1
|
Wu Y, Hou J, Ren R, Chen Z, Yue M, Li L, Hou H, Zheng X, Li L. DNA methylation and lipid metabolism are involved in GA-induced maize aleurone layers PCD as revealed by transcriptome analysis. BMC PLANT BIOLOGY 2023; 23:584. [PMID: 37993774 PMCID: PMC10664605 DOI: 10.1186/s12870-023-04565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND The aleurone layer is a part of many plant seeds, and during seed germination, aleurone cells undergo PCD, which is promoted by GA from the embryo. However, the numerous components of the GA signaling pathway that mediate PCD of the aleurone layers remain to be identified. Few genes and transcriptomes have been studied thus far in aleurone layers to improve our understanding of how PCD occurs and how the regulatory mechanism functions during PCD. Our previous studies have shown that histone deacetylases (HDACs) are required in GA-induced PCD of aleurone layer. To further explore the molecular mechanisms by which epigenetic modifications regulate aleurone PCD, we performed a global comparative transcriptome analysis of embryoless aleurones treated with GA or histone acetylase (HAT) inhibitors. RESULTS In this study, a total of 7,919 differentially expressed genes (DEGs) were analyzed, 2,554 DEGs of which were found to be common under two treatments. These identified DEGs were involved in various biological processes, including DNA methylation, lipid metabolism and ROS signaling. Further investigations revealed that inhibition of DNA methyltransferases prevented aleurone PCD, suggesting that active DNA methylation plays a role in regulating aleurone PCD. GA or HAT inhibitor induced lipoxygenase gene expression, leading to lipid degradation, but this process was not affected by DNA methylation. However, DNA methylation inhibitor could regulate ROS-related gene expression and inhibit GA-induced production of hydrogen peroxide (H2O2). CONCLUSION Overall, linking of lipoxygenase, DNA methylation, and H2O2 may indicate that GA-induced higher HDAC activity in aleurones causes breakdown of lipids via regulating lipoxygenase gene expression, and increased DNA methylation positively mediates H2O2 production; thus, DNA methylation and lipid metabolism pathways may represent an important and complex signaling network in maize aleurone PCD.
Collapse
Affiliation(s)
- Yequn Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruifei Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhenfei Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengxia Yue
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Le Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xueke Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- College of Food, Xinyang Agriculture and Forestry University, Xinyang, 464000, China.
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Villota-Salazar NA, Ramos-García VH, González-Prieto JM, Hernández-Delgado S. Effects of chemical inhibition of histone deacetylase proteins in the growth and virulence of Macrophomina phaseolina (Tassi) Goid. Rev Argent Microbiol 2023; 55:296-306. [PMID: 37296064 DOI: 10.1016/j.ram.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 06/12/2023] Open
Abstract
Chromatin remodeling enzymes are important "writers", "readers" and "erasers" of the epigenetic code. These proteins are responsible for the placement, recognition, and removal of molecular marks in histone tails that trigger structural and functional changes in chromatin. This is also the case for histone deacetylases (HDACs), i.e., enzymes that remove acetyl groups from histone tails, signaling heterochromatin formation. Chromatin remodeling is necessary for cell differentiation processes in eukaryotes, and fungal pathogenesis in plants includes many adaptations to cause disease. Macrophomina phaseolina (Tassi) Goid. is a nonspecific, necrotrophic ascomycete phytopathogen that causes charcoal root disease. M. phaseolina is a frequent and highly destructive pathogen in crops such as common beans (Phaseolus vulgaris L.), particularly under both water and high temperature stresses. Here, we evaluated the effects of the classical HDAC inhibitor trichostatin A (TSA) on M. phaseolinain vitro growth and virulence. During inhibition assays, the growth of M. phaseolina in solid media, as well as the size of the microsclerotia, were reduced (p<0.05), and the colony morphology was remarkably affected. Under greenhouse experiments, treatment with TSA reduced (p<0.05) fungal virulence in common bean cv. BAT 477. Tests of LIPK, MAC1 and PMK1 gene expression during the interaction of fungi with BAT 477 revealed noticeable deregulation. Our results provide additional evidence about the role of HATs and HDACs in important biological processes of M. phaseolina.
Collapse
Affiliation(s)
- Nubia Andrea Villota-Salazar
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico
| | - Víctor Hugo Ramos-García
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico
| | - Juan Manuel González-Prieto
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico
| | - Sanjuana Hernández-Delgado
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico.
| |
Collapse
|
3
|
Tanaka A, Watanabe S. How to improve the clinical outcome of round spermatid injection (ROSI) into the oocyte: Correction of epigenetic abnormalities. Reprod Med Biol 2023; 22:e12503. [PMID: 36789269 PMCID: PMC9909386 DOI: 10.1002/rmb2.12503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
Background First successful human round spermatid injection (ROSI) was conducted by Tesarik et al. in 1996 for the sole treatment of nonobstructive azoospermic men whose most advanced spermatogenic cells were elongating round spermatids. Nine offsprings from ROSI were reported between 1996 and 2000. No successful deliveries were reported for 15 years after that. Tanaka et al. reported 90 babies born after ROSI and their follow-up studies in 2015 and 2018 showed no significant differences in comparison with those born after natural conception in terms of physical and cognitive abilities. However, clinical outcomes remain low. Method Clinical and laboratory data of successful cases in the precursor ROSI groups and those of Tanaka et al. were reviewed. Results Differences were found between the two groups in terms of identification of characteristics of round spermatid and oocyte activation. Additionally, epigenetic abnormalities were identified as underlying causes for poor ROSI results, besides correct identification of round spermatid and adequate oocyte activation. Correction of epigenetic errors could lead to optimal embryonic development. Conclusion Correction of epigenetic abnormalities has a probability to improve the clinical outcome of ROSI.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Obstetrics and GynecologySaint Mother ClinicKitakyushuJapan
- Department of Obstetrics and GynecologyJuntendo University School of MedicineBunkyo‐kuJapan
| | - Seiji Watanabe
- Department of Anatomical ScienceHirosaki University Graduate School of MedicineAomoriJapan
| |
Collapse
|
4
|
MCM2-7 complex is a novel druggable target for neuroendocrine prostate cancer. Sci Rep 2021; 11:13305. [PMID: 34172788 PMCID: PMC8233352 DOI: 10.1038/s41598-021-92552-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer that rarely develops de novo in primary tumors and is commonly acquired during the development of treatment resistance. NEPC is characterized by gain of neuroendocrine markers and loss of androgen receptor (AR), making it resistant to current therapeutic strategies targeting the AR signaling axis. Here, we report that MCM2, MCM3, MCM4, and MCM6 (MCM2/3/4/6) are elevated in human NEPC and high levels of MCM2/3/4/6 are associated with liver metastasis and poor survival in prostate cancer patients. MCM2/3/4/6 are four out of six proteins that form a core DNA helicase (MCM2-7) responsible for unwinding DNA forks during DNA replication. Inhibition of MCM2-7 by treatment with ciprofloxacin inhibits NEPC cell proliferation and migration in vitro, significantly delays NEPC tumor xenograft growth, and partially reverses the neuroendocrine phenotype in vivo. Our study reveals the clinical relevance of MCM2/3/4/6 proteins in NEPC and suggests that inhibition of MCM2-7 may represent a new therapeutic strategy for NEPC.
Collapse
|
5
|
Nai YS, Huang YC, Yen MR, Chen PY. Diversity of Fungal DNA Methyltransferases and Their Association With DNA Methylation Patterns. Front Microbiol 2021; 11:616922. [PMID: 33552027 PMCID: PMC7862722 DOI: 10.3389/fmicb.2020.616922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022] Open
Abstract
DNA methyltransferases (DNMTs) are a group of proteins that catalyze DNA methylation by transferring a methyl group to DNA. The genetic variation in DNMTs results in differential DNA methylation patterns associated with various biological processes. In fungal species, DNMTs and their DNA methylation profiles were found to be very diverse and have gained many research interests. We reviewed fungal DNMTs in terms of their biological functions, protein domain structures, and their associated epigenetic regulations compared to those known in plant and animal systems. In addition, we summarized recent reports on potential RNA-directed DNA methylation (RdDM) related to DNMT5 in fungi. We surveyed up to 40 fungal species with published genome-wide DNA methylation profiles (methylomes) and presented the associations between the specific patterns of fungal DNA methylation and their DNMTs based on a phylogenetic tree of protein domain structures. For example, the main DNMTs in Basidiomycota, DNMT1 with RFD domain + DNMT5, contributing to CG methylation preference, were distinct from RID + Dim-2 in Ascomycota, resulting in a non-CG methylation preference. Lastly, we revealed that the dynamic methylation involved in fungal life stage changes was particularly low in mycelium and DNA methylation was preferentially located in transposable elements (TEs). This review comprehensively discussed fungal DNMTs and methylomes and their connection with fungal development and taxonomy to present the diverse usages of DNA methylation in fungal genomes.
