1
|
Tomsuk Ö, Kaçar S. Mechanistic Insights into Silymarin-Induced Apoptosis and Growth Inhibition in SPC212 Human Mesothelioma Cells. Cell Biochem Biophys 2025:10.1007/s12013-024-01650-w. [PMID: 39747779 DOI: 10.1007/s12013-024-01650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Silymarin, a flavonoid complex isolated from Silybum marianum, possesses various biological properties, including antioxidant, anti-inflammatory, anti-glycation, and hepatoprotective effects. In the present study, we investigated the effects of silymarin on the SPC212 human mesothelioma cell line. MTT and neutral red assays were performed to examine the cytotoxic effects of silymarin. The apoptotic effect was investigated using AO/EB and DAPI staining, and morphological changes were observed using H&E and May-Grünwald staining. Additionally, immunocytochemistry was performed to detect Bax, Bcl2, and PCNA. Our results indicated that silymarin has a dose-dependent cytotoxic effect on SPC212 cells, with an IC50 value of approximately 187.5 µM. Silymarin induces apoptotic hallmarks such as apoptotic bodies, cell shrinkage, and nuclear condensation. In conclusion, silymarin demonstrated cytotoxic and apoptotic effects as well as morphological changes in SPC212 human mesothelioma cells. Further detailed studies are warranted to explore the potential of silymarin as an anti-cancer agent.
Collapse
Affiliation(s)
- Özlem Tomsuk
- Graduate School of Natural and Applied Sciences, Biotechnology and Biosafety Department, Eskişehir Osmangazi University, Eskişehir, Türkiye.
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir, Türkiye.
- Faculty of Medicine, Department of Histology and Embryology, Eskişehir Osmangazi University, Eskişehir, Türkiye.
| | - Sedat Kaçar
- Faculty of Medicine, Department of Histology and Embryology, Eskişehir Osmangazi University, Eskişehir, Türkiye
- Vera Bradley Foundation Center for Breast Cancer Research, Department of Surgery & Division of Oncologic Surgery, Indiana University School of Medicine, Indianapolis, USA
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Li P, Wang D, Yang X, Liu C, Li X, Zhang X, Liu K, Zhang Y, Zhang M, Wang C, Wang R. Anti-Tumor Activity and Mechanism of Silibinin Based on Network Pharmacology and Experimental Verification. Molecules 2024; 29:1901. [PMID: 38675723 PMCID: PMC11054111 DOI: 10.3390/molecules29081901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Silibinin is a flavonoid compound extracted from the seeds of Silybum marianum (L.) Gaertn. It has the functions of liver protection, blood-lipid reduction and anti-tumor effects. However, the potential molecular mechanism of silibinin against tumors is still unknown. This study aimed to assess the anti-tumor effects of silibinin in adenoid cystic carcinoma (ACC2) cells and Balb/c nude mice, and explore its potential mechanism based on network pharmacology prediction and experimental verification. A total of 347 targets interacting with silibinin were collected, and 75 targets related to the tumor growth process for silibinin were filtrated. Based on the PPI analysis, CASP3, SRC, ESR1, JAK2, PRKACA, HSPA8 and CAT showed stronger interactions with other factors and may be the key targets of silibinin for treating tumors. The predicted target proteins according to network pharmacology were verified using Western blot analysis in ACC2 cells and Balb/c nude mice. In the pharmacological experiment, silibinin was revealed to significantly inhibit viability, proliferation, migration and induce the apoptosis of ACC2 cells in vitro, as well as inhibit the growth and development of tumor tissue in vivo. Western blot analysis showed that silibinin affected the expression of proteins associated with cell proliferation, migration and apoptosis, such as MMP3, JNK, PPARα and JAK. The possible molecular mechanism involved in cancer pathways, PI3K-Akt signaling pathway and viral carcinogenesis pathway via the inhibition of CASP3, MMP3, SRC, MAPK10 and CDK6 and the activation of PPARα and JAK. Overall, our results provided insight into the pharmacological mechanisms of silibinin in the treatment of tumors. These results offer a support for the anti-tumor uses of silibinin.
Collapse
Affiliation(s)
- Peihai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| | - Dexu Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| | - Xueliang Yang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| | - Changyu Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| | - Xiaobin Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| | - Xuanming Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| | - Kechun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| | - Yun Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| | - Mengqi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Changyun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rongchun Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| |
Collapse
|
3
|
Zhang G, Wang L, Zhao L, Yang F, Lu C, Yan J, Zhang S, Wang H, Li Y. Silibinin Induces Both Apoptosis and Necroptosis with Potential Anti-tumor Efficacy in Lung Cancer. Anticancer Agents Med Chem 2024; 24:1327-1338. [PMID: 39069713 DOI: 10.2174/0118715206295371240724092314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The incidence of lung cancer is steadily on the rise, posing a growing threat to human health. The search for therapeutic drugs from natural active substances and elucidating their mechanism have been the focus of anti-tumor research. OBJECTIVE Silibinin (SiL) has been shown to be a natural product with a wide range of pharmacological activities, including anti-tumour activity. In our work, SiL was chosen as a possible substance that could inhibit lung cancer. Moreover, its effects on inducing tumor cell death were also studied. METHODS CCK-8 analysis and morphological observation were used to assess the cytotoxic impacts of SiL on lung cancer cells in vitro. The alterations in mitochondrial membrane potential (MMP) and apoptosis rate of cells were detected by flow cytometry. The level of lactate dehydrogenase (LDH) release out of cells was measured. The expression changes of apoptosis or necroptosis-related proteins were detected using western blotting. Protein interactions among RIPK1, RIPK3, and MLKL were analyzed using the co-immunoprecipitation (co-IP) technique. Necrosulfonamide (Nec, an MLKL inhibitor) was used to carry out experiments to assess the changes in apoptosis following the blockade of cell necroptosis. in vitro, SiL was evaluated for its antitumor effects using LLC tumor-bearing mice with mouse lung cancer. RESULTS With an increased dose of SiL, the proliferation ability of A549 cells was considerably inhibited, and the accompanying cell morphology changed. The results of flow cytometry showed that after SiL treatment, MMP levels decreased, and the proportion of cells undergoing apoptosis increased. There was an increase in cleaved caspase-9, caspase-3, and PARP, with a down-regulation of Bcl-2 and an up-regulation of Bax. In addition, the amount of LDH released from the cells increased following SiL treatment, accompanied by augmented expression and phosphorylation levels of necroptosis-related proteins (MLKL, RIPK1, and RIPK3), and the co-IP assay further confirmed the interactions among these three proteins, indicating the necrosome formation induced by SiL. Furthermore, Nec increased the apoptotic rate of SiL-treated cells and aggravated the cytotoxic effect of SiL, indicating that necroptosis blockade could switch cell death to apoptosis and increase the inhibitory effect of SiL on A549 cells. In LLC-bearing mice, gastric administration of SiL significantly inhibited tumor growth, and H&E staining showed significant damage to the tumour tissue. The results of the IHC showed that the expression of RIPK1, RIPK3, and MLKL was more pronounced in the tumor tissue. CONCLUSIONS This study confirmed the dual effect of SiL, as it can induce both biological processes, apoptosis and necroptosis, in lung cancer. SiL-induced apoptosis involved the mitochondrial pathway, as indicated by changes in caspase-9, Bcl-2, and Bax. Necroptosis may be activated due to the changes in the expression of associated proteins in tumour cells and tissues. It has been observed that blocking necroptosis by SiL increased cell death efficiency. This study helps clarify the anti-tumor mechanism of SiL against lung cancer, elucidating its role in the dual induction of apoptosis and necroptosis. Our work provides an experimental basis for the research on cell death induced by SiL and reveals its possible applications for improving the management of lung cancer.
Collapse
Affiliation(s)
- Guoqing Zhang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| | - Li Wang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, P.R. China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, P.R. China
| | - Limei Zhao
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| | - Fang Yang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| | - Chunhua Lu
- Medical Experimental Center, The First People's Hospital of Nanning, Nanning, Guangxi, 530021, P.R. China
| | - Jianhua Yan
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| | - Song Zhang
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan, Hubei, 430070, P.R. China
| | - Haiping Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, P.R. China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, P.R. China
| | - Yixiang Li
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| |
Collapse
|
4
|
Targeting HIF-1α by Natural and Synthetic Compounds: A Promising Approach for Anti-Cancer Therapeutics Development. Molecules 2022; 27:molecules27165192. [PMID: 36014432 PMCID: PMC9413992 DOI: 10.3390/molecules27165192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
Advancement in novel target detection using improved molecular cancer biology has opened up new avenues for promising anti-cancer drug development. In the past two decades, the mechanism of tumor hypoxia has become more understandable with the discovery of hypoxia-inducible factor-1α (HIF-1α). It is a major transcriptional regulator that coordinates the activity of various transcription factors and their downstream molecules involved in tumorigenesis. HIF-1α not only plays a crucial role in the adaptation of tumor cells to hypoxia but also regulates different biological processes, including cell proliferation, survival, cellular metabolism, angiogenesis, metastasis, cancer stem cell maintenance, and propagation. Therefore, HIF-1α overexpression is strongly associated with poor prognosis in patients with different solid cancers. Hence, pharmacological targeting of HIF-1α has been considered to be a novel cancer therapeutic strategy in recent years. In this review, we provide brief descriptions of natural and synthetic compounds as HIF-1α inhibitors that have the potential to accelerate anticancer drug discovery. This review also introduces the mode of action of these compounds for a better understanding of the chemical leads, which could be useful as cancer therapeutics in the future.
