1
|
Zou HX, Yan X, Rudolf VHW. Time-dependent interaction modification generated from plant-soil feedback. Ecol Lett 2024; 27:e14432. [PMID: 38698727 DOI: 10.1111/ele.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Pairwise interactions between species can be modified by other community members, leading to emergent dynamics contingent on community composition. Despite the prevalence of such higher-order interactions, little is known about how they are linked to the timing and order of species' arrival. We generate population dynamics from a mechanistic plant-soil feedback model, then apply a general theoretical framework to show that the modification of a pairwise interaction by a third plant depends on its germination phenology. These time-dependent interaction modifications emerge from concurrent changes in plant and microbe populations and are strengthened by higher overlap between plants' associated microbiomes. The interaction between this overlap and the specificity of microbiomes further determines plant coexistence. Our framework is widely applicable to mechanisms in other systems from which similar time-dependent interaction modifications can emerge, highlighting the need to integrate temporal shifts of species interactions to predict the emergent dynamics of natural communities.
Collapse
Affiliation(s)
- Heng-Xing Zou
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, Texas, USA
| | - Xinyi Yan
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Volker H W Rudolf
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
2
|
Emery SE, Klapwijk M, Sigvald R, Bommarco R, Lundin O. Cold winters drive consistent and spatially synchronous 8-year population cycles of cabbage stem flea beetle. J Anim Ecol 2023; 92:594-605. [PMID: 36484622 DOI: 10.1111/1365-2656.13866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Population cycles have been observed in mammals as well as insects, but consistent population cycling has rarely been documented in agroecosystems and never for a beetle. We analysed the long-term population patterns of the cabbage stem flea beetle Psylliodes chrysocephala in winter oilseed rape over 50 years. Psylliodes chrysocephala larval density from 3045 winter oilseed rape fields in southern Sweden showed strong 8-year population cycles in regional mean density. Fluctuations in larval density were synchronous over time across five subregional populations. Subregional mean environmental variables explained 90.6% of the synchrony in P. chrysocephala populations at the 7-11 year time-scale. The number of days below -10°C showed strong anti-phase coherence with larval densities in the 7-11 year time-scale, such that more cold days resulted in low larval densities. High levels of the North Atlantic Oscillation weather system are coherent and anti-phase with cold weather in Scania, Sweden. At the field-scale, later crop planting date and more cold winter days were associated with decreased overwintering larval density. Warmer autumn temperatures, resulting in greater larval accumulated degree days early in the season, increased overwintering larval density. Despite variation in environmental conditions and crop management, 8-year cycles persisted for cabbage stem flea beetle throughout the 50 years of data collection. Moran effects, influenced by the North Atlantic Oscillation weather patterns, are the primary drivers of this cycle and synchronicity. Insect pest data collected in commercial agriculture fields is an abundant source of long-term data. We show that an agricultural pest can have the same periodic population cycles observed in perennial and unmanaged ecosystems. This unexpected finding has implications for sustainable pest management in agriculture and shows the value of long-term pest monitoring projects as an additional source of time-series data to untangle the drivers of population cycles.
Collapse
Affiliation(s)
- Sara E Emery
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Wildlife Fish and Conservation Biology, University of California Davis, Davis, California, USA
| | - Maartje Klapwijk
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roland Sigvald
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Riccardo Bommarco
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ola Lundin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
3
|
Drechsler M, Wätzold F, Grimm V. The hitchhiker's guide to generic ecological-economic modelling of land-use-based biodiversity conservation policies. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Huang S, Li G, Pan Y, Liu J, Zhao J, Zhang X, Lu W, Wan X, Krebs CJ, Wang Z, Han W, Zhang Z. Population variation alters aggression-associated oxytocin and vasopressin expressions in brains of Brandt's voles in field conditions. Front Zool 2021; 18:56. [PMID: 34717666 PMCID: PMC8557550 DOI: 10.1186/s12983-021-00441-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
Density-dependent change in aggressive behavior contributes to the population regulation of many small rodents, but the underlying neurological mechanisms have not been examined in field conditions. We hypothesized that crowding stress and aggression-associated oxytocin (OT) and arginine vasopressin (AVP) in specific regions of the brain may be closely related to aggressive behaviors and population changes of small rodents. We analyzed the association of OT and AVP expression, aggressive behavior, and population density of Brandt’s voles in 24 large semi-natural enclosures (0.48 ha each) in Inner Mongolia grassland. We tested the effects of population density on the OT/AVP system and aggressive behavior by experimentally manipulating populations of Brandt’s voles in the grassland enclosures. High density was positively and significantly associated with more aggressive behavior, and increased expression of mRNA and protein of AVP and its receptor, but decreased expression of mRNA and protein of OT and its receptor in specific brain regions of the voles. Our study suggests that changes in OT/AVP expression are likely a result of the increased psychosocial stress that these voles experience during overcrowding, and thus the OT/AVP system can be used as indicators of density-dependent stressors in Brandt’s voles.
Collapse
Affiliation(s)
- Shuli Huang
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoliang Li
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongliang Pan
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,School of Medicine, Huzhou University, Huzhou, 313000, China
| | - Jing Liu
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jidong Zhao
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhang
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Lu
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinrong Wan
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306-1270, USA
| | - Wenxuan Han
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Trapani L. A test for strict stationarity in a random coefficient autoregressive model of order 1. Stat Probab Lett 2021. [DOI: 10.1016/j.spl.2021.109164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Bonnaffé W, Sheldon BC, Coulson T. Neural ordinary differential equations for ecological and evolutionary time‐series analysis. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Willem Bonnaffé
- Edward Grey Institute of Field Ornithology Department of Zoology Oxford University Oxford UK
- Ecological and Evolutionary Dynamics Lab Department of Zoology Oxford University Oxford UK
| | - Ben C. Sheldon
- Edward Grey Institute of Field Ornithology Department of Zoology Oxford University Oxford UK
| | - Tim Coulson
- Ecological and Evolutionary Dynamics Lab Department of Zoology Oxford University Oxford UK
| |
Collapse
|
7
|
Chen GY, Gan M, Chen CLP, Li HX. Basis Function Matrix-Based Flexible Coefficient Autoregressive Models: A Framework for Time Series and Nonlinear System Modeling. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:614-623. [PMID: 30869637 DOI: 10.1109/tcyb.2019.2900469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We propose, in this paper, a framework for time series and nonlinear system modeling, called the basis function matrix-based flexible coefficient autoregressive (BFM-FCAR) model. It has very flexible nonlinear structure. We show that many famous nonlinear time series models can be derived under this framework by choosing the proper basis function matrices. Some probabilistic properties (the conditions of geometrical ergodicity) of the BFM-FCAR model are investigated. Taking advantage of the model structure, we present an efficient parameter estimation algorithm for the proposed framework by using the variable projection method. Finally, we show how new models are generated from the proposed framework.