Collapse
Affiliation(s)
- Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan.,Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chun Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, Taiwan.,Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Li S, Li W, Wang C, Wu R, Yin R, Kuo HC, Wang L, Kong AN. Pelargonidin reduces the TPA induced transformation of mouse epidermal cells -potential involvement of Nrf2 promoter demethylation. Chem Biol Interact 2019; 309:108701. [PMID: 31181187 DOI: 10.1016/j.cbi.2019.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
Abstract
Pelargonidin, a well-known natural anthocyanidin found in berries strawberries, blueberries, red radishes and other natural foods, has been found to possess health beneficial effects including anti-cancer effect. Herein, we investigated the effect of pelargonidin on cellular transformation in mouse skin epidermal JB6 (JB6 P+) cells induced by tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Pelargonidin treatment significantly decreased colony formation and suppressed cell viability of JB6 P+ cells. Pelargonidin also induced the anti-oxidant response element (ARE)-luciferase activation in HepG2-C8 cells overexpressing the ARE-luciferase reporter. Knockdown of nuclear factor E2-related factor 2 (Nrf2) in shNrf2 JB6 P+ cells enhanced TPA-induced colony formation and attenuated pelargonidin's blocking effect. Pelargonidin reduced the protein levels of genes encoding methyltransferases (DNMTs) and histone deacetylases (HDACs). Importantly, pelargonidin decreased the DNA methylation in the Nrf2 promoter region of JB6 P+ cells and increased Nrf2 downstream target genes expression, such as NAD(P)H/quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), involved in cellular protection. In summary, our results showed that pelargonidin blocks TPA-induced cell transformation. The possible molecular mechanisms of its potential anti-cancer effects against neoplastic transformation may be attributed to its activation of Nrf2-ARE signaling pathway and its cytoprotective effect.
Collapse
Affiliation(s)
- Shanyi Li
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Wenji Li
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Chao Wang
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Renyi Wu
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Ran Yin
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Hsiao-Chen Kuo
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Lujing Wang
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Ah-Ng Kong
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA.
| |
Collapse
|
7
|
Nicetto D, Zaret KS. Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Curr Opin Genet Dev 2019; 55:1-10. [PMID: 31103921 DOI: 10.1016/j.gde.2019.04.013] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 01/17/2023]
Abstract
Compacted, transcriptionally repressed chromatin, referred to as heterochromatin, represents a major fraction of the higher eukaryotic genome and exerts pivotal functions of silencing repetitive elements, maintenance of genome stability, and control of gene expression. Among the different histone post-translational modifications (PTMs) associated with heterochromatin, tri-methylation of lysine 9 on histone H3 (H3K9me3) is gaining increased attention. Besides its known role in repressing repetitive elements and non-coding portions of the genome, recent observations indicate H3K9me3 as an important player in silencing lineage-inappropriate genes. The ability of H3K9me3 to influence cell identity challenges the original concept of H3K9me3-marked heterochromatin as mainly a constitutive type of chromatin and provides a further level of understanding of how to modulate cell fate control. Here, we summarize the role of H3K9me3 marked heterochromatin and its dynamics in establishing and maintaining cellular identity.
Collapse
Affiliation(s)
- Dario Nicetto
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Dept. Cell and Developmental, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Dept. Cell and Developmental, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
8
|
Wang B, Yang X, Wang Y, Xie Y, Zhou X. Tomato Yellow Leaf Curl Virus V2 Interacts with Host Histone Deacetylase 6 To Suppress Methylation-Mediated Transcriptional Gene Silencing in Plants. J Virol 2018; 92:e00036-18. [PMID: 29950418 PMCID: PMC6146709 DOI: 10.1128/jvi.00036-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Cytosine DNA methylation is a conserved epigenetic silencing mechanism that defends against biotic stresses such as geminivirus infection. As a countermeasure, geminiviruses encode proteins that inhibit methylation and transcriptional gene silencing (TGS). Previous studies showed that V2 protein of Tomato yellow leaf curl virus (TYLCV) functions as a TGS suppressor. However, how V2 mediates TGS suppression remains unknown. Here we show that V2 interacts directly with a Nicotiana benthamiana histone deacetylase 6 (NbHDA6), a homolog of Arabidopsis HDA6 (AtHDA6), known to be involved in gene silencing in cooperation with methyltransferase 1 (MET1). NbHDA6 genetically complemented a late-flowering phenotype and restored histone deacetylation of an AtHDA6 mutant. Furthermore, our investigation showed that NbHDA6 displayed histone deacetylase enzymatic activity, which was not inhibited by V2. Genetic analysis revealed that silencing of NbHDA6 expression resulted in enhanced susceptibility to TYLCV infection. In addition, methylation-sensitive PCR and bisulfite sequencing analysis showed that silencing of NbHDA6 expression caused reduced DNA methylation of the viral genome in infected plants. HDA6 was previously shown to recruit and physically interact with MET1 to function in gene silencing. Using competitive pulldown and coimmunoprecipitation assays, we demonstrated that V2 did not interact but competed with NbMET1 for direct binding to NbHDA6. These findings suggest that V2 interacts with host HDA6 and interferes with the recruitment of MET1 by HDA6, resulting in decreased methylation of the viral DNA genome by TGS with a concomitant increase in host susceptibility to TYLCV infection.IMPORTANCE Plants employ repressive viral genome methylation as an epigenetic defense against geminiviruses. In turn, geminiviruses encode proteins that inhibit methylation by TGS. Previous studies showed that TYLCV V2 can efficiently suppress TGS, but the mechanism remains unknown. We showed that V2 interacted with NbHDA6 but did not inhibit its enzymatic activity. As HDA6 is known to be involved in gene silencing in cooperation with MET1, we explored the relationship between V2, NbMET1, and NbHDA6. Our investigation showed that V2 did not interact but competed with NbMET1 for direct binding to NbHDA6. To our knowledge, this is the first report that viral proteins inhibit TGS by interacting with histone deacetylase but not by blocking the methyl cycle. This work provides an additional mechanism for TGS suppression by geminiviruses.
Collapse
Affiliation(s)
- Bi Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, People's Republic of China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yan Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
9
|
Gurgul A, Opiela J, Pawlina K, Szmatoła T, Bochenek M, Bugno-Poniewierska M. The effect of histone deacetylase inhibitor trichostatin A on porcine mesenchymal stem cell transcriptome. Biochimie 2017; 139:56-73. [PMID: 28552396 DOI: 10.1016/j.biochi.2017.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 12/29/2022]
Abstract
The use of histone deacetylase inhibitors such as trichostatin A (TSA) for epigenetic transformation of mesenchymal stem cells (MSCs), whose nuclei will be transferred into enucleated oocytes, is a novel approach in research involving somatic cell cloning of pigs and other mammalian species. Although the effectiveness of TSA in cloning applications was confirmed, processes and mechanisms underlying achieved effects are not yet fully understood, especially for pig MSCs. To contribute to this knowledge, in this study we performed a comprehensive transcriptome analysis using high-throughput sequencing of pig bone-marrow derived MSCs, both treated and untreated with TSA, and evaluated the effect of TSA administration on their transcription profile after 24 h of in vitro culture. The expression of selected positive and negative mesenchymal surface antigens was also evaluated in these cells by flow cytometry. Subsequently, the stability of induced expression changes was evaluated after another 55-72 h of culture without TSA. The results of this study showed that TSA does not affect the expression of the selected surface antigens related to MSC mesenchymal stemness origin, namely: CD90 (positive marker), CD31 and CD34 (negative markers) and has a wide stimulating effect on MSCs transcription, affecting genes across the whole genome with some minor signs of site-specific acting in regions on SSC2 and SSC6. TSA turned out to have a higher impact on already expressed genes with only minor abilities to induce expression of silenced genes. Genes with expression affected by TSA were related to a wide range of biological processes, however, we found some evidence for specific stimulation of genes associated with development, differentiation, neurogenesis or myogenesis. TSA also seemed to interfere with Wnt signaling pathways by upregulation of several engaged genes. The analysis of cell transcriptome after prolonged culture following the TSA removal, showed that the expression level of majority of genes affected by TSA is restored to the initial level. Nonetheless, the set of about six hundred genes responsible for e.g. adhesion, signal transduction and cell communication was altered even after 55-72 h of culture without TSA. TSA also enhanced expression of some of pluripotency marker genes (FGF2, LIF, TERT) but their expression was stabilized during further culture without TSA. The detailed analysis of factors connected with neuron-like differentiation allowed us to assume that TSA mostly stimulates neurogenic differentiation pathway in the pig MSCs possibly through interaction with Wnt-mediated signaling and thus triggers mechanisms conducive to epigenetic reprograming.
Collapse
Affiliation(s)
- Artur Gurgul
- National Research Institute of Animal Production, Department of Genomics and Molecular Biology, Krakowska 1, 32-083, Balice, Poland.
| | - Jolanta Opiela
- National Research Institute of Animal Production, Department of Biotechnology of Animal Reproduction, Krakowska 1, 32-083, Balice, Poland
| | - Klaudia Pawlina
- National Research Institute of Animal Production, Department of Genomics and Molecular Biology, Krakowska 1, 32-083, Balice, Poland
| | - Tomasz Szmatoła
- National Research Institute of Animal Production, Department of Genomics and Molecular Biology, Krakowska 1, 32-083, Balice, Poland
| | - Michał Bochenek
- National Research Institute of Animal Production, Department of Biotechnology of Animal Reproduction, Krakowska 1, 32-083, Balice, Poland
| | - Monika Bugno-Poniewierska
- National Research Institute of Animal Production, Department of Genomics and Molecular Biology, Krakowska 1, 32-083, Balice, Poland
| |
Collapse
|
10
|
Berndsen RH, Abdul UK, Weiss A, Zoetemelk M, te Winkel MT, Dyson PJ, Griffioen AW, Nowak-Sliwinska P. Epigenetic approach for angiostatic therapy: promising combinations for cancer treatment. Angiogenesis 2017; 20:245-267. [DOI: 10.1007/s10456-017-9551-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/10/2017] [Indexed: 12/15/2022]
|
11
|
Dual chromatin recognition by the histone deacetylase complex HCHC is required for proper DNA methylation in Neurospora crassa. Proc Natl Acad Sci U S A 2016; 113:E6135-E6144. [PMID: 27681634 DOI: 10.1073/pnas.1614279113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DNA methylation, heterochromatin protein 1 (HP1), histone H3 lysine 9 (H3K9) methylation, histone deacetylation, and highly repeated sequences are prototypical heterochromatic features, but their interrelationships are not fully understood. Prior work showed that H3K9 methylation directs DNA methylation and histone deacetylation via HP1 in Neurospora crassa and that the histone deacetylase complex HCHC is required for proper DNA methylation. The complex consists of the chromodomain proteins HP1 and chromodomain protein 2 (CDP-2), the histone deacetylase HDA-1, and the AT-hook motif protein CDP-2/HDA-1-associated protein (CHAP). We show that the complex is required for proper chromosome segregation, dissect its function, and characterize interactions among its components. Our analyses revealed the existence of an HP1-based DNA methylation pathway independent of its chromodomain. The pathway partially depends on CHAP but not on the CDP-2 chromodomain. CDP-2 serves as a bridge between the recognition of H3K9 trimethylation (H3K9me3) by HP1 and the histone deacetylase activity of HDA-1. CHAP is also critical for HDA-1 localization to heterochromatin. Specifically, the CHAP zinc finger interacts directly with the HDA-1 argonaute-binding protein 2 (Arb2) domain, and the CHAP AT-hook motifs recognize heterochromatic regions by binding to AT-rich DNA. Our data shed light on the interrelationships among the prototypical heterochromatic features and support a model in which dual recognition by the HP1 chromodomain and the CHAP AT-hooks are required for proper heterochromatin formation.