Collapse
|
5
|
Yao J, Xiao L, Li C, Wang B, Chen Y, Yan X, Cui Z. Exploration of the Multiscale Interaction Mechanism between Natural Deep Eutectic Solvents and Silybin by QC Calculation and MD Simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Komatsu M, Saito K, Miyamoto I, Koike K, Iyoda M, Nakashima D, Kasamatsu A, Shiiba M, Tanzawa H, Uzawa K. Aberrant GIMAP2 expression affects oral squamous cell carcinoma progression by promoting cell cycle and inhibiting apoptosis. Oncol Lett 2022; 23:49. [PMID: 34992682 PMCID: PMC8721858 DOI: 10.3892/ol.2021.13167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/01/2021] [Indexed: 11/19/2022] Open
Abstract
GTPases of immunity-associated protein 2 (GIMAP2) is a GTPase family member associated with T cell survival. However, its mechanisms of action in oral squamous cell carcinoma (OSCC) remain largely unknown. Therefore, the present study aimed to elucidate the possible role of GIMAP2 in OSCC development by investigating its expression levels and molecular mechanisms in OSCC. Reverse transcription quantitative PCR, immunoblotting and immunohistochemistry indicated that GIMAP2 expression was significantly upregulated (P<0.05) in OSCC-derived cell lines and primary OSCC specimens compared with that in their normal counterparts. GIMAP2-knockdown OSCC cells exhibited decreased cell growth, which was associated with cyclin-dependent kinase (CDK)4, CDK6 and phosphorylated Rb downregulation and p53 and p21 upregulation. In addition to cell cycle arrest, GIMAP2 affected anti-apoptotic functions in GIMAP2-knockdown cells by upregulating Bcl-2 and downregulating Bax and Bak. These findings indicated that GIMAP2 may significantly influence OSCC development and apoptosis inhibition and thus is a potential biomarker of OSCC.
Collapse
Affiliation(s)
- Mari Komatsu
- Department of Oral Science, Chiba University, Chiba 260-8670, Japan
| | - Kengo Saito
- Department of Molecular Virology, Chiba University, Chiba 260-8670, Japan
| | - Isao Miyamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University, Chiba 260-8670, Japan
| | - Kazuyuki Koike
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University, Chiba 260-8670, Japan
| | - Manabu Iyoda
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University, Chiba 260-8670, Japan
| | - Dai Nakashima
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University, Chiba 260-8670, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University, Chiba 260-8670, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Chiba University, Chiba 260-8670, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University, Chiba 260-8670, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Chiba University, Chiba 260-8670, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
7
|
Koltai T, Fliegel L. Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions. J Evid Based Integr Med 2022; 27:2515690X211068826. [PMID: 35018864 PMCID: PMC8814827 DOI: 10.1177/2515690x211068826] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
The flavonoid silymarin extracted from the seeds of Sylibum marianum is a mixture of 6 flavolignan isomers. The 3 more important isomers are silybin (or silibinin), silydianin, and silychristin. Silybin is functionally the most active of these compounds. This group of flavonoids has been extensively studied and they have been used as hepato-protective substances for the mushroom Amanita phalloides intoxication and mainly chronic liver diseases such as alcoholic cirrhosis and nonalcoholic fatty liver. Hepatitis C progression is not, or slightly, modified by silymarin. Recently, it has also been proposed for SARS COVID-19 infection therapy. The biochemical and molecular mechanisms of action of these substances in cancer are subjects of ongoing research. Paradoxically, many of its identified actions such as antioxidant, promoter of ribosomal synthesis, and mitochondrial membrane stabilization, may seem protumoral at first sight, however, silymarin compounds have clear anticancer effects. Some of them are: decreasing migration through multiple targeting, decreasing hypoxia inducible factor-1α expression, inducing apoptosis in some malignant cells, and inhibiting promitotic signaling among others. Interestingly, the antitumoral activity of silymarin compounds is limited to malignant cells while the nonmalignant cells seem not to be affected. Furthermore, there is a long history of silymarin use in human diseases without toxicity after prolonged administration. The ample distribution and easy accessibility to milk thistle-the source of silymarin compounds, its over the counter availability, the fact that it is a weed, some controversial issues regarding bioavailability, and being a nutraceutical rather than a drug, has somehow led medical professionals to view its anticancer effects with skepticism. This is a fundamental reason why it never achieved bedside status in cancer treatment. However, in spite of all the antitumoral effects, silymarin actually has dual effects and in some cases such as pancreatic cancer it can promote stemness. This review deals with recent investigations to elucidate the molecular actions of this flavonoid in cancer, and to consider the possibility of repurposing it. Particular attention is dedicated to silymarin's dual role in cancer and to some controversies of its real effectiveness.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
8
|
Wu S, Chen G, Zhang Q, Wang G, Chen QH. 3- O-Carbamoyl-5,7,20- O-trimethylsilybins: Synthesis and Preliminary Antiproliferative Evaluation. Molecules 2021; 26:6421. [PMID: 34770829 PMCID: PMC8588252 DOI: 10.3390/molecules26216421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
To search for novel androgen receptor (AR) modulators for the potential treatment of castration-resistant prostate cancer (CRPC), naturally occurring silibinin was sought after as a lead compound because it possesses a moderate potency towards AR-positive prostate cancer cells and its chemical scaffold is dissimilar to all currently marketed AR antagonists. On the basis of the structure-activity relationships that we have explored, this study aims to incorporate carbamoyl groups to the alcoholic hydroxyl groups of silibinin to improve its capability in selectively suppressing AR-positive prostate cancer cell proliferation together with water solubility. To this end, a feasible approach was developed to regioselectively introduce a carbamoyl group to the secondary alcoholic hydroxyl group at C-3 without causing the undesired oxidation at C2-C3, providing an avenue for achieving 3-O-carbamoyl-5,7,20-O-trimethylsilybins. The application of the synthetic method can be extended to the synthesis of 3-O-carbamoyl-3',4',5,7-O-tetramethyltaxifolins. The antiproliferative potency of 5,7,20-O-trimethylsilybin and its nine 3-carbamoyl derivatives were assessed in an AR-positive LNCaP prostate cancer cell line and two AR-null prostate cancer cell lines (PC-3 and DU145). Our preliminary bioassay data imply that 5,7,20-O-trimethylsilybin and four 3-O-carbamoyl-5,7,20-O-trimethylsilybins emerge as very promising lead compounds due to the fact that they can selectively suppress AR-positive LNCaP cell proliferation. The IC50 values of these five 5,7,20-O-trimethylsilybins against the LNCaP cells fall into the range of 0.11-0.83 µM, which exhibit up to 660 times greater in vitro antiproliferative potency than silibinin. Our findings suggest that carbamoylated 5,7,20-O-trimethylsilybins could serve as a natural product-based scaffold for new antiandrogens for lethal castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Sitong Wu
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA; (S.W.); (G.C.)
| | - Guanglin Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA; (S.W.); (G.C.)
| | - Qiang Zhang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA; (Q.Z.); (G.W.)
| | - Guangdi Wang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA; (Q.Z.); (G.W.)
| | - Qiao-Hong Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA; (S.W.); (G.C.)
| |
Collapse
|
9
|
Ghalehkhondabi V, Soleymani M, Fazlali A. Folate-targeted nanomicelles containing silibinin as an active drug delivery system for liver cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Kaipa JM, Starkuviene V, Erfle H, Eils R, Gladilin E. Transcriptome profiling reveals Silibinin dose-dependent response network in non-small lung cancer cells. PeerJ 2020; 8:e10373. [PMID: 33362957 PMCID: PMC7749657 DOI: 10.7717/peerj.10373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Silibinin (SIL), a natural flavonolignan from the milk thistle (Silybum marianum), is known to exhibit remarkable hepatoprotective, antineoplastic and EMT inhibiting effects in different cancer cells by targeting multiple molecular targets and pathways. However, the predominant majority of previous studies investigated effects of this phytocompound in a one particular cell line. Here, we carry out a systematic analysis of dose-dependent viability response to SIL in five non-small cell lung cancer (NSCLC) lines that gradually differ with respect to their intrinsic EMT stage. By correlating gene expression profiles of NSCLC cell lines with the pattern of their SIL IC50 response, a group of cell cycle, survival and stress responsive genes, including some prominent targets of STAT3 (BIRC5, FOXM1, BRCA1), was identified. The relevancy of these computationally selected genes to SIL viability response of NSCLC cells was confirmed by the transient knockdown test. In contrast to other EMT-inhibiting compounds, no correlation between the SIL IC50 and the intrinsic EMT stage of NSCLC cells was observed. Our experimental results show that SIL viability response of differently constituted NSCLC cells is linked to a subnetwork of tightly interconnected genes whose transcriptomic pattern can be used as a benchmark for assessment of individual SIL sensitivity instead of the conventional EMT signature. Insights gained in this study pave the way for optimization of customized adjuvant therapy of malignancies using Silibinin.