Collapse
|
8
|
Grunert K, Holden H, Jakobsen ER, Stenseth NC. Evolutionarily stable strategies in stable and periodically fluctuating populations: The Rosenzweig-MacArthur predator-prey model. Proc Natl Acad Sci U S A 2021; 118:e2017463118. [PMID: 33479183 PMCID: PMC7848735 DOI: 10.1073/pnas.2017463118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An evolutionarily stable strategy (ESS) is an evolutionary strategy that, if adapted by a population, cannot be invaded by any deviating (mutant) strategy. The concept of ESS has been extensively studied and widely applied in ecology and evolutionary biology [M. Smith, On Evolution (1972)] but typically on the assumption that the system is ecologically stable. With reference to a Rosenzweig-MacArthur predator-prey model [M. Rosenzweig, R. MacArthur, Am. Nat. 97, 209-223 (1963)], we derive the mathematical conditions for the existence of an ESS when the ecological dynamics have asymptotically stable limit points as well as limit cycles. By extending the framework of Reed and Stenseth [J. Reed, N. C. Stenseth, J. Theoret. Biol. 108, 491-508 (1984)], we find that ESSs occur at values of the evolutionary strategies that are local optima of certain functions of the model parameters. These functions are identified and shown to have a similar form for both stable and fluctuating populations. We illustrate these results with a concrete example.
Collapse
Affiliation(s)
- Katrin Grunert
- Department of Mathematical Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Helge Holden
- Department of Mathematical Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Espen R Jakobsen
- Department of Mathematical Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway;
- Centre for Biodiversity Dynamics, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
9
|
Abstract
Lynx canadensis Kerr, 1792, commonly called the Canada lynx, is a medium size felid and is the second largest of the four species in the genus Lynx. It is distributed throughout the boreal forest of most of Canada and Alaska and across portions of the northern United States. It prefers dense, regenerating coniferous forests with moderate canopy and understory cover. L. canadensis is a snowshoe hare specialist, and its ecology, morphology, and behavior closely reflect that of its main prey. It is listed as “Least Concern” by the International Union for Conservation of Nature and Natural Resources, is on Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora, and its population size trend is considered stable. However, the status of United States subpopulations, being largely peripheral to the Canadian population, is more tenuous and the species is protected.
Collapse
Affiliation(s)
- Maxime Lavoie
- Départment de Biologie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Aurélie Renard
- Départment de Biologie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Serge Larivière
- Départment de Biologie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| |
Collapse
|
10
|
Kelt DA, Heske EJ, Lambin X, Oli MK, Orrock JL, Ozgul A, Pauli JN, Prugh LR, Sollmann R, Sommer S. Advances in population ecology and species interactions in mammals. J Mammal 2019. [DOI: 10.1093/jmammal/gyz017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AbstractThe study of mammals has promoted the development and testing of many ideas in contemporary ecology. Here we address recent developments in foraging and habitat selection, source–sink dynamics, competition (both within and between species), population cycles, predation (including apparent competition), mutualism, and biological invasions. Because mammals are appealing to the public, ecological insight gleaned from the study of mammals has disproportionate potential in educating the public about ecological principles and their application to wise management. Mammals have been central to many computational and statistical developments in recent years, including refinements to traditional approaches and metrics (e.g., capture-recapture) as well as advancements of novel and developing fields (e.g., spatial capture-recapture, occupancy modeling, integrated population models). The study of mammals also poses challenges in terms of fully characterizing dynamics in natural conditions. Ongoing climate change threatens to affect global ecosystems, and mammals provide visible and charismatic subjects for research on local and regional effects of such change as well as predictive modeling of the long-term effects on ecosystem function and stability. Although much remains to be done, the population ecology of mammals continues to be a vibrant and rapidly developing field. We anticipate that the next quarter century will prove as exciting and productive for the study of mammals as has the recent one.