Collapse
|
12
|
Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci U S A 2016; 113:E6117-E6125. [PMID: 27671647 DOI: 10.1073/pnas.1606724113] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Codon usage biases are found in all eukaryotic and prokaryotic genomes, and preferred codons are more frequently used in highly expressed genes. The effects of codon usage on gene expression were previously thought to be mainly mediated by its impacts on translation. Here, we show that codon usage strongly correlates with both protein and mRNA levels genome-wide in the filamentous fungus Neurospora Gene codon optimization also results in strong up-regulation of protein and RNA levels, suggesting that codon usage is an important determinant of gene expression. Surprisingly, we found that the impact of codon usage on gene expression results mainly from effects on transcription and is largely independent of mRNA translation and mRNA stability. Furthermore, we show that histone H3 lysine 9 trimethylation is one of the mechanisms responsible for the codon usage-mediated transcriptional silencing of some genes with nonoptimal codons. Together, these results uncovered an unexpected important role of codon usage in ORF sequences in determining transcription levels and suggest that codon biases are an adaptation of protein coding sequences to both transcription and translation machineries. Therefore, synonymous codons not only specify protein sequences and translation dynamics, but also help determine gene expression levels.
Collapse
|
13
|
Yang XL, Zhang CD, Wu HY, Wu YH, Zhang YN, Qin MB, Wu H, Liu XC, Lina X, Lu SM. Effect of trichostatin A on CNE2 nasopharyngeal carcinoma cells--genome-wide DNA methylation alteration. Asian Pac J Cancer Prev 2015; 15:4663-70. [PMID: 24969901 DOI: 10.7314/apjcp.2014.15.11.4663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Trichostatin A (TSA) is a histone deacetylase (HDAC) inhibitor. We here investigated its effects on proliferation and apoptosis of the CNE2 carcinoma cell line, and attempted to establish genome-wide DNA methylation alteration due to differentially histone acetylation status. After cells were treated by TSA, the inhibitory rate of cell proliferation was examined with a CCK8 kit, and cell apoptosis was determined by flow cytometry. Compared to control, TSA inhibited CNE2 cell growth and induced apoptosis. Furthermore, TSA was found to induce genome-wide methylation alteration as assessed by genome-wide methylation array. Overall DNA methylation level of cells treated with TSA was higher than in controls. Function and pathway analysis revealed that many genes with methylation alteration were involved in key biological roles, such as apoptosis and cell proliferation. Three genes (DAP3, HSPB1 and CLDN) were independently confirmed by quantitative real-time PCR. Finally, we conclude that TSA inhibits CNE2 cell growth and induces apoptosis in vitro involving genome-wide DNA methylation alteration, so that it has promising application prospects in treatment of NPC in vivo. Although many unreported hypermethylated/hypomethylated genes should be further analyzed and validated, the pointers to new biomarkers and therapeutic strategies in the treatment of NPC should be stressed.
Collapse
Affiliation(s)
- Xiao-Li Yang
- Medical Scientific Research Center, Guangxi Medical University, Nanning, China E-mail :
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Diverse classes of RNA, ranging from small to long non-coding RNAs, have emerged as key regulators of gene expression, genome stability and defence against foreign genetic elements. Small RNAs modify chromatin structure and silence transcription by guiding Argonaute-containing complexes to complementary nascent RNA scaffolds and then mediating the recruitment of histone and DNA methyltransferases. In addition, recent advances suggest that chromatin-associated long non-coding RNA scaffolds also recruit chromatin-modifying complexes independently of small RNAs. These co-transcriptional silencing mechanisms form powerful RNA surveillance systems that detect and silence inappropriate transcription events, and provide a memory of these events via self-reinforcing epigenetic loops.
Collapse
Affiliation(s)
- Daniel Holoch
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
MeCP2 Modulates Sex Differences in the Postsynaptic Development of the Valproate Animal Model of Autism. Mol Neurobiol 2014; 53:40-56. [PMID: 25404090 DOI: 10.1007/s12035-014-8987-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/04/2014] [Indexed: 01/10/2023]
Abstract
Males are predominantly affected by autism spectrum disorders (ASD) with a prevalence ratio of 5:1. However, the underlying pathological mechanisms governing the male preponderance of ASD remain unclear. Recent studies suggested that epigenetic aberrations may cause synaptic dysfunctions, which might be related to the pathophysiology of ASD. In this study, we used rat offspring prenatally exposed to valproic acid (VPA) as an animal model of ASD. We found male-selective abnormalities in the kinetic profile of the excitatory glutamatergic synaptic protein expressions linked to N-methyl-D-aspartate receptor (NMDAR), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and metabotropic glutamate receptor 5 (mGluR5) pathways in the prefrontal cortex of the VPA-exposed offspring at postnatal weeks 1, 2, and 4. Furthermore, VPA exposure showed a male-specific attenuation of the methyl-CpG-binding protein 2 (MeCP2) expressions both in the prefrontal cortex of offspring and in the gender-isolated neural progenitor cells (NPCs). In the gender-isolated NPCs culture, higher concentration of VPA induced an increased glutamatergic synaptic development along with decreased MeCP2 expression in both genders suggesting the role of MeCP2 in the modulation of synaptic development. In the small interfering RNA (siRNA) knock-down study, 50 pmol of Mecp2 siRNA inhibited the MeCP2 expression in male- but not in female-derived NPCs with concomitant induction of postsynaptic proteins such as PSD95. Taken together, we suggest that the male-inclined reduction of MeCP2 expression is involved in the abnormal development of glutamatergic synapse and male preponderance in the VPA animal models of ASD.
Collapse
|
16
|
Ling CS, Yin KB, Cun STW, Ling FL. Expression profiling of choline and ethanolamine kinases in MCF7, HCT116 and HepG2 cells, and the transcriptional regulation by epigenetic modification. Mol Med Rep 2014; 11:611-8. [PMID: 25333818 DOI: 10.3892/mmr.2014.2707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 09/04/2014] [Indexed: 11/06/2022] Open
Abstract
The function of choline kinase (CK) and ethanolamine kinase (EK) is to catalyse the phosphorylation of choline and ethanolamine, respectively, in order to yield phosphocholine (PCho) and phosphoethanolamine (PEtn). A high expression level of PCho, due to elevated CK activity, has previously been associated with malignant transformation. In the present study, a quantitative polymerase chain reaction was performed to determine the mRNA expression profiles of ck and ek mRNA variants in MCF7 breast, HCT116 colon and HepG2 liver cancer cells. The ck and ek mRNA expression profiles showed that total ckα was expressed most abundantly in the HepG2 cells. The HCT116 cells exhibited the highest ckβ and ek1 mRNA expression levels, whereas the highest ek2α mRNA expression levels were detected in the MCF7 cells. The ckβ variant had higher mRNA expression levels, as compared with total ckα, in both the MCF7 and HCT116 cells. Relatively low ek1 mRNA expression levels were detected, as compared with ek2α in the MCF7 cells; however, this was not observed in the HCT116 and HepG2 cells. Notably, the mRNA expression levels of ckα2 were markedly low, as compared with ckα1, in all three cancer cell lines. The effects of epigenetic modification on ck and ek mRNA expression, by treatment of the cells with the histone deacetylase inhibitor trichostatin A (TSA), were also investigated. The results of the present study showed that the mRNA expression levels of ckα, ckβ and ek2α were affected by TSA. An increase >8-fold was observed in ek2α mRNA expression upon treatment with TSA, in a concentration- and time-dependent manner. In conclusion, the levels of ck and ek transcript variants in the three cancer cell lines were varied. The effects of TSA treatment on the mRNA expression levels of ck and ek imply that ck and ek mRNA expression may be regulated by epigenetic modification.
Collapse
Affiliation(s)
- Chua Siang Ling
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Khoo Boon Yin
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - See Too Wei Cun
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Few Ling Ling
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
17
|
Abstract
Long non-coding RNAs (lncRNAs) are series of transcripts with important biological functions. Various diseases have been associated with aberrant expression of lncRNAs and the related dysregulation of mRNAs. In this review, we highlight the mechanisms of dynamic lncRNA expression. The chromatin state contributes to the low and specific expression of lncRNAs. The transcription of non-coding RNA genes is regulated by many core transcription factors applied to protein-coding genes. However, specific DNA sequences may allow their unsynchronized transcription with their location-associated mRNAs. Additionally, there are multiple mechanisms involved in the post-transcriptional regulation of lncRNAs. Among these, microRNAs might have indispensible regulatory effects on lncRNAs, based on recent discoveries.
