the hypothesis that ligand-independent oncogenic signaling is qualitatively distinct from ligand-dependent mitogenic signaling by the EGF receptor.
Collapse
Affiliation(s)
- Julie L Boerner
- Tumor Biology Program, Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MI 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Moissoglu K, Gelman IH. v-Src rescues actin-based cytoskeletal architecture and cell motility and induces enhanced anchorage independence during oncogenic transformation of focal adhesion kinase-null fibroblasts. J Biol Chem 2003; 278:47946-59. [PMID: 14500722 DOI: 10.1074/jbc.m302720200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The ability of the focal adhesion kinase (FAK) to integrate signals from extracellular matrix and growth factor receptors requires the integrity of Tyr397, a major autophosphorylation site that mediates the Src homology 2-dependent binding of Src family kinases. However, the precise roles played by FAK in specific Src-induced pathways, especially as they relate to oncogenic transformation, remain unclear. Here, we investigate the role of FAK in v-Src-induced oncogenic transformation by transducing temperature-sensitive v-Src (ts72v-Src) into p53-null FAK+/+ or FAK-/- mouse embryo fibroblasts (MEF). At the permissive temperature (PT), ts72v-Src induced abundant tyrosine phosphorylation, morphological transformation and cytoskeletal rearrangement in FAK-/- MEF, including the restoration of cell polarity, typical focal adhesion complexes, and longitudinal F-actin stress fibers. v-Src rescued the haptotactic, linear directional, and invasive motility defects of FAK-/- cells to levels found in FAK+/+ or FAK+/+-[ts72v-Src] cells, and, in the case of monolayer wound healing motility, there was an enhancement. Src activation failed to increase the high basal tyrosine phosphorylation of the Crk-associated substrate, CAS, found in FAK-/- MEF, indicating that CAS phosphorylation alone is insufficient to induce motility in the absence of FAK- or v-Src-induced cytoskeletal remodeling. Compared with FAK+/+[ts72v-Src] controls, FAK-/-[ts72v-Src] clones exhibited 7-10-fold higher anchorage-independent proliferation that could not be attributed to variations in either v-Src protein level or stability. Re-expression of FAK diminished the colony-forming activities of FAK-/-[ts72v-Src] without altering ts72v-Src expression levels, suggesting that FAK attenuates Src-induced anchorage independence. Our data also indicate that the enhanced Pyk2 level found in FAK-/- MEF plays no role in v-Src-induced anchorage independence. Overall, our data indicate that FAK, although dispensable, attenuates v-Src-induced oncogenic transformation by modulating distinct signaling and cytoskeletal pathways.
Collapse
Affiliation(s)
- Konstadinos Moissoglu
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | |
Collapse
|
13
|
Maeda N, Inoshima Y, Fruman DA, Brachmann SM, Fan H. Transformation of mouse fibroblasts by Jaagsiekte sheep retrovirus envelope does not require phosphatidylinositol 3-kinase. J Virol 2003; 77:9951-9. [PMID: 12941905 PMCID: PMC224593 DOI: 10.1128/jvi.77.18.9951-9959.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma, a transmissible lung cancer of sheep. The envelope of JSRV may have oncogenic properties, since it can morphologically transform mouse NIH 3T3 cells and other fibroblast lines. Recently, we found that the cytoplasmic tail of the envelope transmembrane (TM) protein is necessary for transformation, and in particular a consensus binding motif (YXXM) for phosphatidylinositol 3-kinase (PI3K) is important. Moreover, JSRV-transformed cells show phosphorylation (activation) of Akt/protein kinase B, a downstream target of PI3K. In these studies, we directly tested for the involvement of PI3K in transformation by JSRV. Contrary to expectations, four different experiments indicated that PI3K is not necessary for JSRV-induced transformation: (i) cotransfection with a dominant negative truncated form of the PI3K regulatory subunit (Deltap85) did not affect transformation frequency, (ii) cells stably expressing Deltap85 showed the same frequencies of transformation as parental NIH 3T3 cells, (iii) fibroblasts established from double-knockout mice lacking PI3K p85alpha and p85beta could be transformed with JSRV envelope, and (iv) incubation of cells with the PI3K inhibitor LY294002 did not specifically inhibit transformation, nor did the drug reverse transformation of JSRV-transformed cells. One alternate explanation for the lack of transformation by YXXM mutants could be that they were defective in intracellular trafficking. However, confocal microscopy of epitope-tagged envelope proteins of both wild-type and nontransforming YXXM mutants showed a cell surface or plasma membrane localization. While PI3K is not required for JSRV-induced transformation of NIH 3T3 cells, the downstream target Akt kinase was found to be activated (phosphorylated) in JSRV-transformed PI3K-negative cells. Therefore, JSRV envelope can induce PI3K-independent phosphorylation of Akt.
Collapse
Affiliation(s)
- Naoyoshi Maeda
- Cancer Research Institute, University of California-Irvine, Irvine, CA 92697-3000, USA
| | | | | | | | | |
Collapse
|
14
|
Li Y, Pei J, Xia H, Ke H, Wang H, Tao W. Lats2, a putative tumor suppressor, inhibits G1/S transition. Oncogene 2003; 22:4398-405. [PMID: 12853976 DOI: 10.1038/sj.onc.1206603] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lats2 is a new member of the Lats tumor suppressor family. The human LATS2 gene is located at chromosome 13q11-12, which has been shown to be a hot spot (67%) for LOH in nonsmall cell lung cancer. In order to understand the function of LATS2 in the control of tumor development, we ectopically expressed mouse Lats2 via retroviral infection in NIH3T3/v-ras cells to examine whether Lats2 plays a role in suppressing tumor development and regulating cell proliferation. We have found that ectopic expression of Lats2 in NIH3T3/v-ras cells suppresses development of tumors in athymic nude mice and inhibits proliferation of NIH3T3/v-ras cells in an in vitro assay. Cell cycle profile analysis demonstrated that ectopic expression of Lats2 inhibited the G1/S transition. Further mechanistic studies revealed that cyclin E/CDK2 kinase activity was downregulated in Lats2-transduced NIH3T3/v-ras cells, while other cell cycle regulators controlling the G1/S transition were not affected. We have also shown that LATS2 kinase activity and two LATS conserved domains (LCDs) are required for Lats2 to suppress tumorigenicity and to inhibit cell growth. In addition, the LATS2 protein is cytoplasmic during interphase in NIH3T3 cells, while it becomes localized to the mitotic apparatus during mitosis. Finally, we propose a model in which a combination of mammalian Lats2 and Lats1 control cell proliferation by negatively regulating different cell cycle check points.
Collapse
Affiliation(s)
- Yunfang Li
- Stem Cell Institute, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Autoinhibitory domains are regions of proteins that negatively regulate the function of other domains via intramolecular interactions. Autoinhibition is a potent regulatory mechanism that provides tight "on-site" repression. The discovery of autoinhibition generates valuable clues to how a protein is regulated within a biological context. Mechanisms that counteract the autoinhibition, including proteolysis, post-translational modifications, as well as addition of proteins or small molecules in trans, often represent central regulatory pathways. In this review, we document the diversity of instances in which autoinhibition acts in cell regulation. Seven well-characterized examples (e.g., sigma(70), Ets-1, ERM, SNARE and WASP proteins, SREBP, Src) are covered in detail. Over thirty additional examples are listed. We present experimental approaches to characterize autoinhibitory domains and discuss the implications of this widespread phenomenon for biological regulation in both the normal and diseased states.