Collapse
Affiliation(s)
- Douglas A Kelt
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA
| | - Edward J Heske
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Madan K Oli
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, USA
| | - Laura R Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Rahel Sollmann
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA
| | - Stefan Sommer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Barraquand F, Picoche C, Maurer D, Carassou L, Auby I. Coastal phytoplankton community dynamics and coexistence driven by intragroup density-dependence, light and hydrodynamics. OIKOS 2018. [DOI: 10.1111/oik.05361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- F. Barraquand
- Univ. of Bordeaux, Integrative and Theoretical Ecology, LabEx COTE; Bât. B2 - Allée Geoffroy St-Hilaire FR-33615 Pessac France
- CNRS, Inst. of Mathematics of Bordeaux; Talence France
| | - C. Picoche
- Univ. of Bordeaux, Integrative and Theoretical Ecology, LabEx COTE; Bât. B2 - Allée Geoffroy St-Hilaire FR-33615 Pessac France
| | - D. Maurer
- Ifremer, LER Arcachon, Quai du Commandant Silhouette; Arcachon France
| | - L. Carassou
- Univ. of Bordeaux, Integrative and Theoretical Ecology, LabEx COTE; Bât. B2 - Allée Geoffroy St-Hilaire FR-33615 Pessac France
- Irstea, Aquatic ecosystems and global changes Unit (UR EABX); Cestas France
| | - I. Auby
- Ifremer, LER Arcachon, Quai du Commandant Silhouette; Arcachon France
| |
Collapse
|
12
|
An Inverse Problem: Trappers Drove Hares to Eat Lynx. Acta Biotheor 2018; 66:213-242. [PMID: 29846858 DOI: 10.1007/s10441-018-9333-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/19/2018] [Indexed: 10/14/2022]
Abstract
The Canadian lynx and snowshoe hare pelt data by the Hudson Bay Company did not fit the classical predator-prey theory. Rather than following the peak density of the hare, that of the lynx leads it, creating the hares-eat-lynx (HEL) paradox. Although trappers were suspected to play a role, no mathematical model has ever demonstrated the HEL effect. Here we show that the long-held assumption that the pelt number is a proxy of the wild populations is false and that when the data are modeled by the harvest rates by the trappers, the problem is finally resolved: both the HEL paradox and the classical theory are unified in our mechanistic hare-lynx-competitor-trapper (HLCT) model where competitor stands for all predators of the hares other than the lynx. The result is obtained by systematically fitting the data to various models using Newton's inverse problem method. Main findings of this study include: the prey-eats-predator paradox in kills by an intraguild top-predator can occur if the top-predator prefers the predator to the prey; the benchmark HLCT model is more sensitive to all lynx-trapper interactions than to the respective hare-trapper interactions; the Hudson Bay Company's hare pelt number maybe under-reported; and, the most intriguing of all, the trappers did not interfere in each other's trapping activities.
Collapse
|
13
|
Klapwijk MJ, Walter JA, Hirka A, Csóka G, Björkman C, Liebhold AM. Transient synchrony among populations of five foliage-feeding Lepidoptera. J Anim Ecol 2018. [PMID: 29536534 DOI: 10.1111/1365-2656.12823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies of transient population dynamics have largely focused on temporal changes in dynamical behaviour, such as the transition between periods of stability and instability. This study explores a related dynamic pattern, namely transient synchrony during a 49-year period among populations of five sympatric species of forest insects that share host tree resources. The long time series allows a more comprehensive exploration of transient synchrony patterns than most previous studies. Considerable variation existed in the dynamics of individual species, ranging from periodic to aperiodic. We used time-averaged methods to investigate long-term patterns of synchrony and time-localized methods to detect transient synchrony. We investigated transient patterns of synchrony between species and related these to the species' varying density dependence structures; even species with very different density dependence exhibited at least temporary periods of synchrony. Observed periods of interspecific synchrony may arise from interactions with host trees (e.g., induced host defences), interactions with shared natural enemies or shared impacts of environmental stochasticity. The transient nature of synchrony observed here raises questions both about the identity of synchronizing mechanisms and how these mechanisms interact with the endogenous dynamics of each species. We conclude that these patterns are the result of interspecific interactions that act only temporarily to synchronize populations, after which differences in the endogenous population dynamics among the species acts to desynchronize their dynamics.
Collapse
Affiliation(s)
- Maartje J Klapwijk
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jonathan A Walter
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA.,Department of Ecology and Evolution and Kansas Biological Survey, University of Kansas, Lawrence, KS, USA
| | - Anikó Hirka
- Department of Forest Protection, NARIC Forest Research Institute, Mátrafûred, Hungary
| | - György Csóka
- Department of Forest Protection, NARIC Forest Research Institute, Mátrafûred, Hungary
| | - Christer Björkman
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
14
|
Schmidt JH, McIntyre CL, Roland CA, MacCluskie MC, Flamme MJ. Bottom-up processes drive reproductive success in an apex predator. Ecol Evol 2018; 8:1833-1841. [PMID: 29435257 PMCID: PMC5792545 DOI: 10.1002/ece3.3800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/14/2017] [Accepted: 12/11/2017] [Indexed: 11/10/2022] Open
Abstract
One of the central goals of the field of population ecology is to identify the drivers of population dynamics, particularly in the context of predator-prey relationships. Understanding the relative role of top-down versus bottom-up drivers is of particular interest in understanding ecosystem dynamics. Our goal was to explore predator-prey relationships in a boreal ecosystem in interior Alaska through the use of multispecies long-term monitoring data. We used 29 years of field data and a dynamic multistate site occupancy modeling approach to explore the trophic relationships between an apex predator, the golden eagle, and cyclic populations of the two primary prey species available to eagles early in the breeding season, snowshoe hare and willow ptarmigan. We found that golden eagle reproductive success was reliant on prey numbers, but also responded prior to changes in the phase of the snowshoe hare population cycle and failed to respond to variation in hare cycle amplitude. There was no lagged response to ptarmigan populations, and ptarmigan populations recovered quickly from the low phase. Together, these results suggested that eagle reproduction is largely driven by bottom-up processes, with little evidence of top-down control of either ptarmigan or hare populations. Although the relationship between golden eagle reproductive success and prey abundance had been previously established, here we established prey populations are likely driving eagle dynamics through bottom-up processes. The key to this insight was our focus on golden eagle reproductive parameters rather than overall abundance. Although our inference is limited to the golden eagle-hare-ptarmigan relationships we studied, our results suggest caution in interpreting predator-prey abundance patterns among other species as strong evidence for top-down control.
