1
|
Collart C, Ciccarelli A, Ivanovitch K, Rosewell I, Kumar S, Kelly G, Edwards A, Smith JC. The migratory pathways of the cells that form the endocardium, dorsal aortae, and head vasculature in the mouse embryo. BMC DEVELOPMENTAL BIOLOGY 2021; 21:8. [PMID: 33752600 PMCID: PMC7986287 DOI: 10.1186/s12861-021-00239-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 11/25/2022]
Abstract
Background Vasculogenesis in amniotes is often viewed as two spatially and temporally distinct processes, occurring in the yolk sac and in the embryo. However, the spatial origins of the cells that form the primary intra-embryonic vasculature remain uncertain. In particular, do they obtain their haemato-endothelial cell fate in situ, or do they migrate from elsewhere? Recently developed imaging techniques, together with new Tal1 and existing Flk1 reporter mouse lines, have allowed us to investigate this question directly, by visualising cell trajectories live and in three dimensions. Results We describe the pathways that cells follow to form the primary embryonic circulatory system in the mouse embryo. In particular, we show that Tal1-positive cells migrate from within the yolk sac, at its distal border, to contribute to the endocardium, dorsal aortae and head vasculature. Other Tal1 positive cells, similarly activated within the yolk sac, contribute to the yolk sac vasculature. Using single-cell transcriptomics and our imaging, we identify VEGF and Apela as potential chemo-attractants that may regulate the migration into the embryo. The dorsal aortae and head vasculature are known sites of secondary haematopoiesis; given the common origins that we observe, we investigate whether this is also the case for the endocardium. We discover cells budding from the wall of the endocardium with high Tal1 expression and diminished Flk1 expression, indicative of an endothelial to haematopoietic transition. Conclusions In contrast to the view that the yolk sac and embryonic circulatory systems form by two separate processes, our results indicate that Tal1-positive cells from the yolk sac contribute to both vascular systems. It may be that initial Tal1 activation in these cells is through a common mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-021-00239-3.
Collapse
Affiliation(s)
- C Collart
- Developmental Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - A Ciccarelli
- Advanced Light Microscopy Facility, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - K Ivanovitch
- Developmental Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - I Rosewell
- Genetic Modification Service, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - S Kumar
- Advanced Light Microscopy Facility, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Photonics Group, 606 Blackett Laboratory, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - G Kelly
- Bioinformatics and Biostatistics Facility, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - A Edwards
- Advanced Sequencing Facility, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - J C Smith
- Developmental Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
2
|
Sánchez-Luengo MÁ, Rovira M, Serrano M, Fernandez-Marcos PJ, Martinez L. Analysis of the advantages of cis reporters in optimized FACS-Gal. Cytometry A 2017; 91:721-729. [PMID: 28375558 DOI: 10.1002/cyto.a.23086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/29/2016] [Accepted: 02/23/2017] [Indexed: 11/09/2022]
Abstract
Flow cytometry is a powerful multiparametric technology, widely used for the identification, quantification, and isolation of defined populations of cells based on the expression of target proteins. It also allows for the use of surrogate reporters, either enzymatic or fluorescent, to indirectly monitor the expression of these target proteins. In this work, we optimised the dissociation protocol for the detection of the enzymatic reporter LacZ using the FACS-Gal detection system with the fluorogenic substrate FDG to compare cis- versus trans-positioned reporters efficiency. Particularly, for the FACS-Gal optimization, we studied lung and haematopoietic tissues, focusing on cell recovery, viability, FDG loading conditions and distribution of cellular populations. Reporter genes such as LacZ can be placed together with the gene of interest in the same polycistronic mRNA (in cis), or in independent alleles (in trans), which can strongly affect the correlation with the reporter readout. To address this issue, we generated a mouse model containing both types of reporters for the same gene, and compared them. Our results clearly indicate that trans-positioned reporters can be misleading, and that using a reporter gene in cis rather than trans is a much more specific method to sort for cells undergoing Cre-mediated recombination. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Miguel Ángel Sánchez-Luengo
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, E28029, Spain
| | - Miguel Rovira
- Tumor Suppression Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, E28029, Spain
| | - Manuel Serrano
- Tumor Suppression Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, E28029, Spain
| | - Pablo Jose Fernandez-Marcos
- Tumor Suppression Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, E28029, Spain.,Bioactive Products and Metabolic Syndrome (BIOPROMET), Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM + CSIC, Madrid, E28049, Spain
| | - Lola Martinez
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, E28029, Spain
| |
Collapse
|
3
|
Scialdone A, Tanaka Y, Jawaid W, Moignard V, Wilson NK, Macaulay IC, Marioni JC, Göttgens B. Resolving early mesoderm diversification through single-cell expression profiling. Nature 2016; 535:289-293. [PMID: 27383781 PMCID: PMC4947525 DOI: 10.1038/nature18633] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Abstract
In mammals, specification of the three major germ layers occurs during gastrulation, when cells ingressing through the primitive streak differentiate into the precursor cells of major organ systems. However, the molecular mechanisms underlying this process remain unclear, as numbers of gastrulating cells are very limited. In the mouse embryo at embryonic day 6.5, cells located at the junction between the extra-embryonic region and the epiblast on the posterior side of the embryo undergo an epithelial-to-mesenchymal transition and ingress through the primitive streak. Subsequently, cells migrate, either surrounding the prospective ectoderm contributing to the embryo proper, or into the extra-embryonic region to form the yolk sac, umbilical cord and placenta. Fate mapping has shown that mature tissues such as blood and heart originate from specific regions of the pre-gastrula epiblast, but the plasticity of cells within the embryo and the function of key cell-type-specific transcription factors remain unclear. Here we analyse 1,205 cells from the epiblast and nascent Flk1(+) mesoderm of gastrulating mouse embryos using single-cell RNA sequencing, representing the first transcriptome-wide in vivo view of early mesoderm formation during mammalian gastrulation. Additionally, using knockout mice, we study the function of Tal1, a key haematopoietic transcription factor, and demonstrate, contrary to previous studies performed using retrospective assays, that Tal1 knockout does not immediately bias precursor cells towards a cardiac fate.
Collapse
Affiliation(s)
- Antonio Scialdone
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust
Genome Campus, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Yosuke Tanaka
- Department of Haematology, Cambridge Institute for Medical Research,
University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Cambridge, UK
| | - Wajid Jawaid
- Department of Haematology, Cambridge Institute for Medical Research,
University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Cambridge, UK
| | - Victoria Moignard
- Department of Haematology, Cambridge Institute for Medical Research,
University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Cambridge, UK
| | - Nicola K. Wilson
- Department of Haematology, Cambridge Institute for Medical Research,
University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Cambridge, UK
| | | | - John C. Marioni
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust
Genome Campus, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge,
UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research,
University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Abstract
SCL, a transcription factor of the basic helix-loop-helix family, is a master regulator of hematopoiesis. Scl specifies lateral plate mesoderm to a hematopoietic fate and establishes boundaries by inhibiting the cardiac lineage. A combinatorial interaction between Scl and Vegfa/Flk1 sets in motion the first wave of primitive hematopoiesis. Subsequently, definitive hematopoietic stem cells (HSCs) emerge from the embryo proper via an endothelial-to-hematopoietic transition controlled by Runx1, acting with Scl and Gata2. Past this stage, Scl in steady state HSCs is redundant with Lyl1, a highly homologous factor. However, Scl is haploinsufficient in stress response, when a rare subpopulation of HSCs with very long term repopulating capacity is called into action. SCL activates transcription by recruiting a core complex on DNA that necessarily includes E2A/HEB, GATA1-3, LIM-only proteins LMO1/2, LDB1, and an extended complex comprising ETO2, RUNX1, ERG, or FLI1. These interactions confer multifunctionality to a complex that can control cell proliferation in erythroid progenitors or commitment to terminal differentiation through variations in single component. Ectopic SCL and LMO1/2 expression in immature thymocytes activates of a stem cell gene network and reprogram cells with a finite lifespan into self-renewing preleukemic stem cells (pre-LSCs), an initiating event in T-cell acute lymphoblastic leukemias. Interestingly, fate conversion of fibroblasts to hematoendothelial cells requires not only Scl and Lmo2 but also Gata2, Runx1, and Erg, indicating a necessary collaboration between these transcription factors for hematopoietic reprogramming. Nonetheless, full reprogramming into self-renewing multipotent HSCs may require additional factors and most likely, a permissive microenvironment.
Collapse
Affiliation(s)
- T Hoang
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
| | - J A Lambert
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - R Martin
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
5
|
Luque A, Sebai SC, Sauveplane V, Ramaen O, Pandjaitan R. In vivo evolution of metabolic pathways: Assembling old parts to build novel and functional structures. Bioengineered 2014; 5:347-56. [PMID: 25482082 PMCID: PMC4601399 DOI: 10.4161/bioe.34347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In our recent article "In vivo evolution of metabolic pathways by homeologous recombination in mitotic cells" we proposed a useful alternative to directed evolution methods that permits the generation of yeast cell libraries containing recombinant metabolic pathways from counterpart genes. The methodology was applied to generate single mosaic genes and intragenic mosaic pathways. We used flavonoid metabolism genes as a working model to assembly and express evolved pathways in DNA repair deficient cells. The present commentary revises the principles of gene and pathway mosaicism and explores the scope and perspectives of our results as an additional tool for synthetic biology.
Collapse
|
6
|
In vivo evolution of metabolic pathways by homeologous recombination in mitotic cells. Metab Eng 2014; 23:123-35. [DOI: 10.1016/j.ymben.2014.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 01/27/2014] [Accepted: 02/12/2014] [Indexed: 12/29/2022]
|
7
|
Abstract
SCL/TAL1, a tissue-specific transcription factor of the basic helix-loop-helix family, and c-Kit, a tyrosine kinase receptor, control hematopoietic stem cell survival and quiescence. Here we report that SCL levels are limiting for the clonal expansion of Kit⁺ multipotent and erythroid progenitors. In addition, increased SCL expression specifically enhances the sensitivity of these progenitors to steel factor (KIT ligand) without affecting interleukin-3 response, whereas a DNA-binding mutant antagonizes KIT function and induces apoptosis in progenitors. Furthermore, a twofold increase in SCL levels in mice bearing a hypomorphic Kit allele (W41/41) corrects their hematocrits and deficiencies in erythroid progenitor numbers. At the molecular level, we found that SCL and c-Kit signaling control a common gene expression signature, of which 19 genes are associated with apoptosis. Half of those were decreased in purified megakaryocyte/erythroid progenitors (MEPs) from W41/41 mice and rescued by the SCL transgene. We conclude that Scl operates downstream of Kit to support the survival of MEPs. Finally, higher SCL expression upregulates Kit in normal bone marrow cells and increases chimerism after bone marrow transplantation, indicating that Scl is also upstream of Kit. We conclude that Scl and Kit establish a positive feedback loop in multipotent and MEPs.