Collapse
Affiliation(s)
- Jagan Mohan Kaipa
- Helmholtz Center for Infection Research, Braunschweig, Germany.,BioQuant, University Heidelberg, Heidelberg, Germany.,Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Vytaute Starkuviene
- BioQuant, University Heidelberg, Heidelberg, Germany.,Institute of Biosciences, Vilnius University Life Science Center, Vilnius, Lithuania
| | - Holger Erfle
- BioQuant, University Heidelberg, Heidelberg, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health and Charité Universitätsmedizin Berlin, Berlin, Germany.,Health Data Science Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Evgeny Gladilin
- BioQuant, University Heidelberg, Heidelberg, Germany.,Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany.,Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
11
|
Jiang Z, Sekhon A, Oka Y, Chen G, Alrubati N, Kaur J, Orozco A, Zhang Q, Wang G, Chen QH. 23- O-Substituted-2,3-Dehydrosilybins Selectively Suppress Androgen Receptor-Positive LNCaP Prostate Cancer Cell Proliferation. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20922326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As part of our ongoing project to search for natural product-based antiandrogens, nine derivatives of 2,3-dehydrosilybin have been synthesized for the evaluation of its antiproliferative activity in an androgen receptor-positive prostate cancer cell model. Specifically, 3,5,7,20- O-tetramethyl-2,3-dehydrosilybin was synthesized through two approaches, and eight 23- O-substituted-3,5,7,20- O-tetramethyl-2,3-dehydrosilybins were achieved from 3,5,7,20- O-tetramethyl-2,3-dehydrosilybin. The antiproliferative potency of 3,5,7,20- O-tetramethyl-2,3-dehydrosilybin and its eight derivatives were assessed in an androgen receptor (AR)-positive LNCaP prostate cancer cell line, as well as in two AR-negative (PC-3 and DU145) prostate cancer cell models as a comparison. Our WST cell proliferation assay data indicate 3,5,7,20- O-tetramethyl-2,3-dehydrosilybin and most of its 23- O-substituents can selectively inhibit AR-positive LNCaP prostate cancer cell proliferation. Our data suggest that 3,5,7,20- O-tetramethyl-2,3-dehydrosilibins could serve as a natural product-based scaffold for new antiandrogens for lethal castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Ziran Jiang
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Arman Sekhon
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Yogeshwari Oka
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Nagat Alrubati
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Jasleen Kaur
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Alexia Orozco
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Qiang Zhang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, USA
| | - Guangdi Wang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, USA
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, CA, USA
| |
Collapse
|
12
|
Delmas D, Xiao J, Vejux A, Aires V. Silymarin and Cancer: A Dual Strategy in Both in Chemoprevention and Chemosensitivity. Molecules 2020; 25:2009. [PMID: 32344919 PMCID: PMC7248929 DOI: 10.3390/molecules25092009] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 02/08/2023] Open
Abstract
Silymarin extracted from milk thistle consisting of flavonolignan silybin has shown chemopreventive and chemosensitizing activity against various cancers. The present review summarizes the current knowledge on the potential targets of silymarin against various cancers. Silymarin may play on the system of xenobiotics, metabolizing enzymes (phase I and phase II) to protect normal cells against various toxic molecules or to protect against deleterious effects of chemotherapeutic agents on normal cells. Furthermore, silymarin and its main bioactive compounds inhibit organic anion transporters (OAT) and ATP-binding cassettes (ABC) transporters, thus contributing to counteracting potential chemoresistance. Silymarin and its derivatives play a double role, namely, limiting the progression of cancer cells through different phases of the cycle-thus forcing them to evolve towards a process of cell death-and accumulating cancer cells in a phase of the cell cycle-thus making it possible to target a greater number of tumor cells with a specific anticancer agent. Silymarin exerts a chemopreventive effect by inducing intrinsic and extrinsic pathways and reactivating cell death pathways by modulation of the ratio of proapoptotic/antiapoptotic proteins and synergizing with agonists of death domains receptors. In summary, we highlight how silymarin may act as a chemopreventive agent and a chemosensitizer through multiple pathways.
Collapse
Affiliation(s)
- Dominique Delmas
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (A.V.); (V.A.)
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000 Dijon, France
- Centre anticancéreux Georges François Leclerc Center, F-21000 Dijon, France
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
| | - Anne Vejux
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (A.V.); (V.A.)
- Laboratoire Bio-PeroxIL“Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism”—EA 7270, UFR Sciences Vie Terre Environnement (SVTE), 6 Bd Gabriel, F-21000 Dijon, France
| | - Virginie Aires
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (A.V.); (V.A.)
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000 Dijon, France
| |
Collapse
|
13
|
Takke A, Shende P. Nanotherapeutic silibinin: An insight of phytomedicine in healthcare reformation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 21:102057. [PMID: 31340181 DOI: 10.1016/j.nano.2019.102057] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/03/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
Most of the herbal origin drugs possess water insoluble active constituents which lower the bioavailability and increase systemic clearance after administration of repeated or higher dose of drug. Silymarin is extracted from the seeds and fruits of milk thistle plant Silybum marianum which consists of main biologically active component as silibinin. However, the clinical applications of silibinin show some limitations due to low aqueous solubility, poor penetration into the epithelial cells of intestine, high metabolism and rapid systemic elimination. But nanotechnology-based drug delivery system explores great potential for phytochemicals to enhance the aqueous solubility and bioavailability of BCS class II and IV drugs, improve stability and modify the pharmacological activity. This review focuses on the therapeutic properties of silibinin and discusses the benefits, challenges and applications of silibinin nanoformulations. Such nanotherapeutic system as a regular medicine will be an attractive approach to reduce the adverse events and toxicities of current therapies.
Collapse
Affiliation(s)
- Anjali Takke
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai, India.
| |
Collapse
|
14
|
Sherman B, Hernandez AM, Alhado M, Menge L, Price RS. Silibinin Differentially Decreases the Aggressive Cancer Phenotype in an In Vitro Model of Obesity and Prostate Cancer. Nutr Cancer 2019; 72:333-342. [PMID: 31287731 DOI: 10.1080/01635581.2019.1633363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aim: Obesity increases the risk for aggressive and fatal prostate cancer (PCa). The bioactive compound silibinin has been researched for its chemopreventative properties and may benefit obese or overweight individuals with PCa.Methods: This study used an in vitro model of obesity exposing prostate cancer cells to sera from obese, overweight, or normal weight males with or without the addition of silibinin. Molecular activity was assayed as well as the phenotype of PCa cells with various treatments.Results: Obesity increased the expression of proliferative signaling including COX-2, IL-6, AKT, ERK, and AR, which was attenuated with silibinin. Cell growth, and invasive capacity of prostate cancer cells was increased with obese and overweight sera, and silibinin was able to mitigate this affect. However, there are limitations to this study in that an in vivo model was not used to validate these in vitro results nor a co-culture model, which may better recapitulate the tumor microenvironment.Conclusions: Silibinin may be a safe intervention for those with or at risk for prostate cancer, and it may be the most beneficial for obese or overweight males.
Collapse
Affiliation(s)
| | - Ana M Hernandez
- Medicine Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | | |
Collapse
|
15
|
Dong Z, Zhang W, Chen S, Liu C. Silibinin A decreases statin‑induced PCSK9 expression in human hepatoblastoma HepG2 cells. Mol Med Rep 2019; 20:1383-1392. [PMID: 31173243 DOI: 10.3892/mmr.2019.10344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/15/2019] [Indexed: 11/06/2022] Open
Abstract
Hypercholesterolemia is one of the major risk factors for the occurrence and development of atherosclerosis. The most common drugs used to treat hypercholesterolemia are 3‑hydroxy‑3‑methyl‑glutaryl‑CoA reductase inhibitors, known as statins. Statins induce a beneficial increase in the levels of the low density lipoprotein receptor (LDLR) and additionally upregulate proprotein convertase subtilisin/kexin type 9 (PCSK9), which leads to LDLR degradation. This process causes a negative feedback response that attenuates the lipid lowering effects of statins. Therefore, the development of PCSK9 inhibitors may increase the lipid‑lowering functions of statins. In the present study, a drug‑screening assay was developed using the human PCSK9 promoter, based on data from a dual‑luciferase reporter assay, and the efficacies of various compounds from Traditional Chinese Medicine were examined. Among the compounds examined, SIL was demonstrated to function by targeting PCSK9. It was identified that SIL treatment decreased the expression levels of PCSK9 in HepG2 cells by decreasing the activity of the PCSK9 promoter in a dose‑and time‑dependent manner. Notably, SIL antagonized the statin‑induced phosphorylation of the p38 MAPK signaling pathway. The present study suggested that SIL may be developed as a novel PCSK9 inhibitor that may increase the efficiency of statin treatment.
Collapse
Affiliation(s)
- Zhewen Dong
- Jiangsu Key Laboratory for Molecular Medical Biotechnology and School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Chang Liu
- Jiangsu Key Laboratory for Molecular Medical Biotechnology and School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
16
|
Piazzini V, Cinci L, D'Ambrosio M, Luceri C, Bilia AR, Bergonzi MC. Solid Lipid Nanoparticles and Chitosan-coated Solid Lipid Nanoparticles as Promising Tool for Silybin Delivery: Formulation, Characterization, and In vitro Evaluation. Curr Drug Deliv 2018; 16:142-152. [DOI: 10.2174/1567201815666181008153602] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/09/2018] [Accepted: 09/28/2018] [Indexed: 11/22/2022]
Abstract
Background:
Silybin (Sb) is the major flavolignan of the extract of Silybum marianum.
It is used for the treatment of various acute and chronic liver toxicities, inflammation, fibrosis and
oxidative stress. Many studies indicate that Sb is also active against different carcinomas and it has
been very recently proposed to be beneficial in type 2 diabetes patients. However, Sb is a low water
soluble and low permeable compound.
Objective:
In this study, Solid Lipid Nanoparticles (SLNs) were proposed to enhance the solubility
and the intestinal absorption of Sb.
</P><P>
Methods: SLNs were made of stearic acid and Brij 78 and subsequently coated with chitosan.
Formulations were physically and chemically characterized. Stability studies were also assessed. Sb
in vitro release was evaluated in different pH media. In vitro permeability test with artificial
membranes and Caco-2 cells were performed. Cellular uptake and mucoadhesion studies were
conducted.