Collapse
Affiliation(s)
- Miles A Pufall
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City 84112-5550, USA.
| | | |
Collapse
|
16
|
Aouacheria A, Néel B, Bouaziz Z, Dominique R, Walchshofer N, Paris J, Fillion H, Gillet G. Carbazolequinone induction of caspase-dependent cell death in Src-overexpressing cells. Biochem Pharmacol 2002; 64:1605-16. [PMID: 12429350 DOI: 10.1016/s0006-2952(02)01385-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously reported that RSV-transformed quail neuroretina cells (QNR-ts68) were highly resistant to apoptosis provoked by serum withdrawal, and that this property was due to v-Src kinase activity. The present study investigates the cytotoxic effect and the functional mechanism of carbazolequinone-mediated cell death in this system. QNR-ts68 cells were subjected to carbazolequinone treatment and both growth inhibition and cell death induction were examined using formazan assays. Cell death mechanism (both apoptosis and necrosis) was confirmed through phosphatidyl serine exposure and propidium iodide incorporation. Furthermore, the effect of active carbazolequinone was inhibited by a pan caspase inhibitor. Cytofluorimetric and immunofluorescence data demonstrated the activation of caspase-3 and the involvement of mitochondria. Therefore, this study clearly indicates that carbazolequinones could induce cell death in transformed cells displaying high levels of antiapoptotic tyrosine kinase activity. Further investigations would be necessary to elucidate the mechanisms by which these carbazolequinones act as antitumor agents.
Collapse
Affiliation(s)
- Abdel Aouacheria
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS/Université Claude Bernard, 7 passage du Vercors, F69367, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang LT, Alexandropoulos K, Sap J. c-SRC mediates neurite outgrowth through recruitment of Crk to the scaffolding protein Sin/Efs without altering the kinetics of ERK activation. J Biol Chem 2002; 277:17406-14. [PMID: 11867627 DOI: 10.1074/jbc.m111902200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
SRC family kinases have been consistently and recurrently implicated in neurite extension events, yet the mechanism underlying their neuritogenic role has remained elusive. We report that epidermal growth factor (EGF) can be converted from a non-neuritogenic into a neuritogenic factor through moderate activation of endogenous SRC by receptor-protein-tyrosine phosphatase alpha (a physiological SRC activator). We show that such a qualitative change in the response to EGF is not accompanied by changes in the extent or kinetics of ERK induction in response to this factor. Instead, the pathway involved relies on increased tyrosine phosphorylation of, and recruitment of Crk to, the SRC substrate Sin/Efs. The latter is a scaffolding protein structurally similar to the SRC substrate Cas, tyrosine phosphorylation of which is critical for migration in fibroblasts and epithelial cells. Expression of a dominant negative version of Sin interfered with receptor-protein-tyrosine phosphatase alpha/EGF- as well as fibroblast growth factor-induced neurite outgrowth. These observations uncouple neuritogenic signaling in PC12 cells from sustained activation of ERK kinases and for the first time identify an effector of SRC function in neurite extension.
Collapse
Affiliation(s)
- Liang-Tung Yang
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
18
|
Aouacheria A, Ory S, Schmitt JR, Rigal D, Jurdic P, Gillet G. p60(v-src) and serum control cell shape and apoptosis via distinct pathways in quail neuroretina cells. Oncogene 2002; 21:1171-86. [PMID: 11850837 DOI: 10.1038/sj.onc.1205170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2001] [Revised: 10/29/2001] [Accepted: 11/07/2001] [Indexed: 11/09/2022]
Abstract
We made use of QNR cells transformed by a thermosensitive (tsNY68) strain of the Rous sarcoma virus (RSV) to compare the effect of p60(v-src) and serum in cultured nerve cells. In this system, both p60(v-src) heat inactivation and serum removal resulted in growth arrest in G1. In both cases, growth arrest was reversible since cell proliferation was rapidly re-induced following respectively p60v-src renaturation or serum re-addition. However, cells did not fully recover their ability to grow in soft agar, suggesting that, in contrast to the cell cycle machinery, the transforming capacities of these cells have been irreversibly altered. We found that p60(v-src) kinase activity prevented detachment from the substratum and cell death following serum removal. Thermal inactivation of p60(v-src) at restrictive temperature (41.5 degrees C), but not serum removal, resulted in dramatic morphological changes, which occurred 4 h after temperature shift up to 41.5 degrees C. Later on, typical features of apoptotic cells could be observed. Cell death was greatly reduced by the caspase-3 inhibitor ZVAD.FMK, but not by the caspase-1 inhibitor Ac-YVAD.CHO. Together, these results suggested that p60(v-src) and serum factors act on distinct pathways, at least in part. In an attempt to identify the signalling pathways involved in the cell response to p60(v-src) down regulation, we found that Erk and Rac were rapidly inactivated following temperature shift up to 41.5 degrees C. Thus, the combined effects of p60(v-src) and serum factors on the cytoskeleton dynamics and the apoptosis machinery are essential for full neoplastic transformation of neuroretina cells.
Collapse
Affiliation(s)
- Abdel Aouacheria
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-Université Claude Bernard 7, passage du Vercors F69367 Lyon cedex 07, France
| | | | | | | | | | | |
Collapse
|
19
|
Xia H, Qi H, Li Y, Pei J, Barton J, Blackstad M, Xu T, Tao W. LATS1 tumor suppressor regulates G2/M transition and apoptosis. Oncogene 2002; 21:1233-41. [PMID: 11850843 DOI: 10.1038/sj.onc.1205174] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2001] [Revised: 11/02/2001] [Accepted: 11/07/2001] [Indexed: 11/09/2022]
Abstract
The LATS1 gene is a mammalian member of the novel lats tumor suppressor family. Both lats mosaic flies and LATS1 deficient mice spontaneously develop tumors. Our previous studies have shown that inactivation of Drosophila lats leads to up-regulation of cyclin A in the fly, and the human LATS1 protein associates with CDC2 in early mitosis in HeLa cells, suggesting that the lats gene family may negatively regulate cell proliferation by modulating CDC2/Cyclin A activity. We demonstrate here that transduction of the human breast cancer cell MCF-7 with recombinant LATS1 adenovirus (Ad-LATS1), but not with EGFP adenovirus (Ad-EGFP), inhibits in vitro cell proliferation. Ectopic expression of LATS1 in MCF-7 cells specifically down-regulates Cyclin A and Cyclin B protein levels and dramatically reduces CDC2 kinase activity, leading to a G2/M blockade. Furthermore, Ad-LATS1 suppresses anchorage-independent growth of MCF-7 cells in soft agar and tumor formation in athymic nude mice. We also demonstrate that ectopic expression of LATS1 in MCF-7 cells and human lung cancer cell H460 up-regulates the level of BAX proteins and induces apoptosis. Finally, we show that LATS1 kinase activity is required for its ability to inhibit cell growth and induce apoptosis. The results indicate that the LATS1 tumor suppressor may play an important role in the control of human tumor development and that LATS1 suppresses tumorigenesis by negatively regulating cell proliferation and modulating cell survival.