Collapse
Affiliation(s)
| | - Carol L. McIntyre
- Denali National Park and PreserveU.S. National Park ServiceFairbanksAKUSA
| | - Carl A. Roland
- Central Alaska NetworkU.S. National Park ServiceFairbanksAKUSA
- Denali National Park and PreserveU.S. National Park ServiceFairbanksAKUSA
| | | | - Melanie J. Flamme
- Yukon‐Charley Rivers Preserve and Gates of the Arctic National Park and PreserveU.S. National Park ServiceFairbanksAKUSA
| |
Collapse
|
15
|
Abstract
In this contribution, we develop a theoretical framework for linking microprocesses (i.e., population dynamics and evolution through natural selection) with macrophenomena (such as interconnectedness and modularity within an ecological system). This is achieved by developing a measure of interconnectedness for population distributions defined on a trait space (generalizing the notion of modularity on graphs), in combination with an evolution equation for the population distribution. With this contribution, we provide a platform for understanding under what environmental, ecological, and evolutionary conditions ecosystems evolve toward being more or less modular. A major contribution of this work is that we are able to decompose the overall driver of changes at the macro level (such as interconnectedness) into three components: (i) ecologically driven change, (ii) evolutionarily driven change, and (iii) environmentally driven change.
Collapse
|
16
|
Schmidt JH, Rexstad EA, Roland CA, McIntyre CL, MacCluskie MC, Flamme MJ. Weather-driven change in primary productivity explains variation in the amplitude of two herbivore population cycles in a boreal system. Oecologia 2017; 186:435-446. [PMID: 29170821 DOI: 10.1007/s00442-017-4004-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/06/2017] [Indexed: 11/29/2022]
Abstract
Vertebrate populations throughout the circumpolar north often exhibit cyclic dynamics, and predation is generally considered to be a primary driver of these cycles in a variety of herbivore species. However, weather and climate play a role in entraining cycles over broad landscapes and may alter cyclic dynamics, although the mechanism by which these processes operate is uncertain. Experimental and observational work has suggested that weather influences primary productivity over multi-year time periods, suggesting a pathway through which weather and climate may influence cyclic herbivore dynamics. Using long-term monitoring data, we investigated the relationships among multi-year weather conditions, measures of primary productivity, and the abundance of two cyclic herbivore species: snowshoe hare and northern red-backed vole. We found that precipitation (rain and snow) and growing season temperatures were strongly associated with variation in primary productivity over multi-year time horizons. In turn, fourfold variation in the amplitude of both the hare and vole cycles observed in our study area corresponded to long-term changes in primary productivity. The congruence of our results for these two species suggests a general mechanism by which weather and climate might influence cyclic herbivore population dynamics. Our findings also suggested that the association between climate warming and the disappearance of cycles might be initiated by changes in primary productivity. This work provides an explanation for observed influences of weather and climate on primary productivity and population cycles and will help our collective understanding of how future climate warming may influence these ecological phenomena in the future.
Collapse
Affiliation(s)
- Joshua H Schmidt
- US National Park Service, Central Alaska Network, 4175 Geist Road, Fairbanks, AK, 99709, USA.
| | - Eric A Rexstad
- Research Unit for Wildlife Population Assessment, Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St Andrews, KY16 9LZ, UK
| | - Carl A Roland
- US National Park Service, Central Alaska Network, 4175 Geist Road, Fairbanks, AK, 99709, USA.,US National Park Service, Denali National Park and Preserve, 4175 Geist Road, Fairbanks, AK, 99709, USA
| | - Carol L McIntyre
- US National Park Service, Denali National Park and Preserve, 4175 Geist Road, Fairbanks, AK, 99709, USA
| | - Margaret C MacCluskie
- US National Park Service, Central Alaska Network, 4175 Geist Road, Fairbanks, AK, 99709, USA
| | - Melanie J Flamme
- US National Park Service, Yukon-Charley Rivers Preserve and Gates of the Arctic National Park and Preserve, 4175 Geist Road, Fairbanks, AK, 99709, USA
| |
Collapse
|
17
|
Prentice MB, Bowman J, Khidas K, Koen EL, Row JR, Murray DL, Wilson PJ. Selection and drift influence genetic differentiation of insular Canada lynx ( Lynx canadensis) on Newfoundland and Cape Breton Island. Ecol Evol 2017; 7:3281-3294. [PMID: 28480025 PMCID: PMC5415520 DOI: 10.1002/ece3.2945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/27/2017] [Accepted: 03/05/2017] [Indexed: 01/16/2023] Open
Abstract
Island populations have long been important for understanding the dynamics and mechanisms of evolution in natural systems. While genetic drift is often strong on islands due to founder events and population bottlenecks, the strength of selection can also be strong enough to counteract the effects of drift. Here, we used several analyses to identify the roles of genetic drift and selection on genetic differentiation and diversity of Canada lynx (Lynx canadensis) across eastern Canada, including the islands of Cape Breton and Newfoundland. Specifically, we assessed whether we could identify a genetic component to the observed morphological differentiation that has been reported across insular and mainland lynx. We used a dinucleotide repeat within the promoter region of a functional gene that has been linked to mammalian body size, insulin-like growth factor-1 (IGF-1). We found high genetic differentiation at neutral molecular markers but convergence of allele frequencies at the IGF-1 locus. Thus, we showed that while genetic drift has influenced the observed genetic structure of lynx at neutral molecular markers, natural selection has also played a role in the observed patterns of genetic diversity at the IGF-1 locus of insular lynx.
