1
|
Reed CJ, Lam QN, Mirts EN, Lu Y. Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling. Chem Soc Rev 2021; 50:2486-2539. [PMID: 33475096 PMCID: PMC7920998 DOI: 10.1039/d0cs01297a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heme-copper oxidases (HCO), nitric oxide reductases (NOR), and sulfite reductases (SiR) catalyze the multi-electron and multi-proton reductions of O2, NO, and SO32-, respectively. Each of these reactions is important to drive cellular energy production through respiratory metabolism and HCO, NOR, and SiR evolved to contain heteronuclear active sites containing heme/copper, heme/nonheme iron, and heme-[4Fe-4S] centers, respectively. The complexity of the structures and reactions of these native enzymes, along with their large sizes and/or membrane associations, make it challenging to fully understand the crucial structural features responsible for the catalytic properties of these active sites. In this review, we summarize progress that has been made to better understand these heteronuclear metalloenzymes at the molecular level though study of the native enzymes along with insights gained from biomimetic models comprising either small molecules or proteins. Further understanding the reaction selectivity of these enzymes is discussed through comparisons of their similar heteronuclear active sites, and we offer outlook for further investigations.
Collapse
Affiliation(s)
- Christopher J Reed
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA.
| | - Quan N Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA
| | - Evan N Mirts
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA. and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Du B, Yang L, Lloyd CJ, Fang X, Palsson BO. Genome-scale model of metabolism and gene expression provides a multi-scale description of acid stress responses in Escherichia coli. PLoS Comput Biol 2019; 15:e1007525. [PMID: 31809503 PMCID: PMC6897400 DOI: 10.1371/journal.pcbi.1007525] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022] Open
Abstract
Response to acid stress is critical for Escherichia coli to successfully complete its life-cycle by passing through the stomach to colonize the digestive tract. To develop a fundamental understanding of this response, we established a molecular mechanistic description of acid stress mitigation responses in E. coli and integrated them with a genome-scale model of its metabolism and macromolecular expression (ME-model). We considered three known mechanisms of acid stress mitigation: 1) change in membrane lipid fatty acid composition, 2) change in periplasmic protein stability over external pH and periplasmic chaperone protection mechanisms, and 3) change in the activities of membrane proteins. After integrating these mechanisms into an established ME-model, we could simulate their responses in the context of other cellular processes. We validated these simulations using RNA sequencing data obtained from five E. coli strains grown under external pH ranging from 5.5 to 7.0. We found: i) that for the differentially expressed genes accounted for in the ME-model, 80% of the upregulated genes were correctly predicted by the ME-model, and ii) that these genes are mainly involved in translation processes (45% of genes), membrane proteins and related processes (18% of genes), amino acid metabolism (12% of genes), and cofactor and prosthetic group biosynthesis (8% of genes). We also demonstrated several intervention strategies on acid tolerance that can be simulated by the ME-model. We thus established a quantitative framework that describes, on a genome-scale, the acid stress mitigation response of E. coli that has both scientific and practical uses.
Collapse
Affiliation(s)
- Bin Du
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Laurence Yang
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Colton J. Lloyd
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Xin Fang
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
- * E-mail:
| |
Collapse
|
3
|
Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase. Proc Natl Acad Sci U S A 2018; 115:6195-6200. [PMID: 29802230 DOI: 10.1073/pnas.1720298115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite high structural homology between NO reductases (NORs) and heme-copper oxidases (HCOs), factors governing their reaction specificity remain to be understood. Using a myoglobin-based model of NOR (FeBMb) and tuning its heme redox potentials (E°') to cover the native NOR range, through manipulating hydrogen bonding to the proximal histidine ligand and replacing heme b with monoformyl (MF-) or diformyl (DF-) hemes, we herein demonstrate that the E°' holds the key to reactivity differences between NOR and HCO. Detailed electrochemical, kinetic, and vibrational spectroscopic studies, in tandem with density functional theory calculations, demonstrate a strong influence of heme E°' on NO reduction. Decreasing E°' from +148 to -130 mV significantly impacts electronic properties of the NOR mimics, resulting in 180- and 633-fold enhancements in NO association and heme-nitrosyl decay rates, respectively. Our results indicate that NORs exhibit finely tuned E°' that maximizes their enzymatic efficiency and helps achieve a balance between opposite factors: fast NO binding and decay of dinitrosyl species facilitated by low E°' and fast electron transfer facilitated by high E°'. Only when E°' is optimally tuned in FeBMb(MF-heme) for NO binding, heme-nitrosyl decay, and electron transfer does the protein achieve multiple (>35) turnovers, previously not achieved by synthetic or enzyme-based NOR models. This also explains a long-standing question in bioenergetics of selective cross-reactivity in HCOs. Only HCOs with heme E°' in a similar range as NORs (between -59 and 200 mV) exhibit NOR reactivity. Thus, our work demonstrates efficient tuning of E°' in various metalloproteins for their optimal functionality.