Collapse
|
18
|
Chu Y, Wang Y, Zhang G, Chen H, Dowdy SC, Xiong Y, Liu F, Zhang R, Li J, Jiang SW. Chromatin composition alterations and the critical role of MeCP2 for epigenetic silencing of progesterone receptor-B gene in endometrial cancers. Cell Mol Life Sci 2014; 71:3393-408. [PMID: 24531693 PMCID: PMC11113436 DOI: 10.1007/s00018-014-1580-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To understand the epigenetic mechanism underlying the PR-B gene silencing in endometrial cancer (EC) cells, we compared the chromatin composition between transcriptionally active and silenced PR-B genes in EC cell lines and cancer tissues. METHODS Chromatin Immunoprecipitation (ChIP) assay was performed to measure MBD occupancy and histone acetylation/methylation in transcriptionally active and silenced PR-B genes. PR-B-positive/-negative, as well as epigenetic inhibitor-treated/-untreated EC cells were used as study models. Real-time polymerase chain reaction (PCR) and Western blot analysis were applied to measure the mRNA and protein levels of PR-B, MBD, and histones. RESULTS A close association among PR-B methylation, MBD binding and PR-B gene silencing was observed. Treatment with epigenetic inhibitors led to dynamic changes in the PR-B chromatin composition and gene expression. Increased H3/H4 acetylation and H3-K4 methylation, and decreased H3-K9 methylation were found to be associated with re-activation of silenced PR-B genes. MeCP2 knockdown resulted in a decreased MeCP2 binding to PR-B genes and an increased PR-B expression. ChIP analysis of MeCP2 binding to PR-B genes in the PR-B-positive/-negative EC samples confirmed the significant role of MeCP2 in PR-B silencing. CONCLUSION PR-B gene expression is regulated by a concerted action of epigenetic factors including DNA methylation, MBD binding, and histone modifications. MeCP2 occupancy of PR-B genes plays a critical role in PR-B gene silencing. These findings enriched our knowledge of the epigenetic regulation of PR-B expression in EC, and suggested that the epigenetic re-activation of PR-B could be explored as a potential strategy to sensitize the PR-B-negative endometrial cancers to progestational therapy.
Collapse
Affiliation(s)
- Yongli Chu
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000 China
| | - Yanlin Wang
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, 256603 China
| | - Guanghua Zhang
- Tianjin Medical University Cancer Hospital, Tianjin, 300060 China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Guangdong, China
| | - Sean C. Dowdy
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo Medical School, Rochester, MN 55905 USA
| | - Yuning Xiong
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo Medical School, Rochester, MN 55905 USA
| | - Fengming Liu
- Department of Research and Development, Guangxi Medicinal Botanical Institute, Nanning, 530024 China
| | - Run Zhang
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404 USA
| | - Jinping Li
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo Medical School, Rochester, MN 55905 USA
- Curtis & Elizabeth Anderson Cancer Institute, Memorial Health University Medical Center, 4700 Waters Avenue, Savannah, GA 31404 USA
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404 USA
| | - Shi-Wen Jiang
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo Medical School, Rochester, MN 55905 USA
- Curtis & Elizabeth Anderson Cancer Institute, Memorial Health University Medical Center, 4700 Waters Avenue, Savannah, GA 31404 USA
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, 4700 Waters Avenue, Savannah, GA 31404 USA
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404 USA
| |
Collapse
|
19
|
Shiva Shankar TV, Willems L. Epigenetic modulators mitigate angiogenesis through a complex transcriptomic network. Vascul Pharmacol 2014; 60:57-66. [PMID: 24445350 DOI: 10.1016/j.vph.2014.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/18/2013] [Accepted: 01/08/2014] [Indexed: 12/19/2022]
Abstract
In this review, we summarize the knowledge pertaining to the role of epigenetics in the regulation of angiogenesis. In particular, we show that lysine acetylation and cytosine methylation are important transcriptional regulators of angiogenic genes in endothelial cells. Lysine acetylation and cytosine methylation inhibitors idiosyncratically tune the transcriptome and affect expression of key modulators of angiogenesis such as VEGF and eNOS. Transcriptomic profiling also reveals a series of novel genes that are concomitantly affected by epigenetic modulators. The reversibility and overall tolerability of currently available epigenetic inhibitors open up the prospect of therapeutic intervention in pathologies where angiogenesis is exacerbated. This type of multitargeted strategy has the major advantage of overcoming the compensatory feedback mechanisms that characterize single anti-angiogenic factors.
Collapse
Affiliation(s)
- T V Shiva Shankar
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - L Willems
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium.
| |
Collapse
|
20
|
Aramayo R, Selker EU. Neurospora crassa, a model system for epigenetics research. Cold Spring Harb Perspect Biol 2013; 5:a017921. [PMID: 24086046 DOI: 10.1101/cshperspect.a017921] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The filamentous fungus Neurospora crassa has provided a rich source of knowledge on epigenetic phenomena that would have been difficult or impossible to gain from other systems. Neurospora sports features found in higher eukaryotes but absent in both budding and fission yeast, including DNA methylation and H3K27 methylation, and also has distinct RNA interference (RNAi)-based silencing mechanisms operating in mitotic and meiotic cells. This has provided an unexpected wealth of information on gene silencing systems. One silencing mechanism, named repeat-induced point mutation (RIP), has both epigenetic and genetic aspects and provided the first example of a homology-based genome defense system. A second silencing mechanism, named quelling, is an RNAi-based mechanism that results in silencing of transgenes and their native homologs. A third, named meiotic silencing, is also RNAi-based but is distinct from quelling in its time of action, targets, and apparent purpose.
Collapse
Affiliation(s)
- Rodolfo Aramayo
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | | |
Collapse
|
21
|
Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol 2013; 118:37-128. [PMID: 23683942 DOI: 10.1016/b978-0-12-407708-9.00002-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal "tails" of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The "histone code" defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
Collapse
|
22
|
Naeem N, Haneef K, Kabir N, Iqbal H, Jamall S, Salim A. DNA Methylation Inhibitors, 5-azacytidine and Zebularine Potentiate the Transdifferentiation of Rat Bone Marrow Mesenchymal Stem Cells into Cardiomyocytes. Cardiovasc Ther 2013; 31:201-9. [PMID: 22954287 DOI: 10.1111/j.1755-5922.2012.00320.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Nadia Naeem
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD); International Center for Chemical and Biological Sciences (ICCBS); University of Karachi; Karachi; Pakistan
| | - Kanwal Haneef
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD); International Center for Chemical and Biological Sciences (ICCBS); University of Karachi; Karachi; Pakistan
| | - Nurul Kabir
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD); International Center for Chemical and Biological Sciences (ICCBS); University of Karachi; Karachi; Pakistan
| | - Hana'a Iqbal
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD); International Center for Chemical and Biological Sciences (ICCBS); University of Karachi; Karachi; Pakistan
| | - Siddiqua Jamall
- Department of Biochemistry; University of Karachi; Karachi; Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD); International Center for Chemical and Biological Sciences (ICCBS); University of Karachi; Karachi; Pakistan
| |
Collapse
|
23
|
Niedzwiecki MM, Hall MN, Liu X, Oka J, Harper KN, Slavkovich V, Ilievski V, Levy D, van Geen A, Mey JL, Alam S, Siddique AB, Parvez F, Graziano JH, Gamble MV. Blood glutathione redox status and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults. Epigenetics 2013; 8:730-8. [PMID: 23803688 DOI: 10.4161/epi.25012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Oxidative stress and DNA methylation are metabolically linked through the relationship between one-carbon metabolism and the transsulfuration pathway, but possible modulating effects of oxidative stress on DNA methylation have not been extensively studied in humans. Enzymes involved in DNA methylation, including DNA methyltransferases and histone deacetylases, may show altered activity under oxidized cellular conditions. Additionally, in vitro studies suggest that glutathione (GSH) depletion leads to global DNA hypomethylation, possibly through the depletion of S-adenosylmethionine (SAM). We tested the hypothesis that a more oxidized blood GSH redox status is associated with decreased global peripheral blood mononuclear cell (PBMC) DNA methylation in a sample of Bangladeshi adults. Global PBMC DNA methylation and whole blood GSH, glutathione disulfide (GSSG), and SAM concentrations were measured in 320 adults. DNA methylation was measured by using the [ (3)H]-methyl incorporation assay; values are inversely related to global DNA methylation. Whole blood GSH redox status (Eh) was calculated using the Nernst equation. We found that a more oxidized blood GSH Eh was associated with decreased global DNA methylation (B ± SE, 271 ± 103, p = 0.009). Blood SAM and blood GSH were associated with global DNA methylation, but these relationships did not achieve statistical significance. Our findings support the hypothesis that a more oxidized blood GSH redox status is associated with decreased global methylation of PBMC DNA. Furthermore, blood SAM does not appear to mediate this association. Future research should explore mechanisms through which cellular redox might influence global DNA methylation.
Collapse
Affiliation(s)
- Megan M Niedzwiecki
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Troppens DM, Chu M, Holcombe LJ, Gleeson O, O'Gara F, Read ND, Morrissey JP. The bacterial secondary metabolite 2,4-diacetylphloroglucinol impairs mitochondrial function and affects calcium homeostasis in Neurospora crassa. Fungal Genet Biol 2013; 56:135-46. [PMID: 23624246 DOI: 10.1016/j.fgb.2013.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/25/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
The bacterial secondary metabolite 2,4-diacetylphloroglucinol (DAPG) is of interest as an active ingredient of biological control strains of Pseudomonas fluorescens and as a potential lead pharmaceutical molecule because of its capacity to inhibit growth of diverse microbial and non-microbial cells. The mechanism by which this occurs is unknown and in this study the filamentous fungus Neurospora crassa was used as a model to investigate the effects of DAPG on a eukaryotic cell. Colony growth, conidial germination and cell fusion assays confirmed the inhibitory nature of DAPG towards N. crassa. A number of different fluorescent dyes and fluorescent protein reporters were used to assess the effects of DAPG treatment on mitochondrial and other cellular functions. DAPG treatment led to changes in mitochondrial morphology, and rapid loss of mitochondrial membrane potential. These effects are likely to be responsible for the toxicity of DAPG. It was also found that DAPG treatment caused extracellular calcium to be taken up by conidial germlings leading to a transient increase in cytosolic free Ca(2+) with a distinct concentration dependent Ca(2+) signature.