Results:
Both nanoparticles were found to be stable. In vitro release indicated that SLNs may prevent
burst release and gastric degradation of Sb. Higher extent of Sb permeation was observed for
both nanoparticles in PAMPA and Caco-2 cell monolayer models. The results of the cellular uptake
study suggested the involvement of active endocytic processes. Chitosan significantly improves
mucoadhesion properties of nanoparticles.
</P><P>
Conclusions: Together with the excellent stability, strong mucoadhesive property, and slow release,
chitosan coated SLNs demonstrated promising potential to enhance absorption of hydrophobic Sb after
oral administration.
Collapse
Affiliation(s)
- Vieri Piazzini
- Department of Chemistry, University of Florence, via U. Schiff 6, 50019 Sesto Fiorentino, (FI), Italy
| | - Lorenzo Cinci
- NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Mario D'Ambrosio
- NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Cristina Luceri
- NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Anna Rita Bilia
- Department of Chemistry, University of Florence, via U. Schiff 6, 50019 Sesto Fiorentino, (FI), Italy
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, via U. Schiff 6, 50019 Sesto Fiorentino, (FI), Italy
| |
Collapse
|
17
|
Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: A new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomed Pharmacother 2018; 110:803-817. [PMID: 30554119 DOI: 10.1016/j.biopha.2018.11.145] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) are the promising targets for cancer chemotherapy that cannot be eliminated by conventional chemotherapy. In this study cationic liposomes of cabazitaxel (CBX) and silibinin (SIL) were prepared with an aim to kill cancer cells and CSCs for prostate cancer. CBX act as cancer cell inhibitor and SIL as CSC inhibitor. Hyaluronic acid (HA), an endogenous anionic polysaccharide was coated on cationic liposomes for targeting CD44 receptors over expressed on CSCs. Liposomes were prepared by ethanol injection method with particle size below 100 nm and entrapment efficiency of more than 90% at 10% w/w drug loading. Liposomes were characterized by dynamic light scattering, transmission electron microscopy, 1H nuclear magnetic resonance and scanning electron microscopy-energy dispersive x-ray spectroscopy. Liposomes were evaluated for their anticancer action in androgen independent human prostate cancer cell lines (PC-3 and DU-145). HA coated liposomes showed potential cytotoxicity over other groups with low IC50, significantly inhibited cell migration and induced apoptosis. Synergistic cytotoxic effect was also observed with HA coated liposomes that resulted in colony formation inhibition and G2/M phase arrest. Proficient cytotoxicity against CD44+ cells (14.87 ± 0.41% in PC-3 and 33.95 ± 0.68% in DU-145 cells) indicated the efficiency of HA coated liposomes towards CSC targeting. Hence, the outcome of this combinational therapy with CD44 targeting indicates the suitability of HA coated CBX and SIL co-loaded liposomes as a potential approach for eradicating prostate cancer and herein might provide a insight for future studies.
Collapse
|
18
|
Vue B, Zhang S, Vignau A, Chen G, Zhang X, Diaz W, Zhang Q, Zheng S, Wang G, Chen QH. O-Aminoalkyl- O-Trimethyl-2,3-Dehydrosilybins: Synthesis and In Vitro Effects Towards Prostate Cancer Cells. Molecules 2018; 23:molecules23123142. [PMID: 30501133 PMCID: PMC6320956 DOI: 10.3390/molecules23123142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023] Open
Abstract
As part of our ongoing silybin project, this study aims to introduce a basic nitrogen-containing group to 7-OH of 3,5,20-O-trimethyl-2,3-dehydrosilybin or 3-OH of 5,7,20-O-trimethyl-2,3-dehydrosilybin via an appropriate linker for in vitro evaluation as potential anti-prostate cancer agents. The synthetic approaches to 7-O-substituted-3,5,20-O-trimethyl-2,3-dehydrosilybins through a five-step procedure and to 3-O-substituted-5,7,20-O-trimethyl-2,3- dehydrosilybins via a four-step transformation have been developed. Thirty-two nitrogen-containing derivatives of silybin have been achieved through these synthetic methods for the evaluation of their antiproliferative activities towards both androgen-sensitive (LNCaP) and androgen-insensitive prostate cancer cell lines (PC-3 and DU145) using the WST-1 cell proliferation assay. These derivatives exhibited greater in vitro antiproliferative potency than silibinin. Among them, 11, 29, 31, 37, and 40 were identified as five optimal derivatives with IC50 values in the range of 1.40⁻3.06 µM, representing a 17- to 52-fold improvement in potency compared to silibinin. All these five optimal derivatives can arrest the PC-3 cell cycle in the G₀/G₁ phase and promote PC-3 cell apoptosis. Derivatives 11, 37, and 40 are more effective than 29 and 31 in activating PC-3 cell apoptosis.
Collapse
Affiliation(s)
- Bao Vue
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Sheng Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Andre Vignau
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Xiaojie Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - William Diaz
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Qiang Zhang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA.
| | - Shilong Zheng
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA.
| | - Guangdi Wang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA.
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| |
Collapse
|
19
|
Jahanafrooz Z, Motamed N, Rinner B, Mokhtarzadeh A, Baradaran B. Silibinin to improve cancer therapeutic, as an apoptotic inducer, autophagy modulator, cell cycle inhibitor, and microRNAs regulator. Life Sci 2018; 213:236-247. [PMID: 30308184 DOI: 10.1016/j.lfs.2018.10.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 02/07/2023]
Abstract
Silibinin is a natural plant polyphenol with high antioxidant and anticancer properties, which causes broad-spectrum efficacy against cancer, including cell cycle arrest and apoptosis in most cancer cell types. Silibinin, by modulating the apoptosis, cell cycle progression and autophagic pathways in various cellular and molecular routs might be used to design more effective anticancer strategies. Silibinin also regulates aberrant miRNAs expression linked to many aspects of cell biology in cancer. Maybe the most interesting aspect of silibinin is its ability to trigger multiple cellular signaling pathways to induce a particular biologic effect in various cell types. This review discusses investigations supporting the ability of silibinin to be as a natural modulator of involved cellular biological events in cancer progression. In this review, we introduce the salient features of silibinin therapy to optimize clinical outcomes for oncology patients. The goal of the treatments is to make it possible to eliminate the tumor with the minimum side effects and cure the patient in the early stage cancer. Therefore, plant extracts such as silibinin can be included in the treatments.
Collapse
Affiliation(s)
- Zohreh Jahanafrooz
- Department of Cell and Molecular Biology, Faculty of Science, University of Maragheh, Maragheh, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Beate Rinner
- Division of Biomedical Research, Medical University Graz, Graz, Austria
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Bevara GB, Naveen Kumar AD, Koteshwaramma KL, Badana A, Kumari S, Malla RR. C-glycosyl flavone from Urginea indica inhibits proliferation & angiogenesis & induces apoptosis via cyclin-dependent kinase 6 in human breast, hepatic & colon cancer cell lines. Indian J Med Res 2018; 147:158-168. [PMID: 29806604 PMCID: PMC5991124 DOI: 10.4103/ijmr.ijmr_51_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background & objectives: Search for novel compounds beneficial to the treatment of cancer attracts a great deal of attention. We earlier demonstrated the isolation of 5,7-dihydroxy-2-[4’-hydroxy-3’-(methoxymethyl)phenyl]-6-C-β-glucopyranosyl flavone, a novel C-glycosyl flavone from Urginea indica bulb. The present study was undertaken to investigate the effect of this novel compound on human normal epithelial and breast, hepatic and colon cancer cell lines. Methods: The maximum non-toxic concentration (MNTC) and cytotoxicity of C-glycosyl flavone were assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Cell cycle was analyzed by flow cytometry. Docking studies were performed to predict possible targets. Levels of cyclin-dependent kinase 1 (CDK1) and CDK6, Bcl2 and BAX and cytochrome c were quantified by specific ELISA. Mitochondrial membrane potential was determined using JC-1 dye. Apoptosis was quantified by Annexin V ELISA method. Results: Flow cytometry analysis demonstrated G0/G1 arrest. In silico docking studies predicted CDK1 and CDK6 as a possible target of C-glycosyl flavone. In vitro study confirmed CDK6 as the main target in C-glycosyl flavone-treated cancer cell lines. C-glycosyl flavone treatment also induced membrane blebbing, chromatin fragmentation and nucleosome formation. C-glycosyl flavone treatment caused marked loss of mitochondrial membrane potential, decrease in Bcl2/BAX ratio and activation of caspase-3 and release of caspase-9 and cytochrome c. In addition, C-glycosyl flavone inhibited the tumour-induced angiogenesis and reduced the vascular endothelial growth factor levels. Similarly, CDK6 inhibitor significantly inhibited proliferation and angiogenesis and induced apoptosis in tested cell lines. Interpretation & conclusions: The results indicate that C-glycosyl flavone may exert induction of apoptosis, cell cycle arrest and inhibition of angiogenesis via CDK6. Thus, targeting CDK6 using C-glycosyl flavone may serve as a novel therapeutic approach for the treatment of breast, hepatic and colon cancers.