Collapse
|
8
|
Retrotransposon insertion in the T-cell acute lymphocytic leukemia 1 (Tal1) gene is associated with severe renal disease and patchy alopecia in Hairpatches (Hpt) mice. PLoS One 2013; 8:e53426. [PMID: 23301070 PMCID: PMC3534690 DOI: 10.1371/journal.pone.0053426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 11/29/2012] [Indexed: 11/30/2022] Open
Abstract
“Hairpatches” (Hpt) is a naturally occurring, autosomal semi-dominant mouse mutation. Hpt/Hpt homozygotes die in utero, while Hpt/+ heterozygotes exhibit progressive renal failure accompanied by patchy alopecia. This mutation is a model for the rare human disorder “glomerulonephritis with sparse hair and telangiectases" (OMIM 137940). Fine mapping localized the Hpt locus to a 6.7 Mb region of Chromosome 4 containing 62 known genes. Quantitative real time PCR revealed differential expression for only one gene in the interval, T-cell acute lymphocytic leukemia 1 (Tal1), which was highly upregulated in the kidney and skin of Hpt/+ mice. Southern blot analysis of Hpt mutant DNA indicated a new EcoRI site in the Tal1 gene. High throughput sequencing identified an endogenous retroviral class II intracisternal A particle insertion in Tal1 intron 4. Our data suggests that the IAP insertion in Tal1 underlies the histopathological changes in the kidney by three weeks of age, and that glomerulosclerosis is a consequence of an initial developmental defect, progressing in severity over time. The Hairpatches mouse model allows an investigation into the effects of Tal1, a transcription factor characterized by complex regulation patterns, and its effects on renal disease.
Collapse
|
9
|
Spensberger D, Kotsopoulou E, Ferreira R, Broccardo C, Scott LM, Fourouclas N, Ottersbach K, Green AR, Göttgens B. Deletion of the Scl +19 enhancer increases the blood stem cell compartment without affecting the formation of mature blood lineages. Exp Hematol 2012; 40:588-598.e1. [PMID: 22401818 PMCID: PMC3387379 DOI: 10.1016/j.exphem.2012.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/11/2012] [Accepted: 02/15/2012] [Indexed: 11/29/2022]
Abstract
The stem cell leukemia (Scl)/Tal1 gene is essential for normal blood and endothelial development, and is expressed in hematopoietic stem cells (HSCs), progenitors, erythroid, megakaryocytic, and mast cells. The Scl +19 enhancer is active in HSCs and progenitor cells, megakaryocytes, and mast cells, but not mature erythroid cells. Here we demonstrate that in vivo deletion of the Scl +19 enhancer (Scl(Δ19/Δ19)) results in viable mice with normal Scl expression in mature hematopoietic lineages. By contrast, Scl expression is reduced in the stem/progenitor compartment and flow cytometry analysis revealed that the HSC and megakaryocyte-erythroid progenitor populations are enlarged in Scl(Δ19/Δ19) mice. The increase in HSC numbers contributed to enhanced expansion in bone marrow transplantation assays, but did not affect multilineage repopulation or stress responses. These results affirm that the Scl +19 enhancer plays a key role in the development of hematopoietic stem/progenitor cells, but is not necessary for mature hematopoietic lineages. Moreover, active histone marks across the Scl locus were significantly reduced in Scl(Δ19/Δ19) fetal liver cells without major changes in steady-state messenger RNA levels, suggesting post-transcriptional compensation for loss of a regulatory element, a result that might be widely relevant given the frequent observation of mild phenotypes after deletion of regulatory elements.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anthony R. Green
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Courtial N, Smink JJ, Kuvardina ON, Leutz A, Göthert JR, Lausen J. Tal1 regulates osteoclast differentiation through suppression of the master regulator of cell fusion DC-STAMP. FASEB J 2011; 26:523-32. [PMID: 21990371 DOI: 10.1096/fj.11-190850] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The balance between bone-forming osteoblasts and bone-resorbing osteoclasts is crucial to bone homeostasis, an equilibrium that is disturbed in many bone diseases. The transcription factor Tal1 is involved in the establishment of hematopoietic stem cells in the embryo and is a master regulator of hematopoietic gene expression in the adult. Here, we show that Tal1 is expressed in osteoclasts and that loss of Tal1 in osteoclast progenitors leads to altered expression of >1200 genes. We found that DC-STAMP, a key regulator of osteoclast cell fusion, is a direct target gene of Tal1 and show that Tal1 represses DC-STAMP expression by counteracting the activating function of the transcription factors PU.1 and MITF. The identification of Tal1 as a factor involved in cell fusion contributes to the understanding of osteoclast-associated diseases, including osteoporosis.
Collapse
Affiliation(s)
- Nadine Courtial
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Stankovich BL, Aguayo E, Barragan F, Sharma A, Pallavicini MG. Differential adhesion molecule expression during murine embryonic stem cell commitment to the hematopoietic and endothelial lineages. PLoS One 2011; 6:e23810. [PMID: 21909405 PMCID: PMC3167810 DOI: 10.1371/journal.pone.0023810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/25/2011] [Indexed: 11/18/2022] Open
Abstract
Mouse embryonic stem cells (ESC) make cell fate decisions based on intrinsic and extrinsic factors. The decision of ESC to differentiate to multiple lineages in vitro occurs during the formation of embryoid bodies (EB) and is influenced by cell-environment interactions. However, molecular mechanisms underlying cell-environmental modulation of ESC fate decisions are incompletely understood. Since adhesion molecules (AM) influence proliferation and differentiation in developing and adult tissues, we hypothesized that specific AM interactions influence ESC commitment toward hematopoietic and endothelial lineages. Expression of AM in the adherens, tight and gap junction pathways in ESC subpopulations were quantified. E-cadherin (E-cad), Claudin-4 (Cldn4), Connexin-43 (Cx43), Zona Occludens-1 (ZO-1) and Zona Occludens-2 (ZO-2) transcript levels were differentially expressed during early stages of hematopoietic/endothelial commitment. Stable ESC lines were generated with reduced expression of E-cad, Cldn4, Cx43, ZO-1 and ZO-2 using shRNA technology. Functional and phenotypic consequences of modulating AM expression were assessed using hematopoietic colony forming assays, endothelial sprouting assays and surface protein expression. A decrease in E-cad, Cldn4, Cx43 and ZO-1 expression was associated with less commitment to the hematopoietic lineage and increased endothelial differentiation as evidenced by functional and phenotypic analysis. A reduction in ZO-2 expression did not influence endothelial differentiation, but decreased hematopoietic commitment two-fold. These data indicate that a subset of AM influence ESC decisions to commit to endothelial and hematopoietic lineages. Furthermore, differentially expressed AM may provide novel markers to delineate early stages of ESC commitment to hematopoietic/endothelial lineages.
Collapse
Affiliation(s)
- Basha L. Stankovich
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Esmeralda Aguayo
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Fatima Barragan
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Aniket Sharma
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Maria G. Pallavicini
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Naik E, O'Reilly LA, Asselin-Labat ML, Merino D, Lin A, Cook M, Coultas L, Bouillet P, Adams JM, Strasser A. Destruction of tumor vasculature and abated tumor growth upon VEGF blockade is driven by proapoptotic protein Bim in endothelial cells. ACTA ACUST UNITED AC 2011; 208:1351-8. [PMID: 21646395 PMCID: PMC3135358 DOI: 10.1084/jem.20100951] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
VEGF deprivation induces Bim expression in tumor endothelial cells, and Bim is needed for anti-VEGF–driven endothelial cell death and tumor shrinkage. For malignant growth, solid cancers must stimulate the formation of new blood vessels by producing vascular endothelial growth factor (VEGF-A), which is required for the survival of tumor-associated vessels. Novel anticancer agents that block VEGF-A signaling trigger endothelial cell (EC) apoptosis and vascular regression preferentially within tumors, but how the ECs die is not understood. In this study, we demonstrate that VEGF-A deprivation, provoked either by drug-induced tumor shrinkage or direct VEGF-A blockade, up-regulates the proapoptotic BH3 (Bcl-2 homology 3)-only Bcl-2 family member Bim in ECs. Importantly, the tumor growth inhibitory activity of a VEGF-A antagonist required Bim-induced apoptosis of ECs. These findings thus reveal the mechanism by which VEGF-A blockade induces EC apoptosis and impairs tumor growth. They also indicate that drugs mimicking BH3-only proteins may be exploited to kill tumor cells not only directly but also indirectly by ablating the tumor vasculature.
Collapse
Affiliation(s)
- Edwina Naik
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The TAL1/SCL transcription factor regulates cell cycle progression and proliferation in differentiating murine bone marrow monocyte precursors. Mol Cell Biol 2010; 30:2181-92. [PMID: 20194619 DOI: 10.1128/mcb.01441-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monocytopoiesis involves the stepwise differentiation in the bone marrow (BM) of common myeloid precursors (CMPs) to monocytes. The basic helix-loop-helix transcription factor TAL1/SCL plays a critical role in other hematopoietic lineages, and while it had been reported to be expressed by BM-derived macrophages, its role in monocytopoiesis had not been elucidated. Using cell explant models of monocyte/macrophage (MM) differentiation, one originating with CMPs and the other from more committed precursors, we characterized the phenotypic and molecular consequences of inactivation of Tal1 expression ex vivo. While Tal1 knockout had minimal effects on cell survival and slightly accelerated terminal differentiation, it profoundly inhibited cell proliferation and decreased entry into and traversal of the G(1) and S phases. In conjunction, steady-state levels of p16(Ink4a) mRNA were increased and those of Gata2 mRNA decreased. Chromatin immunoprecipitation analysis demonstrated the association of Tal1 and E47, one of its E protein DNA-binding partners, with an E box-GATA sequence element in intron 4 of the Gata2 gene and with three E boxes upstream of p16(Ink4a). Finally, wild-type Tal1, but not a DNA binding-defective mutant, rescued the proliferative defect in Tal1-null MM precursors. These results document the importance of this transcription factor in cell cycle progression and proliferation during monocytopoiesis and the requirement for direct DNA binding in these processes.
