1
|
Ke J, Du X, Cui J, Yu L, Li H. LncRNA and mRNA expression associated with myasthenia gravis in patients with thymoma. Thorac Cancer 2021; 13:15-23. [PMID: 34773374 PMCID: PMC8720629 DOI: 10.1111/1759-7714.14201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Pathological alterations of the thymus are observed in the majority of patients with myasthenia gravis (MG). To explore the potential mechanisms of these alterations, we performed a transcriptome analysis and measured co‐expression of aberrant long non‐coding RNAs (lncRNAs) and messenger RNAs (mRNAs). Methods RNA was extracted from eight patients with thymoma, five of whom had MG. Transcriptome profiles were acquired through mRNA and lncRNA microarray analysis. Quantitative reverse transcription polymerase chain reaction was used to verify the results of the microarray analysis. LncRNAs co‐expressed with mRNA were analyzed with Pearson's coefficient. Next, cis‐regulated and trans‐regulated target genes were predicted. The functions of aberrant lncRNAs were explored on the basis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of target mRNAs. Results The comparative microarray analysis identified 4360 lncRNAs and 2545 mRNAs with significant differential expression. The most significant GO enrichment terms were phosphoric ester hydrolase activity, phosphatase activity, and hydrolase activity, which were assigned as molecular functions. Regulation of endosome size was the most significant GO enrichment term assigned as a biological process, and Golgi apparatus was the most significant GO enrichment term assigned as cellular component. The reliability prediction terms of KEGG included calcium signaling pathway, glycosphingolipid biosynthesis, and caffeine metabolism. Conclusion MG‐positive thymoma is associated with overactive biological processes and molecular functions, especially dephosphorylation and hydrolysis, which may affect thymocyte survival during selection in the thymus.
Collapse
Affiliation(s)
- Ji Ke
- Department of Thoracic Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xin Du
- Department of Thoracic Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jian Cui
- Department of Thoracic Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lei Yu
- Department of Thoracic Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Sauer EL, Cloake NC, Greer JM. Taming the TCR: antigen-specific immunotherapeutic agents for autoimmune diseases. Int Rev Immunol 2015; 34:460-85. [PMID: 25970132 DOI: 10.3109/08830185.2015.1027822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current treatments for autoimmune diseases are typically non-specific anti-inflammatory agents that affect not only the autoreactive cells but also the parts of the immune system that are required to maintain health. There is a need for the development of antigen-specific therapeutic agents that can effectively prevent the autoimmune attack while leaving the rest of the immune system functioning as normal. The simplest way to achieve this is using the autoantigen itself as a tolerizing agent; however, there is some risk involved with administering a potentially pathogenic antigen. In this review, we focus instead on the development and use of modified T cell receptor (TCR) ligands, in which the peptide ligand is modified to change the response by the T cell from a disease inducing to a protective response, and still retain the antigen-specificity necessary to target the autoreactive T cells. We review the use of modified TCR ligands as therapeutic agents in animal models of autoimmunity and in human autoimmune disease, and finally consider how they need to be improved in order to use them effectively in patients with autoimmune disease.
Collapse
Affiliation(s)
- Evan L Sauer
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| | - Nancy C Cloake
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| | - Judith M Greer
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| |
Collapse
|
3
|
Abstract
T cell recognition of antigen is a crucial aspect of the adaptive immune response. One of the most common means of pathogen immune evasion is mutation of T cell epitopes. T cell recognition of such ligands can result in a variety of outcomes including activation, apoptosis and anergy. The ability of a given T cell to respond to a specific peptide-MHC ligand is regulated by a number of factors, including the affinity, on- and off-rates and half-life of the TCR-peptide-MHC interaction. Interaction of T cells with low-potency ligands results in unique signaling patterns and requires engagement with a larger number of T cell receptors than agonist ligands. This review will address these aspects of T cell interaction with weak ligands and the ways in which these ligands have been utilized therapeutically.