Collapse
Affiliation(s)
- Hong Xia
- Stem Cell Institute, Cancer Center, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Teng S, Sun J, Irby R, Hamilton AD, Sebti S, Yeatman TJ. v-Src transformation is mediated through farnesylated proteins. J Surg Res 2001; 99:343-6. [PMID: 11469908 DOI: 10.1006/jsre.2001.6184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Src is an oncoprotein which has been implicated in a number of human malignancies in which it has been shown to be overexpressed and highly activated. The precise mechanism of Src transformation, however, is still poorly understood. We hypothesized that Ras and other farnesylated proteins may mediate Src transformation. To test this hypothesis, v-Src-transfected rat fibroblasts (3Y1) were treated every 72 h with a 15 microM concentration of a farnesyl-transferase inhibitor (FTI). At 2 weeks, a focus formation assay was performed to assess transformation potential. Untreated and FTI-treated v-Src-transfected 3Y1 cells formed a mean of 39 (+/-2.6) and 29.8 (+/-2.9) foci per well, respectively. This 24% decrease was judged to be statistically significant (P = 0.02). Moreover, foci (>90%) in the FTI-treated wells were also consistently smaller than foci in the untreated wells. Western blots with antibody directed toward H-Ras confirmed complete inhibition of Ras farnesylation in the treated cell lines. The specificity of this inhibition was verified by Western blot using antibody specific for Rap1A. The transforming potential of v-Src is inhibited, but not eliminated by FTI treatment. This suggests that v-Src transformation is mediated in part by farnesylated proteins, one of which may be Ras.
Collapse
Affiliation(s)
- S Teng
- Department of Surgery, Ochsner Clinic and Hospital, New Orleans, Louisiana, USA
| | | | | | | | | | | |
Collapse
|
21
|
Sachdev P, Jiang YX, Li W, Miki T, Maruta H, Nur-E-Kamal MS, Wang LH. Differential requirement for Rho family GTPases in an oncogenic insulin-like growth factor-I receptor-induced cell transformation. J Biol Chem 2001; 276:26461-71. [PMID: 11346642 DOI: 10.1074/jbc.m010995200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Insulin-like growth factor I receptor (IGFR) plays an important role in cell growth and transformation. We dissected the downstream signaling pathways of an oncogenic variant of IGFR, Gag-IGFR, called NM1. Loss of function mutants of NM1, Phe-1136 and dS2, that retain kinase activity but are attenuated in their transforming ability were used to identify signaling pathways that are important for transformation of NIH 3T3 cells. MAPK, phospholipase C gamma, and Stat3 were activated to the same extent by NM1 and its two mutants, suggesting that activation of these pathways, individually or in combination, was not sufficient for NM1-induced cell transformation. The mutant dS2 has decreased IRS-1 phosphorylation levels and IRS-1-associated phosphatidylinositol 3'-kinase activity, suggesting that this impairment may be in part responsible for the defectiveness of dS2. We show that Rho family members, RhoA, Rac1, and Cdc42 are activated by NM1, and this activation, particularly RhoA and Cdc42, is attenuated in both mutants of NM1. Dominant negative mutants of Rho, Rac, and Cdc42 inhibited NM1-induced cell transformation, as measured by focus and colony forming ability. Dominant negative Rho most potently inhibited the focus forming activity, whereas Cdc42 was most effective in inhibiting the colony forming ability of NM1-expressing cells. Conversely, constitutively activated (ca) Rho is more effective than ca Rac or ca Cdc42 in rescuing the focus forming ability of the mutants. By contrast, ca Cdc42 is most effective in rescuing the colony forming ability of both mutants.
Collapse
Affiliation(s)
- P Sachdev
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Sohara Y, Ishiguro N, Machida K, Kurata H, Thant AA, Senga T, Matsuda S, Kimata K, Iwata H, Hamaguchi M. Hyaluronan activates cell motility of v-Src-transformed cells via Ras-mitogen-activated protein kinase and phosphoinositide 3-kinase-Akt in a tumor-specific manner. Mol Biol Cell 2001; 12:1859-68. [PMID: 11408591 PMCID: PMC37347 DOI: 10.1091/mbc.12.6.1859] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We investigated the production of hyaluronan (HA) and its effect on cell motility in cells expressing the v-src mutants. Transformation of 3Y1 by v-src virtually activated HA secretion, whereas G2A v-src, a nonmyristoylated form of v-src defective in cell transformation, had no effect. In cells expressing the temperature-sensitive mutant of v-Src, HA secretion was temperature dependent. In addition, HA as small as 1 nM, on the other side, activated cell motility in a tumor-specific manner. HA treatment strongly activated the motility of v-Src-transformed 3Y1, whereas it showed no effect on 3Y1- and 3Y1-expressing G2A v-src. HA-dependent cell locomotion was strongly blocked by either expression of dominant-negative Ras or treatment with a Ras farnesyltransferase inhibitor. Similarly, both the MEK1 inhibitor and the kinase inhibitor clearly inhibited HA-dependent cell locomotion. In contrast, cells transformed with an active MEK1 did not respond to the HA. Finally, an anti-CD44-neutralizing antibody could block the activation of cell motility by HA as well as the HA-dependent phosphorylation of mitogen-activated protein kinase and Akt. Taken together, these results suggest that simultaneous activation of the Ras-mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase pathway by the HA-CD44 interaction is required for the activation of HA-dependent cell locomotion in v-Src-transformed cells.
Collapse
Affiliation(s)
- Y Sohara
- Department of Molecular Pathogenesis, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The non-receptor tyrosine kinase Src is important for many aspects of cell physiology. The viral src gene was the first retroviral oncogene to be identified, and its cellular counterpart was the first proto-oncogene to be discovered in the vertebrate genome. Src has been important, not only as an object of study in itself, but also as an entry point into the molecular genetics of cancer.
Collapse
Affiliation(s)
- G S Martin
- Department of Molecular and Cell Biology, University of California, 401 Barker Hall #3204, Berkeley, California 94720-3204, USA.
| |
Collapse
|
24
|
Abstract
Evasion of apoptosis appears to be a necessary event in tumor progression. Some oncogenes, such as c-myc and E1A, induce apoptosis in the absence of survival factors. However, others, such as bcl-2 and v-src, activate antiapoptotic pathways. For v-Src, these antiapoptotic pathways are dependent on the function of Ras, phosphatidylinositol (PI) 3-kinase, and Stat3. Here we asked whether v-Src can activate a proapoptotic signal when survival signaling is inhibited. We show that when the functions of Ras and PI 3-kinase are inhibited, v-src-transformed Rat-2 fibroblasts undergo apoptosis, evidenced by loss of adherence, nuclear fragmentation, and chromosomal DNA degradation. The apoptotic response is dependent on activation of caspase 3. Under similar conditions nontransformed Rat-2 cells undergo considerably lower levels of apoptosis. Apoptosis induced by v-Src is accompanied by a loss of mitochondrial membrane potential and release of cytochrome c and is blocked by overexpression of bcl-2, indicating that it is mediated by the mitochondrial pathway. However apoptosis induced by v-Src is not accompanied by an increase in the level of p53 and is not dependent on p53 function. Thus v-Src generates a p53-independent proapoptotic signal.