Collapse
|
14
|
Scl regulates the quiescence and the long-term competence of hematopoietic stem cells. Blood 2009; 115:792-803. [PMID: 19850742 DOI: 10.1182/blood-2009-01-201384] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The majority of long-term reconstituting hematopoietic stem cells (LT-HSCs) in the adult is in G(0), whereas a large proportion of progenitors are more cycling. We show here that the SCL/TAL1 transcription factor is highly expressed in LT-HSCs compared with short-term reconstituting HSCs and progenitors and that SCL negatively regulates the G(0)-G(1) transit of LT-HSCs. Furthermore, when SCL protein levels are decreased by gene targeting or by RNA interference, the reconstitution potential of HSCs is impaired in several transplantation assays. First, the mean stem cell activity of HSCs transplanted at approximately 1 competitive repopulating unit was 2-fold decreased when Scl gene dosage was decreased. Second, Scl(+/-) HSCs were at a marked competitive disadvantage with Scl(+/+) cells when transplanted at 4 competitive repopulating units equivalent. Third, reconstitution of the stem cell pool by adult HSCs expressing Scl-directed shRNAs was decreased compared with controls. At the molecular level, we found that SCL occupies the Cdkn1a and Id1 loci in primary hematopoietic cells and that the expression levels of these 2 regulators of HSC cell cycle and long-term functions are sensitive to Scl gene dosage. Together, our observations suggest that SCL impedes G(0)-G(1) transition in HSCs and regulates their long-term competence.
Collapse
|
15
|
Joshi K, Lee S, Lee B, Lee JW, Lee SK. LMO4 controls the balance between excitatory and inhibitory spinal V2 interneurons. Neuron 2009; 62:641-54. [PMID: 19323994 DOI: 10.1016/j.neuron.2009.04.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/08/2009] [Accepted: 04/30/2009] [Indexed: 11/15/2022]
Abstract
Multiple excitatory and inhibitory interneurons form the motor circuit with motor neurons in the ventral spinal cord. Notch signaling initiates the diversification of immature V2-interneurons into excitatory V2a-interneurons and inhibitory V2b-interneurons. Here, we provide a transcriptional regulatory mechanism underlying their balanced production. LIM-only protein LMO4 controls this binary cell fate choice by regulating the activity of V2a- and V2b-specific LIM complexes inversely. In the spinal cord, LMO4 induces GABAergic V2b-interneurons in collaboration with SCL and inhibits Lhx3 from generating glutamatergic V2a-interneuons. In LMO4;SCL compound mutant embryos, V2a-interneurons increase markedly at the expense of V2b-interneurons. We further demonstrate that LMO4 nucleates the assembly of a novel LIM-complex containing SCL, Gata2, and NLI. This complex activates specific enhancers in V2b-genes consisting of binding sites for SCL and Gata2, thereby promoting V2b-interneuron fate. Thus, LMO4 plays essential roles in directing a balanced generation of inhibitory and excitatory neurons in the ventral spinal cord.
Collapse
Affiliation(s)
- Kaumudi Joshi
- Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
16
|
Joshi K, Lee S, Lee B, Lee JW, Lee SK. LMO4 controls the balance between excitatory and inhibitory spinal V2 interneurons. Neuron 2009; 61:839-51. [PMID: 19323994 DOI: 10.1016/j.neuron.2009.02.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 12/29/2008] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
Abstract
Multiple excitatory and inhibitory interneurons form the motor circuit with motor neurons in the ventral spinal cord. Notch signaling initiates the diversification of immature V2-interneurons into excitatory V2a-interneurons and inhibitory V2b-interneurons. Here, we provide a transcriptional regulatory mechanism underlying their balanced production. LIM-only protein LMO4 controls this binary cell fate choice by regulating the activity of V2a- and V2b-specific LIM complexes inversely. In the spinal cord, LMO4 induces GABAergic V2b-interneurons in collaboration with SCL and inhibits Lhx3 from generating glutamatergic V2a-interneuons. In LMO4;SCL compound mutant embryos, V2a-interneurons increase markedly at the expense of V2b-interneurons. We further demonstrate that LMO4 nucleates the assembly of a novel LIM-complex containing SCL, Gata2, and NLI. This complex activates specific enhancers in V2b-genes consisting of binding sites for SCL and Gata2, thereby promoting V2b-interneuron fate. Thus, LMO4 plays essential roles in directing a balanced generation of inhibitory and excitatory neurons in the ventral spinal cord.
Collapse
Affiliation(s)
- Kaumudi Joshi
- Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
17
|
Souroullas GP, Salmon JM, Sablitzky F, Curtis DJ, Goodell MA. Adult hematopoietic stem and progenitor cells require either Lyl1 or Scl for survival. Cell Stem Cell 2009; 4:180-6. [PMID: 19200805 DOI: 10.1016/j.stem.2009.01.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/15/2008] [Accepted: 01/09/2009] [Indexed: 12/01/2022]
Abstract
Scl and Lyl1 encode two related basic-helix-loop-helix transcription factors implicated in T cell acute lymphoblastic leukemia. Previous studies showed that Scl is essential for embryonic and adult erythropoiesis, while Lyl1 is important for B cell development. Single-knockout mice have not revealed an essential function for Scl or Lyl1 in adult hematopoietic stem cells (HSCs). To determine if maintenance of HSCs in single-knockout mice is due to functional redundancy, we generated Lyl1;Scl-conditional double-knockout mice. Here, we report a striking genetic interaction between the two genes, with a clear dose dependence for the presence of Scl or Lyl1 alleles for HSC function. Bone marrow repopulation assays and analyses demonstrated rapid loss of hematopoietic progenitors due to apoptosis. The function of HSCs could be rescued by a single allele of Lyl1 but not Scl. These results show that expression of at least one of these factors is essential for maintenance of adult HSC function.
Collapse
Affiliation(s)
- George P Souroullas
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
18
|
Mangerich A, Scherthan H, Diefenbach J, Kloz U, van der Hoeven F, Beneke S, Bürkle A. A caveat in mouse genetic engineering: ectopic gene targeting in ES cells by bidirectional extension of the homology arms of a gene replacement vector carrying human PARP-1. Transgenic Res 2008; 18:261-79. [PMID: 19034683 DOI: 10.1007/s11248-008-9228-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Accepted: 10/31/2008] [Indexed: 01/15/2023]
Abstract
Here we report an approach to generate a knock-in mouse model using an 'ends-out' gene replacement vector to substitute the murine Parp-1 (mParp-1) coding sequence (32 kb) with its human orthologous sequence (46 kb). Unexpectedly, examination of mutant ES cell clones and mice revealed that site-specific homologous recombination was mimicked in three independently generated ES cell clones by bidirectional extension of the vector homology arms using the endogenous mParp-1-flanking sequences as templates. This was followed by adjacent integration of the targeting vector, thus leaving the endogenous mParp-1 locus functional. A related phenomenon termed 'ectopic gene targeting' has so far only been described for 'ends-in' integration-type vectors in non-ES cell gene targeting. We provide reliable techniques to detect such ectopic gene targeting which represents an unexpected caveat in mouse genetic engineering that should be considered in the design and validation strategy of future gene knock-in approaches.
Collapse
Affiliation(s)
- Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Box X911, 78457, Constance, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Hematopoietic stem cells have the potential to develop into multipotent and different lineage-restricted progenitor cells that subsequently generate all mature blood cell types. The classical model of hematopoietic lineage commitment proposes a first restriction point at which all multipotent hematopoietic progenitor cells become committed either to the lymphoid or to the myeloid development, respectively. Recently, this model has been challenged by the identification of murine as well as human hematopoietic progenitor cells with lymphoid differentiation capabilities that give rise to a restricted subset of the myeloid lineages. As the classical model does not include cells with such capacities, these findings suggest the existence of alternative developmental pathways that demand the existence of additional branches in the classical hematopoietic tree. Together with some phenotypic criteria that characterize different subsets of multipotent and lineage-restricted progenitor cells, we summarize these recent findings here.
Collapse
Affiliation(s)
- Bernd Giebel
- Institute for Transplantation Diagnostics and Cellular Therapeutics, Heinrich Heine University, Düsseldorf, Germany.
| | | |
Collapse
|
20
|
Jiang H, Liu L, Yang S, Tomomi T, Toru N. CREB-binding proteins (CBP) as a transcriptional coactivator of GATA-2. ACTA ACUST UNITED AC 2008; 51:191-8. [PMID: 18246306 DOI: 10.1007/s11427-008-0038-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 09/05/2007] [Indexed: 11/24/2022]
Abstract
The GATA family consists of six members, GATA 1-6. In this study, we focused on GATA-2, which is expressed predominantly in hematopoietic progenitor cells and plays the key role in keeping these cells in the undifferentiated status. CREB-binding proteins (CBP) are essential transcriptional coactivators for a large number of regulated DNA-binding transcription factors, including GATA-1. But there have been no reports on whether CBP is still a co-activator of GATA-2. Here, we used the immunoprecipitation and pull-down experiments to show that the GATA-2 and CBP were physically binding together, and clarified the binding sites CH1, CH3, CH452 and CT1430 in CBP and N-finger, C-finger and N-C-finger in GATA-2. Luciferase assay results in our experiment indicated that CBP could increase GATA-2 transcriptional activity in the dose-dependent manner. GATA-1 is mainly expressed in differentiated hematopoietic cells, but still has overlap expression with GATA-2. CBP is a coactivator of GATA-2 and GATA-1. The investigation on the mechanism that could decide whether CBP binds to GATA-2 to keep hematopoietic cells in the progenitor status or to GATA-1 to start differentiation will be a very interesting and very meaningful project in the near future.