Collapse
|
25
|
Cannuyer J, Loriot A, Parvizi GK, De Smet C. Epigenetic hierarchy within the MAGEA1 cancer-germline gene: promoter DNA methylation dictates local histone modifications. PLoS One 2013; 8:e58743. [PMID: 23472218 PMCID: PMC3589373 DOI: 10.1371/journal.pone.0058743] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/05/2013] [Indexed: 12/31/2022] Open
Abstract
Gene MAGEA1 belongs to a group of human germline-specific genes that rely on DNA methylation for repression in somatic tissues. Many of these genes, termed cancer-germline (CG) genes, become demethylated and activated in a wide variety of tumors, where they encode tumor-specific antigens. The process leading to DNA demethylation of CG genes in tumors remains unclear. Previous data suggested that histone acetylation might be involved. Here, we investigated the relative contribution of DNA methylation and histone acetylation in the epigenetic regulation of gene MAGEA1. We show that MAGEA1 DNA hypomethylation in expressing melanoma cells is indeed correlated with local increases in histone H3 acetylation (H3ac). However, when MAGEA1-negative cells were exposed to a histone deacetylase inhibitor (TSA), we observed only short-term activation of the gene and detected no demethylation of its promoter. As a more sensitive assay, we used a cell clone harboring a methylated MAGEA1/hph construct, which confers resistance to hygromycin upon stable re-activation. TSA induced only transient de-repression of the transgene, and did not lead to the emergence of hygromycin-resistant cells. In striking contrast, transient depletion of DNA-methyltransferase-1 in the reporter cell clone gave rise to a hygromycin-resistant population, in which the re-activated MAGEA1/hph transgene displayed not only marked DNA hypomethylation, but also significant reversal of histone marks, including gains in H3ac and H3K4me2, and losses of H3K9me2. Collectively, our results indicate that DNA methylation has a dominant role in the epigenetic hierarchy governing MAGEA1 expression.
Collapse
Affiliation(s)
- Julie Cannuyer
- Group of Genetics and Epigenetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Axelle Loriot
- Group of Genetics and Epigenetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Grégory K. Parvizi
- Group of Genetics and Epigenetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Charles De Smet
- Group of Genetics and Epigenetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
26
|
Horvat T, Deželjin M, Redžić I, Barišić D, Herak Bosnar M, Lauc G, Zoldoš V. Reversibility of membrane N-glycome of HeLa cells upon treatment with epigenetic inhibitors. PLoS One 2013; 8:e54672. [PMID: 23336012 PMCID: PMC3545996 DOI: 10.1371/journal.pone.0054672] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 12/17/2012] [Indexed: 01/20/2023] Open
Abstract
Glycans are essential regulators of protein function and are now in the focus of research in many physiological and pathophysiological processes. There are numerous modes of regulating their biosynthesis, including epigenetic mechanisms implicated in the expression of glyco-genes. Since N-glycans located at the cell membrane define intercellular communication as well as a cellular response to a given environment, we developed a method to preferentially analyze this fraction of glycans. The method is based on incorporation of living cells into polyacrylamide gels, partial denaturation of membrane proteins with 3 M urea and subsequent release of N-glycans with PNGase F followed by HPLC analysis. Using this newly developed method, we revealed multiple effects of epigenetic inhibitors Trichostatin A, sodium butyrate and zebularine on the composition of N-glycans in human cells. The induced changes were found to be reversible after inhibitor removal. Given that many epigenetic inhibitors are currently explored as a therapeutic strategy in treatment of cancer, wherein surface glycans play an important role, the presented work contributes to our understanding of their efficiency in altering the N-glycan profile of cancer cells in culture.
Collapse
Affiliation(s)
| | | | - Irma Redžić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Darko Barišić
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- Glycobiology Laboratory, Genos Ltd, Zagreb, Croatia
- Edith Cowan University, Perth, Australia
- * E-mail: (VZ); (GL)
| | - Vlatka Zoldoš
- Faculty of Science, University of Zagreb, Zagreb, Croatia
- * E-mail: (VZ); (GL)
| |
Collapse
|
27
|
Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger A. Epigenetic mechanisms in anti-cancer actions of bioactive food components--the implications in cancer prevention. Br J Pharmacol 2013; 167:279-97. [PMID: 22536923 DOI: 10.1111/j.1476-5381.2012.02002.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The hallmarks of carcinogenesis are aberrations in gene expression and protein function caused by both genetic and epigenetic modifications. Epigenetics refers to the changes in gene expression programming that alter the phenotype in the absence of a change in DNA sequence. Epigenetic modifications, which include amongst others DNA methylation, covalent modifications of histone tails and regulation by non-coding RNAs, play a significant role in normal development and genome stability. The changes are dynamic and serve as an adaptation mechanism to a wide variety of environmental and social factors including diet. A number of studies have provided evidence that some natural bioactive compounds found in food and herbs can modulate gene expression by targeting different elements of the epigenetic machinery. Nutrients that are components of one-carbon metabolism, such as folate, riboflavin, pyridoxine, cobalamin, choline, betaine and methionine, affect DNA methylation by regulating the levels of S-adenosyl-L-methionine, a methyl group donor, and S-adenosyl-L-homocysteine, which is an inhibitor of enzymes catalyzing the DNA methylation reaction. Other natural compounds target histone modifications and levels of non-coding RNAs such as vitamin D, which recruits histone acetylases, or resveratrol, which activates the deacetylase sirtuin and regulates oncogenic and tumour suppressor micro-RNAs. As epigenetic abnormalities have been shown to be both causative and contributing factors in different health conditions including cancer, natural compounds that are direct or indirect regulators of the epigenome constitute an excellent approach in cancer prevention and potentially in anti-cancer therapy.
Collapse
Affiliation(s)
- B Stefanska
- Department of Biomedical Chemistry, Medical University of Lodz, Lodz, Poland Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| | | | | | | | | |
Collapse
|
28
|
Linghu C, Zheng H, Zhang L, Zhang J. Discovering common combinatorial histone modification patterns in the human genome. Gene 2012; 518:171-8. [PMID: 23235118 DOI: 10.1016/j.gene.2012.11.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/27/2012] [Indexed: 01/08/2023]
Abstract
Histone modifications play a crucial role in regulating gene expression and cell lineage determination and maintenance at the epigenetic level. To systematically investigate this phenomenon, this paper presented a statistical hybrid clustering algorithm to identify common combinatorial histone modification patterns. We applied the algorithm to 39 histone modification marks in human CD4+ T cells and detected 854 common combinatorial histone modification patterns. Our results could cover 211 (76.17%) patterns among 277 patterns identified by the tandem mass spectrometry experiments. Based on the frequency statistical analysis, it was found that the co-occurrence frequencies of 20 backbone modifications are greater than or close to 0.2 in the 854 patterns. we also found that 15 modifications (H2BK120ac, H4K91ac, H2BK20ac, etc.), three histone acetylations (H2AK9ac, H4K16ac, and H4K12ac) and five histone methylations (H3K79me1, H3K79me2, 3K79me3, H4K20me1, and H2BK5me1) were most likely prone to coexist respectively in these patterns. In addition, we found that DNA methylation tends to combine with histone acetylation rather than histone methylation.
Collapse
Affiliation(s)
- Changgui Linghu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | | | | | | |
Collapse
|
29
|
McMurray EN, Schmidt JV. Identification of imprinting regulators at the Meg3 differentially methylated region. Genomics 2012; 100:184-94. [PMID: 22709555 DOI: 10.1016/j.ygeno.2012.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 04/13/2012] [Accepted: 06/04/2012] [Indexed: 01/04/2023]
Abstract
Genomic imprinting at the Delta-like 1 (Dlk1)-Maternally expressed gene 3 (Meg3) locus is regulated by the Meg3 differentially methylated region (DMR), but the mechanism by which this DMR acts is unknown. The goal of this study was to analyze the Meg3 DMR during imprinting establishment and maintenance for the presence of histone modifications and trans-acting DNA binding proteins using chromatin immunoprecipitation. In embryonic stem (ES) cells, where Meg3 is biallelically expressed, the DMR showed variable DNA methylation, with biallelic methylation at one region but paternal allele-specific methylation at another. All histone modifications detected at the Meg3 DMR of ES cells were biallelic. In embryonic day 12.5 (e12.5) embryos, where Meg3 is maternally expressed, the paternal Meg3 DMR was methylated, and activating histone modifications were specific to the maternal DMR. DNA-binding proteins that represent potential regulatory factors were identified in both ES cells and embryos.
Collapse
Affiliation(s)
- Erin N McMurray
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
30
|
Abstract
There are numerous examples of enduring effects of early experience on gene transcription and neural function. We review the emerging evidence for epigenetics as a candidate mechanism for such effects. There is now evidence that intracellular signals activated by environmental events can directly modify the epigenetic state of the genome, including CpG methylation, histone modifications and microRNAs. We suggest that this process reflects an activity-dependent epigenetic plasticity at the level of the genome, comparable with that observed at the synapse. This epigenetic plasticity mediates neuronal differentiation and phenotypic plasticity, including that associated with learning and memory. Altered epigenetic states are also associated with the risk for and expression of mental disorders. In a broader context, these studies define a biological basis for the interplay between environmental signals and the genome in the regulation of individual differences in behavior, cognition and physiology, as well as the risk for psychopathology.