Collapse
Affiliation(s)
- B L Webb
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
25
|
McManus MJ, Boerner JL, Danielsen AJ, Wang Z, Matsumura F, Maihle NJ. An oncogenic epidermal growth factor receptor signals via a p21-activated kinase-caldesmon-myosin phosphotyrosine complex. J Biol Chem 2000; 275:35328-34. [PMID: 10954714 DOI: 10.1074/jbc.m005399200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Many ligand-independent receptor tyrosine kinases are tumorigenic. The biochemical signals that mediate ligand-independent transformation of cells by these transmembrane receptors are poorly defined. In this report, we demonstrate that a constitutively activated mutant epidermal growth factor receptor (v-ErbB) induces the formation of a transformation-specific signaling module that complexes with myosin II. The components of this signaling complex include the signal adapter proteins Shc, Grb2, and Nck, and tyrosine-phosphorylated forms of p21-activated kinase (Pak), caldesmon, and myosin light chain kinase. Transformation-specific, tyrosine phosphorylation of Pak enhances the catalytic activity of this serine/threonine kinase. Furthermore, the tyrosine phosphorylation of Pak is Rho-, but not Ras-, Rac-, or Cdc42-dependent. These results demonstrate that a ligand-independent epidermal growth factor receptor mutant can transduce oncogenic signals that are distinct from ligand-dependent, mitogenic signals. In addition, these data provide evidence for the coupling of oncogenic receptor tyrosine kinases with the actomyosin molecular motor. This myosin-associated signaling module may mediate some of the biochemical changes of myosin found in v-ErbB- transformed fibroblasts, thereby contributing to the regulation of the mechanical forces governing cellular adhesion, cytoskeletal tension, and, hence, anchorage-independent cell growth.
Collapse
MESH Headings
- Actomyosin/metabolism
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Animals
- Blotting, Western
- Calmodulin-Binding Proteins/genetics
- Calmodulin-Binding Proteins/metabolism
- Catalysis
- Catalytic Domain
- Cell Adhesion
- Cell Division
- Cell Line, Transformed
- Cells, Cultured
- Chick Embryo
- Chromatography, Affinity
- Cytoskeleton/metabolism
- Down-Regulation
- Electrophoresis, Polyacrylamide Gel
- ErbB Receptors/chemistry
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Fibroblasts/metabolism
- GRB2 Adaptor Protein
- Glutathione Transferase/metabolism
- Ligands
- Mutation
- Myosin-Light-Chain Kinase/genetics
- Myosin-Light-Chain Kinase/metabolism
- Myosins/chemistry
- Myosins/genetics
- Myosins/metabolism
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Oncogene Proteins v-erbB/chemistry
- Oncogene Proteins v-erbB/genetics
- Oncogene Proteins v-erbB/metabolism
- Phosphorylation
- Precipitin Tests
- Protein Binding
- Protein Isoforms
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Structure, Tertiary
- Proteins/genetics
- Proteins/metabolism
- Rats
- Recombinant Fusion Proteins/metabolism
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Time Factors
- Transformation, Genetic
- Tyrosine/metabolism
- p21-Activated Kinases
Collapse
Affiliation(s)
- M J McManus
- Department of Biochemistry and Molecular Biology and the Tumor Biology Program, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
26
|
Nguyen KT, Wang WJ, Chan JL, Wang LH. Differential requirements of the MAP kinase and PI3 kinase signaling pathways in Src- versus insulin and IGF-1 receptors-induced growth and transformation of rat intestinal epithelial cells. Oncogene 2000; 19:5385-97. [PMID: 11103940 DOI: 10.1038/sj.onc.1203911] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There have been few studies on the specific signaling pathways involved in the transformation of epithelial cells by oncogenic protein tyrosine kinases. Here we investigate the requirement of MAP (MAPK) and phosphatidylinositol 3- (PI3K) kinases in the transformation of rat intestinal epithelial (RIE) cells by oncogenic forms of insulin receptor (gag-IR), insulin-like growth factor-1 receptor (gag-IGFR), and v-Src. MAPK is not significantly activated in cells transformed by gag-IR and gag-IGFR but is activated in v-Src transformed cells. Treatment with PD98059, a MEK inhibitor, at concentrations where MAPK activity was reduced below the basal level showed that MAPK is partially required for the monolayer growth of parental and transformed RIE cells. However, MAPK is not essential for the focus forming ability of the three oncogene-transformed cells. It is also not necessary for the colony forming ability of gag-IR- and gag-IGFR-, but is partially required for v-Src-transformed cells. PI3K is significantly activated in all three oncogene transformed RIE cells. LY294002, a PI3K inhibitor, potently inhibited monolayer growth of all three oncogene-transformed cells. However, at concentrations of LY294002 where activated forms of Akt, a downstream component of the PI3K pathway, were undetectable, colony and focus forming abilities of the v-Src-RIE cells were only slightly affected whereas those of gag-IR/IGFR-RIE cells were greatly inhibited. These results were confirmed using a different pharmacological inhibitor, wortmannin, and a dominant negative form of PI3K, Ap85. Similarly, rapamycin, known to inhibit p70S6 kinase, a downstream component of the PI3K-Akt pathway, also inhibited gag-IR/IGFR-induced, but not v-Src-induced, focus and colony formation. We conclude that the MAPK and PI3K signaling pathways are differentially required for transformation of RIE cells by oncogenic IR and IGFR versus Src and the pattern of requirements is different from that of fibroblast transformation.
Collapse
Affiliation(s)
- K T Nguyen
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
27
|
Odajima J, Matsumura I, Sonoyama J, Daino H, Kawasaki A, Tanaka H, Inohara N, Kitamura T, Downward J, Nakajima K, Hirano T, Kanakura Y. Full oncogenic activities of v-Src are mediated by multiple signaling pathways. Ras as an essential mediator for cell survival. J Biol Chem 2000; 275:24096-105. [PMID: 10918073 DOI: 10.1074/jbc.m001606200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine kinase oncoproteins cause simultaneous activation of multiple intracellular signaling pathways. However, the precise mechanisms by which individual pathways induce oncogenesis are not well understood. We have investigated the roles of individual signaling pathways in v-Src-dependent cell growth and survival by inhibiting one particular pathway. v-Src induced constitutive activation of signal transducers and activators of transcription 3 (STAT3), phosphatidylinositol 3-kinase, and Ras in murine Ba/F3 cells and led to factor-independent proliferation. Dominant-negative mutants of STAT3 (STAT3D) and phosphatidylinositol 3-kinase (Deltap85) inhibited v-Src-dependent growth by approximately 60 and approximately 40%, respectively. Moreover, dominant-negative Ras (N17) induced severe apoptosis, which was accompanied by down-regulation of Bcl-2 and activation of caspase-3. Although cells overexpressing Bcl-2 or caspase-3 inhibitors remained viable even when N17 was expressed, the growth was reduced by approximately 85%. During N17- and STAT3D-induced growth suppression, expression of cyclin D2, cyclin D3, c-myc, and c-fos was suppressed by N17, whereas that of cyclin D2, cyclin E, and c-myc was suppressed by STAT3D. Thus, v-Src-activated Ras and STAT3 are involved in distinct but partly overlapping transcriptional regulation of cell cycle regulatory molecules. These results suggest that the full oncogenic activity of v-Src requires simultaneous activation of multiple signalings, in which Ras is particularly required for survival.