Collapse
Affiliation(s)
- HuiJie Jiang
- College of Life Sciences, Ludong University, Yantai, 264025, China
| | | | | | | | | |
Collapse
|
21
|
Lécuyer E, Larivière S, Sincennes MC, Haman A, Lahlil R, Todorova M, Tremblay M, Wilkes BC, Hoang T. Protein Stability and Transcription Factor Complex Assembly Determined by the SCL-LMO2 Interaction. J Biol Chem 2007; 282:33649-33658. [PMID: 17878155 DOI: 10.1074/jbc.m703939200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gene expression programs are established by networks of interacting transcription factors. The basic helix-loop-helix factor SCL and the LIM-only protein LMO2 are components of transcription factor complexes that are essential for hematopoiesis. Here we show that LMO2 and SCL are predominant interaction partners in hematopoietic cells and that this interaction occurs through a conserved interface residing in the loop and helix 2 of SCL. This interaction nucleates the assembly of SCL complexes on DNA and is required for target gene induction and for the stimulation of erythroid and megakaryocytic differentiation. We also demonstrate that SCL determines LMO2 protein levels in hematopoietic cells and reveal that interaction with SCL prevents LMO2 degradation by the proteasome. We propose that the SCL-LMO2 interaction couples protein stabilization with higher order protein complex assembly, thus providing a powerful means of modulating the stoichiometry and spatiotemporal activity of SCL complexes. This interaction likely provides a rate-limiting step in the transcriptional control of hematopoiesis and leukemia, and similar mechanisms may operate to control the assembly of diverse protein modules.
Collapse
Affiliation(s)
- Eric Lécuyer
- Institut de Recherche en Immunologie et Cancérologie and the Departments of, Université de Montréal, Montréal, Québec, H3C 2J7, Canada; Department of Molecular Biology, Université de Montréal, Montréal, Québec, H3C 2J7, Canada
| | - Simon Larivière
- Institut de Recherche en Immunologie et Cancérologie and the Departments of, Université de Montréal, Montréal, Québec, H3C 2J7, Canada; Department of Molecular Biology, Université de Montréal, Montréal, Québec, H3C 2J7, Canada
| | - Marie-Claude Sincennes
- Institut de Recherche en Immunologie et Cancérologie and the Departments of, Université de Montréal, Montréal, Québec, H3C 2J7, Canada; Department of Molecular Biology, Université de Montréal, Montréal, Québec, H3C 2J7, Canada
| | - André Haman
- Institut de Recherche en Immunologie et Cancérologie and the Departments of, Université de Montréal, Montréal, Québec, H3C 2J7, Canada
| | - Rachid Lahlil
- Institut de Recherche en Immunologie et Cancérologie and the Departments of, Université de Montréal, Montréal, Québec, H3C 2J7, Canada
| | - Margarita Todorova
- Institut de Recherche en Immunologie et Cancérologie and the Departments of, Université de Montréal, Montréal, Québec, H3C 2J7, Canada; Department of Molecular Biology, Université de Montréal, Montréal, Québec, H3C 2J7, Canada
| | - Mathieu Tremblay
- Institut de Recherche en Immunologie et Cancérologie and the Departments of, Université de Montréal, Montréal, Québec, H3C 2J7, Canada; Department of Molecular Biology, Université de Montréal, Montréal, Québec, H3C 2J7, Canada
| | - Brian C Wilkes
- Institut de Recherche Clinique de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Trang Hoang
- Institut de Recherche en Immunologie et Cancérologie and the Departments of, Université de Montréal, Montréal, Québec, H3C 2J7, Canada; Department of Molecular Biology, Université de Montréal, Montréal, Québec, H3C 2J7, Canada; Department of Pharmacology, Université de Montréal, Montréal, Québec, H3C 2J7, Canada; Department of Biochemistry, Université de Montréal, Montréal, Québec H3C 2J7, Canada.
| |
Collapse
|
22
|
Salmon JM, Slater NJ, Hall MA, McCormack MP, Nutt SL, Jane SM, Curtis DJ. Aberrant mast-cell differentiation in mice lacking the stem-cell leukemia gene. Blood 2007; 110:3573-81. [PMID: 17644741 DOI: 10.1182/blood-2006-10-053124] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stem cell leukemia (SCL) gene encodes a basic helix-loop-helix transcription factor expressed in erythroid, megakaryocyte, and mast-cell lineages. SCL is essential for growth of megakaryocyte and erythroid progenitors. We have used a conditional knockout of SCL (SCL(-/Delta)) to examine its function in mast cells, critical effectors of the immune system. SCL(-/Delta) mice had markedly increased numbers of mast-cell progenitors (MCPs) within the peritoneal fluid, bone marrow, and spleen. Fractionation of bone marrow myeloid progenitors demonstrated that these MCPs were present in the megakaryocyte-erythroid-restricted cell fraction. In contrast, unilineage MCPs from control mice were present in the cell fraction with granulocyte-macrophage potential. The aberrant mast-cell differentiation of SCL(-/Delta) megakaryocyte-erythroid progenitors was associated with increased expression of GATA-2. Despite increased numbers of MCPs in SCL(-/Delta) mice, numbers of mature tissue mast cells were not increased unless SCL(-/Delta) mice were treated with IL-3 and stem-cell factor. In part, this may be due to a requirement for SCL in normal mast-cell maturation: SCL(-/Delta) mast cells had reduced expression of the high-affinity IgE receptor and mast cell proteases, MCP-5 and MCP-6. Together, these studies suggest that loss of SCL leads to aberrant mast-cell differentiation of megakaryocyte-erythroid progenitors.
Collapse
Affiliation(s)
- Jessica M Salmon
- Rotary Bone Marrow Research Laboratories, Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
23
|
Giroux S, Kaushik AL, Capron C, Jalil A, Kelaidi C, Sablitzky F, Dumenil D, Albagli O, Godin I. lyl-1 and tal-1/scl, two genes encoding closely related bHLH transcription factors, display highly overlapping expression patterns during cardiovascular and hematopoietic ontogeny. Gene Expr Patterns 2006; 7:215-26. [PMID: 17112790 DOI: 10.1016/j.modgep.2006.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/29/2006] [Accepted: 10/06/2006] [Indexed: 11/23/2022]
Abstract
The TAL-1/SCL and LYL-1 genes encode two closely related basic helix-loop-helix transcription factors involved in child T-acute lymphoblastic leukemia through chromosomal rearrangements and transcriptional deregulation. During ontogeny, Tal-1/SCL is required for hematopoietic cell generation, both in the yolk sac, where erythro-myeloid cells are first produced, then in the intra-embryonic compartment, where hematopoietic stem cells independently arise. We describe here the expression pattern of lyl-1 in mouse embryos from 7 to 14 days post coitus using in situ hybridization, as well as beta-Galactosidase (beta-Gal) expression in lyl-1-lacZ knock-in embryos, which express a C-terminally truncated Lyl-1 protein fused to the beta-Galactosidase (Lyl-1Delta/beta-Gal). In addition, we compare lyl-1 expression pattern with that of tal-1/scl. Similar to Tal-1/SCL, Lyl-1 mRNA expression occurs in the developing cardiovascular and hematopoietic systems. However, contrary to tal-1/scl, lyl-1 is not expressed in the developing nervous system. In lyl-1-lacZ knock-in heterozygous and homozygous embryos, beta-Gal expression completely correlates with Lyl-1 mRNA expression in the intra-embryonic compartment and is present: (1) in the developing hematopoietic system, precisely where hematopoietic stem cells emerge, and thereafter in the fetal liver; (2) in the developing vascular system; and (3) in the endocardium. In contrast, whereas Lyl-1 mRNA is expressed in yolk sac-derived endothelial and hematopoietic cells, Lyl-1Delta/beta-Gal is either absent or poorly expressed in these cell types, thus differing from Tal-1/SCL, which is highly expressed there at both mRNA and protein levels.
Collapse
Affiliation(s)
- Sébastien Giroux
- INSERM U790, Institut Gustave Roussy-PR1, 39 Rue Camille Desmoulins, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
McCormack MP, Hall MA, Schoenwaelder SM, Zhao Q, Ellis S, Prentice JA, Clarke AJ, Slater NJ, Salmon JM, Jackson SP, Jane SM, Curtis DJ. A critical role for the transcription factor Scl in platelet production during stress thrombopoiesis. Blood 2006; 108:2248-56. [PMID: 16763211 PMCID: PMC1895552 DOI: 10.1182/blood-2006-02-002188] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 05/30/2006] [Indexed: 12/12/2022] Open
Abstract
The generation of platelets from megakaryocytes in the steady state is regulated by a variety of cytokines and transcription factors, including thrombopoietin (TPO), GATA-1, and NF-E2. Less is known about platelet production in the setting of stress thrombopoiesis, a pivotal event in the context of cytotoxic chemotherapy. Here we show in mice that the transcription factor Scl is critical for platelet production after chemotherapy and in thrombopoiesis induced by administration of TPO. Megakaryocytes from these mice showed appropriate increases in number and ploidy but failed to shed platelets. Ultrastructural examination of Scl-null megakaryocytes revealed a disorganized demarcation membrane and reduction in platelet granules. Quantitative real-time polymerase chain reaction showed that Scl-null platelets lacked NF-E2, and chromatin immunoprecipitation analysis demonstrated Scl binding to the NF-E2 promoter in the human megakaryoblastic-cell line Meg-01, along with its binding partners E47, Lmo2, and the cofactors Ldb1 and GATA-2. These findings suggest that Scl acts up-stream of NF-E2 expression to control megakaryocyte development and platelet release in settings of thrombopoietic stress.