Collapse
|
4
|
Katsara M, Minigo G, Plebanski M, Apostolopoulos V. The good, the bad and the ugly: how altered peptide ligands modulate immunity. Expert Opin Biol Ther 2009; 8:1873-84. [PMID: 18990075 DOI: 10.1517/14712590802494501] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The basis of T cell immune responses is the specific recognition of an immunogenic peptide epitope by a T cell receptor. Peptide alterations of such T cell epitopes with single or few amino acid variations can have drastic effects on the outcome of this recognition. These altered peptide ligands can act as modulators of immune responses as they are capable of downregulating or upregulating responses. OBJECTIVE/METHODS We review how altered peptide ligands can have 'good' 'bad' and 'ugly' outcomes in treating diseases. RESULTS/CONCLUSION Altered peptide ligands have been used as immunotherapeutics in autoimmune (and allergic) diseases, infectious diseases and cancer. In the next five years we anticipate seeing a number of altered peptide ligands in clinical trials, progressing from contradictory classifications of good, bad or ugly, to the exciting outcome of 'useful'.
Collapse
Affiliation(s)
- Maria Katsara
- Immunology and Vaccine Laboratory, The Macfarlane Burnet Institute incorporating The Austin Research Institute, Studley Road, Heidelberg, VIC 3084, Australia
| | | | | | | |
Collapse
|
5
|
Aruna BV, Ben-David H, Sela M, Mozes E. A dual altered peptide ligand down-regulates myasthenogenic T cell responses and reverses experimental autoimmune myasthenia gravis via up-regulation of Fas-FasL-mediated apoptosis. Immunology 2006; 118:413-24. [PMID: 16827902 PMCID: PMC1782294 DOI: 10.1111/j.1365-2567.2006.02398.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Myasthenia gravis (MG) and experimental autoimmune MG (EAMG) are T cell-dependent, antibody-mediated autoimmune diseases. A dual altered peptide ligand (APL) that is composed of the tandemly arranged two single amino acid analogues of two myasthenogenic peptides, p195-212 and p259-271, was demonstrated to down-regulate in vitro and in vivo MG-associated autoreactive responses. The aims of this study were to investigate the possible role of Fas-FasL-mediated apoptosis in the down-regulatory mechanism of the dual APL. We demonstrate here the effect of the dual APL on expression of key molecules involved in the Fas-FasL pathway, in a p195-212-specific T cell line, in mice immunized with Torpedo acetylcholine receptor and in mice afflicted with EAMG (induced with the latter). In vitro and in vivo results show that the dual APL up-regulated expression of Fas and FasL on the CD4 cells. Expression of the pro-apoptotic molecules, caspase 8 and caspase 3, was significantly up-regulated, while anti-apoptotic cFLIP and Bcl-2 were down-regulated upon treatment with the dual APL. The dual APL also increased phosphorylation of the mitogen-activated protein kinases, c-Jun-NH2-terminal kinase and p-38, known to play a role in the regulation of FasL expression. Further, in the T cell line incubated with the dual APL as well as in mice of the SJL inbred strain immunized with the myasthenogenic peptide and treated concomitantly with the dual APL, the percentage of apoptotic cells increased. Results strongly indicate that up-regulation of apoptosis via the Fas-FasL pathway is one of the mechanisms by which the dual APL reverses EAMG manifestations in C57BL/6 mice.
Collapse
|
6
|
Aruna BV, Sela M, Mozes E. Down-regulation of T cell responses to AChR and reversal of EAMG manifestations in mice by a dual altered peptide ligand via induction of CD4+CD25+ regulatory cells. J Neuroimmunol 2006; 177:63-75. [PMID: 16757035 DOI: 10.1016/j.jneuroim.2006.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 03/15/2006] [Accepted: 04/21/2006] [Indexed: 11/26/2022]
Abstract
A dual altered peptide ligand (APL) composed of the tandemly arranged two single amino acid analogs of two myasthenogenic peptides, p195-212 and p259-271 was demonstrated to down-regulate in vitro and in vivo myasthenia gravis (MG) associated autoreactive responses. In this study, we demonstrate the suppressive properties of the dual APL following immunization with the whole Torpedo AChR (TAChR) and in mice with established experimental autoimmune MG (EAMG). The dual APL acts by up-regulating CD4+ CD25+ cells expressing characteristic regulatory markers along with an associated increase in levels of IL-10 and TGF-beta. The latter cytokine plays a key role in the ameliorating effects of the dual APL.