Collapse
Affiliation(s)
- J Odajima
- Department of Hematology/Oncology and Molecular Oncology, Biomedical Research Center, Osaka University Medical School, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hakak Y, Hsu YS, Martin GS. Shp-2 mediates v-Src-induced morphological changes and activation of the anti-apoptotic protein kinase Akt. Oncogene 2000; 19:3164-71. [PMID: 10918571 DOI: 10.1038/sj.onc.1203655] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The protein-tyrosine phosphatase Shp-2 is a positive modulator of the Ras/mitogen-activated protein kinase pathway and a putative substrate of the transforming non-receptor tyrosine kinase v-Src. To characterize the role of Shp-2 in cellular transformation and signaling by v-Src, we expressed v-Src in normal and Shp-2-deficient mouse embryo fibroblasts. Expression of Shp-2 was found to be necessary for morphological transformation by v-Src: Shp-2+/+ cells became rounded or spindly upon v-Src expression, whereas Shp-2-deficient cells remained relatively flat. v-Src-induced reorganization of the actin cytoskeleton and the formation of podosomes were compromised in Shp-2-deficient cells. Shp-2 deficiency also reduced v-Src-induced activation of the anti-apoptotic protein kinase Akt. The reduced activation of Akt in Shp-2-deficient cells correlated with a reduction in the association of the p85 regulatory subunit of PI3-kinase with the adapter protein Cbl. Activation of PI3-kinase by v-Src may be mediated by the association of the adapter protein Cbl with the p85 subunit. Since activation of Akt is dependent on PI3-kinase, this suggests that the effect of Shp-2 on Akt activation may be mediated, at least in part, by its effects on the interaction between PI3-kinase and Cbl. The defect in activation of the Akt survival pathway also correlated with enhanced sensitivity of Shp-2-deficient cells to an apoptosis-inducing agent. These results implicate Shp-2 in v-Src-induced cytoskeletal reorganization and activation of the Akt cell survival pathway.
Collapse
Affiliation(s)
- Y Hakak
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | | | |
Collapse
|
29
|
Naka S, Minakata M, Tatamiya T, Kimura H, Kumegawa M, Ishida N, Takeya T. Activation of human CAII gene promoter by v-Src: existence of Ras-dependent and -independent pathways. Biochem Biophys Res Commun 2000; 272:808-15. [PMID: 10860835 DOI: 10.1006/bbrc.2000.2838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Carbonic anhydrase II (CAII) catalyzes the reversible hydration of carbon dioxide and plays key roles in acid base homeostasis in mammals. We found that human CAII gene promoter could be activated in human cells such as HeLa and T47D cells when the CAII promoter-luciferase gene was transfected with v-Src and assayed as a reporter of the promoter activity. Kinase negative mutants of Src, in contrast, showed little activation. The activation was completely suppressed with the introduction of a dominant-negative Ras in T47D cells, while no suppression was observed in HeLa cells. Introduction of various kinds of deletions into the CAII promoter revealed two essential regions responsible for this activation. No activation, however, was observed in activated Fyn-transfected human cells or in v-Src-transfected rodent cells. These findings suggest that Src can modulate the human CAII promoter by exerting its tyrosine kinase activity in certain human cells, and that two types of Src signaling pathways, Ras-dependent and -independent, exist in a cell type dependent manner.
Collapse
Affiliation(s)
- S Naka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Tokumitsu Y, Nakano S, Ueno H, Niho Y. Suppression of malignant growth potentials of v-Src-transformed human gallbladder epithelial cells by adenovirus-mediated dominant negative H-Ras. J Cell Physiol 2000; 183:221-7. [PMID: 10737897 DOI: 10.1002/(sici)1097-4652(200005)183:2<221::aid-jcp8>3.0.co;2-l] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although Src transformation of NIH3T3 mouse fibroblasts has been shown to be dependent on Ras function, the signaling mechanism whereby Src induces malignant transformation of human epithelial cells still remains unclear. In the present study, we analyzed the functional role of Ras, which acts downstream of Src in intracellular signaling, in the acquisition of fully neoplastic potentials by v-Src-transformed human gallbladder epithelial cells (HAG/src3-1) by infecting these cells with replication-defective adenovirus vector expressing dominant negative H-Ras (AdCARasY57). High efficiency of gene transduction was demonstrated with the adenovirus vector containing beta-gal gene insert (AdCALacZ). On infection with AdCARasY57, the activity of mitogen-activated protein (MAP) kinase, a major downstream event triggered by Ras, was markedly inhibited over 7 days, indicating that the inhibition of Ras function by AdCARasY57 remains active during this period. AdCARasY57 did not inhibit the monolayer growth of HAG-1 cells transfected with activated H-ras, but inhibited the HAG/src3-1 cells by 30%, as compared with cells infected with AdCALacZ as a control. This growth inhibition by AdCARasY57 was strengthened nearly twofold on surfaces coated with an antiadhesive polymer (poly 2-hydroxyethylmethacrylate) that can quantitate anchorage-independent growth, and was much more pronounced up to 95% when assayed in soft agar. The HAG/src3-1 cells transfected with beta-gal gene produced tumors in nude mice within 4 weeks after implantation, whereas cells infected with AdCARasY57 failed to form tumors during this period. These findings show that Ras function is essential for v-Src-induced anchorage-independent growth in vitro as well as tumorigenesis in vivo, and that mitogenic activity driven by v-Src is not solely dependent on MAP kinase pathway. Because anchorage-independent growth correlates with tumor growth in vivo as well as metastatic potential, targeting Ras would be potentially useful for the treatment of human tumors with elevated Src tyrosine kinase activity.
Collapse
Affiliation(s)
- Y Tokumitsu
- First Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
31
|
Bossù P, Vanoni M, Wanke V, Cesaroni MP, Tropea F, Melillo G, Asti C, Porzio S, Ruggiero P, Di Cioccio V, Maurizi G, Ciabini A, Alberghina L. A dominant negative RAS-specific guanine nucleotide exchange factor reverses neoplastic phenotype in K-ras transformed mouse fibroblasts. Oncogene 2000; 19:2147-54. [PMID: 10815806 DOI: 10.1038/sj.onc.1203539] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ras proteins are small GTPases playing a pivotal role in cell proliferation and differentiation. Their activation state depends on the competing action of GTPase Activating Proteins (GAP) and Guanine nucleotide Exchange Factors (GEF). A tryptophan residue (Trp1056 in CDC25Mm-GEF), conserved in all ras-specific GEFs identified so far has been previously shown to be essential for GEF activity. Its substitution with glutamic acid results in a catalytically inactive mutant, which is able to efficiently displace wild-type GEF from p21ras and to originate a stable ras/GEF binary complex due to the reduced affinity of the nucleotide-free ras/GEF complex for the incoming nucleotide. We show here that this 'ras-sequestering property' can be utilized to attenuate ras signal transduction pathways in mouse fibroblasts transformed by oncogenic ras. In fact overexpression of the dominant negative GEFW1056E in stable transfected cells strongly reduces intracellular ras-GTP levels in k-ras transformed fibroblasts. Accordingly, the transfected fibroblasts revert to wild-type phenotype on the basis of morphology, cell cycle and anchorage independent growth. The reversion of the transformed phenotype is accompanied by DNA endoreduplication. The possible use of dominant negative ras-specific GEFs as a tool to down-regulate tumor growth is discussed.