Collapse
Affiliation(s)
- Matthew P McCormack
- Bone Marrow Research Laboratories, Royal Melbourne Hospital, Melbourne Health Research Directorate, c/o Royal Melbourne Hospital Post Office, Grattan St, Parkville VIC 3050 Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Brunet de la Grange P, Armstrong F, Duval V, Rouyez MC, Goardon N, Romeo PH, Pflumio F. Low SCL/TAL1 expression reveals its major role in adult hematopoietic myeloid progenitors and stem cells. Blood 2006; 108:2998-3004. [PMID: 16849639 DOI: 10.1182/blood-2006-05-022988] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stem cell leukemia/T cell acute leukemia 1 (SCL/TAL1) plays a key role in the development of murine primitive hematopoiesis but its functions in adult definitive hematopoiesis are still unclear. Using lentiviral delivery of TAL1-directed shRNA in human hematopoietic cells, we show that decreased expression of TAL1 induced major disorders at different levels of adult hematopoietic cell development. Erythroid and myeloid cell production in cultures was dramatically decreased in TAL1-directed shRNA-expressing cells, whereas lymphoid B-cell development was normal. These results confirm the role of TAL1 in the erythroid compartment and show TLA1's implication in the function of myeloid committed progenitors. Moreover, long-term cultures and transplantation of TAL1-directed shRNA-expressing CD34+ cells into irradiated nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice led to dramatically low levels of human cells of all lineages including the B-lymphoid lineage, strongly suggesting that TAL1 has a role in the early commitment of hematopoietic stem cells (HSCs) in humans. Cultures and transplantation experiments performed with mouse Sca1+ cells gave identical results. Altogether, these observations definitively show that TAL1 participates in the regulation of hematopoiesis from HSCs to myeloid progenitors, and pinpoint TAL1 as a master protein of human and murine adult hematopoiesis.
Collapse
|
26
|
Bradley CK, Takano EA, Hall MA, Göthert JR, Harvey AR, Begley CG, van Eekelen JAM. The essential haematopoietic transcription factor Scl is also critical for neuronal development. Eur J Neurosci 2006; 23:1677-89. [PMID: 16623824 DOI: 10.1111/j.1460-9568.2006.04712.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract The basic helix-loop-helix (bHLH) transcription factor Scl displays tissue-restricted expression and is critical for the establishment of the haematopoietic system; loss of Scl results in embryonic death due to absolute anaemia. Scl is also expressed in neurons of the mouse diencephalon, mesencephalon and metencephalon; however, its requirement in those sites remains to be determined. Here we report conditional deletion of Scl in neuronal precursor cells using the Cre/LoxP system. Neuronal-Scl deleted mice died prematurely, were growth retarded and exhibited an altered motor phenotype characterized by hyperactivity and circling. Moreover, ablation of Scl in the nervous system affected brain morphology with abnormal neuronal development in brain regions known to express Scl under normal circumstances; there was an almost complete absence of Scl-null neurons in the hindbrain and partial loss of Scl-null neurons in the thalamus and midbrain from early neurogenesis onwards. Our results demonstrate a crucial role for Scl in the development of Scl-expressing neurons, including gamma-aminobutyric acid (GABA)ergic interneurons. Our study represents one of the first demonstrations of functional overlap of a single bHLH protein that regulates neural and haematopoietic cell development. This finding underlines Scl's critical function in cell fate determination of mesodermal as well as neuroectodermal tissues.
Collapse
Affiliation(s)
- Cara K Bradley
- Telethon Institute for Child Health Research and Centre for Child Health Research at the University of Western Australia, Subiaco WA 6008, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Bockamp E, Antunes C, Maringer M, Heck R, Presser K, Beilke S, Ohngemach S, Alt R, Cross M, Sprengel R, Hartwig U, Kaina B, Schmitt S, Eshkind L. Tetracycline-controlled transgenic targeting from the SCL locus directs conditional expression to erythrocytes, megakaryocytes, granulocytes, and c-kit-expressing lineage-negative hematopoietic cells. Blood 2006; 108:1533-41. [PMID: 16675709 DOI: 10.1182/blood-2005-12-012104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The stem cell leukemia gene SCL, also known as TAL-1, encodes a basic helix-loop-helix transcription factor expressed in erythroid, myeloid, megakaryocytic, and hematopoietic stem cells. To be able to make use of the unique tissue-restricted and spatio-temporal expression pattern of the SCL gene, we have generated a knock-in mouse line containing the tTA-2S tetracycline transactivator under the control of SCL regulatory elements. Analysis of this mouse using different tetracycline-dependent reporter strains demonstrated that switchable transgene expression was restricted to erythrocytes, megakaryocytes, granulocytes, and, importantly, to the c-kit-expressing and lineage-negative cell fraction of the bone marrow. In addition, conditional transgene activation also was detected in a very minor population of endothelial cells and in the kidney. However, no activation of the reporter transgene was found in the brain of adult mice. These findings suggested that the expression of tetracycline-responsive reporter genes recapitulated the known endogenous expression pattern of SCL. Our data therefore demonstrate that exogenously inducible and reversible expression of selected transgenes in myeloid, megakaryocytic, erythroid, and c-kit-expressing lineage-negative bone marrow cells can be directed through SCL regulatory elements. The SCL knock-in mouse presented here represents a powerful tool for studying normal and malignant hematopoiesis in vivo.
Collapse
Affiliation(s)
- Ernesto Bockamp
- Institute of Toxicology/Mouse Genetics, Johannes Gutenberg-Universität Mainz, Obere Zahlbacher Str 67, 55131 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Platelets, derived from megakaryocytes, have an essential role in thrombosis and hemostasis. Over the past 10 years, a great deal of new information has been obtained concerning the various aspects of hematopoiesis necessary to maintain a steady-state platelet level to support physiologic hemostasis. Here we discuss the differentiation of HSCs into megakaryocytes, with emphasis on the key cytokine signaling pathways and hematopoietic transcription factors. Recent insight into these processes elucidates the molecular bases of numerous acquired and inherited hematologic disorders. It is anticipated that the growing knowledge in these areas may be exploited for new therapeutic strategies to modulate both platelet numbers and their thrombogenicity.
Collapse
Affiliation(s)
- Liyan Pang
- Division of Hematology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
29
|
Reynaud D, Ravet E, Titeux M, Mazurier F, Rénia L, Dubart-Kupperschmitt A, Roméo PH, Pflumio F. SCL/TAL1 expression level regulates human hematopoietic stem cell self-renewal and engraftment. Blood 2005; 106:2318-28. [PMID: 15961517 DOI: 10.1182/blood-2005-02-0557] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe fate of hematopoietic stem cells (HSCs) is regulated through a combinatorial action of proteins that determine their self-renewal and/or their commitment to differentiation. Stem cell leukemia/T-cell acute lymphoblastic leukemia 1 (SCL/TAL1), a basic helix-loop-helix (bHLH) transcription factor, plays key roles in controlling the development of primitive and definitive hematopoiesis during mouse development but its function in adult HSCs is still a matter of debate. We report here that the lentiviral-mediated enforced expression of TAL1 in human CD34+ cells marginally affects in vitro the differentiation of committed progenitors, whereas in vivo the repopulation capacity of the long-term SCID (severe combined immunodeficient) mouse–repopulating cells (LT-SRCs) is enhanced. As a consequence, the production of SRC-derived multipotent progenitors as well as erythroid- and myeloid-differentiated cells is increased. Looking at the lymphoid compartment, constitutive TAL1-enforced expression impairs B- but not T-cell differentiation. Expression of a mutant TAL1 protein that cannot bind DNA specifically impairs human LT-SRC amplification, indicating a DNA-binding dependent effect of TAL1 on primitive cell populations. These results indicate that TAL1 expression level regulates immature human hematopoietic cell self-renewal and that this regulation requires TAL1 DNA-binding activity.
Collapse
Affiliation(s)
- Damien Reynaud
- Department of Hematology, Institut Cochin, U567 Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hall MA, Slater NJ, Begley CG, Salmon JM, Van Stekelenburg LJ, McCormack MP, Jane SM, Curtis DJ. Functional but abnormal adult erythropoiesis in the absence of the stem cell leukemia gene. Mol Cell Biol 2005; 25:6355-62. [PMID: 16024775 PMCID: PMC1190361 DOI: 10.1128/mcb.25.15.6355-6362.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have indicated that the stem cell leukemia gene (SCL) is essential for both embryonic and adult erythropoiesis. We have examined erythropoiesis in conditional SCL knockout mice for at least 6 months after loss of SCL function and report that SCL was important but not essential for the generation of mature red blood cells. Although SCL-deleted mice were mildly anemic with increased splenic erythropoiesis, they responded appropriately to endogenous erythropoietin and hemolytic stress, a measure of late erythroid progenitors. However, SCL was more important for the proliferation of early erythroid progenitors because the predominant defects in SCL-deleted erythropoiesis were loss of in vitro growth of the burst-forming erythroid unit and an in vivo growth defect revealed by transplant assays. With respect to erythroid maturation, SCL-deleted proerythroblasts could generate more mature erythroblasts and circulating red blood cells. However, SCL was required for normal expression of TER119, one of the few proposed target genes of SCL. The unexpected finding that SCL-independent erythropoiesis can proceed in the adult suggests that alternate factors can replace the essential functions of SCL and raises the possibility that similar mechanisms also explain the relatively minor defects previously observed in SCL-null hematopoietic stem cells.
Collapse
Affiliation(s)
- Mark A Hall
- Rotary Bone Marrow Research Laboratories, P.O. Royal Melbourne Hospital, Grattan St., Parkville, Melbourne 3050, Australia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- V A Kozlov
- Institute of Clinical Immunology, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| |
Collapse
|
32
|
Masters SL, Palmer KR, Stevenson WS, Metcalf D, Viney EM, Sprigg NS, Alexander WS, Nicola NA, Nicholson SE. Genetic deletion of murine SPRY domain-containing SOCS box protein 2 (SSB-2) results in very mild thrombocytopenia. Mol Cell Biol 2005; 25:5639-47. [PMID: 15964819 PMCID: PMC1156973 DOI: 10.1128/mcb.25.13.5639-5647.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SSB family is comprised of four highly homologous proteins containing a C-terminal SOCS box motif and a central SPRY domain. No function has yet been ascribed to any member of this family in mammalian species despite a clear role for other SOCS proteins in negative regulation of cytokine signaling. To investigate its physiological role, the murine Ssb-2 gene was deleted by homologous recombination. SSB-2-deficient mice were shown to have a reduced rate of platelet production, resulting in very mild thrombocytopenia (25% decrease in circulating platelets). Tissue histology and other hematological parameters were normal, as was the majority of serum biochemistry, with the exception that blood urea nitrogen (BUN) levels were decreased in mice lacking SSB-2. Quantitative analysis of SSB mRNA levels indicated that SSB-1, -2, and -3 were ubiquitously expressed; however, SSB-4 was only expressed at very low levels. SSB-2 expression was observed in the kidney and in megakaryocytes, a finding consistent with the phenotype of mice lacking this gene. Deletion of SSB-2 thus perturbs the steady-state level of two tightly controlled homeostatic parameters and identifies a critical role for SSB-2 in regulating platelet production and BUN levels.