Collapse
Affiliation(s)
- Judy Sng
- Integrative Neuroscience Program, Singapore Institute for Clinical Sciences, 30 Medial Drive, Singapore.
| | | |
Collapse
|
31
|
Liu X, Luo M, Wu K. Epigenetic interplay of histone modifications and DNA methylation mediated by HDA6. PLANT SIGNALING & BEHAVIOR 2012; 7:633-635. [PMID: 22580702 PMCID: PMC3442857 DOI: 10.4161/psb.19994] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
One of the most fundamental questions in the control of gene expression is how epigenetic patterns of DNA methylation and histone modifications are established. Our recent studies demonstrate that histone deacetylase HDA6 integrates DNA methylation and histone modifications in gene silencing by interacting with DNA methyltransferase MET1 and histone demethylase FLD, suggesting that regulatory crosstalk between histone modifications and DNA methylation could be mediated by the interaction of various epigenetic modification proteins.
Collapse
Affiliation(s)
- Xuncheng Liu
- Institute of Plant Biology; National Taiwan University; Taipei, Taiwan
| | - Ming Luo
- Institute of Plant Biology; National Taiwan University; Taipei, Taiwan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization; South China Botanical Garden; Chinese Academy of Sciences; Guangzhou, China
| | - Keqiang Wu
- Institute of Plant Biology; National Taiwan University; Taipei, Taiwan
| |
Collapse
|
32
|
Heterochromatin protein 1 forms distinct complexes to direct histone deacetylation and DNA methylation. Nat Struct Mol Biol 2012; 19:471-7, S1. [PMID: 22504884 DOI: 10.1038/nsmb.2274] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/05/2012] [Indexed: 11/09/2022]
Abstract
DNA methylation, methylation of histone H3 at Lys9 (H3K9me3) and hypoacetylated histones are common molecular features of heterochromatin. Important details of their functions and inter-relationships remain unclear, however. In Neurospora crassa, H3K9me3 directs DNA methylation through a complex containing heterochromatin protein 1 (HP1) and the DNA methyltransferase DIM-2. We identified a distinct HP1 complex, HP1, CDP-2, HDA-1 and CHAP (HCHC), and found that it is responsible for silencing independently of DNA methylation. HCHC defects cause hyperacetylation of centromeric histones, greater accessibility of DIM-2 and hypermethylation of centromeric DNA. Loss of HCHC also causes mislocalization of the DIM-5 H3K9 methyltransferase at a subset of interstitial methylated regions, leading to selective DNA hypomethylation. We demonstrate that HP1 forms distinct DNA methylation and histone deacetylation complexes that work in parallel to assemble silent chromatin in N. crassa.
Collapse
|
33
|
Arase S, Kasai M, Kanazawa A. In planta assays involving epigenetically silenced genes reveal inhibition of cytosine methylation by genistein. PLANT METHODS 2012; 8:10. [PMID: 22424588 PMCID: PMC3362751 DOI: 10.1186/1746-4811-8-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/19/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND Cytosine methylation is involved in epigenetic control of gene expression in a wide range of organisms. An increasing number of examples indicate that changing the frequency of cytosine methylation in the genome is a feasible tool to engineer novel traits in plants. Although demethylating effects of compounds have been analyzed in human cultured cells in terms of suppressing cancer, their effect in plant cells has not been analyzed extensively. Here, we developed in planta assay systems to detect inhibition of cytosine methylation using plants that contain a transgene transcriptionally silenced by an epigenetic mechanism. RESULTS Seeds of two transgenic plants were used: a petunia line that has been identified as a revertant of the co-suppression of the chalcone synthase-A (CHS-A) gene and contains CHS-A transgenes whose transcription is repressed; Nicotiana benthamiana plants that contain the green fluorescent protein (GFP) reporter gene whose transcription is repressed through virus-induced transcriptional gene silencing. Seeds of these plants were sown on a medium that contained a demethylating agent, either 5-azacytidine or trichostatin A, and the restoration of the transcriptionally active state of the transgene was detected in seedlings. Using these systems, we found that genistein, a major isoflavonoid compound, inhibits cytosine methylation, thus restoring transgene transcription. Genistein also restored the transcription of an epigenetically silenced endogenous gene in Arabidopsis plants. CONCLUSIONS Our assay systems allowed us to assess the inhibition of cytosine methylation, in particular of maintenance of methylation, by compounds in plant cells. These results suggest a novel role of flavonoids in plant cells and that genistein is useful for modifying the epigenetic state of plant genomes.
Collapse
Affiliation(s)
- Sachiko Arase
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Megumi Kasai
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
34
|
Champagne FA. Interplay between social experiences and the genome: epigenetic consequences for behavior. ADVANCES IN GENETICS 2012; 77:33-57. [PMID: 22902125 DOI: 10.1016/b978-0-12-387687-4.00002-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Social experiences can have a persistent effect on biological processes leading to phenotypic diversity. Variation in gene regulation has emerged as a mechanism through which the interplay between DNA and environments leads to the biological encoding of these experiences. Epigenetic modifications-molecular pathways through which transcription is altered without altering the underlying DNA sequence-play a critical role in the normal process of development and are being increasingly explored as a mechanism linking environmental experiences to long-term biobehavioral outcomes. In this review, evidence implicating epigenetic factors, such as DNA methylation and histone modifications, in the link between social experiences occurring during the postnatal period and in adulthood and altered neuroendocrine and behavioral outcomes will be highlighted. In addition, the role of epigenetic mechanisms in shaping variation in social behavior and the implications of epigenetics for our understanding of the transmission of traits across generations will be discussed.
Collapse
|
35
|
Liu X, Yu CW, Duan J, Luo M, Wang K, Tian G, Cui Y, Wu K. HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis. PLANT PHYSIOLOGY 2012; 158:119-29. [PMID: 21994348 PMCID: PMC3252112 DOI: 10.1104/pp.111.184275] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 10/08/2011] [Indexed: 05/18/2023]
Abstract
The molecular mechanism of how the histone deacetylase HDA6 participates in maintaining transposable element (TE) silencing in Arabidopsis (Arabidopsis thaliana) is not yet defined. In this study, we show that a subset of TEs was transcriptionally reactivated and that TE reactivation was associated with elevated histone H3 and H4 acetylation as well as increased H3K4Me3 and H3K4Me2 in hda6 mutants. Decreased DNA methylation of the TEs was also detected in hda6 mutants, suggesting that HDA6 silences the TEs by regulating histone acetylation and methylation as well as the DNA methylation status of the TEs. Similarly, transcripts of some of these TEs were also increased in the methyltransferase1 (met1) mutant, with decreased DNA methylation. Furthermore, H4 acetylation, H3K4Me3, H3K4Me2, and H3K36Me2 were enriched at the coregulated TEs in the met1 and hda6 met1 mutants. Protein-protein interaction analysis indicated that HDA6 physically interacts with MET1 in vitro and in vivo, and further deletion analysis demonstrated that the carboxyl-terminal region of HDA6 and the bromo-adjacent homology domain of MET1 were responsible for the interaction. These results suggested that HDA6 and MET1 interact directly and act together to silence TEs by modulating DNA methylation, histone acetylation, and histone methylation status.
Collapse
|
36
|
Horvat T, Mužinić A, Barišić D, Bosnar MH, Zoldoš V. Epigenetic modulation of the HeLa cell membrane N-glycome. Biochim Biophys Acta Gen Subj 2011; 1820:1412-9. [PMID: 22192783 DOI: 10.1016/j.bbagen.2011.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 12/05/2011] [Accepted: 12/05/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Epigenetic changes play a role in all major events during tumorigenesis and changes in glycan structures are hallmarks of virtually every cancer. Also, proper N-glycosylation of membrane receptors is important in cell to cell and cell-environment communication. To study how modulation of epigenetic information can affect N-glycan expression we analyzed effects of epigenetic inhibitors on HeLa cell membrane N-glycome. METHODS HeLa cells were treated with DNA methylation (zebularin and 5-aza-2-deoxycytidine) and histone deacetylation (trichostatin A and Na-butyrate) inhibitors. The effects on HeLa cell membrane N-glycome were analyzed by hydrophilic interaction high performance liquid chromatography (HILIC). RESULTS Each of the four epigenetic inhibitors induced changes in the expression of HeLa cell membrane N-glycans that were seen either as an increase or a decrease of individual glycans in the total N-glycome. Compared to DNA methylation inhibitors, histone deacetylation inhibitors showed more moderate changes, probably due to their higher gene target selectivity. CONCLUSIONS The results clearly show that composition of HeLa cell membrane N-glycome can be specifically altered by epigenetic inhibitors. GENERAL SIGNIFICANCE Glycans on the cell membrane are essential elements of tumor cell's metastatic potential and are also an entry point for nearly all pathogenic microorganisms. Since epigenetic inhibitors used in this work are registered drugs, our results provide a new line of research in the application of these drugs as anticancer and antimicrobial agents. This article is part of a Special Issue entitled Glycoproteomics.