Collapse
Affiliation(s)
- Melanie B Prentice
- Department of Environmental and Life Sciences Trent University Peterborough ON Canada
| | - Jeff Bowman
- Wildlife Research and Monitoring Section Ontario Ministry of Natural Resources and Forestry Peterborough ON Canada
| | - Kamal Khidas
- Vertebrate Zoology Canadian Museum of Nature Ottawa ON Canada
| | - Erin L Koen
- Biology Department Trent University Peterborough ON Canada
| | - Jeffrey R Row
- Department of Environment and Resource Studies University of Waterloo Waterloo ON Canada
| | | | - Paul J Wilson
- Biology Department Trent University Peterborough ON Canada
| |
Collapse
|
18
|
Mysterud A, Austrheim G. The Role of Individual Traits and Environmental Factors for Diet Composition of Sheep. PLoS One 2016; 11:e0146217. [PMID: 26731411 PMCID: PMC4701509 DOI: 10.1371/journal.pone.0146217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/15/2015] [Indexed: 11/18/2022] Open
Abstract
Large herbivore consumption of forage is known to affect vegetation composition and thereby ecosystem functions. It is thus important to understand how diet composition arises as a mixture of individual variation in preferences and environmental drivers of availability, but few studies have quantified both. Based on 10 years of data on diet composition by aid of microhistological analysis for sheep kept at high and low population density, we analysed how both individual traits (sex, age, body mass, litter size) linked to preference and environmental variation (density, climate proxies) linked to forage availability affected proportional intake of herbs (high quality/low availability) and Avenella flexuosa (lower quality/high availability). Environmental factors affecting current forage availability such as population density and seasonal and annual variation in diet had the most marked impact on diet composition. Previous environment of sheep (switch between high and low population density) had no impact on diet, suggesting a comparably minor role of learning for density dependent diet selection. For individual traits, only the difference between lambs and ewes affected proportion of A. flexuosa, while body mass better predicted proportion of herbs in diet. Neither sex, body mass, litter size, ewe age nor mass of ewe affected diet composition of lambs, and there was no effect of age, body mass or litter size on diet composition of ewes. Our study highlights that diet composition arises from a combination of preferences being predicted by lamb and ewes’ age and/or body mass differences, and the immediate environment in terms of population density and proxies for vegetation development.
Collapse
Affiliation(s)
- Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
- * E-mail:
| | - Gunnar Austrheim
- Museum of Natural History and Archaeology, Section of Natural History, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| |
Collapse
|
19
|
Bastille-Rousseau G, Schaefer JA, Lewis KP, Mumma MA, Ellington EH, Rayl ND, Mahoney SP, Pouliot D, Murray DL. Phase-dependent climate-predator interactions explain three decades of variation in neonatal caribou survival. J Anim Ecol 2015; 85:445-56. [DOI: 10.1111/1365-2656.12466] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 10/16/2015] [Indexed: 11/27/2022]
Affiliation(s)
| | - James A. Schaefer
- Environmental and Life Sciences Graduate Program; Trent University; Peterborough Ontario K9J 7B8 Canada
| | - Keith P. Lewis
- Newfoundland and Labrador Department of Environment and Conservation; P.O. Box 8700 St. John's Newfoundland and Labrador A1B 4J6 Canada
| | - Matthew A. Mumma
- Department of Fish and Wildlife Sciences; College of Natural Resources; University of Idaho; Moscow ID 83844 USA
| | - E. Hance Ellington
- Environmental and Life Sciences Graduate Program; Trent University; Peterborough Ontario K9J 7B8 Canada
| | - Nathaniel D. Rayl
- Department of Environmental Conservation; University of Massachusetts; Amherst Massachusetts 01003 USA
| | - Shane P. Mahoney
- Newfoundland and Labrador Department of Environment and Conservation; P.O. Box 8700 St. John's Newfoundland and Labrador A1B 4J6 Canada
| | - Darren Pouliot
- Natural Resources Canada; Canada Centre for Remote Sensing; Ottawa Ontario K1A 0E4 Canada
| | - Dennis L. Murray
- Environmental and Life Sciences Graduate Program; Trent University; Peterborough Ontario K9J 7B8 Canada
| |
Collapse
|
20
|
Woodland caribou calf mortality in Newfoundland: insights into the role of climate, predation and population density over three decades of study. POPUL ECOL 2015. [DOI: 10.1007/s10144-015-0525-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Zhang Z, Yan C, Krebs CJ, Stenseth NC. Ecological non-monotonicity and its effects on complexity and stability of populations, communities and ecosystems. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2015.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Li F, Tian Z, Qi P. Structural Change Monitoring for Random Coefficient Autoregressive Time Series. COMMUN STAT-SIMUL C 2015. [DOI: 10.1080/03610918.2013.800205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Veran S, Simpson SJ, Sword GA, Deveson E, Piry S, Hines JE, Berthier K. Modeling spatiotemporal dynamics of outbreaking species: influence of environment and migration in a locust. Ecology 2015; 96:737-48. [DOI: 10.1890/14-0183.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
García-Algarra J, Galeano J, Pastor JM, Iriondo JM, Ramasco JJ. Rethinking the logistic approach for population dynamics of mutualistic interactions. J Theor Biol 2014; 363:332-43. [PMID: 25173080 DOI: 10.1016/j.jtbi.2014.08.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 07/18/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
Mutualistic communities have an internal structure that makes them resilient to external perturbations. Late research has focused on their stability and the topology of the relations between the different organisms to explain the reasons of the system robustness. Much less attention has been invested in analyzing the systems dynamics. The main population models in use are modifications of the r-K formulation of logistic equation with additional terms to account for the benefits produced by the interspecific interactions. These models have shortcomings as the so-called r-K formulation diverges under some conditions. In this work, we introduce a model for population dynamics under mutualism that preserves the original logistic formulation. It is mathematically simpler than the widely used type II models, although it shows similar complexity in terms of fixed points and stability of the dynamics. We perform an analytical stability analysis and numerical simulations to study the model behavior in general interaction scenarios including tests of the resilience of its dynamics under external perturbations. Despite its simplicity, our results indicate that the model dynamics shows an important richness that can be used to gain further insights in the dynamics of mutualistic communities.