Collapse
Affiliation(s)
- S L Masters
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
D'Souza SL, Elefanty AG, Keller G. SCL/Tal-1 is essential for hematopoietic commitment of the hemangioblast but not for its development. Blood 2005; 105:3862-70. [PMID: 15677567 PMCID: PMC1895073 DOI: 10.1182/blood-2004-09-3611] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In this report, we have defined the stage at which Scl functions in the establishment of the hematopoietic system and provide evidence that its primary role is in the generation of the hematopoietic lineages from a progenitor called the blast colony-forming cell (BL-CFC), a cell considered to be the in vitro equivalent of the hemangioblast. Using an embryonic stem (ES) cell line in which lacZ cDNA has been targeted to the Scl locus, we show that most of the BL-CFCs are detected in the SCL/lacZ- population, indicating that this progenitor does not express Scl. In the blast colony assay, Scl-/- cells initiate colony growth but are unable to generate endothelial and hematopoietic progeny and thus form colonies consisting of vascular smooth muscle cells only. The capacity to give rise to blast colonies can be rescued by retroviral transduction of a wild-type Scl gene into Scl-/- FLK-1+ cells, suggesting that the BL-CFC is generated in this population. Finally, we show that Scl-/- endothelial cells display a growth deficiency in monolayer cultures that can be partially overcome by maintaining this population as 3-dimensional aggregates indicating that specific cellular interactions are required for maintenance of the Scl-/- endothelial lineage in vitro.
Collapse
Affiliation(s)
- Sunita L D'Souza
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
34
|
Koschmieder S, Göttgens B, Zhang P, Iwasaki-Arai J, Akashi K, Kutok JL, Dayaram T, Geary K, Green AR, Tenen DG, Huettner CS. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 2004; 105:324-34. [PMID: 15331442 DOI: 10.1182/blood-2003-12-4369] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To develop murine models of leukemogenesis, a series of transgenic mice expressing BCR-ABL in different hematopoietic cell subsets was generated. Here we describe targeted expression of P210 BCR-ABL in stem and progenitor cells of murine bone marrow using the tet-off system. The transactivator protein tTA was placed under the control of the murine stem cell leukemia (SCL) gene 3' enhancer. Induction of BCR-ABL resulted in neutrophilia and leukocytosis, and the mice became moribund within 29 to 122 days. Autopsy of sick mice demonstrated splenomegaly, myeloid bone marrow hyperplasia, and extramedullary myeloid cell infiltration of multiple organs. BCR-ABL mRNA and protein were detectable in the affected organs. Fluorescence-activated cell sorter (FACS) analysis demonstrated a significant increase in mature and immature myeloid cells in bone marrow and spleen, together with increased bilineal B220+/Mac-1+ cells in the bone marrow. tTA mRNA was expressed in FACS-sorted hematopoietic stem cells expanded 26-fold after BCR-ABL induction. Thirty-one percent of the animals demonstrated a biphasic phenotype, consisting of neutrophilia and subsequent B-cell lymphoblastic disease, reminiscent of blast crisis. In summary, this mouse model recapitulates many characteristics of human chronic myeloid leukemia (CML) and may help elucidate basic leukemogenic mechanisms in CML stem cells during disease initiation and progression.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Cell Transformation, Neoplastic/genetics
- Disease Models, Animal
- Disease Progression
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukocytosis/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Neoplasm Invasiveness
- Neutrophils/metabolism
- Neutrophils/pathology
- Phenotype
- Spleen/metabolism
- Spleen/pathology
- Stem Cell Transplantation
- Survival Rate
- Transcriptional Activation/genetics
Collapse
Affiliation(s)
- Steffen Koschmieder
- Department of Hematology/Oncology, Harvard Institutes of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ravet E, Reynaud D, Titeux M, Izac B, Fichelson S, Roméo PH, Dubart-Kupperschmitt A, Pflumio F. Characterization of DNA-binding-dependent and -independent functions of SCL/TAL1 during human erythropoiesis. Blood 2004; 103:3326-35. [PMID: 14715640 DOI: 10.1182/blood-2003-05-1689] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe transcription factor TAL1 has major functions during embryonic hematopoiesis and in adult erythropoiesis and megakaryocytopoiesis. These functions rely on different TAL1 structural domains that are responsible for dimerization, transactivation, and DNA binding. Previous work, most often done in mice, has shown that some TAL1 functions do not require DNA binding. To study the role of TAL1 and the relevance of the TAL1 DNA-binding domain in human erythropoiesis, we developed an approach that allows an efficient enforced wild-type or mutant TAL1 protein expression in human hematopoietic CD34+ cells using a lentiviral vector. Differentiation capacities of the transduced cells were studied in a culture system that distinguishes early and late erythroid development. Results indicate that enforced TAL1 expression enhances long-term culture initiating cell (LTC-IC) potential and erythroid differentiation of human CD34+ cells as shown by increased βglobin and porphobilinogen deaminase (PBGD) gene expressions and erythroid colony-forming units (CFU-Es), erythroid burst-forming units (BFU-Es), and glycophorin A-positive (GPA+) cell productions. Enforced expression of a TAL1 protein deleted of its DNA-binding domain (named ΔbTAL1) mimicked most TAL1 effects except for the LTC-IC enhancement, the down-regulation of the CD34 surface marker, and the GPA+ cell production. These results provide the first functional indications of DNA-binding-dependent and -independent roles of TAL1 in human erythropoiesis. (Blood. 2004;103:3326-3335)
Collapse
Affiliation(s)
- Emmanuel Ravet
- Department of Hematology, Institut Cochin, U567 INSERM, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Göttgens B, Broccardo C, Sanchez MJ, Deveaux S, Murphy G, Göthert JR, Kotsopoulou E, Kinston S, Delaney L, Piltz S, Barton LM, Knezevic K, Erber WN, Begley CG, Frampton J, Green AR. The scl +18/19 stem cell enhancer is not required for hematopoiesis: identification of a 5' bifunctional hematopoietic-endothelial enhancer bound by Fli-1 and Elf-1. Mol Cell Biol 2004; 24:1870-83. [PMID: 14966269 PMCID: PMC350551 DOI: 10.1128/mcb.24.5.1870-1883.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of cis-regulatory elements is central to understanding the genomic program for development. The scl/tal-1 transcription factor is essential for lineage commitment to blood cell formation and previous studies identified an scl enhancer (the +18/19 element) which was sufficient to target the vast majority of hematopoietic stem cells, together with hematopoietic progenitors and endothelium. Moreover, expression of scl under control of the +18/19 enhancer rescued blood progenitor formation in scl(-/-) embryos. However, here we demonstrate by using a knockout approach that, within the endogenous scl locus, the +18/19 enhancer is not necessary for the initiation of scl transcription or for the formation of hematopoietic cells. These results led to the identification of a bifunctional 5' enhancer (-3.8 element), which targets expression to hematopoietic progenitors and endothelium, contains conserved critical Ets sites, and is bound by Ets family transcription factors, including Fli-1 and Elf-1. These data demonstrate that two geographically distinct but functionally related enhancers regulate scl transcription in hematopoietic progenitors and endothelial cells and suggest that enhancers with dual hematopoietic-endothelial activity may represent a general strategy for regulating blood and endothelial development.
Collapse
Affiliation(s)
- Berthold Göttgens
- Department of Hematology, Cambridge Institute for Medical Research, University of Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
In the hematopoietic system, lineage commitment and differentiation is controlled by the combinatorial action of transcription factors from diverse families. SCL is a basic helix-loop-helix transcription factor that is an essential regulator at several levels in the hematopoietic hierarchy and whose inappropriate regulation frequently contributes to the development of pediatric T-cell acute lymphoblastic leukemia. This review discusses advances that have shed important light on the functions played by SCL during normal hematopoiesis and leukemogenesis and have revealed an unexpected robustness of hematopoietic stem cell function. Molecular studies have unraveled a mechanism through which gene expression is tightly controlled, as SCL functions within multifactorial complexes that exhibit an all-or-none switch-like behavior in transcription activation, arguing for a quantal process that depends on the concurrent occupation of target loci by all members of the complex. Finally, variations in composition of SCL-containing complexes may ensure flexibility and specificity in the regulation of lineage-specific programs of gene expression, thus providing the molecular basis through which SCL exerts its essential functions at several branch points of the hematopoietic hierarchy.
Collapse
Affiliation(s)
- Eric Lécuyer
- Institut de Recherche en Immunovirologie et Cancérologie (IRIC), Montreal, Quebec, Canada
| | | |
Collapse
|
38
|
Lahlil R, Lécuyer E, Herblot S, Hoang T. SCL assembles a multifactorial complex that determines glycophorin A expression. Mol Cell Biol 2004; 24:1439-52. [PMID: 14749362 PMCID: PMC344179 DOI: 10.1128/mcb.24.4.1439-1452.2004] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Revised: 08/22/2003] [Accepted: 11/07/2003] [Indexed: 11/20/2022] Open
Abstract
SCL/TAL1 is a hematopoietic-specific transcription factor of the basic helix-loop-helix (bHLH) family that is essential for erythropoiesis. Here we identify the erythroid cell-specific glycophorin A gene (GPA) as a target of SCL in primary hematopoietic cells and show that SCL occupies the GPA locus in vivo. GPA promoter activation is dependent on the assembly of a multifactorial complex containing SCL as well as ubiquitous (E47, Sp1, and Ldb1) and tissue-specific (LMO2 and GATA-1) transcription factors. In addition, our observations suggest functional specialization within this complex, as SCL provides its HLH protein interaction motif, GATA-1 exerts a DNA-tethering function through its binding to a critical GATA element in the GPA promoter, and E47 requires its N-terminal moiety (most likely entailing a transactivation function). Finally, endogenous GPA expression is disrupted in hematopoietic cells through the dominant-inhibitory effect of a truncated form of E47 (E47-bHLH) on E-protein activity or of FOG (Friend of GATA) on GATA activity or when LMO2 or Ldb-1 protein levels are decreased. Together, these observations reveal the functional complementarities of transcription factors within the SCL complex and the essential role of SCL as a nucleation factor within a higher-order complex required to activate gene GPA expression.