Collapse
Affiliation(s)
- Ganesh Babu Bevara
- Department of Biochemistry, Gandhi Institute of Technology & Management (Deemed to be University), Visakhapatnam, India
| | - A D Naveen Kumar
- Department of Biochemistry, Gandhi Institute of Technology & Management (Deemed to be University), Visakhapatnam, India
| | - K Laxmi Koteshwaramma
- Department of Biochemistry, Gandhi Institute of Technology & Management (Deemed to be University), Visakhapatnam, India
| | - Anil Badana
- Department of Biochemistry, Gandhi Institute of Technology & Management (Deemed to be University), Visakhapatnam, India
| | - Seema Kumari
- Department of Biochemistry, Gandhi Institute of Technology & Management (Deemed to be University), Visakhapatnam, India
| | - Rama Rao Malla
- Department of Biochemistry, Gandhi Institute of Technology & Management (Deemed to be University), Visakhapatnam, India
| |
Collapse
|
21
|
Oufi HG. The cytogenetic effects of silibinin alone and in combination with methotrexate in mouse bone marrow. Eur J Pharmacol 2018; 824:179-184. [DOI: 10.1016/j.ejphar.2018.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 02/02/2023]
|
22
|
Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy. Mediators Inflamm 2018; 2018:4159013. [PMID: 29618945 PMCID: PMC5829354 DOI: 10.1155/2018/4159013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
The reactivation of senescence in cancer and the subsequent clearance of senescent cells are suggested as therapeutic intervention in the eradication of cancer. Several natural compounds that activate Nrf2 (nuclear factor erythroid-derived 2-related factor 2) pathway, which is involved in complex cytoprotective responses, have been paradoxically shown to induce cell death or senescence in cancer. Promoting the cytoprotective Nrf2 pathway may be desirable for chemoprevention, but it might be detrimental in later stages and advanced cancers. However, senolytic activity shown by some Nrf2-activating compounds could be used to target senescent cancer cells (particularly in aged immune-depressed organisms) that escape immunosurveillance. We herein describe in vitro and in vivo effects of fifteen Nrf2-interacting natural compounds (tocotrienols, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, silybin, phenethyl isothiocyanate, sulforaphane, triptolide, allicin, berberine, piperlongumine, fisetin, and phloretin) on cellular senescence and discuss their use in adjuvant cancer therapy. In light of available literature, it can be concluded that the meaning and the potential of adjuvant therapy with natural compounds in humans remain unclear, also taking into account the existence of few clinical trials mostly characterized by uncertain results. Further studies are needed to investigate the therapeutic potential of those compounds that display senolytic activity.
Collapse
|
23
|
Höti N, Shah P, Hu Y, Yang S, Zhang H. Proteomics analyses of prostate cancer cells reveal cellular pathways associated with androgen resistance. Proteomics 2017; 17. [PMID: 28116790 DOI: 10.1002/pmic.201600228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 01/05/2023]
Abstract
While significant advances have been made in the diagnosis and treatment of prostate cancer, each year tens of thousands of men still die from prostate cancer in the United States. Thus, greater understanding of cellular pathways and molecular basis of prostate cancer progression in the development of androgen resistance is needed to treat these lethal phenotypes. To dissect the mechanism of androgen resistance, we utilize a proteomics approach to study the development of androgen resistance in LNCaP prostate cancer cells. Our results showed the predominant involvement of metabolic pathways that were elevated in androgen resistance phenotype. We further found the amplification of PI3K/AKT pathway and the overexpression of proteasome proteins while the mitochondrial oxidation phosphorylation was severely hampered in castration-resistant LNCaP-95 cells compared to LNCaP cells. Interestingly, we also found the induction of Dicer, a cytoplasmic endoribonuclease microRNA regulator in the androgen-ablated LNCaP-95 prostate cancer cells. We verified some of these data by orthogonal methods including Western blot analysis and in castrated animal xenograft studies. To our knowledge, this is the first report showing induced expression of proteasome proteins in androgen ablation prostate cancer cells. If validated in clinical studies, the findings will have significant implications in understanding the complexity of biochemical recurrence in prostate cancer.
Collapse
Affiliation(s)
- Naseruddin Höti
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Punit Shah
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Shuang Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
24
|
Vue B, Zhang X, Lee T, Nair N, Zhang S, Chen G, Zhang Q, Zheng S, Wang G, Chen QH. 5- or/and 20-O-alkyl-2,3-dehydrosilybins: Synthesis and biological profiles on prostate cancer cell models. Bioorg Med Chem 2017; 25:4845-4854. [PMID: 28756013 PMCID: PMC5568090 DOI: 10.1016/j.bmc.2017.07.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 02/03/2023]
Abstract
To investigate the effects of alkylation at 5-OH and 20-OH of 2,3-dehydrosilybin on prostate cancer cell proliferation, the synthetic approaches to 5- or/and 20-O-alkyl-2,3-dehydrosilybins, through a multi-step sequence from commercially available silybin, have been successfully developed. The first three reactions in the syntheses were completed through a one-pot procedure by managing anaerobic and aerobic conditions. With these synthetic methods in hand, twenty-one 2,3-dehydrosilybins, including seven 20-O-alkyl, seven 5,20-O-dialkyl, and seven 5-O-alkyl-2,3-dehydrosilybins, have been achieved for the evaluation of their biological profiles. Our WST-1 cell proliferation assay data indicate that nineteen out of the twenty-one 2,3-dehydrosilybins possess significantly improved antiproliferative potency as compared with silybin toward both androgen-sensitive (LNCaP) and androgen-insensitive prostate cancer cell lines (PC-3 and DU145). 5-O-Alkyl-2,3-dehydrosilybins were identified as the optimal subgroup that can consistently inhibit cell proliferation in three prostate cancer cell models with all IC50 values lower than 8µM. Our flow cytometry-based assays also demonstrate that 5-O-heptyl-2,3-dehydrosilybin effectively arrests the cell cycle in the G0/G1 phase and activates PC-3 cell apoptosis.
Collapse
Affiliation(s)
- Bao Vue
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Xiaojie Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Timmy Lee
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Nandini Nair
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Sheng Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Qiang Zhang
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Shilong Zheng
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Guangdi Wang
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA.
| |
Collapse
|
25
|
Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells. Redox Biol 2017; 12:634-647. [PMID: 28391184 PMCID: PMC5385622 DOI: 10.1016/j.redox.2017.03.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that natural bioactive compounds, alone or in combination with traditional chemotherapeutic agents, could be used as potential therapies to fight cancer. In this study, we employed four natural bioactive compounds (curcumin, resveratrol, melatonin, and silibinin) and studied their role in redox control and ability to promote apoptosis in androgen sensitive and insensitive prostate cancer cells. Here is shown that curcumin and resveratrol promote ROS production and induce apoptosis in LNCaP and PC-3. An increase in reactive species is a trigger event in curcumin-induced apoptosis and a consequence of resveratrol effects on other pathways within these cells. Moreover, here we demonstrated that these four compounds affect differently one of the main intracellular redox regulator, the thioredoxin system. Exposure to curcumin and resveratrol promoted TRX1 oxidation and altered its subcellular location. Furthermore, resveratrol diminished TRX1 levels in PC-3 cells and increased the expression of its inhibitor TXNIP. Conversly, melatonin and silibinin only worked as cytostatic agents, reducing ROS levels and showing preventive effects against TRX oxidation. All together, this work explores the effect of compounds currently tested as chemo-preventive agents in prostate cancer therapy, on the TRX1 redox state and function. Our work shows the importance that the TRX system might have within the differences found in their mechanisms of action. These bioactive compounds trigger different responses and affect ROS production and redox systems in prostate cancer cells, suggesting the key role that redox-related pathways might play in processes like differentiation or survival in prostate cancer. Resveratrol decreases TRX1 by increasing TXNIP while curcumin induces TRX1 oxidation. Antioxidants decrease TRX1 oxidation and nuclear translocation to prevent cell death. TRX1 oxidation and nuclear translocation play a key role in apoptosis. Differences in the apoptosis induction of bioactive compounds relay on TRX1 oxidation.
Collapse
|
26
|
Silibinin Inhibits Platelet-Derived Growth Factor-Driven Cell Proliferation via Downregulation of N-Glycosylation in Human Tenon's Fibroblasts in a Proteasome-Dependent Manner. PLoS One 2016; 11:e0168765. [PMID: 28030611 PMCID: PMC5193421 DOI: 10.1371/journal.pone.0168765] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to evaluate the effects of silibinin on cell proliferation in platelet-derived growth factor (PDGF)-treated human Tenon's fibroblasts (HTFs). The effect of silibinin on cell proliferation in PDGF-treated HTFs was determined by examining the expression of proliferating cell nuclear antigen (PCNA) and performing WST-1 assays. Cell cycle progression was evaluated using flow cytometry. The related cyclins and cyclin-dependent kinases (CDKs) were also analyzed using western blot. A modified rat trabeculectomy model was established to evaluate the effect of silibinin on cell proliferation in vivo. Western blot analysis was carried out to determine the effect of silibinin on the expression of PDGF receptor and on the downstream signaling pathways regulated by PDGF receptor. PDGF elevated the expression of PCNA in HTFs, and this elevation was inhibited by silibinin. The inhibitory effect of silibinin on cell proliferation was also confirmed via WST-1 assay. PDGF-stimulated cell cycle in HTFs was delayed by silibinin, and the related cyclin D1 and CDK4 were also suppressed by silibinin. In the rat model of trabeculectomy, silibinin reduced the expression of PCNA at the site of blebs in vivo. The effects of silibinin on PDGF-stimulated HTFs were mediated via the downregulation of PDGF receptor-regulated signaling pathways, such as ERKs and STATs, which may be partially caused by the downregulation of N-glycosylation of PDGF receptor beta (PDGFRβ). The effect of silibinin on modulation of N-glycosylation of PDGFRβ was mediated in a proteasome-dependent manner. Silibinin inhibited cell proliferation and delayed cell cycle progression in PDGF-treated HTFs in vitro. PDGF also modulated the process of N-glycosylation of the PDGFRβ in a proteasome-dependent manner. Our findings suggest that silibinin has potential therapeutic applications in glaucoma filtering surgery.