Collapse
Affiliation(s)
- P Bossù
- Centro Ricerche Dompé, L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Boerner JL, McManus MJ, Martin GS, Maihle NJ. Ras-independent oncogenic transformation by an EGF-receptor mutant. J Cell Sci 2000; 113 ( Pt 6):935-42. [PMID: 10683142 DOI: 10.1242/jcs.113.6.935] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the ligand-binding domain of the epidermal growth factor receptor have been identified in several types of human cancers, including malignant gliomas. These mutations render signaling by this receptor to be constitutively ligand-independent. In fibroblasts transformed with ligand-independent epidermal growth factor receptor mutants, there is a correlation between the formation of a unique phosphotyrosine protein complex and oncogenic transformation. This phosphoprotein complex includes Grb2, Shc, Sos, tyrosine-phosphorylated form of caldesmon, and two, as yet, unidentified proteins. The presence of Grb2, Shc, and Sos in this complex implicates Ras in ligand-independent signaling by these oncogenic epidermal growth factor receptor mutants. We, therefore, have used retroviral co-infections of cultured primary fibroblasts to determine if Ras activation is required for phosphoprotein complex formation, stress fiber loss, or transformation. As predicted, expression of a dominant-negative Ras mutant (N17Ras) completely abrogates ligand-stimulated soft agar colony growth of primary fibroblasts. In contrast, N17Ras expression has no effect on v-ErbB mediated stress fiber disassembly, soft agar colony growth, or phosphoprotein complex assembly. In addition, our data suggest that ligand-dependent Ras activation may be suppressed by oncogenic v-ErbB expression. Together these observations suggest that oncogenic signaling by v-ErbB does not require Ras activation, and implicate an alternative signal transduction pathway in ligand-independent epidermal growth factor receptor oncogenic signaling.
Collapse
Affiliation(s)
- J L Boerner
- Tumor Biology Program, Division of Pediatric Hematology/Oncology, Department of Biochemistry, Mayo Clinic Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
33
|
Qian X, Esteban L, Vass WC, Upadhyaya C, Papageorge AG, Yienger K, Ward JM, Lowy DR, Santos E. The Sos1 and Sos2 Ras-specific exchange factors: differences in placental expression and signaling properties. EMBO J 2000; 19:642-54. [PMID: 10675333 PMCID: PMC305602 DOI: 10.1093/emboj/19.4.642] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/1999] [Revised: 12/07/1999] [Accepted: 12/07/1999] [Indexed: 11/14/2022] Open
Abstract
Targeted disruption of both alleles of mouse sos1, which encodes a Ras-specific exchange factor, conferred mid-gestational embryonic lethality that was secondary to impaired placental development and was associated with very low placental ERK activity. The trophoblastic layers of sos1(-/-) embryos were poorly developed, correlating with high sos1 expression in wild-type trophoblasts. A sos1(-/-) cell line, which expressed readily detectable levels of the closely related Sos2 protein, formed complexes between Sos2, epidermal growth factor receptor (EGFR) and Shc efficiently, gave normal Ras.GTP and ERK responses when treated with EGF for < or =10 min and was transformed readily by activated Ras. However, the sos1(-/-) cells were resistant to transformation by v-Src or by overexpressed EGFR and continuous EGF treatment, unlike sos1(+/-) or wild-type cells. This correlated with Sos2 binding less efficiently than Sos1 to EGFR and Shc in cells treated with EGF for > or =90 min or to v-Src and Shc in v-Src-expressing cells, and with less ERK activity. We conclude that Sos1 participates in both short- and long-term signaling, while Sos2-dependent signals are predominantly short-term.
Collapse
Affiliation(s)
- X Qian
- Laboratory of, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kurata H, Thant AA, Matsuo S, Senga T, Okazaki K, Hotta N, Hamaguchi M. Constitutive activation of MAP kinase kinase (MEK1) is critical and sufficient for the activation of MMP-2. Exp Cell Res 2000; 254:180-8. [PMID: 10623478 DOI: 10.1006/excr.1999.4738] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We investigated the role of MEK1 signaling in MMP-2 activation by use of constitutive active/dominant negative forms of MEK1 and MEK1-specific inhibitor. We found that cell transformation with active forms of MEK1 dramatically increased secretion and proteolytic activation of MMP-2 and subsequently stimulated invasiveness of cells. Contrary, expression of dominant negative form of MEK1 in v-src-transformed cells or in Con A-activated cells resulted in the suppression of the augmented secretion and proteolytic activation of MMP-2. In addition, treatment of v-src-transformed cells with PD98059, a MEK1-specific inhibitor, strongly suppressed the secretion and activation of MMP-2, whereas treatment with wortmannin, a PI3 kinase inhibitor, showed no clear effect on MMP-2 secretion. Taken together, these results strongly suggest that MEK-MAP kinase signaling, but not PI3 kinase signaling, plays a critical role in the activation of MMP-2 secretion and, subsequently, in the invasiveness of v-src-transformed cells.
Collapse
Affiliation(s)
- H Kurata
- Department of Internal Medicine III, Department of Molecular Pathogenesis, Nagoya University School of Medicine, 65 Tsurumai-cho, Nagoya, 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Thant AA, Sein TT, Liu E, Machida K, Kikkawa F, Koike T, Seiki M, Matsuda S, Hamaguchi M. Ras pathway is required for the activation of MMP-2 secretion and for the invasion of src-transformed 3Y1. Oncogene 1999; 18:6555-63. [PMID: 10597259 DOI: 10.1038/sj.onc.1203049] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To search for the signaling pathway critical for tumor invasion, we examined the effects of dominant negative ras (S17N ras) expression on the activation of matrix metalloproteinase-2 (MMP-2) in src-transformed 3Y1, SR3Y1, under the control of conditionally inducible promoter. In SR3Y1 clones transfected with S17N ras, augmented secretion and proteolytic activation of MMP-2 were dramatically suppressed by S17N Ras expression, while tyrosine phosphorylation of cellular proteins was not suppressed. We found that invasiveness of SR3Y1 cells assayed by the modified Boyden Chamber method was strongly suppressed by S17N Ras expression. In contrast, cell morphology reverted partially and glucose uptake remained unchanged by S17N Ras expression. In addition, treatment of SR3Y1 with manumycin A, a potent inhibitor of Ras farnesyltransferase, strongly suppressed both augmented secretion and proteolytic activation of MMP-2. Contrary, treatment of SR3Y1 with wortmannin or TPA showed no clear effect on MMP-2 activation. Thus, these results strongly suggest that Ras-signaling, but neither P13 kinase- nor protein kinase C-signalings, plays a critical role in activation of MMP-2 and, subsequently, in the invasiveness of src-transformed cells.
Collapse
Affiliation(s)
- A A Thant
- Department of Molecular Pathogenesis, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Turkson J, Bowman T, Adnane J, Zhang Y, Djeu JY, Sekharam M, Frank DA, Holzman LB, Wu J, Sebti S, Jove R. Requirement for Ras/Rac1-mediated p38 and c-Jun N-terminal kinase signaling in Stat3 transcriptional activity induced by the Src oncoprotein. Mol Cell Biol 1999; 19:7519-28. [PMID: 10523640 PMCID: PMC84756 DOI: 10.1128/mcb.19.11.7519] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal transducers and activators of transcription (STATs) are transcription factors that mediate normal biologic responses to cytokines and growth factors. However, abnormal activation of certain STAT family members, including Stat3, is increasingly associated with oncogenesis. In fibroblasts expressing the Src oncoprotein, activation of Stat3 induces specific gene expression and is required for cell transformation. Although the Src tyrosine kinase induces constitutive Stat3 phosphorylation on tyrosine, activation of Stat3-mediated gene regulation requires both tyrosine and serine phosphorylation of Stat3. We investigated the signaling pathways underlying the constitutive Stat3 activation in Src oncogenesis. Expression of Ras or Rac1 dominant negative protein blocks Stat3-mediated gene regulation induced by Src in a manner consistent with dependence on p38 and c-Jun N-terminal kinase (JNK). Both of these serine/threonine kinases and Stat3 serine phosphorylation are constitutively induced in Src-transformed fibroblasts. Furthermore, inhibition of p38 and JNK activities suppresses constitutive Stat3 serine phosphorylation and Stat3-mediated gene regulation. In vitro kinase assays with purified full-length Stat3 as the substrate show that both JNK and p38 can phosphorylate Stat3 on serine. Moreover, inhibition of p38 activity and thus of Stat3 serine phosphorylation results in suppression of transformation by v-Src but not v-Ras, consistent with a requirement for Stat3 serine phosphorylation in Src transformation. Our results demonstrate that Ras- and Rac1-mediated p38 and JNK signals are required for Stat3 transcriptional activity induced by the Src oncoprotein. These findings delineate a network of tyrosine and serine/threonine kinase signaling pathways that converge on Stat3 in the context of oncogenesis.