Collapse
Affiliation(s)
- Rachid Lahlil
- Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | |
Collapse
|
39
|
Curtis DJ, Hall MA, Van Stekelenburg LJ, Robb L, Jane SM, Begley CG. SCL is required for normal function of short-term repopulating hematopoietic stem cells. Blood 2004; 103:3342-8. [PMID: 14726374 DOI: 10.1182/blood-2003-09-3202] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stem cell leukemia (SCL) gene is essential for the development of hematopoietic stem cells in the embryo. Here, we used a conditional gene targeting approach to examine the function of SCL in adult hematopoietic stem cells (HSCs). Flow cytometry of bone marrow from SCL-deleted mice demonstrated a 4-fold increase in number of Lin(neg) c-kit(+) Sca-1(+) cells. Despite this increase in the number of phenotypic HSCs, competitive repopulation assays demonstrated a severe multilineage defect in repopulation capacity by SCL-deleted bone marrow cells. SCL-heterozygous cells also showed a mild repopulation defect, thus suggesting haploinsufficiency of SCL. The transplantation defect of SCL-deleted cells was observed within 4 weeks of transplantation, indicating a defect in a multipotent progenitor or short-term repopulating HSCs. Although the defect persisted in secondary transplants, it remained relatively stable, suggesting that SCL was not required for self-renewal of the HSCs. Generation of SCL-deleted cells within SCL-wild-type mice rescued the early repopulating defect. Together, our results suggest that SCL is required for the normal function of short-term repopulating HSCs.
Collapse
Affiliation(s)
- David J Curtis
- Rotary Bone Marrow Research Laboratory, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia.
| | | | | | | | | | | |
Collapse
|
40
|
Scarff KL, Ung KS, Sun J, Bird PI. A retained selection cassette increases reporter gene expression without affecting tissue distribution in SPI3 knockout/GFP knock-in mice. Genesis 2003; 36:149-57. [PMID: 12872246 DOI: 10.1002/gene.10210] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The human serpin, proteinase inhibitor 6 (PI-6/SERPINB6), is a protease inhibitor expressed in many tissues. It inhibits a large number of proteases, including cathepsin G in granulocytes and monocytes. To determine the temporal and spatial distribution of PI-6, mice were generated in which exon 2 of the PI-6 ortholog SPI3 (Serpinb6) was replaced with a green fluorescent protein (GFP) reporter gene. This placed GFP under the control of the regulatory elements and initiation codon of the SPI3 gene. The neomycin selection cassette was flanked by loxP sites to allow excision from the targeted allele. GFP expression in heterozygous and SPI3-deficient mice accurately reflected the tissue distribution of SPI3 in all organs tested and allowed precise comparisons of expression levels. Interestingly, retention of the neomycin cassette in targeted mice resulted in 2-10-fold increases of GFP in leukocytes, but without affecting tissue-specific expression patterns. This is the first example of selection cassette retention specifically increasing reporter gene expression in targeted mice and reinforces the view that selection cassettes must be removed to avoid confounding effects on reporter gene expression patterns.
Collapse
Affiliation(s)
- Katrina L Scarff
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | | | | | | |
Collapse
|
41
|
Egan PJ, Lawlor KE, Alexander WS, Wicks IP. Suppressor of cytokine signaling-1 regulates acute inflammatory arthritis and T cell activation. J Clin Invest 2003; 111:915-24. [PMID: 12639998 PMCID: PMC153765 DOI: 10.1172/jci16156] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Suppressor of cytokine signaling-1 (SOCS-1) is a negative regulator of cytokine signaling. To investigate the role of SOCS-1 in regulating inflammatory and immune responses in disease, acute inflammatory arthritis was induced in mice lacking SOCS-1. Expression of SOCS-1 protein was detected within synovial granulomas and pannus tissue of WT mice by day 7 following induction of acute arthritis. The severity of synovial inflammation and joint destruction at the peak of disease was greater in the absence of SOCS-1, although disease resolution occurred normally. There was an increased percentage of myeloid cells infiltrating the synovium in mice lacking SOCS-1, and SOCS-1 promoter activity was present in synovial macrophages, lymphocytes, and fibroblasts, but not granulocytes. The T cell response in draining LNs was also dysregulated, as popliteal LNs from mice lacking SOCS-1 contained approximately fivefold more cells at the peak of acute arthritis. These cells were hyperproliferative on exposure to antigen in vitro, and purified splenic CD4(+) T cells from mice lacking SOCS-1 proliferated more strongly in response to stimulation with anti-CD3. Reporter gene expression was detected in CD4(+) T cells bearing the activation markers CD25, CD44, and CD69. SOCS-1 is therefore expressed in hematopoietic and nonhematopoietic cell types in vivo and is an important regulator of acute inflammatory arthritis and of CD4(+) T cell activation.
Collapse
Affiliation(s)
- Paul J Egan
- Reid Rheumatology Laboratory, Division of Autoimmunity and Transplantation, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
42
|
Hall MA, Curtis DJ, Metcalf D, Elefanty AG, Sourris K, Robb L, Gothert JR, Jane SM, Begley CG. The critical regulator of embryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12. Proc Natl Acad Sci U S A 2003; 100:992-7. [PMID: 12552125 PMCID: PMC298714 DOI: 10.1073/pnas.0237324100] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2002] [Indexed: 11/18/2022] Open
Abstract
Gene targeting studies have shown that the transcription factor SCL is critically important for embryonic hematopoiesis, but the early lethality of SCL null mice has precluded the genetic analysis of its function in the adult. We have now generated a conditional knockout of SCL by using CreLox technology and an IFN-inducible Cre transgenic mouse. Deletion of SCL in adult mice perturbed megakaryopoiesis and erythropoiesis with the loss of early progenitor cells in both lineages. This led to a blunted response to the hematopoietic stress induced by polyinosinic-polycytidylic acid, with a persistently low platelet count and hematocrit compared with controls. In contrast, progenitors of granulocyte and macrophage lineages were not affected, even in the setting of stress. Immature progenitor cells (day 12 colony-forming unit spleen) with multilineage capacity were still present in the SCL null bone marrow, but these progenitors had lost the capacity to generate erythroid and megakaryocyte cells, and colonies were composed of only myeloid cells. These results suggest that SCL is critical for megakaryopoiesis and erythropoiesis, but is dispensable for production of myeloid cells during adult hematopoiesis.
Collapse
Affiliation(s)
- Mark A Hall
- Rotary Bone Marrow Research Laboratory, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ema M, Faloon P, Zhang WJ, Hirashima M, Reid T, Stanford WL, Orkin S, Choi K, Rossant J. Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Genes Dev 2003; 17:380-93. [PMID: 12569129 PMCID: PMC195986 DOI: 10.1101/gad.1049803] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mouse embryos mutant for the VEGF receptor, VEGFR2, Flk-1, or Kdr, fail to form both endothelial and hematopoietic cells, suggesting a possible role in a common progenitor to both lineages. The transcription factor Tal1 (Scl), is not expressed in Flk1(-/-) embryos, consistent with a downstream role in the Flk1 pathway. We tested whether expression of Tal1 under the Flk1 promoter was sufficient to rescue the loss of endothelial and hematopoietic cells in Flk1 mutants. Only partial rescue of hematopoiesis and endothelial development was observed in vivo. However, Flk1(-/Tal1) embryonic stem (ES) cells were capable of blast colony formation in vitro at levels equivalent to Flk1(+/-) heterozygotes. Ectopic expression of Tal1 under the Flk1 promoter in Flk1(+/-) mouse embryos or ES cells caused no obvious pathology but increased the number of blast colony forming cells (BL-CFCs) and enhanced their hematopoietic potential. These single-cell-derived BL-CFCs also produced smooth muscle cells in vitro. Increased Tal1 expression inhibited smooth muscle differentiation in this assay, whereas loss of Tal1 promoted smooth muscle formation. We propose a model in which the combinatorial effects of Flk1 and Tal1 act to regulate cell fate choice in early development into hematopoietic, endothelial, and smooth muscle lineages.
Collapse
Affiliation(s)
- Masatsugu Ema
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada M5G 1X5
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hanson P, Mathews V, Marrus SH, Graubert TA. Enhanced green fluorescent protein targeted to the Sca-1 (Ly-6A) locus in transgenic mice results in efficient marking of hematopoietic stem cells in vivo. Exp Hematol 2003; 31:159-67. [PMID: 12591281 DOI: 10.1016/s0301-472x(02)01021-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Hematopoietic stem cells are important clinically, both as targets of disease and as reagents for cellular therapy. Studies in hematopoietic stem cell biology have been hampered by difficulties in purifying and manipulating these cells. To facilitate these studies, we sought to develop a system for targeting genes of interest to the hematopoietic stem cell compartment in transgenic mice. MATERIALS AND METHODS We used Sca-1, a glycosyl phosphatidylinositol-anchored protein expressed on the surface of all hematopoietic stem cells in commonly used inbred mouse strains. We created a mutant Sca-1 allele in which the enhanced green fluorescent protein (EGFP) cDNA is integrated into the Sca-1 locus by homologous recombination in embryonic stem cells. RESULTS EGFP protein is detectable in all hematopoietic tissues of mice heterozygous for the mutant Sca-1 allele. Growth and development of these mice are normal. No adverse effects of long-term, high-level EGFP expression were noted. Sca-1 positive cells coexpress EGFP in all tissues and lineages examined, as predicted by the targeting strategy. Sca-1 and EGFP expression are coordinately up-regulated in splenocytes from mutant mice. The Lin(-)EGFP(+) bone marrow population contains all progenitor activity in Sca-1(+)(/EGFP) mice. The Lin(-)EGFP(+) bone marrow cells are equivalent to Lin(-)Sca-1(+) cells in long-term repopulation and serial transplantation assays. CONCLUSION The hematopoietic stem cell compartment appears to be targeted in Sca-1(+)(/EGFP) mutant mice. This system should be useful for studying the normal biology of hematopoietic stem cells and for targeting other genes to this cellular compartment.