Collapse
Affiliation(s)
- Tomislav Horvat
- University of Zagreb, Faculty of Science, Horvatovac 102a, Zagreb, Croatia
| | | | | | | | | |
Collapse
|
37
|
Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize. PLoS One 2011; 6:e22132. [PMID: 21811564 PMCID: PMC3141014 DOI: 10.1371/journal.pone.0022132] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 06/16/2011] [Indexed: 02/06/2023] Open
Abstract
Post-translational modifications of histone proteins play a crucial role in responding to environmental stresses. Histone deacetylases (HDACs) catalyze the removal of an acetyl group from histones and are generally believed to be a transcriptional repressor. In this paper, we report that cold treatment highly induces the up-regulation of HDACs, leading to global deacetylation of histones H3 and H4. Treatment of maize with the HDAC inhibitor trichostatin A (TSA) under cold stress conditions strongly inhibits induction of the maize cold-responsive genes ZmDREB1 and ZmCOR413. However, up-regulation of the ZmICE1 gene in response to cold stress is less affected. The expression of drought and salt induced genes, ZmDBF1 and rab17, is almost unaffected by TSA treatment. Thus, these observations show that HDACs may selectively activate transcription. The time course of TSA effects on the expression of ZmDREB1 and ZmCOR413 genes indicates that HDACs appear to directly activate the ZmDREB1 gene, which in turn modulates ZmCOR413 expression. After cold treatment, histone hyperacetylation and DNA demethylation occurs in the ICE1 binding region, accompanied by an increase in accessibility to micrococcal nuclease (MNase). The two regions adjacent to the ICE1 binding site remain hypoacetylated and methylated. However, during cold acclimation, TSA treatment increases the acetylation status and accessibility of MNase and decreases DNA methylation at these two regions. However, TSA treatment does not affect histone hyperacetylation and DNA methylation levels at the ICE1 binding regions of the ZmDREB1 gene. Altogether, our findings indicate that HDACs positively regulate the expression of the cold-induced ZmDREB1 gene through histone modification and chromatin conformational changes and that this activation is both gene and site selective.
Collapse
|
38
|
Ren J, Singh BN, Huang Q, Li Z, Gao Y, Mishra P, Hwa YL, Li J, Dowdy SC, Jiang SW. DNA hypermethylation as a chemotherapy target. Cell Signal 2011; 23:1082-93. [PMID: 21345368 DOI: 10.1016/j.cellsig.2011.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
Epigenetics refers to partially reversible, somatically inheritable, but DNA sequence-independent traits that modulate gene expression, chromatin structure, and cell functions such as cell cycle and apoptosis. DNA methylation is an example of a crucial epigenetic event; aberrant DNA methylation patterns are frequently found in human malignancies. DNA hypermethylation and the associated expression silencing of tumor suppressor genes represent a hallmark of neoplastic cells. The cancer methylome is highly disrupted, making DNA methylation an excellent target for anti-cancer therapies. Several small synthetic and natural molecules, are able to reverse the DNA hypermethylation through inhibition of DNA methyltransferase (DNMT). DNMT is the enzyme catalyzing the transfer of methyl groups to cytosines in genomic DNA. These reagents are studied intensively in cell cultures, animal models, and clinical trials for potential anti-cancer activities. It was found that accompanying DNA demethylation is a dramatic reactivation of the silenced genes and inhibition of cancer cell proliferation, promotion of cell apoptosis, or sensitization of cells to other chemotherapeutic reagents. During the last few decades, an increasing number of DNMT inhibitors (DNMTi) targeting DNA methylation have been developed to increase efficacy with reduced toxicity. This review provides an update on new findings on cancer epigenetic mechanisms, the development of new DNMTi, and their application in the clinical setting. Current challenges, potential solutions, and future directions concerning the development of DNMTi are also discussed in this review.
Collapse
Affiliation(s)
- Juan Ren
- Cancer Center, First Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Szyf M. The implications of DNA methylation for toxicology: toward toxicomethylomics, the toxicology of DNA methylation. Toxicol Sci 2011; 120:235-55. [PMID: 21297083 DOI: 10.1093/toxsci/kfr024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identifying agents that have long-term deleterious impact on health but exhibit no immediate toxicity is of prime importance. It is well established that long-term toxicity of chemicals could be caused by their ability to generate changes in the DNA sequence through the process of mutagenesis. Several assays including the Ames test and its different modifications were developed to assess the mutagenic potential of chemicals (Ames, B. N., Durston, W. E., Yamasaki, E., and Lee, F. D. (1973a). Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. U.S.A. 70, 2281-2285; Ames, B. N., Lee, F. D., and Durston, W. E. (1973b). An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Natl. Acad. Sci. U.S.A. 70, 782-786). These tests have also been employed for assessing the carcinogenic potential of compounds. However, the DNA molecule contains within its chemical structure two layers of information. The DNA sequence that bears the ancestral genetic information and the pattern of distribution of covalently bound methyl groups on cytosines in DNA. DNA methylation patterns are generated by an innate program during gestation but are attuned to the environment in utero and throughout life including physical and social exposures. DNA function and health could be stably altered by exposure to environmental agents without changing the sequence, just by changing the state of DNA methylation. Our current screening tests do not detect agents that have long-range impact on the phenotype without altering the genotype. The realization that long-range damage could be caused without changing the DNA sequence has important implications on the way we assess the safety of chemicals, drugs, and food and broadens the scope of definition of toxic agents.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
40
|
Abstract
AbstractNumerous epigenetic modifications have been identified and correlated with transcriptionally active euchromatin or repressed heterochromatin and many enzymes responsible for the addition and removal of these marks have been characterized. However, less is known regarding how these enzymes are regulated and targeted to appropriate genomic locations. Mammalian CXXC finger protein 1 is an epigenetic regulator that was originally identified as a protein that binds specifically to any DNA sequence containing an unmethylated CpG dinucleotide. Mouse embryos lacking CXXC finger protein 1 die prior to gastrulation, and embryonic stem cells lacking CXXC finger protein 1 are viable but are unable to achieve cellular differentiation and lineage commitment. CXXC finger protein 1 is a regulator of both cytosine and histone methylation. It physically interacts with DNA methyltransferase 1 and facilitates maintenance cytosine methylation. Rescue studies reveal that CXXC finger protein 1 contains redundant functional domains that are sufficient to support cellular differentiation and proper levels of cytosine methylation. CXXC finger protein 1 is also a component of the Setd1 histone H3-Lys4 methyltransferase complexes and functions to target these enzymes to unmethylated CpG islands. Depletion of CXXC finger protein 1 leads to loss of histone H3-Lys4 tri-methylation at CpG islands and inappropriate drifting of this euchromatin mark into areas of hetero-chromatin. Thus, one function of CXXC finger protein 1 is to serve as an effector protein that interprets cytosine methylation patterns and facilitates crosstalk with histone-modifying enzymes.
Collapse
Affiliation(s)
- David G. Skalnik
- 1Wells Center for Pediatric Research, Section of Pediatric Hematology/Oncology, Departments of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA
| |
Collapse
|
41
|
H2B- and H3-specific histone deacetylases are required for DNA methylation in Neurospora crassa. Genetics 2010; 186:1207-16. [PMID: 20876559 DOI: 10.1534/genetics.110.123315] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurospora crassa utilizes DNA methylation to inhibit transcription of heterochromatin. DNA methylation is controlled by the histone methyltransferase DIM-5, which trimethylates histone H3 lysine 9, leading to recruitment of the DNA methyltransferase DIM-2. Previous work demonstrated that the histone deacetylase (HDAC) inhibitor trichostatin A caused a reduction in DNA methylation, suggesting involvement of histone deacetylation in DNA methylation. We therefore created mutants of each of the four classical N. crassa HDAC genes and tested their effect on histone acetylation levels and DNA methylation. Global increases in H3 and H4 acetylation levels were observed in both the hda-3 and the hda-4 mutants. Mutation of two of the genes, hda-1 and hda-3, caused partial loss of DNA methylation. The site-specific loss of DNA methylation in hda-1 correlated with loss of H3 lysine 9 trimethylation and increased H3 acetylation. In addition, an increase in H2B acetylation was observed by two-dimensional gel electrophoresis of histones of the hda-1 mutant. We found a similar increase in the Schizosaccharomyces pombe Clr3 mutant, suggesting that this HDAC has a previously unrecognized substrate and raising the possibility that the acetylation state of H2B may play a role in the regulation of DNA methylation and heterochromatin formation.
Collapse
|
42
|
Sanders YY, Tollefsbol TO, Varisco BM, Hagood JS. Epigenetic regulation of thy-1 by histone deacetylase inhibitor in rat lung fibroblasts. Am J Respir Cell Mol Biol 2010; 45:16-23. [PMID: 20724553 DOI: 10.1165/rcmb.2010-0154oc] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Thy-1 is a cell surface glycoprotein present on normal lung fibroblasts but absent from the fibroblastic foci of idiopathic pulmonary fibrosis. Thy-1 correlates inversely with fibrogenic phenotypic characteristics and functions as a "fibrosis suppressor." Promoter region hypermethylation can silence Thy-1 expression in fibroblastic foci, suggesting that epigenetic regulation is important in programming the fibrotic phenotype. We examined whether histone modifications are important in regulating Thy-1 expression in lung fibroblasts. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) restored Thy-1 expression in Thy-1(-) cells in a time-dependent and concentration-dependent fashion and was associated with enrichment of histone acetylation. Chromatin immunoprecipitation demonstrated Thy-1 depletion of trimethylated H3K27 after 24 hours of TSA treatment, concurrent with enrichment of trimethylated H3K4 and acetylated H4. Bisulfite sequencing of the Thy-1 promoter region revealed demethylation of the previously hypermethylated CpG sites after treatment with TSA. Although Thy-1 was hypermethylated in Thy-1(-) lung fibroblasts, we observed that Thy-1(-) cells have lower global DNA methylation compared with Thy-1(+) lung fibroblasts, which was partially reversed by TSA treatment. TSA treatment up-regulates total methyltransferase activity in these cells. Our data indicate that Thy-1 silencing is regulated by histone modifications in addition to promoter hypermethylation in lung fibroblasts. Additionally, our findings indicate that alteration of histone modifications alters DNA methylation. Understanding the molecular hierarchy of events with respect to reactivation of transcription and reversal of histone modification will be critical to understand and modify the regulated expression of Thy-1, a tumor-supressor and fibrosis-suppressor gene.