Collapse
MESH Headings
- Animals
- Autoimmunity/drug effects
- Autoimmunity/immunology
- Biomarkers/metabolism
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Disease Models, Animal
- Down-Regulation/drug effects
- Down-Regulation/immunology
- Female
- Immunosuppression Therapy/methods
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Ligands
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/physiopathology
- Myasthenia Gravis, Autoimmune, Experimental/therapy
- Peptides/pharmacology
- Receptors, Interleukin-2/biosynthesis
- Receptors, Nicotinic/immunology
- Subcellular Fractions
- Torpedo
- Transforming Growth Factor beta/immunology
- Transforming Growth Factor beta/metabolism
- Treatment Outcome
- Up-Regulation/drug effects
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Badiga Venkata Aruna
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
7
|
Dayan M, Sthoeger Z, Neiman A, Abarbanel J, Sela M, Mozes E. Immunomodulation by a dual altered peptide ligand of autoreactive responses to the acetylcholine receptor of peripheral blood lymphocytes of patients with myasthenia gravis. Hum Immunol 2005; 65:571-7. [PMID: 15219376 DOI: 10.1016/j.humimm.2004.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 02/23/2004] [Accepted: 02/25/2004] [Indexed: 10/26/2022]
Abstract
Myasthenia gravis (MG) is a T cell-dependent, antibody-mediated autoimmune disease. A dual altered peptide ligand (APL) that is composed of the tandemly arranged two single amino acid analogs of two myasthenogenic peptides was demonstrated to downregulate in vitro and in vivo murine MG associated autoreactive responses. Furthermore, treatment with the dual APL ameliorated the clinical manifestations of an established experimental autoimmune MG in mice. This study was undertaken in order to investigate the ability of the dual APL to immunomodulate MG-associated responses of peripheral blood lymphocytes (PBL) of patients with MG to the native autoantigen acetylcholine receptor (AChR). PBL of 22 of 27 patients with MG tested responded by proliferation to torpedo AChR. The proliferative responses of PBL of 21 of 22 responders were significantly inhibited by the dual APL. The inhibition was specific because a control peptide did not inhibit these proliferative responses. The dual APL also downregulated the levels of the secreted pathogenic cytokine IFN-gamma in supernatants of stimulated PBL of 80% of the tested patients. The latter inhibitions correlated with an upregulated production of the immunosuppressive cytokine, tumor growth factor beta. Thus, the results of our study demonstrate that the dual APL is capable of downregulating in vitro autoreactive responses of patients with MG and suggest that this peptide is a potential candidate for a novel specific treatment of patients with MG.
Collapse
Affiliation(s)
- Molly Dayan
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Similarly to prophylactic vaccines whose purpose is to prevent infectious diseases, therapeutic vaccines against autoimmune diseases are based on their similarity to the putative causes of the disease. We shall describe here two such examples: a copolymer of amino acids related to myelin basic protein, in the case of multiple sclerosis, and a peptide derived from the nicotinic acetylcholine receptor (AChR), in the case of myasthenia gravis (MG). Copolymer 1 (Cop 1, glatiramer acetate, Copaxone) is a synthetic amino acid random copolymer, immunologically cross-reactive with myelin basic protein and suppresses experimental allergic encephalomyelitis in several animal species. Cop 1 slows the progression of disability and reduces relapse rate in exacerbating-remitting multiple sclerosis patients. It was approved by the Food and Drug Administration in 1996, and today is used by tens of thousands of patients. Cop 1 is a potent inducer of T helper 2 (Th2) regulatory cells in mice and humans, and Th2 cells are found both in the brains and spinal cords of Cop 1-treated mice. MG and experimental autoimmune MG are T cell-regulated, antibody-mediated autoimmune diseases. Two peptides, representing sequences of the human AChR alpha-subunit, p195-212 and p259-271, are immunodominant T cell epitopes in MG patients and in two strains of mice. Altered peptide ligand, composed of the tandemly arranged two single amino acid analogs, inhibits in vitro and in vivo MG-associated autoimmune responses. The active suppression is mediated by the CD4(+)CD25(+) immunoregulatory cells and is associated with the down-regulation of Th1-type cytokines and the up-regulation of the secretion of IL-10 and the immunosuppressive cytokine, transforming growth factor beta.