Collapse
|
27
|
Polachi N, Bai G, Li T, Chu Y, Wang X, Li S, Gu N, Wu J, Li W, Zhang Y, Zhou S, Sun H, Liu C. Modulatory effects of silibinin in various cell signaling pathways against liver disorders and cancer – A comprehensive review. Eur J Med Chem 2016; 123:577-595. [DOI: 10.1016/j.ejmech.2016.07.070] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/23/2022]
|
28
|
Abstract
Prevention and therapeutic intervention by phytochemicals are newer dimensions in the arena of cancer management. In this regard, the cancer chemopreventive role of silymarin (Silybum marianum) has been extensively studied and has shown anticancer efficacy against various cancer sites, especially skin and prostate. In skin cancer, silymarin treatment inhibits ultraviolet B radiation or chemically initiated or promoted carcinogenesis. These effects of silymarin against skin carcinogenesis have been attributed to its strong antioxidant and anti-inflammatory action as well as its inhibitory effect on mitogenic signaling. Similarly, silymarin treatment inhibits 3, 2-dimethyl-4-aminobiphenyl—induced prostate carcinogenesis and retards the growth of advanced prostate tumor xenograft in athymic nude mice. In prostate cancer, silymarin treatment down-regulates androgen receptor—, epidermal growth factor receptor—, and nuclear factor-κB— mediated signaling and induces cell cycle arrest. Extensive preclinical findings have supported the anticancer potential of silymarin, and now its efficacy is being evaluated in cancer patients.
Collapse
Affiliation(s)
- Gagan Deep
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, CO 80262, USA
| | | |
Collapse
|
29
|
Teixeira N, Mateus N, de Freitas V. Updating the research on prodelphinidins from dietary sources. Food Res Int 2016; 85:170-181. [DOI: 10.1016/j.foodres.2016.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/21/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
|
30
|
3-O-Alkyl-2,3-dehydrosilibinins: Two synthetic approaches and in vitro effects toward prostate cancer cells. Bioorg Med Chem Lett 2016; 26:3226-3231. [PMID: 27261177 DOI: 10.1016/j.bmcl.2016.05.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/21/2016] [Indexed: 02/03/2023]
Abstract
Eight 3-O-alkyl-2,3-dehydrosilibinins have been synthesized from commercially available silibinin through two synthetic approaches. A one-pot reaction, starting with aerobic oxidation of silibinin followed by direct alkylation of the phenolic hydroxyl group in the subsequent 2,3-dehydrosilibinin, furnishes the desired derivatives in 11-16% yields. The three-step procedure employing benzyl ether to protect 7-OH in silibinin generates the desired derivatives in 30-46% overall yields. The antiproliferative activity of the 2,3-dehydrosilibinin derivatives against both androgen-sensitive and androgen-insensitive prostate cancer cells have been assessed using a WST-1 cell proliferation assay. All derivatives exhibited greater antiproliferative potency than silibinin, with 2,3-dehydrosilibinins each possessing a three- to five-carbon linear alkyl group to 3-OH (IC50 values in a range of 1.71-3.06μM against PC-3 and LNCaP cells) as the optimal derivatives. The optimal potency was reached with three- to five-carbon alkyl groups. Our findings suggest that 3-O-propyl-2,3-dehydrosilibinin effectively inhibits the growth of PC-3 prostate cancer cells by arresting cell cycle in the G0/G1 phase, but not by activating PC-3 cell apoptosis.
Collapse
|
31
|
Nilsson R, Mićić M, Filipović J, Šobot AV, Drakulić D, Stanojlović M, Joksiċ G. Inhibition by blueberries (bilberries) and extract from milk thistle of rat forestomach hyperplasia induced by oral smokeless tobacco (Swedish snus). Regul Toxicol Pharmacol 2016; 76:94-101. [PMID: 26828024 DOI: 10.1016/j.yrtph.2016.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 01/30/2023]
Abstract
The aim of this study was to identify palatable additives which have a significant protective action against soft tissue changes in the oral cavity caused by Swedish smokeless tobacco ("snus"), and that satisfy existing legal requirements. Although the cancer risk from snus is extremely low, long term use may result in highly undesirable keratotic lesions and associated epithelial abnormalities in the oral cavity. The rat forestomach, which is vulnerable to the irritative action of non-genotoxic compounds like butylated hydroxyanisole, propionic acid as well as snus, was chosen as an experimental model. Studied toxicological endpoints included histopathology and cellular proliferation based on DNA incorporation of bromodeoxyuridine. After 6 weeks' exposure, blueberries (bilberries) and an extract from the common milk thistle were found to exert a highly significant inhibition of cell proliferation induced by snus in the rat forestomach epithelium, indicating a potential protection with respect soft tissue changes in the human oral cavity.
Collapse
Affiliation(s)
- Robert Nilsson
- Vinča Institute of Nuclear Sciences, Laboratory for Physical Chemistry, University of Belgrade, Vinča, Belgrade, Serbia.
| | - Mileva Mićić
- Institute for Medical Investigation, University of Belgrade, Serbia
| | - Jelena Filipović
- Vinča Institute of Nuclear Sciences, Laboratory for Physical Chemistry, University of Belgrade, Vinča, Belgrade, Serbia
| | - Ana Valenta Šobot
- Vinča Institute of Nuclear Sciences, Laboratory for Physical Chemistry, University of Belgrade, Vinča, Belgrade, Serbia
| | - Dunja Drakulić
- Vinča Institute of Nuclear Sciences, Laboratory for Physical Chemistry, University of Belgrade, Vinča, Belgrade, Serbia
| | - Miloš Stanojlović
- Vinča Institute of Nuclear Sciences, Laboratory for Physical Chemistry, University of Belgrade, Vinča, Belgrade, Serbia
| | - Gordana Joksiċ
- Vinča Institute of Nuclear Sciences, Laboratory for Physical Chemistry, University of Belgrade, Vinča, Belgrade, Serbia
| |
Collapse
|
32
|
Singh D, Cho WC, Upadhyay G. Drug-Induced Liver Toxicity and Prevention by Herbal Antioxidants: An Overview. Front Physiol 2016; 6:363. [PMID: 26858648 PMCID: PMC4726750 DOI: 10.3389/fphys.2015.00363] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022] Open
Abstract
The liver is the center for drug and xenobiotic metabolism, which is influenced most with medication/xenobiotic-mediated toxic activity. Drug-induced hepatotoxicity is common and its actual frequency is hard to determine due to underreporting, difficulties in detection or diagnosis, and incomplete observation of exposure. The death rate is high, up to about 10% for drug-induced liver damage. Endorsed medications represented >50% of instances of intense liver failure in a study from the Acute Liver Failure Study Group of the patients admitted in 17 US healing facilities. Albeit different studies are accessible uncovering the mechanistic aspects of medication prompted hepatotoxicity, we are in the dilemma about the virtual story. The expanding prevalence and effectiveness of Ayurveda and natural products in the treatment of various disorders led the investigators to look into their potential in countering drug-induced liver toxicity. Several natural products have been reported to date to mitigate the drug-induced toxicity. The dietary nature and less adverse reactions of the natural products provide them an extra edge over other candidates of supplementary medication. In this paper, we have discussed the mechanism involved in drug-induced liver toxicity and the potential of herbal antioxidants as supplementary medication.
Collapse
Affiliation(s)
- Divya Singh
- Department of Biology, City College of New YorkNew York, NY, USA
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth HospitalKowloon, Hong Kong
| | | |
Collapse
|
33
|
Vue B, Zhang S, Zhang X, Parisis K, Zhang Q, Zheng S, Wang G, Chen QH. Silibinin derivatives as anti-prostate cancer agents: Synthesis and cell-based evaluations. Eur J Med Chem 2015; 109:36-46. [PMID: 26748997 DOI: 10.1016/j.ejmech.2015.12.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
This study aims to systematically explore the alkylation effect of 7-OH in silibinin and 2,3-dehydrosilibinin on the antiproliferative potency toward three prostate cancer cell lines. Eight 7-O-alkylsilibinins, eight 7-O-alkyl-2,3-dehydrosilibinins, and eight 3,7-O-dialkyl-2,3-dehydrosilibinins have been synthesized from commercially available silibinin for the in vitro cell-based evaluation. The WST-1 cell proliferation assay indicates that nineteen out of twenty-four silibinin derivatives have significantly improved antiproliferative potency when compared with silibinin. 7-O-Methylsilibinin (2) and 7-O-ethylsilibinin (3) have been identified as the most potent compounds with 98- and 123-fold enhanced potency against LNCaP human androgen-dependent prostate cancer cell line. Among 2,3-dehydrosilibinin derivatives, 7-O-methyl-2,3-dehydrosilibinin (10) and 7-O-ethyl-2,3-dehydrosilibinin (11) have been identified as the optimal compounds with the highest potency towards both androgen-dependent LNCaP and androgen-independent PC-3 prostate cancer cell lines. 7-O-Ethyl-2,3-dehydrosilibinin (11) was demonstrated to arrest PC-3 cell cycle at the G0/G1 phase and to induce PC-3 cell apoptosis. The findings in this study suggest that antiproliferative potency of silibinin and 2,3-dehydrosilibinin can be appreciably enhanced through suitable chemical modifications on the phenolic hydroxyl group at C-7 and that introduction of a chemical moiety with the potential to improve bioavailability through a linker to 7-OH in silibinin and 2,3-dehydrosilibinin would be a feasible strategy for the development of silibinin derivatives as anti-prostate cancer agents.