Collapse
|
4
|
Prediction of high- and low-affinity quinol-analogue-binding sites in the aa3 and bo3 terminal oxidases from Bacillus subtilis and Escherichia coli1. Biochem J 2014; 461:305-14. [PMID: 24779955 DOI: 10.1042/bj20140082] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Haem-copper oxidases are the terminal enzymes in both prokaryotic and eukaryotic respiratory chains. They catalyse the reduction of dioxygen to water and convert redox energy into a transmembrane electrochemical proton gradient during their catalytic activity. Haem-copper oxidases show substantial structure similarity, but spectroscopic and biochemical analyses indicate that these enzymes contain diverse prosthetic groups and use different substrates (i.e. cytochrome c or quinol). Owing to difficulties in membrane protein crystallization, there are no definitive structural data about the quinol oxidase physiological substrate-binding site(s). In the present paper, we propose an atomic structure model for the menaquinol:O2 oxidoreductase of Bacillus subtilis (QOx.aa3). Furthermore, a multistep computational approach is used to predict residues involved in the menaquinol/menaquinone binding within B. subtilis QOx.aa3 as well as those involved in quinol/quinone binding within Escherichia coli QOx.bo3. Two specific sequence motifs, R70GGXDX4RXQX3PX3FX[D/N/E/Q]X2HYNE97 and G159GSPX2GWX2Y169 (B. subtilis numbering), were highlighted within QOx from Bacillales. Specific residues within the first and the second sequence motif participate in the high- and low-affinity substrate-binding sites respectively. Using comparative analysis, two analogous motifs, R71GFXDX4RXQX8[Y/F]XPPHHYDQ101 and G163EFX3GWX2Y173 (E. coli numbering) were proposed to be involved in Enterobacteriales/Rhodobacterales/Rhodospirillales QOx high- and low-affinity quinol-derivative-binding sites. Results and models are discussed in the context of the literature.
Collapse
|
5
|
Onstott TC, McGown DJ, Bakermans C, Ruskeeniemi T, Ahonen L, Telling J, Soffientino B, Pfiffner SM, Sherwood-Lollar B, Frape S, Stotler R, Johnson EJ, Vishnivetskaya TA, Rothmel R, Pratt LM. Microbial communities in subpermafrost saline fracture water at the Lupin Au mine, Nunavut, Canada. MICROBIAL ECOLOGY 2009; 58:786-807. [PMID: 19568805 DOI: 10.1007/s00248-009-9553-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 06/06/2009] [Indexed: 05/22/2023]
Abstract
We report the first investigation of a deep subpermafrost microbial ecosystem, a terrestrial analog for the Martian subsurface. Our multidisciplinary team analyzed fracture water collected at 890 and 1,130 m depths beneath a 540-m-thick permafrost layer at the Lupin Au mine (Nunavut, Canada). 14C, 3H, and noble gas isotope analyses suggest that the Na-Ca-Cl, suboxic, fracture water represents a mixture of geologically ancient brine, approximately25-kyr-old, meteoric water and a minor modern talik-water component. Microbial planktonic concentrations were approximately10(3) cells mL(-1). Analysis of the 16S rRNA gene from extracted DNA and enrichment cultures revealed 42 unique operational taxonomic units in 11 genera with Desulfosporosinus, Halothiobacillus, and Pseudomonas representing the most prominent phylotypes and failed to detect Archaea. The abundance of terminally branched and midchain-branched saturated fatty acids (5 to 15 mol%) was consistent with the abundance of Gram-positive bacteria in the clone libraries. Geochemical data, the ubiquinone (UQ) abundance (3 to 11 mol%), and the presence of both aerobic and anaerobic bacteria indicated that the environment was suboxic, not anoxic. Stable sulfur isotope analyses of the fracture water detected the presence of microbial sulfate reduction, and analyses of the vein-filling pyrite indicated that it was in isotopic equilibrium with the dissolved sulfide. Free energy calculations revealed that sulfate reduction and sulfide oxidation via denitrification and not methanogenesis were the most thermodynamically viable consistent with the principal metabolisms inferred from the 16S rRNA community composition and with CH4 isotopic compositions. The sulfate-reducing bacteria most likely colonized the subsurface during the Pleistocene or earlier, whereas aerobic bacteria may have entered the fracture water networks either during deglaciation prior to permafrost formation 9,000 years ago or from the nearby talik through the hydrologic gradient created during mine dewatering. Although the absence of methanogens from this subsurface ecosystem is somewhat surprising, it may be attributable to an energy bottleneck that restricts their migration from surface permafrost deposits where they are frequently reported. These results have implications for the biological origin of CH4 on Mars.