Collapse
Affiliation(s)
- Michael Sela
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
9
|
Faber-Elmann A, Grabovsky V, Dayan M, Sela M, Alon R, Mozes E. An altered peptide ligand inhibits the activities of matrix metalloproteinase-9 and phospholipase C, and inhibits T cell interactions with VCAM-1 induced in vivo by a myasthenogenic T cell epitope. FASEB J 2001; 15:187-194. [PMID: 11149906 DOI: 10.1096/fj.99-0976com] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myasthenia gravis (MG) is a T cell-regulated, antibody-mediated autoimmune disease. Immunization with two myasthenogenic peptides, p195-212 and p259-271, which are sequences of the human acetylcholine receptor, resulted in MG-associated immune responses. A dual altered peptide ligand (APL) composed of the two APLs of the myasthenogenic peptides inhibited, in vitro and in vivo, those responses. This study was aimed at understanding the mechanism(s) underlying the in vivo inhibitory properties of the dual APL. To this end, we analyzed T cells of mice that were immunized with p259-271 for their adhesiveness toward vascular cell adhesion molecule 1, for the activity of their secreted matrix metalloproteinases (MMPs), and for their intracellular phospholipase C (PLC) activity. Immunization with p259-271 triggered the above three activities and in vivo administration of the dual APL inhibited the latter. Thus, treatment of mice with the dual APL interferes with functions required for T cells to migrate and interact with the self-AChR. This is the first indication that very late antigen 4, MMP-9, and PLC are targets for immunomodulation of autoreactive T cells by altered peptide ligands.
Collapse
Affiliation(s)
- A Faber-Elmann
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
10
|
Faber-Elmann A, Grabovsky V, Dayan M, Sela M, Alon R, Mozes E. Cytokine profile and T cell adhesiveness to endothelial selectins: in vivo induction by a myasthenogenic T cell epitope and immunomodulation by a dual altered peptide ligand. Int Immunol 2000; 12:1651-8. [PMID: 11099304 DOI: 10.1093/intimm/12.12.1651] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myasthenia gravis (MG) is a T cell-regulated antibody-mediated autoimmune disease. Immunization with two myasthenogenic peptides, p195-212 and p259-271, that are sequences of the human acetylcholine receptor alpha subunit was shown to induce experimental autoimmune MG (EAMG)-associated immune responses. A peptide composed of the two altered peptide ligands (APL) of the myasthenogenic peptides (designated as dual APL) inhibited, in vitro and in vivo, those responses. The objectives of this study were to examine (i) whether in vivo T cell activation by p259-271 affects the cytokine profile and the T cell migration ability, and (ii) whether the latter are immunomodulated by in vivo administration of the dual APL. Our results showed that immunization of mice with p259-271 enriched the population of lymph node and spleen cells with subsets of T cells with strong adhesiveness towards E- and P-selectins. This enrichment was associated with an acquisition of a T(h)1-type cytokine profile. Treatment of the immunized mice with the dual APL interfered with both the migratory potential of the autoreactive T cells, and the production of the T(h)1-type cytokines IL-2 and IFN-gamma (known to play a pathogenic role in MG and EAMG). T cells derived from APL-treated mice acquired a T(h)3-type cytokine profile, characterized by the secretion of the immunosuppresive cytokine transforming growth factor-ss. Thus, our results suggest that T cell selectin ligands and T cell-derived cytokines are involved in the induction and immunomodulation of EAMG- and MG-associated T cell responses.