Collapse
Affiliation(s)
- Bao Vue
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Sheng Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Xiaojie Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Konstantinos Parisis
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Qiang Zhang
- RCMI Cancer Research Center Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Shilong Zheng
- RCMI Cancer Research Center Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Guangdi Wang
- RCMI Cancer Research Center Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA.
| |
Collapse
|
34
|
Abstract
This review is to describe synergistic effects of various combinations of dietary natural products including curcumin, quercetin, soybean isoflavones, silibinin, and EGCG that have potential for the treatment of prostate cancer. These data can provide valuable insights into the future rational design and development of synergistic and/or hybrid agents for potential treatment of prostate cancer.
Collapse
|
35
|
Nambiar DK, Deep G, Singh RP, Agarwal C, Agarwal R. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1. Oncotarget 2015; 5:10017-33. [PMID: 25294820 PMCID: PMC4259402 DOI: 10.18632/oncotarget.2488] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCA) kills thousands of men every year, demanding additional approaches to better understand and target this malignancy. Recently, critical role of aberrant lipogenesis is highlighted in prostate carcinogenesis, offering a unique opportunity to target it to reduce PCA. Here, we evaluated efficacy and associated mechanisms of silibinin in inhibiting lipid metabolism in PCA cells. At physiologically achievable levels in human, silibinin strongly reduced lipid and cholesterol accumulation specifically in human PCA cells but not in non-neoplastic prostate epithelial PWR-1E cells. Silibinin also decreased nuclear protein levels of sterol regulatory element binding protein 1 and 2 (SREBP1/2) and their target genes only in PCA cells. Mechanistically, silibinin activated AMPK, thereby increasing SREBP1 phosphorylation and inhibiting its nuclear translocation; AMPK inhibition reversed silibinin-mediated decrease in nuclear SREBP1 and lipid accumulation. Additionally, specific SREBP inhibitor fatostatin and stable overexpression of SREBP1 further confirmed the central role of SREBP1 in silibinin-mediated inhibition of PCA cell proliferation and lipid accumulation and cell cycle arrest. Importantly, silibinin also inhibited synthetic androgen R1881-induced lipid accumulation and completely abrogated the development of androgen-independent LNCaP cell clones via targeting SREBP1/2. Together, these mechanistic studies suggest that silibinin would be effective against PCA by targeting critical aberrant lipogenesis.
Collapse
Affiliation(s)
- Dhanya K Nambiar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. School of Life Sciences, Jawaharlal Nehru University, India
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. University of Colorado Cancer Center, Aurora, CO, USA
| | - Rana P Singh
- School of Life Sciences, Jawaharlal Nehru University, India
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. University of Colorado Cancer Center, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. University of Colorado Cancer Center, Aurora, CO, USA
| |
Collapse
|
36
|
HPLC-UV and LC-MS-MS Characterization of Silymarin in Milk Thistle Seeds and Corresponding Products. ACTA ACUST UNITED AC 2015. [DOI: 10.1300/j133v04n02_05] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Deep G, Kumar R, Jain AK, Agarwal C, Agarwal R. Silibinin inhibits fibronectin induced motility, invasiveness and survival in human prostate carcinoma PC3 cells via targeting integrin signaling. Mutat Res 2015; 768:35-46. [PMID: 25285031 DOI: 10.1016/j.mrfmmm.2014.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCA) is the 2nd leading cause of cancer-related deaths among men in the United States. Preventing or inhibiting metastasis-related events through non-toxic agents could be a useful approach for lowering high mortality among PCA patients. We have earlier reported that natural flavonoid silibinin possesses strong anti-metastatic efficacy against PCA however, mechanism/s of its action still remains largely unknown. One of the major events during metastasis is the replacement of cell-cell interaction with integrins-based cell-matrix interaction that controls motility, invasiveness and survival of cancer cells. Accordingly, here we examined silibinin effect on advanced human PCA PC3 cells' interaction with extracellular matrix component fibronectin. Silibinin (50-200 μM) treatment significantly decreased the fibronectin (5 μg/ml)-induced motile morphology via targeting actin cytoskeleton organization in PC3 cells. Silibinin also decreased the fibronectin-induced cell proliferation and motility but significantly increased cell death in PC3 cells. Silibinin also inhibited the PC3 cells invasiveness in Transwell invasion assays with fibronectin or cancer associated fibroblasts (CAFs) serving as chemoattractant. Importantly, PC3-luc cells cultured on fibronectin showed rapid dissemination and localized in lungs following tail vein injection in athymic male nude mice; however, in silibinin-treated PC3-luc cells, dissemination and lung localization was largely compromised. Molecular analyses revealed that silibinin treatment modulated the fibronectin-induced expression of integrins (α5, αV, β1 and β3), actin-remodeling (FAK, Src, GTPases, ARP2 and cortactin), apoptosis (cPARP and cleaved caspase 3), EMT (E-cadherin and β-catenin), and cell survival (survivin and Akt) related signaling molecules in PC3 cells. Furthermore, PC3-xenograft tissue analyses confirmed the inhibitory effect of silibinin on fibronectin and integrins expression. Together, these results showed that silibinin targets PCA cells' interaction with fibronectin and inhibits their motility, invasiveness and survival; thus further supporting silibinin use in PCA intervention including its metastatic progression.
Collapse
|
38
|
Bitting RL, Schaeffer D, Somarelli JA, Garcia-Blanco MA, Armstrong AJ. The role of epithelial plasticity in prostate cancer dissemination and treatment resistance. Cancer Metastasis Rev 2014; 33:441-68. [PMID: 24414193 PMCID: PMC4230790 DOI: 10.1007/s10555-013-9483-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nearly 30,000 men die annually in the USA of prostate cancer, nearly uniformly from metastatic dissemination. Despite recent advances in hormonal, immunologic, bone-targeted, and cytotoxic chemotherapies, treatment resistance and further dissemination are inevitable in men with metastatic disease. Emerging data suggests that the phenomenon of epithelial plasticity, encompassing both reversible mesenchymal transitions and acquisition of stemness traits, may underlie this lethal biology of dissemination and treatment resistance. Understanding the molecular underpinnings of this cellular plasticity from preclinical models of prostate cancer and from biomarker studies of human metastatic prostate cancer has provided clues to novel therapeutic approaches that may delay or prevent metastatic disease and lethality over time. This review will discuss the preclinical and clinical evidence for epithelial plasticity in this rapidly changing field and relate this to clinical phenotype and resistance in prostate cancer while suggesting novel therapeutic approaches.
Collapse
Affiliation(s)
- Rhonda L. Bitting
- Division of Medical Oncology, Duke Cancer Institute, Duke University, DUMC Box 102002, Durham, NC 27710, USA. Department of Medicine, Duke University, Durham, NC, USA. Center for RNA Biology, Duke University, Durham, NC, USA
| | - Daneen Schaeffer
- Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Jason A. Somarelli
- Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Mariano A. Garcia-Blanco
- Department of Medicine, Duke University, Durham, NC, USA. Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Andrew J. Armstrong
- Division of Medical Oncology, Duke Cancer Institute, Duke University, DUMC Box 102002, Durham, NC 27710, USA. Department of Medicine, Duke University, Durham, NC, USA. Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| |
Collapse
|
39
|
Das S, Roy P, Pal R, Auddy RG, Chakraborti AS, Mukherjee A. Engineered silybin nanoparticles educe efficient control in experimental diabetes. PLoS One 2014; 9:e101818. [PMID: 24991800 PMCID: PMC4081790 DOI: 10.1371/journal.pone.0101818] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/10/2014] [Indexed: 01/24/2023] Open
Abstract
Silybin, is one imminent therapeutic for drug induced hepatotoxicity, human prostate adenocarcinoma and other degenerative organ diseases. Recent evidences suggest that silybin influences gluconeogenesis pathways favorably and is beneficial in the treatment of type 1 and type 2 diabetes. The compound however is constrained due to solubility (0.4 mg/mL) and bioavailabilty limitations. Appropriate nanoparticle design for silybin in biocompatible polymers was thus proposed as a probable solution for therapeutic inadequacy. New surface engineered biopolymeric nanoparticles with high silybin encapsulation efficiency of 92.11% and zeta potential of +21 mV were designed. Both the pure compound and the nanoparticles were evaluated in vivo for the first time in experimental diabetic conditions. Animal health recovered substantially and the blood glucose levels came down to near normal values after 28 days treatment schedule with the engineered nanoparticles. Restoration from hyperglycemic damage condition was traced to serum insulin regeneration. Serum insulin recovered from the streptozotocin induced pancreatic damage levels of 0.17 ± 0.01 µg/lit to 0.57 ± 0.11 µg/lit after nanoparticle treatment. Significant reduction in glycated hemoglobin level, and restoration of liver glycogen content were some of the other interesting observations. Engineered silybin nanoparticle assisted recovery in diabetic conditions was reasoned due to improved silybin dissolution, passive transport in nanoscale, and restoration of antioxidant status.