Collapse
Affiliation(s)
- J Turkson
- Molecular Oncology, Moffitt Cancer Center, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hakak Y, Martin GS. Cas mediates transcriptional activation of the serum response element by Src. Mol Cell Biol 1999; 19:6953-62. [PMID: 10490632 PMCID: PMC84690 DOI: 10.1128/mcb.19.10.6953] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/1999] [Accepted: 07/06/1999] [Indexed: 01/17/2023] Open
Abstract
The Src substrate p130(Cas) is a docking protein containing an SH3 domain, a substrate domain that contains multiple consensus SH2 binding sites, and a Src binding region. We have examined the possibility that Cas plays a role in the transcriptional activation of immediate early genes (IEGs) by v-Src. Transcriptional activation of IEGs by v-Src occurs through distinct transcriptional control elements such as the serum response element (SRE). An SRE transcriptional reporter was used to study the ability of Cas to mediate Src-induced SRE activation. Coexpression of v-Src and Cas led to a threefold increase in SRE-dependent transcription over the level induced by v-Src alone. Cas-dependent activation of the SRE was dependent on the kinase activity of v-Src and the Src binding region of Cas. Signaling to the SRE is promoted by a serine-rich region within Cas and inhibited by the Cas SH3 domain. Cas-dependent SRE activation was accompanied by an increase in the level of active Ras and in the activity of the mitogen-activated protein kinase (MAPK) Erk2; these changes were blocked by coexpression of dominant-negative mutants of the adapter protein Grb2. SRE activation was abrogated by coexpression of dominant-negative mutants of Ras, MAPK kinase (Mek1), and Grb2. Coexpression of Cas with v-Src enhanced the association of Grb2 with the adapter protein Shc and the protein tyrosine phosphatase Shp-2; coexpression of Shc or Shp-2 mutants significantly reduced SRE activation by Cas and v-Src. Cas-induced Grb2 association with Shp-2 and Shc may account for the Cas-dependent activation of the Ras/Mek/Erk pathway and SRE-dependent transcription. 14-3-3 proteins may also play a role in Cas-mediated signaling to the SRE. Overexpression of Cas was found to modestly enhance epidermal growth factor (EGF)-induced activation of the SRE. A Cas mutant lacking the Src binding region did not potentiate the EGF response, suggesting that Cas enhances EGF signaling by binding to endogenous cellular Src or another Src family member. These observations implicate Cas as a mediator of Src-induced transcriptional activation.
Collapse
Affiliation(s)
- Y Hakak
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720-3204, USA
| | | |
Collapse
|
38
|
Burnham MR, Harte MT, Bouton AH. The role of SRC-CAS interactions in cellular transformation: ectopic expression of the carboxy terminus of CAS inhibits SRC-CAS interaction but has no effect on cellular transformation. Mol Carcinog 1999; 26:20-31. [PMID: 10487518 DOI: 10.1002/(sici)1098-2744(199909)26:1<20::aid-mc3>3.0.co;2-m] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Several lines of evidence indicate that the adapter molecule p130CAS (crk-associated substrate (CAS)) is required for src-mediated cellular transformation. CAS has been shown to be heavily tyrosine-phosphorylated in src-transformed cells, and genetic variants of src that are deficient in CAS binding are also unable to mediate cellular transformation. In this report, we investigated whether CAS phosphorylation and/or its association with src are required elements of the transformation process. Expression of the carboxy-terminal src binding domain of CAS in Rat 1 fibroblasts expressing a temperature-sensitive allele of v-src inhibited the formation of src-CAS complexes and also inhibited tyrosine phosphorylation of CAS. However, expression of this protein had no effect on morphological transformation, src-mediated actin rearrangements, or anchorage-independent growth of these cells when grown at the src-permissive temperature. Thus, the ability of activated src to mediate cellular transformation is either largely independent of endogenous CAS phosphorylation and/or its association with CAS or, alternatively, the carboxy-terminus of CAS may substitute for endogenous CAS in the process of src-mediated transformation.
Collapse
Affiliation(s)
- M R Burnham
- Department of Microbiology and Cancer Center, University of Virginia Health Science Center, Charlottesville 22908, USA
| | | | | |
Collapse
|
39
|
Penuel E, Martin GS. Transformation by v-Src: Ras-MAPK and PI3K-mTOR mediate parallel pathways. Mol Biol Cell 1999; 10:1693-703. [PMID: 10359590 PMCID: PMC25360 DOI: 10.1091/mbc.10.6.1693] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An increase in the level of active, GTP-bound Ras is not necessary for transformation of chicken embryo fibroblasts (CEF) by v-Src. This suggests that other Ras-independent pathways contribute to transformation by v-Src. To address the possibility that activation of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR/FRAP), represents one of these pathways, we have examined the effect of simultaneous inhibition of the Ras-MAPK and PI3K-mTOR pathways on transformation of CEF by v-Src. Transformation was assessed by the standard parameters of morphological alteration, increased hexose uptake, loss of density inhibition, and anchorage-independent growth. Inhibition of the Ras-MAPK pathway by expression of the dominant-negative Ras mutant HRasN17 or by addition of the MAPK kinase (MEK) inhibitor PD98059 reduced several of these parameters but failed to block transformation. Similarly, inhibition of the PI3K-mTOR pathway by addition of the PI3K inhibitor 2-[4-morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002) or the mTOR inhibitor rapamycin, although reducing several parameters of transformation, also failed to block transformation. However, simultaneous inhibition of signaling by the Ras-MAPK pathway and the PI3K-mTOR pathway essentially blocked transformation. These data indicate that transformation of CEF by v-Src is mediated by two parallel pathways, the Ras-MAPK pathway and the PI-3K-mTOR pathway, which both contribute to transformation. The possibility that simultaneous activation of other pathways is also required is not excluded.
Collapse
Affiliation(s)
- E Penuel
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720-3204, USA
| | | |
Collapse
|
40
|
Abstract
The RalA and RalB proteins comprise a distinct family of small GTPases [1]. Ral-specific guanine-nucleotide exchange factors such as RalGDS, Rlf and RGL interact with activated Ras and cooperate with Ras in the transformation of murine fibroblasts [2-5]. Thus, the interaction of RalGDS with Ras and the subsequent activation of Ral are thought to constitute a distinct Ras-dependent signaling pathway. The function of Ral is largely unknown. There is circumstantial evidence that Ral may have a function in regulating the cytoskeleton through its interaction with RIP1 (also known as RLIP or RalBP1), a GTPase-activating protein specific for the small GTPases Cdc42 and Rac [6-8]. Ral also binds to phospholipase D (PLD) and thus may play a role in signaling through phospholipids [9]. We have examined endogenous levels of activated, GTP-bound Ral (Ral-GTP) in Rat-2 fibroblasts stimulated with various mitogens. Lysophosphatidic acid (LPA) and epidermal growth factor (EGF), which activate both Ras-dependent and Ras-independent signaling pathways [10,11], rapidly activated Ral. Inhibition of Ras activation by dominant-negative Ras (RasS17N) or pertussis toxin had little effect on Ral-GTP levels, however. Ral was activated by the Ca2+ ionophore ionomycin, and activation by LPA or EGF could be blocked by a phospholipase C (PLC) inhibitor. The results presented here demonstrate a Ca(2+)-dependent mechanism for the activation of Ral.