Collapse
Affiliation(s)
| | - Javier Galeano
- Complex System Group, Universidad Politécnica de Madrid, 28040 Madrid, Spain; Dep. Ciencia y Tecnología Aplicadas a la I.T. Agrícola, E.U.I.T. Agrícola, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - Juan Manuel Pastor
- Complex System Group, Universidad Politécnica de Madrid, 28040 Madrid, Spain; Dep. Ciencia y Tecnología Aplicadas a la I.T. Agrícola, E.U.I.T. Agrícola, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - José María Iriondo
- Área de Biodiversidad y Conservación, Dept. Biología y Geología, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - José J Ramasco
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| |
Collapse
|
25
|
Montgomery RA, Vucetich JA, Roloff GJ, Bump JK, Peterson RO. Where wolves kill moose: the influence of prey life history dynamics on the landscape ecology of predation. PLoS One 2014; 9:e91414. [PMID: 24622241 PMCID: PMC3951347 DOI: 10.1371/journal.pone.0091414] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 02/11/2014] [Indexed: 11/20/2022] Open
Abstract
The landscape ecology of predation is well studied and known to be influenced by habitat heterogeneity. Little attention has been given to how the influence of habitat heterogeneity on the landscape ecology of predation might be modulated by life history dynamics of prey in mammalian systems. We demonstrate how life history dynamics of moose (Alces alces) contribute to landscape patterns in predation by wolves (Canis lupus) in Isle Royale National Park, Lake Superior, USA. We use pattern analysis and kernel density estimates of moose kill sites to demonstrate that moose in senescent condition and moose in prime condition tend to be wolf-killed in different regions of Isle Royale in winter. Predation on senescent moose was clustered in one kill zone in the northeast portion of the island, whereas predation on prime moose was clustered in 13 separate kill zones distributed throughout the full extent of the island. Moreover, the probability of kill occurrence for senescent moose, in comparison to prime moose, increased in high elevation habitat with patches of dense coniferous trees. These differences can be attributed, at least in part, to senescent moose being more vulnerable to predation and making different risk-sensitive habitat decisions than prime moose. Landscape patterns emerging from prey life history dynamics and habitat heterogeneity have been observed in the predation ecology of fish and insects, but this is the first mammalian system for which such observations have been made.
Collapse
Affiliation(s)
- Robert A. Montgomery
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - John A. Vucetich
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
| | - Gary J. Roloff
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Joseph K. Bump
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
| | - Rolf O. Peterson
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
| |
Collapse
|
26
|
Ferguson JM, Ponciano JM. Predicting the process of extinction in experimental microcosms and accounting for interspecific interactions in single-species time series. Ecol Lett 2013; 17:251-9. [PMID: 24304946 PMCID: PMC3912915 DOI: 10.1111/ele.12227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/15/2013] [Accepted: 10/31/2013] [Indexed: 11/29/2022]
Abstract
Predicting population extinction risk is a fundamental application of ecological theory to the practice of conservation biology. Here, we compared the prediction performance of a wide array of stochastic, population dynamics models against direct observations of the extinction process from an extensive experimental data set. By varying a series of biological and statistical assumptions in the proposed models, we were able to identify the assumptions that affected predictions about population extinction. We also show how certain autocorrelation structures can emerge due to interspecific interactions, and that accounting for the stochastic effect of these interactions can improve predictions of the extinction process. We conclude that it is possible to account for the stochastic effects of community interactions on extinction when using single-species time series.
Collapse
Affiliation(s)
- Jake M Ferguson
- Department of Biology, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
27
|
Barraquand F. Functional responses and predator–prey models: a critique of ratio dependence. THEOR ECOL-NETH 2013. [DOI: 10.1007/s12080-013-0201-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Dispersal promotes high gene flow among Canada lynx populations across mainland North America. CONSERV GENET 2012. [DOI: 10.1007/s10592-012-0369-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Simard MA, Côté SD, Gingras A, Coulson T. Tests of density dependence using indices of relative abundance in a deer population. OIKOS 2012. [DOI: 10.1111/j.1600-0706.2011.19723.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
|
31
|
Powney GD, Roy DB, Chapman D, Brereton T, Oliver TH. Measuring functional connectivity using long-term monitoring data. Methods Ecol Evol 2011. [DOI: 10.1111/j.2041-210x.2011.00098.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Svensson CJ, Eriksson A, Harkonen T, Harding KC. Detecting density dependence in recovering seal populations. AMBIO 2011; 40:52-59. [PMID: 21404823 PMCID: PMC3357728 DOI: 10.1007/s13280-010-0091-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 08/24/2010] [Indexed: 05/30/2023]
Abstract
Time series of abundance estimates are commonly used for analyses of population trends and possible shifts in growth rate. We investigate if trends in age composition can be used as an alternative to abundance estimates for detection of decelerated population growth. Both methods were tested under two forms of density dependence and different levels of environmental variation in simulated time series of growth in Baltic gray seals. Under logistic growth, decelerating growth could be statistically confirmed after 16 years based on population counts and 14 years based on age composition. When density dependence sets in first at larger population sizes, the age composition method performed dramatically better than population counts, and a decline could be detected after 4 years (versus 10 years). Consequently, age composition analysis provides a complementary method to detect density dependence, particularly in populations where density dependence sets in late.
Collapse
Affiliation(s)
- Carl Johan Svensson
- Department of Marine Ecology, Gothenburg University, Box 461, 405 31 Gothenburg, Sweden
| | - Anders Eriksson
- Division of Physical Resource Theory, Department of Energy and Environment, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Tero Harkonen
- Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden
| | - Karin C. Harding
- Department of Marine Ecology, Gothenburg University, Box 461, 405 31 Gothenburg, Sweden
| |
Collapse
|
33
|
Trosvik P, Rudi K, Straetkvern KO, Jakobsen KS, Naes T, Stenseth NC. Web of ecological interactions in an experimental gut microbiota. Environ Microbiol 2011; 12:2677-87. [PMID: 20482738 DOI: 10.1111/j.1462-2920.2010.02236.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The dynamics of all ecosystems are dictated by intrinsic, density-dependent mechanisms and by density-independent environmental forcing. In spite of the importance of the gastrointestinal microbiota in health and disease, the ecology of this system remains largely unknown. Here, we take an ecological approach to gut microbial community analysis, with statistical modelling of time series data from chemostats. This approach removes effects of host forcing, allowing us to describe a network of intrinsic interactions determining the dynamic structure of an experimental gut microbiota. Surprisingly, the main colonization pattern in this simplified model system resembled that of the human infant gut, suggesting a potentially important role of density-dependent interactions in the early gut microbiota. Knowledge of ecological structures in microbial systems may provide us with a means of controlling such systems by modifying the strength and nature of interactions among microbes and between the microbes and their environment.