Collapse
Affiliation(s)
- T C Onstott
- Department of Geosciences, Princeton University, Princeton, 08544, NJ 08544, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lone AG, Deslandes V, Nash JHE, Jacques M, MacInnes JI. Modulation of gene expression in Actinobacillus pleuropneumoniae exposed to bronchoalveolar fluid. PLoS One 2009; 4:e6139. [PMID: 19578537 PMCID: PMC2700959 DOI: 10.1371/journal.pone.0006139] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 06/08/2009] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Actinobacillus pleuropneumoniae, the causative agent of porcine contagious pleuropneumonia, is an important pathogen of swine throughout the world. It must rapidly overcome the innate pulmonary immune defenses of the pig to cause disease. To better understand this process, the objective of this study was to identify genes that are differentially expressed in a medium that mimics the lung environment early in the infection process. METHODS AND PRINCIPAL FINDINGS Since bronchoalveolar lavage fluid (BALF) contains innate immune and other components found in the lungs, we examined gene expression of a virulent serovar 1 strain of A. pleuropneumoniae after a 30 min exposure to BALF, using DNA microarrays and real-time PCR. The functional classes of genes found to be up-regulated most often in BALF were those encoding proteins involved in energy metabolism, especially anaerobic metabolism, and in cell envelope, DNA, and protein biosynthesis. Transcription of a number of known virulence genes including apxIVA and the gene for SapF, a protein which is involved in resistance to antimicrobial peptides, was also up-regulated in BALF. Seventy-nine percent of the genes that were up-regulated in BALF encoded a known protein product, and of these, 44% had been reported to be either expressed in vivo and/or involved in virulence. CONCLUSIONS The results of this study suggest that in early stages of infection, A. pleuropneumoniae may modulate expression of genes involved in anaerobic energy generation and in the synthesis of proteins involved in cell wall biogenesis, as well as established virulence factors. Given that many of these genes are thought to be expressed in vivo or involved in virulence, incubation in BALF appears, at least partially, to simulate in vivo conditions and may provide a useful medium for the discovery of novel vaccine or therapeutic targets.