Collapse
Affiliation(s)
- F Hofer
- Department of Molecular and Cell Biology, University of California at Berkeley 94720-3204, USA
| | | | | |
Collapse
|
41
|
Andreú T, Beckers T, Thoenes E, Hilgard P, von Melchner H. Gene trapping identifies inhibitors of oncogenic transformation. The tissue inhibitor of metalloproteinases-3 (TIMP3) and collagen type I alpha2 (COL1A2) are epidermal growth factor-regulated growth repressors. J Biol Chem 1998; 273:13848-54. [PMID: 9593730 DOI: 10.1074/jbc.273.22.13848] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A gene trap strategy has been used to identify genes that are repressed in cells transformed by an activated epidermal growth factor (EGF)/EGF receptor signal transduction pathway. EGF receptor-expressing NIH3T3 cells (HER1 cells) were infected with a retrovirus containing coding sequences for the human CD2 antigen and for secreted alkaline phosphatase in the U3 region. By selecting for and against CD2 expression, we obtained clones in which the gene trap had integrated into genes selectively repressed by EGF. Two of these clones encoded for the secreted extracellular matrix proteins TIMP3 and COL1A2. We show here that both genes are downstream targets of RAS and are specifically repressed by EGF-induced transformation. Moreover, this strategy tags tumor suppressor genes in their normal chromosomal location, thereby improving target-specific screens for antineoplastic drugs.
Collapse
Affiliation(s)
- T Andreú
- Laboratory for Molecular Hematology, Department of Hematology, University of Frankfurt Medical School, Weismüllerstrasse 45, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
42
|
Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP, Jove R. Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol Cell Biol 1998; 18:2545-52. [PMID: 9566874 PMCID: PMC110634 DOI: 10.1128/mcb.18.5.2545] [Citation(s) in RCA: 542] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1997] [Accepted: 01/30/1998] [Indexed: 02/07/2023] Open
Abstract
While signal transducers and activators of transcription (STATs) were originally discovered as intracellular effectors of normal signaling by cytokines, increasing evidence also points to a role for STAT transcription factors in oncogenesis. Previous studies have demonstrated that one STAT family member, Stat3, possesses constitutively elevated tyrosine phosphorylation and DNA-binding activity in fibroblasts stably transformed by the Src oncoprotein. To determine if this Stat3 activation by Src could induce Stat3-mediated gene expression, luciferase reporter constructs based on synthetic and authentic promoters were transfected into NIH 3T3 cells. Activation of endogenous cellular Stat3 by the Src oncoprotein induced gene expression through a Stat3-specific binding element (TTCCCGAA) of the C-reactive protein gene promoter. A naturally occurring splice variant of human Stat3 protein, Stat3beta, with a deletion in the C-terminal transactivation domain abolished this gene induction in a dominant negative manner. Expression of Stat3beta did not have any effect on a reporter construct based on the c-fos serum response element, which is not dependent on Stat3 signaling, indicating that Stat3beta does not nonspecifically inhibit other signaling pathways or Src function. Transfection of vectors expressing Stat3beta together with Src blocked cell transformation by Src as measured in a quantitative focus formation assay using NIH 3T3 cells. By contrast, Stat3beta had a much less pronounced effect on focus formation induced by the Ras oncoprotein, which does not activate Stat3 signaling. In addition, three independent clones of NIH 3T3 cells stably overexpressing Stat3beta were generated and characterized, demonstrating that Stat3beta overexpression does not have a toxic effect on cell viability. These Stat3beta-overexpressing clones were shown to be deficient in Stat3-mediated signaling and refractory to Src-induced cell transformation. We conclude that Stat3 activation by the Src oncoprotein leads to specific gene regulation and that Stat3 is one of the critical signaling pathways involved in Src oncogenesis. Our findings provide evidence that oncogenesis-associated activation of Stat3 signaling is part of the process of malignant transformation.
Collapse
Affiliation(s)
- J Turkson
- H. Lee Moffitt Cancer Center and Research Institute, and Department of Biochemistry and Molecular Biology, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | | | | | | | |
Collapse
|
43
|
Smith PD, Crompton MR. Expression of v-src in mammary epithelial cells induces transcription via STAT3. Biochem J 1998; 331 ( Pt 2):381-5. [PMID: 9531474 PMCID: PMC1219365 DOI: 10.1042/bj3310381] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transgenic mouse models of mammary tumorigenesis and analyses of human breast tumour samples have indicated a role for Src proteins in the tumorigenic process. The downstream effectors of Src function in mammary epithelial cells are less well understood. STAT proteins constitute a family of transcription factors whose activation by cytokine and non-cytokine receptors leads to tyrosine phosphorylation, dimerization and translocation from the cytoplasm to the nucleus. In the nucleus they activate the transcription of specific genes by binding to consensus DNA elements. STATs 1 and 3 can be activated by both cytokine and non-cytokine receptors, and bind as homodimers or heterodimers to viral simian sarcoma virus (sis)-inducible elements such as that found in the c-fos promoter. Here we report that one of the downstream effectors of Src function in mammary epithelial cells is STAT3. We demonstrate that v-src expression in mammary epithelial cells induces Tyr-705 phosphorylation, nuclear translocation and DNA binding of STAT3. Furthermore, we demonstrate that v-src can induce STAT3-dependent transcription. These observations are the first direct evidence that v-src can regulate transcription through the activation of STAT proteins, and add a further level of complexity to the understanding of the mode of action of v-src.
Collapse
Affiliation(s)
- P D Smith
- Cell Biology and Experimental Pathology, Haddow Laboratories, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, U.K.
| | | |
Collapse
|
44
|
Ishikawa Y, Kitamura M. Unexpected suppression of alpha-smooth muscle actin, the activation marker of mesangial cells, by pp60v-src tyrosine kinase. Biochem Biophys Res Commun 1998; 244:806-11. [PMID: 9535747 DOI: 10.1006/bbrc.1998.8346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cultured mesangial cells constitutively express alpha-smooth muscle actin (alpha-SMA), a marker of cellular activation. We unexpectedly found that tyrosine kinase pp60v-src, a known activator for a wide range of signalling cascades, suppressed the alpha-SMA expression in mesangial cells. The present study was conducted to elucidate molecular events involved in this phenomenon. Transfection with a reporter plasmid revealed that the serum response element (SRE), the cis-element required for alpha-SMA expression, was constitutively active in mesangial cells. When mesangial cells were transfected with pp60v-src, activity of both SRE and the alpha-SMA promoter was down-regulated. This was associated with depressed levels of phosphorylated extracellular signal-regulated kinases (ERKs), but not c-Jun N-terminal kinase. Selective inhibition of ERKs by PD098059 abrogated constitutive SRE activity, leading to suppressed alpha-SMA expression. These results uncovered a novel potential of pp60v-src for suppression of alpha-SMA via intervention in the ERK-SRE signalling pathway.
Collapse
Affiliation(s)
- Y Ishikawa
- Department of Medicine, University College London Medical School, United Kingdom
| | | |
Collapse
|