Collapse
Affiliation(s)
- Pål Trosvik
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, Oslo N-0316, Norway
| | | | | | | | | | | |
Collapse
|
34
|
Tkadlec E, Lisická-Lachnitová L, Losík J, Heroldová M. Systematic error is of minor importance to feedback structure estimates derived from time series of nonlinear population indices. POPUL ECOL 2010. [DOI: 10.1007/s10144-010-0246-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Sheriff MJ, Krebs CJ, Boonstra R. The ghosts of predators past: population cycles and the role of maternal programming under fluctuating predation risk. Ecology 2010; 91:2983-94. [DOI: 10.1890/09-1108.1] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Michael J. Sheriff
- Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4 Canada
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4 Canada
| | - Charles J. Krebs
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4 Canada
| | - Rudy Boonstra
- Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4 Canada
| |
Collapse
|
36
|
Bani-Yaghoub M, Fedoroff JP, Curry S, Amundsen DE. A time series modeling approach in risk appraisal of violent and sexual recidivism. LAW AND HUMAN BEHAVIOR 2010; 34:349-366. [PMID: 19399599 DOI: 10.1007/s10979-009-9183-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
For over half a century, various clinical and actuarial methods have been employed to assess the likelihood of violent recidivism. Yet there is a need for new methods that can improve the accuracy of recidivism predictions. This study proposes a new time series modeling approach that generates high levels of predictive accuracy over short and long periods of time. The proposed approach outperformed two widely used actuarial instruments (i.e., the Violence Risk Appraisal Guide and the Sex Offender Risk Appraisal Guide). Furthermore, analysis of temporal risk variations based on specific time series models can add valuable information into risk assessment and management of violent offenders.
Collapse
Affiliation(s)
- Majid Bani-Yaghoub
- School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S-5B6, Canada.
| | | | | | | |
Collapse
|
37
|
Ari TB, Gershunov A, Tristan R, Cazelles B, Gage K, Stenseth NC. Interannual variability of human plague occurrence in the Western United States explained by tropical and North Pacific Ocean climate variability. Am J Trop Med Hyg 2010; 83:624-32. [PMID: 20810830 PMCID: PMC2929061 DOI: 10.4269/ajtmh.2010.09-0775] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plague is a vector-borne, highly virulent zoonotic disease caused by the bacterium Yersinia pestis. It persists in nature through transmission between its hosts (wild rodents) and vectors (fleas). During epizootics, the disease expands and spills over to other host species such as humans living in or close to affected areas. Here, we investigate the effect of large-scale climate variability on the dynamics of human plague in the western United States using a 56-year time series of plague reports (1950-2005). We found that El Niño Southern Oscillation and Pacific Decadal Oscillation in combination affect the dynamics of human plague over the western United States. The underlying mechanism could involve changes in precipitation and temperatures that impact both hosts and vectors. It is suggested that snow also may play a key role, possibly through its effects on summer soil moisture, which is known to be instrumental for flea survival and development and sustained growth of vegetation for rodents.
Collapse
Affiliation(s)
- Tamara Ben Ari
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Tyson R, Haines S, Hodges KE. Modelling the Canada lynx and snowshoe hare population cycle: the role of specialist predators. THEOR ECOL-NETH 2009. [DOI: 10.1007/s12080-009-0057-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
The roles of predator maturation delay and functional response in determining the periodicity of predator-prey cycles. Math Biosci 2009; 221:1-10. [PMID: 19563815 DOI: 10.1016/j.mbs.2009.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 06/03/2009] [Accepted: 06/21/2009] [Indexed: 11/22/2022]
Abstract
Population cycles in small mammals have attracted the attention of several generations of theoretical and experimental biologists and continue to generate controversy. Top-down and bottom-up trophic regulations are two recent competing hypotheses. The principal purpose of this paper is to explore the relative contributions of a variety of ecological factors to predator-prey population cycles. Here we suggest that for some species - collared lemmings, snowshoe hares and moose in particular - maturation delay of predators and the functional response of predation appear to be the primary determinants. Our study suggests that maturation delay alone almost completely determines the cycle period, whereas the functional response greatly affects its amplitude and even its existence. These results are obtained from sensitivity analysis of all parameters in a mathematical model of the lemming-stoat delayed system, which is an extension of Gilg's model. Our result may also explain why lemmings have a 4-year cycle whereas snowshoe hares have a 10-year cycle. Our parameterized model supports and extends May's assertion that time delay impacts cycle period and amplitude. Furthermore, if maturation periods of predators are too short or too long, or the functional response resembles Holling Type I, then population cycles do not appear; however, suitable intermediate predator maturation periods and suitable functional responses can generate population cycles for both prey and predators. These results seem to explain why some populations are cyclic whereas others are not. Finally, we find parameterizations of our model that generate a 38-year population cycle consistent with the putative cycles of the moose-wolf interactions on Isle Royale, Michigan.
Collapse
|
41
|
Post E, Brodie J, Hebblewhite M, Anders AD, Maier JAK, Wilmers CC. Global Population Dynamics and Hot Spots of Response to Climate Change. Bioscience 2009. [DOI: 10.1525/bio.2009.59.6.7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
|
43
|
Ecological thresholds and regime shifts: approaches to identification. Trends Ecol Evol 2008; 24:49-57. [PMID: 18952317 DOI: 10.1016/j.tree.2008.07.014] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 07/23/2008] [Accepted: 07/24/2008] [Indexed: 11/21/2022]
Abstract
There is an apparent gap between the prominence of present theoretical frameworks involving ecological thresholds and regime shifts, and the paucity of efforts to conduct simple tests and quantitative inferences on the actual appearance of such phenomena in ecological data. A wide range of statistical methods and analytical techniques are now available that render these questions tractable, some of them even dating back half a century. Yet, their application has been sparse and confined within a narrow subset of cases of ecological regime shifts. Our objective is to raise awareness on the range of techniques available, and to their principles and limitations, to promote a more operational approach to the identification of ecological thresholds and regime shifts.