Collapse
Affiliation(s)
- Piia Hanson
- Department of Internal Medicine, Division of Oncology, Stem Cell Biology Section, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
45
|
Mikkola HKA, Klintman J, Yang H, Hock H, Schlaeger TM, Fujiwara Y, Orkin SH. Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature 2003; 421:547-51. [PMID: 12540851 DOI: 10.1038/nature01345] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Accepted: 11/26/2002] [Indexed: 12/21/2022]
Abstract
The production of blood cells is sustained throughout the lifetime of an individual by haematopoietic stem cells (HSCs). Specification of HSCs from mesoderm during embryonic development requires the stem cell leukaemia SCL/tal-1 gene product. Forced expression of SCL/tal-1 strongly induces blood formation in embryos, indicating that this gene has a dominant role in commitment to haematopoiesis. In the adult haematopoietic system, expression of SCL/tal-1 is enriched in HSCs and multipotent progenitors, and in erythroid and megakaryocytic lineages, consistent with roles for this factor in adult haematopoiesis. Here we assess by conditional gene targeting whether SCL/tal-1 is required continuously for the identity and function of HSCs. We find that SCL/tal-1 is dispensable for HSC engraftment, self-renewal and differentiation into myeloid and lymphoid lineages; however, the proper differentiation of erythroid and megakaryocytic precursors is dependent on SCL/tal-1. Thus, SCL/tal-1 is essential for the genesis of HSCs, but its continued expression is not essential for HSC functions. These findings contrast with lineage choice mechanisms, in which the identity of haematopoietic lineages requires continuous transcription factor expression.
Collapse
Affiliation(s)
- Hanna K A Mikkola
- Department of Pediatric Oncology, Children's Hospital and the Dana Farber Cancer Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
van Eekelen JAM, Bradley CK, Göthert JR, Robb L, Elefanty AG, Begley CG, Harvey AR. Expression pattern of the stem cell leukaemia gene in the CNS of the embryonic and adult mouse. Neuroscience 2003; 122:421-36. [PMID: 14614907 DOI: 10.1016/s0306-4522(03)00571-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factor stem cell leukaemia (SCL) is a 'master regulator' of haematopoiesis, where SCL is pivotal in cell fate determination and differentiation. SCL has also been detected in CNS, where other members of the bHLH-family have been shown to be indispensable for neuronal development; however, no detailed expression pattern of SCL has so far been described. We have generated a map of SCL expression in the embryonic and adult mouse brain based on histochemical analysis of LacZ reporter gene expression in sequential sections of brain tissue derived from SCL-LacZ knockin mice. The expression of LacZ was confirmed to reflect SCL expression by in situ hybridisation. LacZ expression was found in a range of different diencephalic, mesencephalic and metencephalic brain nuclei in adult CNS. Co-localisation of LacZ with the neuronal marker NeuN indicated expression in post-mitotic neurons in adulthood. LacZ expression by neurons was confirmed in tissue culture analysis. The nature of the pretectal, midbrain and hindbrain regions expressing LacZ suggest that SCL in adult CNS is potentially involved in processing of visual, auditory and pain related information. During embryogenesis, LacZ expression was similarly confined to thalamus, midbrain and hindbrain. LacZ staining was also evident in parts of the intermediate and marginal zone of the aqueduct and ventricular zone of the fourth ventricle at E12.5 and E14. These cells may represent progenitor stages of differentiating neural cells. Given the presence of SCL in both the developing brain and in post-mitotic neurons, it seems likely that the function of SCL in neuronal differentiation may differ from its function in maintaining the differentiated state of the mature neuron.
Collapse
Affiliation(s)
- J A M van Eekelen
- Centre for Child Health Research and WAIMR, University of Western Australia, at the Telethon Institute for Child Health Research, PO Box 855, West Perth WA 6872, Australia.
| | | | | | | | | | | | | |
Collapse
|
47
|
Chung YS, Zhang WJ, Arentson E, Kingsley PD, Palis J, Choi K. Lineage analysis of the hemangioblast as defined by FLK1 and SCL expression. Development 2002; 129:5511-20. [PMID: 12403720 DOI: 10.1242/dev.00149] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Accumulating studies support the idea that a common progenitor, termed the hemangioblast, generates both hematopoietic and endothelial cell lineages. To better define the relationship between these cell lineages, we have generated knock-in embryonic stem (ES) cells carrying a non-functional human CD4 at the Scl locus. By using in vitro differentiated Scl(+/CD4) ES cells, we demonstrate that FLK1 and SCL are molecular determinants of the hemangioblast. Furthermore, our studies demonstrate that hematopoietic and endothelial cells develop via distinct, sequential generation of FLK1 and SCL-expressing cells. FLK1(+)CD4(-) cells first arise in developing embryoid bodies. The Scl gene is turned on within FLK1(+)CD4(-) cells to give rise to FLK1(+)CD4(+) cells. Alternatively, a subpopulation of the initial FLK1(+)CD4(-) cells remains as SCL negative. Within the FLK1(+)CD4(+) cells, FLK1 is down regulated to generate FILK1(-)CD4(+) cells. Replating studies demonstrate that hematopoietic progenitors are enriched within FLK1(+)CD4(+) and FLK1(-)CD4(+) cells, while endothelial cells develop from FLK1(+)CD4(+) and FLK1(+)CD4(-) cell populations.
Collapse
Affiliation(s)
- Yun Shin Chung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
48
|
Goardon N, Schuh A, Hajar I, Ma X, Jouault H, Dzierzak E, Roméo PH, Maouche-Chrétien L. Ectopic expression of TAL-1 protein in Ly-6E.1-htal-1 transgenic mice induces defects in B- and T-lymphoid differentiation. Blood 2002; 100:491-500. [PMID: 12091340 DOI: 10.1182/blood.v100.2.491] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tal-1 gene encodes a basic helix-loop-helix (bHLH) transcription factor required for primitive and definitive hematopoiesis. Additionally, ectopic activation of the tal-1 gene during T lymphopoiesis occurs in numerous cases of human T-cell acute lymphoblastic leukemia. With the use of transgenic mice, we show that, in adult hematopoiesis, constitutive expression of TAL-1 protein causes disorders in the hematopoietic lineages that normally switch off tal-1 gene expression during their differentiation process. Myelopoiesis was characterized by a moderate increase of myeloid precursors and by Sca-1 antigen persistence. Although no lymphoid leukemia was observed, T lymphopoiesis and B lymphopoiesis were severely impaired. Transgenic mice showed reduced thymic cellularity together with a decrease in double-positive cells and a concurrent increase in the single-positive population. B cells exhibited a differentiation defect characterized by a reduction of the B-cell compartment most likely because of a differentiation block upstream of the intermediate pro-B progenitor. B cells escaping this defect developed normally, but transgenic splenocytes presented a defect in immunoglobulin class switch recombination. Altogether, these results enlighten the fine-tuning of TAL-1 expression during adult hematopoiesis and indicate why TAL-1 expression has to be switched off in the lymphoid lineages.
Collapse
Affiliation(s)
- Nicolas Goardon
- Institut Cochin, Département d'Hématologie, INSERM, CNRS, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Krebs DL, Uren RT, Metcalf D, Rakar S, Zhang JG, Starr R, De Souza DP, Hanzinikolas K, Eyles J, Connolly LM, Simpson RJ, Nicola NA, Nicholson SE, Baca M, Hilton DJ, Alexander WS. SOCS-6 binds to insulin receptor substrate 4, and mice lacking the SOCS-6 gene exhibit mild growth retardation. Mol Cell Biol 2002; 22:4567-78. [PMID: 12052866 PMCID: PMC133908 DOI: 10.1128/mcb.22.13.4567-4578.2002] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2001] [Revised: 12/11/2001] [Accepted: 04/02/2002] [Indexed: 11/20/2022] Open
Abstract
SOCS-6 is a member of the suppressor of cytokine signaling (SOCS) family of proteins (SOCS-1 to SOCS-7 and CIS) which each contain a central SH2 domain and a carboxyl-terminal SOCS box. SOCS-1, SOCS-2, SOCS-3, and CIS act to negatively regulate cytokine-induced signaling pathways; however, the actions of SOCS-4, SOCS-5, SOCS-6, and SOCS-7 remain less clear. Here we have used both biochemical and genetic approaches to examine the action of SOCS-6. We found that SOCS-6 and SOCS-7 are expressed ubiquitously in murine tissues. Like other SOCS family members, SOCS-6 binds to elongins B and C through its SOCS box, suggesting that it might act as an E3 ubiquitin ligase that targets proteins bound to its SH2 domain for ubiquitination and proteasomal degradation. We investigated the binding specificity of the SOCS-6 and SOCS-7 SH2 domains and found that they preferentially bound to phosphopeptides containing a valine in the phosphotyrosine (pY) +1 position and a hydrophobic residue in the pY +2 and pY +3 positions. In addition, these SH2 domains interacted with a protein complex consisting of insulin receptor substrate 4 (IRS-4), IRS-2, and the p85 regulatory subunit of phosphatidylinositol 3-kinase. To investigate the physiological role of SOCS-6, we generated mice lacking the SOCS-6 gene. SOCS-6(-/-) mice were born in a normal Mendelian ratio, were fertile, developed normally, and did not exhibit defects in hematopoiesis or glucose homeostasis. However, both male and female SOCS-6(-/-) mice weighed approximately 10% less than wild-type littermates.
Collapse
Affiliation(s)
- Danielle L Krebs
- The Walter and Eliza Hall Institute of Medical Research and the Cooperative Research Centre for Cellular Growth Factors, Royal Melbourne Hospital, Victoria 3050, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wurtz O, Pophillat M, Schmitt-Verhulst AM, Guerder S. A novel reporter strain to follow Cre-mediated recombination in T and NK cells. Genesis 2002; 32:287-92. [PMID: 11948916 DOI: 10.1002/gene.10082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Cre-loxP system permits the generation of mouse models in which the fate of a cell can be followed through time. Such approach is of great value in immunology because it may allow lineage studies and the dissection of the contribution of specific effector T cells to long-term memory responses or autoimmune responses. An essential component of such a strategy is the development of appropriate reporter strains of mice in which the inducible reporter molecule is not immunogenic and is well expressed at the cell surface of T cells. We describe here a novel reporter strain of mice that is designed to fulfill these criteria and show that this strain permits the monitoring of Cre-mediated recombination in both T cells and NK cells.
Collapse
Affiliation(s)
- Olivier Wurtz
- Centre d'Immunologie de Marseille-Luminy, INSERM/CNRS/Université de la Méditérranée, Parc Scientifique de Luminy, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|