Collapse
Affiliation(s)
- Abdul G. Lone
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Vincent Deslandes
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Université de Montréal, St-Hyacinthe, Québec, Canada
- Centre de Recherche en Infectiologie Porcine, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - John H. E. Nash
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Mario Jacques
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Université de Montréal, St-Hyacinthe, Québec, Canada
- Centre de Recherche en Infectiologie Porcine, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Janet I. MacInnes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
7
|
Butler C, Forte E, Maria Scandurra F, Arese M, Giuffré A, Greenwood C, Sarti P. Cytochrome bo(3) from Escherichia coli: the binding and turnover of nitric oxide. Biochem Biophys Res Commun 2002; 296:1272-8. [PMID: 12207912 DOI: 10.1016/s0006-291x(02)02074-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of nitric oxide (NO) with fast and reduced cytochrome bo(3)(cyt bo(3)) from Escherichia coli has been investigated. The stoichiometry of NO binding to cyt bo(3) was determined using an NO electrode in the [NO] range 1-14 microM. Under reducing conditions, the initial decrease in [NO] following the addition of cyt bo(3) corresponded to binding of 1 NO molecule per cyt bo(3) functional unit. After this "rapid" NO binding phase, there was a slow, but significant rate of NO consumption ( approximately 0.3molNOmol bo(3)(-1)min(-1)), indicating that cyt bo(3) possesses a low level of NO reductase activity. The binding of NO to fast pulsed enzyme was also investigated. The results show that in the [NO] range used (1-14 microM) both fast and pulsed oxidised cyt bo(3) bind NO with a stoichiometry of 1:1 with an observed dissociation constant of K(d)=5.6+/-0.6 microM and that NO binding was inhibited by the presence of Cl(-). The binding of nitrite to the binuclear centre causes spectral changes similar to those observed upon NO binding to fast cyt bo(3). These results are discussed in relation to the model proposed by Wilson and co-workers [FEBS Lett. 414 (1997) 281] where the binding of NO to Cu(B)(II) results in the formation of the nitrosonium (Cu(B)(I)-NO(+)) complex. NO(+) then reacts with OH(-), a Cu(B) ligand, to form nitrite, which can bind at the binuclear centre. This work suggests for the first time that the binding of NO to oxidised cyt bo(3) does result in the reduction of Cu(B).
Collapse
Affiliation(s)
- Clive Butler
- School of Cell and Molecular Biosciences, The Medical School, University of Newcastle, NE2 4HH, Newcastle, UK.
| | | | | | | | | | | | | |
Collapse
|
8
|
Hansen KC, Schultz BE, Wang G, Chan SI. Reaction of Escherichia coli cytochrome bo(3) and mitochondrial cytochrome bc(1) with a photoreleasable decylubiquinol. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1456:121-37. [PMID: 10627300 DOI: 10.1016/s0005-2728(99)00107-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to probe the reaction chemistry of respiratory quinol-oxidizing enzymes on a rapid time scale, a photoreleasable quinol substrate was synthesized by coupling decylubiquinol with the water-soluble protecting group 3',5'-bis(carboxymethoxy)benzoin (BCMB) through a carbonate linkage. The resulting compound, DQ-BCMB, was highly soluble in aqueous detergent solution, and showed no reactivity with quinol-oxidizing enzymes prior to photolysis. Upon photolysis in acetonitrile, 5, 7-bis(carboxymethoxy)-2-phenylbenzofuran, carbon dioxide, and decylubiquinol were formed. In aqueous media, free 3', 5'-bis(carboxymethoxy)benzoin was also produced. Photolysis of DQ-BCMB with a 308 nm excimer laser led to the release of the BCMB group in less than 10(-6) s. Decylubiquinol was released in the form of a carbonate monoester, which decarboxylated with an observed first-order rate constant of 195-990 s(-1), depending on the reaction medium. Yields of decylubiquinol as high as 35 microM per laser pulse were attained readily. In the presence of Escherichia coli cytochrome bo(3), photolysis of DQ-BCMB led to the oxidation of quinol by the enzyme with a rate that was limited by the rate of the decylubiquinol release. Mitochondrial cytochrome bc(1) reacted with photoreleased decylubiquinol with distinct kinetic phases corresponding to rapid b heme reduction and somewhat slower c heme reduction. Oxidation of photoreleased ubiquinol by this enzyme showed saturation kinetics with a K(m) of 3.6 microM and a k(cat) of 210 s(-1). The saturation behavior was a result of decylubiquinol being released as a carbonate monoester during the photolysis of DQ-BCMB and interacting with cytochrome bc(1) before decarboxylation of this intermediate yielded free decylubiquinol. The reaction of cytochrome bc(1) and photoreleased decylubiquinol in the presence of antimycin A led to monophasic b heme reduction, but also yielded slower quinol oxidation kinetics. The discrimination of kinetic phases in the reaction of cytochrome bc(1) with ubiquinol substrates has provided a means of exploring the bifurcation of electron transfer that is central to the operation of the Q-cycle in this enzyme.
Collapse
Affiliation(s)
- K C Hansen
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|