Collapse
|
44
|
Bjørnstad ON, Liebhold AM, Johnson DM. Transient synchronization following invasion: revisiting Moran’s model and a case study. POPUL ECOL 2008. [DOI: 10.1007/s10144-008-0105-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Tyler NJC, Forchhammer MC, Øritsland NA. NONLINEAR EFFECTS OF CLIMATE AND DENSITY IN THE DYNAMICS OF A FLUCTUATING POPULATION OF REINDEER. Ecology 2008; 89:1675-86. [DOI: 10.1890/07-0416.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
|
47
|
Complex interplays among population dynamics, environmental forcing, and exploitation in fisheries. Proc Natl Acad Sci U S A 2008; 105:5420-5. [PMID: 18391220 DOI: 10.1073/pnas.0709034105] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The patterns of variations in fisheries time series are known to result from a complex combination of species and fisheries dynamics all coupled with environmental forcing (including climate, trophic interactions, etc.). Disentangling the relative effects of these factors has been a major goal of fisheries science for both conceptual and management reasons. By examining the variability of 169 tuna and billfish time series of catch and catch per unit effort (CPUE) throughout the Atlantic as well as their linkage to the North Atlantic Oscillation (NAO), we find that the importance of these factors differed according to the spatial scale. At the scale of the entire Atlantic the patterns of variations are primarily spatially structured, whereas at a more regional scale the patterns of variations were primarily related to the fishing gear. Furthermore, the NAO appeared to also structure the patterns of variations of tuna time series, especially over the North Atlantic. We conclude that the patterns of variations in fisheries time series of tuna and billfish only poorly reflect the underlying dynamics of these fish populations; they appear to be shaped by several successive embedded processes, each interacting with each other. Our results emphasize the necessity for scientific data when investigating the population dynamics of large pelagic fishes, because CPUE fluctuations are not directly attributable to change in species' abundance.
Collapse
|
48
|
Trosvik P, Rudi K, Næs T, Kohler A, Chan KS, Jakobsen KS, Stenseth NC. Characterizing mixed microbial population dynamics using time-series analysis. ISME JOURNAL 2008; 2:707-15. [DOI: 10.1038/ismej.2008.36] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Jones J, Doran PJ, Holmes RT. Spatial scaling of avian population dynamics: population abundance, growth rate, and variability. Ecology 2007; 88:2505-15. [PMID: 18027754 DOI: 10.1890/06-1514.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Synchrony in population fluctuations has been identified as an important component of population dynamics. In a previous study, we determined that local-scale (<15-km) spatial synchrony of bird populations in New England was correlated with synchronous fluctuations in lepidopteran larvae abundance and with the North Atlantic Oscillation. Here we address five questions that extend the scope of our earlier study using North American Breeding Bird Survey data. First, do bird populations in eastern North America exhibit spatial synchrony in abundances at scales beyond those we have documented previously? Second, does spatial synchrony depend on what population metric is analyzed (e.g., abundance, growth rate, or variability)? Third, is there geographic concordance in where species exhibit synchrony? Fourth, for those species that exhibit significant geographic concordance, are there landscape and habitat variables that contribute to the observed patterns? Fifth, is spatial synchrony affected by a species' life history traits? Significant spatial synchrony was common and its magnitude was dependent on the population metric analyzed. Twenty-four of 29 species examined exhibited significant synchrony in population abundance: mean local autocorrelation (rho)= 0.15; mean spatial extent (mean distance where rho=0) = 420.7 km. Five of the 29 species exhibited significant synchrony in annual population growth rate (mean local autocorrelation = 0.06, mean distance = 457.8 km). Ten of the 29 species exhibited significant synchrony in population abundance variability (mean local autocorrelation = 0.49, mean distance = 413.8 km). Analyses of landscape structure indicated that habitat variables were infrequent contributors to spatial synchrony. Likewise, we detected no effects of life history traits on synchrony in population abundance or growth rate. However, short-distance migrants exhibited more spatially extensive synchrony in population variability than either year-round residents or long-distance migrants. The dissimilarity of the spatial extent of synchrony across species suggests that most populations are not regulated at similar spatial scales. The spatial scale of the population synchrony patterns we describe is likely larger than the actual scale of population regulation, and in turn, the scale of population regulation is undoubtedly larger than the scale of individual ecological requirements.
Collapse
Affiliation(s)
- Jason Jones
- Department of Biology, Vassar College, Poughkeepsie, New York 12604, USA.
| | | | | |
Collapse
|
50
|
Sabo JL, Gerber LR. Predicting [corrected] extinction risk in spite of predator-prey oscillations. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2007; 17:1543-54. [PMID: 17708227 DOI: 10.1890/06-0630.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Most population viability analyses (PVA) assume that the effects of species interactions are subsumed by population-level parameters. We examine how robust five commonly used PVA models are to violations of this assumption. We develop a stochastic, stage-structured predator-prey model and simulate prey population vital rates and abundance. We then use simulated data to parameterize and estimate risk for three demographic models (static projection matrix, stochastic projection matrix, stochastic vital rate matrix) and two time series models (diffusion approximation [DA], corrupted diffusion approximation [CDA]). Model bias is measured as the absolute deviation between estimated and observed quasi-extinction risk. Our results highlight three generalities about the application of single-species models to multi-species conservation problems. First, our collective model results suggest that most single-species PVA models overestimate extinction risk when species interactions cause periodic variation in abundance. Second, the DA model produces the most (conservatively) biased risk forecasts. Finally, the CDA model is the most robust PVA to population cycles caused by species interactions. CDA models produce virtually unbiased and relatively precise risk estimates even when populations cycle strongly. High performance of simple time series models like the CDA owes to their ability to effectively partition stochastic and deterministic sources of variation in population abundance.
Collapse
Affiliation(s)
- John L Sabo
- Faculty of Ecology, Evolution and Environmental Science, School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, Arizona 85287-4501, USA.
| | | |
Collapse
|