Collapse
Affiliation(s)
- A Faber-Elmann
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
11
|
Frasca L, Tamir A, Jurcevic S, Marinari B, Monizio A, Sorrentino R, Carbonari M, Piccolella E, Lechler RI, Lombardi G. Peptide analogues as a strategy to induce tolerance in T cells with indirect allospecificity. Transplantation 2000; 70:631-40. [PMID: 10972222 DOI: 10.1097/00007890-200008270-00017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND It has been demonstrated that indirect recognition of allogeneic MHC molecules might play an important role in provoking graft rejection. Although direct recognition of allogeneic molecules on antigen presenting cells of the graft may induce a state of tolerance, the continuous presentation of processed alloantigens by specialized antigen presenting cells does not allow the same phenomenon to occur. Tolerance to interleukin-2 secreting T cells can be achieved in different ways, among these is the exposure to mutants of the wild type allopeptide. We have investigated whether peptide analogues of the allopeptide can induce tolerance in T cells with indirect allospecificity. METHODS T cell clones with indirect anti-HLA-A2-specificity generated from a HLA-A2-DRB1*1502+ patient who chronically rejected a HLA-A2-expressing kidney allograft were used for this study. Nine peptide analogues of HLA-A2 (residues: 103-120) were produced with single amino acid substitutions at the putative T cell receptor for antigen contact positions. Their effect on the proliferation of a panel of T cell clones was evaluated. RESULTS Peptide analogues and wild type peptide had similar capacity to bind to the restriction molecule HLA-DRB1*1502. Co-presentation of the peptide analogues 111R/A, H, K and 114H/K, with the wild type peptide inhibited T cell responses, indicative of antagonism. In addition, one analogue 112G/S induced unresponsiveness in the T cells to subsequent culture with the wild type peptide. CONCLUSIONS The data presented here suggest that using reagents such as altered peptides may represent a strategy to prevent the activation of T cells with indirect alloreactivity and allograft rejection in vivo.
Collapse
Affiliation(s)
- L Frasca
- Department of Cell Development and Biology, La Sapienza University, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abrams SI, Schlom J. Rational antigen modification as a strategy to upregulate or downregulate antigen recognition. Curr Opin Immunol 2000; 12:85-91. [PMID: 10679405 DOI: 10.1016/s0952-7915(99)00055-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent and rapid advances in our understanding of the cellular and molecular mechanisms of antigen recognition by CD8(+) and CD4(+) T lymphocytes have led to the birth of possibilities for site-directed, rational modification of cognate antigenic determinants. This immunologic concept has vast biomedical implications for regulation of host immunity against the pathogenesis of diverse disease processes. The upregulation of antigen-specific T-cell responses by 'agonistic' peptides would be most desirable in response to invasive pathogenic challenges, such as infectious and neoplastic disease, while the downregulation of antigen-specific T-cell responses by 'antagonistic' peptides would be most efficacious during inappropriate pathologic consequences, such as autoimmunity. The capacity to experimentally manipulate intrinsic properties of cognate peptide ligands to appropriately alter the nature, course and potency of cellular immune interactions has important potential in both preventive and therapeutic clinical paradigms.
Collapse
Affiliation(s)
- S I Abrams
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1750, USA.
| | | |
Collapse
|
13
|
Abstract
The prevalence and incidence of myasthenia gravis is higher than previously thought. A potentially immunodominant T cell has been defined. The specific voltage-gated calcium channel subtype that is targeted by antibodies in the Lambert-Eaton myasthenic syndrome has been identified, and there is further evidence for the pathogenic role of autoantibodies in some cases of fetal arthrogryposis and in acquired neuromyotonia, Morvan's syndrome and Miller-Fisher syndrome.
Collapse
Affiliation(s)
- A Vincent
- University of Oxford, Department of Clinical Neurology, John Radcliffe Hospital, UK.
| |
Collapse
|