Collapse
Affiliation(s)
- Yan Y Sanders
- Department of Pediatrics, University of California-San Diego, 9500 Gilman Dr., MC 0731, San Diego, CA 92093-0731, USA
| | | | | | | |
Collapse
|
43
|
Yang F, Zhang L, Li J, Huang J, Wen R, Ma L, Zhou D, Li L. Trichostatin A and 5-azacytidine both cause an increase in global histone H4 acetylation and a decrease in global DNA and H3K9 methylation during mitosis in maize. BMC PLANT BIOLOGY 2010; 10:178. [PMID: 20718950 PMCID: PMC3095308 DOI: 10.1186/1471-2229-10-178] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 08/18/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND Modifications of DNA and histones in various combinations are correlated with many cellular processes. In this study, we investigated the possible relationship between histone H4 tetraacetylation, DNA methylation and histone H3 dimethylation at lysine 9 during mitosis in maize root meristems. RESULTS Treatment with trichostatin A, which inhibits histone deacetylases, resulted in increased histone H4 acetylation accompanied by the decondensation of interphase chromatin and a decrease in both global H3K9 dimethylation and DNA methylation during mitosis in maize root tip cells. These observations suggest that histone acetylation may affect DNA and histone methylation during mitosis. Treatment with 5-azacytidine, a cytosine analog that reduces DNA methylation, caused chromatin decondensation and mediated an increase in H4 acetylation, in addition to reduced DNA methylation and H3K9 dimethylation during interphase and mitosis. These results suggest that decreased DNA methylation causes a reduction in H3K9 dimethylation and an increase in H4 acetylation. CONCLUSIONS The interchangeable effects of 5-azacytidine and trichostatin A on H4 acetylation, DNA methylation and H3K9 dimethylation indicate a mutually reinforcing action between histone acetylation, DNA methylation and histone methylation with respect to chromatin modification. Treatment with trichostatin A and 5-azacytidine treatment caused a decrease in the mitotic index, suggesting that H4 deacetylation and DNA and H3K9 methylation may contain the necessary information for triggering mitosis in maize root tips.
Collapse
Affiliation(s)
- Fei Yang
- Key laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lu Zhang
- Key laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Li
- Key laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Huang
- Key laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ruoyu Wen
- Key laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lu Ma
- Key laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dongfeng Zhou
- Tongji medical colleges, Huazhong Science and Technology University, Wuhan 430030, China
| | - Lijia Li
- Key laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
44
|
Anderson DC, Green GR, Smith K, Selker EU. Extensive and varied modifications in histone H2B of wild-type and histone deacetylase 1 mutant Neurospora crassa. Biochemistry 2010; 49:5244-57. [PMID: 20462202 DOI: 10.1021/bi100391w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA methylation is deficient in a histone deacetylase 1 (HDA1) mutant (hda-1) strain of Neurospora crassa with inactivated histone deacetylase 1. Difference two-dimensional (2D) gels identified the primary histone deacetylase 1 target as histone H2B. Acetylation was identified by LC-MS/MS at five different lysines in wild-type H2B and at 11 lysines in hda-1 H2B, suggesting Neurospora H2B is a complex combination of different acetylated species. Individual 2D gel spots were shifted by single lysine acetylations. FTICR MS-observed methylation ladders identify an ensemble of 20-25 or more modified forms for each 2D gel spot. Twelve different lysines or arginines were methylated in H2B from the wild type or hda-1; only two were in the N-terminal tail. Arginines were modified by monomethylation, dimethylation, or deimination. H2B from wild-type and hda-1 ensembles may thus differ by acetylation at multiple sites, and by additional modifications. Combined with asymmetry-generated diversity in H2B structural states in nucleosome core particles, the extensive modifications identified here can create substantial histone-generated structural diversity in nucleosome core particles.
Collapse
Affiliation(s)
- D C Anderson
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| | | | | | | |
Collapse
|
45
|
Rountree MR, Selker EU. DNA methylation and the formation of heterochromatin in Neurospora crassa. Heredity (Edinb) 2010; 105:38-44. [PMID: 20407471 DOI: 10.1038/hdy.2010.44] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Studies of the control and function of DNA methylation in Neurospora crassa have led to a greater understanding of heterochromatin formation. DNA methylation in Neurospora is dependent on trimethylation of histone H3 lysine 9 (H3K9me3) by the histone methyltransferase, DIM-5. The linkage between these two methyl marks is facilitated by heterochromatin protein 1 (HP1), which serves as an adapter protein. HP1 binds to the H3K9me3 and recruits the DNA methyltransferase, DIM-2. Although HP1 links H3K9me3 to DNA methylation, it also serves to recruit the DNA methylation modifier complex to the edges of heterochromatin regions, where it serves to limit the spreading of the heterochromatin by countering H3K9me3.
Collapse
Affiliation(s)
- M R Rountree
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | | |
Collapse
|
46
|
Munro SK, Farquhar CM, Mitchell MD, Ponnampalam AP. Epigenetic regulation of endometrium during the menstrual cycle. Mol Hum Reprod 2010; 16:297-310. [PMID: 20139117 DOI: 10.1093/molehr/gaq010] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endometrium undergoes morphological and functional changes during the menstrual cycle which are essential for uterine receptivity. These changes are driven by estrogen and progesterone and involve the fine control of many different genes-several of which have been identified as being epigenetically regulated. Epigenetic modification may therefore influence the functional changes in the endometrium required for successful implantation. There is, however, only limited information on epigenetic regulation in endometrium. We review the potential role of epigenetic regulation of key processes during the menstrual cycle and present our own findings following a preliminary study into global acetylation levels in the human endometrium. A changing epigenetic state is associated with the differentiation of stem cells into different lineages and thus may be involved in endometrial regeneration. Histone acetylation is implicated in the vascular endothelial growth factor pathway during angiogenesis, and studies using histone deacetylase inhibitors suggest an involvement in endometrial proliferation and differentiation. The processes of decidualization and implantation are also associated with epigenetic change and epigenetic modulators show variable expression across the menstrual cycle. Our own studies found that endometrial global histone acetylation, as determined by western blotting, changed throughout the menstrual cycle and correlated well with expected transcription activity during the different phases. This suggests that epigenetics may be involved in the regulation of endometrial gene expression during the menstrual cycle and that abnormal epigenetic modifications may therefore be associated with implantation failure and early pregnancy loss as well as with other endometrial pathologies.
Collapse
Affiliation(s)
- S K Munro
- The Liggins Institute, The University of Auckland, Auckland 1142, New Zealand
| | | | | | | |
Collapse
|
47
|
Thompson RF, Fazzari MJ, Greally JM. Experimental approaches to the study of epigenomic dysregulation in ageing. Exp Gerontol 2010; 45:255-68. [PMID: 20060885 DOI: 10.1016/j.exger.2009.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 12/19/2009] [Accepted: 12/28/2009] [Indexed: 12/25/2022]
Abstract
In this review, we describe how normal ageing may involve the acquisition of epigenetic errors over time, akin to the accumulation of genetic mutations with ageing. We describe how such experiments are currently performed, their limitations technically and analytically and their application to ageing research.
Collapse
Affiliation(s)
- Reid F Thompson
- Department of Genetics and Center for Epigenomics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
48
|
Abstract
This review describes the role that epigenetic changes play in the pathogenesis of cancer, concentrating on the plasma cell malignancy multiple myeloma, and highlights recent findings regarding the efficacy of epigenetic therapeutic agents in laboratory studies and clinical trials. DNA methylation is altered in a wide range of cancers with hypermethylation of CpG islands associated with silencing of tumour suppressor genes. Genes found to be silenced by methylation in myeloma samples include VHL, TP53, CDKN2A, and TGFBR2. Myeloma is linked to the overexpression of a histone methylatransferase (MMSET) and inactivating mutations of a histone demethylase (UTX), suggesting that the regulation of histone methylation is a potential therapeutic target. Abnormal expression of histone deacetylases (HDACs) has been widely described in solid tumours and haematological malignancies. In myeloma, histone deacetylase inhibitors show promising results both in laboratory-based cell culture studies and in clinical trials, where they demonstrate particularly good therapeutic outcome when administered in combination with other standard chemotherapeutic agents. The study of epigenetics shows great promise for understanding the alterations in gene expression that underlie malignancies and provides exciting novel drugable targets.
Collapse
Affiliation(s)
- Emma M Smith
- Institute of Cancer Research, Sutton, Surrey, UK
| | | | | |
Collapse
|
49
|
Cichewicz RH. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep 2009; 27:11-22. [PMID: 20024091 DOI: 10.1039/b920860g] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The covalent modification of chromatin is an important control mechanism used by fungi to modulate the transcription of genes involved in secondary metabolite production. To date, both molecular-based and chemical approaches targeting histone and DNA posttranslational processes have shown great potential for rationally directing the activation and/or suppression of natural-product-encoding gene clusters. In this Highlight, the organization of the fungal epigenome is summarized and strategies for manipulating chromatin-related targets are presented. Applications of these techniques are illustrated using several recently published accounts in which chemical-epigenetic methods and mutant studies were successfully employed for the de novo or enhanced production of structurally diverse fungal natural products (e.g., anthraquinones, cladochromes, lunalides, mycotoxins, and nygerones).
Collapse
Affiliation(s)
- Robert H Cichewicz
- Natural Products Discovery Group and Graduate Program in Ecology and Evolutionary Biology, Department of Chemistry and Biochemistry, 620 Parrington Oval, Room 208, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
50
|
Ions L, Wakeling L, Ford D. Can soyabean isoflavones mimic the effects of energy restriction on healthy ageing? NUTR BULL 2009. [DOI: 10.1111/j.1467-3010.2009.01764.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|