Collapse
Affiliation(s)
- Suvadra Das
- Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal, India
| | - Partha Roy
- Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal, India; Faculty of Technology (Pharmaceutical) University Malaysia Pahang (UMP), Pahang, Malaysia
| | - Rajat Pal
- Department of Bio-Physics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India
| | - Runa Ghosh Auddy
- Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal, India; Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Abhay Sankar Chakraborti
- Department of Bio-Physics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India; Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Arup Mukherjee
- Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal, India; Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
40
|
Kovalenko PL, Basson MD. Schlafen 12 expression modulates prostate cancer cell differentiation. J Surg Res 2014; 190:177-184. [PMID: 24768141 PMCID: PMC4180522 DOI: 10.1016/j.jss.2014.03.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/14/2014] [Accepted: 03/21/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Schlafen proteins have previously been linked to leukocyte and intestinal epithelial differentiation. We hypothesized that Schlafen 12 (SLFN12) overexpression in human prostate epithelial cells would modulate expression of prostate-specific antigen (PSA) and dipeptidyl peptidase 4 (DPP4), markers of prostatic epithelial differentiation. MATERIALS AND METHODS Differentiation of the human prostate cancer cell lines LNCaP and PC-3 was compared after infection with an adenoviral vector coding for SLFN12 (Ad-SLFN12) or green fluorescent protein (GFP) only expressing virus (control). Transcript levels of SLFN12, PSA, and DPP4 were evaluated by real-time reverse transcription PCR and protein levels by Western blotting. Because mixed lineage kinase (MLK) and one of its downstream effectors (extracellular signal-regulated kinases [ERK]) have previously been implicated in some aspects of prostate epithelial differentiation, we conducted further studies in which LNCaP cells were cotreated with dimethyl sulfoxide (control), PD98059 (ERK inhibitor), or MLK inhibitor during transfection with Ad-SLFN12 for 72 h. RESULTS Treatment of LNCaP or PC-3 cells with Ad-SLFN12 reduced PSA expression by 56.6±4.6% (P<0.05) but increased DPP4 transcript level by 4.8±1.0 fold (P<0.05) versus Ad-GFP-treated controls. Further studies in LNCaP cells showed that Ad-SLFN12 overexpression increased the ratio of the mature E-cadherin protein to its precursor protein. Furthermore, SLFN12 overexpression promoted DPP4 expression either when MLK or ERK was blocked. ERK inhibition did not reverse SLFN12-induced changes in PSA, E-cadherin, or DPP4. CONCLUSIONS SLFN12 may regulate differentiation in prostate epithelial cells, at least in part independently of ERK or MLK. Understanding how SLFN12 influences prostatic epithelial differentiation may ultimately identify targets to influence the phenotype of prostatic malignancy.
Collapse
Affiliation(s)
- Pavlo L Kovalenko
- Department of Surgery, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Marc D Basson
- Department of Surgery, College of Human Medicine, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
41
|
Nambiar D, Singh RP. Advances in prostate cancer chemoprevention: a translational perspective. Nutr Cancer 2014; 65 Suppl 1:12-25. [PMID: 23682779 DOI: 10.1080/01635581.2013.785006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chemopreventive interventions are steadily emerging as an important aspect of cancer management and control. Herein, we have discussed the major epidemiological and clinical studies advocating the role of androgen inhibitors, flavonoids and antioxidants in preventing prostate cancer (PCa). Androgen inhibitors have lately been discussed not only in treatment of PCa, but also as preventive agents especially after trials with Finasteride and Dutasteride. Flavonoids such as silibinin, green tea polyphenols, genistein, curcumin have shown great promise, but avenues to improve their bioavailability are requisite. Agents with antioxidant potentials like lycopene, selenium, and vitamin E have also been explored. Antioxidant trials have yielded mixed results or benefitted only a subgroup of population, although further studies are needed to establish them as preventive agent. Although a majority of the trials resulted in positive outcomes supporting their role as preventive agents; one should be cautious of neutral or negative results as well. For clinical applicability of these agents, we need to identify the ideal target population, time of intervention, appropriate dosage, and extent of intervention required. Incoherency of data with these agents urges for a stringent study design and thorough interpretation to accurately judge the necessity and feasibility of the preventive measures.
Collapse
Affiliation(s)
- Dhanya Nambiar
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
42
|
Ting H, Deep G, Agarwal C, Agarwal R. The strategies to control prostate cancer by chemoprevention approaches. Mutat Res 2014; 760:1-15. [PMID: 24389535 DOI: 10.1016/j.mrfmmm.2013.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/23/2013] [Accepted: 12/12/2013] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCA) is the most commonly diagnosed cancer in men in the United States with growing worldwide incidence. Despite intensive investment in improving early detection, PCA often escapes timely detection and mortality remains high; this malignancy being the second highest cancer-associated mortality in American men. Collectively, health care costs of PCA results in an immense financial burden that is only expected to grow. Additionally, even in cases of successful treatment, PCA is associated with long-term and pervasive effects on patients. A proactive alternative to treat PCA is to prevent its occurrence and progression prior to symptomatic malignancy. This may serve to address the issue of burgeoning healthcare costs and increasing number of sufferers. One potential regimen in service of this alternative is PCA chemoprevention. Here, chemical compounds with cancer preventive efficacy are identified on the basis of their potential in a host of categories: their historical medicinal use, correlation with reduced risk in population studies, non-toxicity, their unique chemical properties, or their role in biological systems. PCA chemopreventive agents are drawn from multiple broad classes of chemicals, themselves further subdivided based on source or potential effect, with most derived from natural products. Many such compounds have shown efficacy, varying from inhibiting deregulated PCA cell signaling, proliferation, epithelial to mesenchymal transition (EMT), invasion, metastasis, tumor growth and angiogenesis and inducing apoptosis. Overall, these chemopreventive agents show great promise in PCA pre-clinical models, though additional work remains to be done in effectively translating these findings into clinical use.
Collapse
Affiliation(s)
- Harold Ting
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States; University of Colorado Cancer Center, University of Colorado, Aurora, CO, United States
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States; University of Colorado Cancer Center, University of Colorado, Aurora, CO, United States
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States; University of Colorado Cancer Center, University of Colorado, Aurora, CO, United States.
| |
Collapse
|
43
|
Iizumi Y, Oishi M, Taniguchi T, Goi W, Sowa Y, Sakai T. The flavonoid apigenin downregulates CDK1 by directly targeting ribosomal protein S9. PLoS One 2013; 8:e73219. [PMID: 24009741 PMCID: PMC3756953 DOI: 10.1371/journal.pone.0073219] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022] Open
Abstract
Flavonoids have been reported to inhibit tumor growth by causing cell cycle arrest. However, little is known about the direct targets of flavonoids in tumor growth inhibition. In the present study, we developed a novel method using magnetic FG beads to purify flavonoid-binding proteins, and identified ribosomal protein S9 (RPS9) as a binding partner of the flavonoid apigenin. Similar to treatment with apigenin, knockdown of RPS9 inhibited the growth of human colon cancer cells at the G2/M phase by downregulating cyclin-dependent kinase 1 (CDK1) expression at the promoter level. Furthermore, knockdown of RPS9 suppressed G2/M arrest caused by apigenin. These results suggest that apigenin induces G2/M arrest at least partially by directly binding and inhibiting RPS9 which enhances CDK1 expression. We therefore raise the possibility that identification of the direct targets of flavonoids may contribute to the discovery of novel molecular mechanisms governing tumor growth.
Collapse
Affiliation(s)
- Yosuke Iizumi
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Masakatsu Oishi
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Tomoyuki Taniguchi
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Wakana Goi
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Yoshihiro Sowa
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
- * E-mail:
| |
Collapse
|
44
|
Lin CH, Li CH, Liao PL, Tse LS, Huang WK, Cheng HW, Cheng YW. Silibinin inhibits VEGF secretion and age-related macular degeneration in a hypoxia-dependent manner through the PI-3 kinase/Akt/mTOR pathway. Br J Pharmacol 2013; 168:920-31. [PMID: 23004355 DOI: 10.1111/j.1476-5381.2012.02227.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 08/19/2012] [Accepted: 09/06/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Hypoxia-mediated neovascularization plays an important role in age-related macular degeneration (AMD). There are few animal models or effective treatments for AMD. Here, we investigated the effects of the flavonoid silibinin on hypoxia-induced angiogenesis in a rat AMD model. EXPERIMENTAL APPROACH Retinal pigmented epithelial (RPE) cells were subjected to hypoxia in vitro and the effects of silibinin on activation of key hypoxia-induced pathways were examined by elucidating the hypoxia-inducible factor-1 alpha (HIF-1α) protein level by Western blot. A rat model of AMD was developed by intravitreal injection of VEGF in Brown Norway rats, with or without concomitant exposure of animals to hypoxia. Animals were treated with oral silibinin starting at day 7 post-VEGF injection and AMD changes were followed by fluorescein angiography on days 14 and 28 post-injection. KEY RESULTS Silibinin pretreatment of RPE cells increased proline hydroxylase-2 expression, inhibited HIF-1α subunit accumulation, and inhibited VEGF secretion. Silibinin-induced HIF-1α and VEGF down-regulation required suppression of hypoxia-induced phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway. In the rat model of AMD, silibinin administration prevented VEGF- and VEGF plus hypoxia-induced retinal oedema and neovascularization. CONCLUSION AND IMPLICATIONS The effects of silibinin, both in vitro and in vivo, support its potential as a therapeutic for the prevention of neovascular AMD.
Collapse
Affiliation(s)
- C H Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
45
|
Allsopp P, Possemiers S, Campbell D, Gill C, Rowland I. A comparison of the anticancer properties of isoxanthohumol and 8-prenylnaringenin using in vitro models of colon cancer. Biofactors 2013; 39:441-7. [PMID: 23361834 DOI: 10.1002/biof.1084] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/10/2012] [Indexed: 11/05/2022]
Abstract
The hops plant (Humulus lupulus L.) is an essential ingredient in beer and contains a number of potentially bioactive prenylflavonoids, the predominant being the weakly estrogenic isoxanthohumol (Ix), which can be converted to the more strongly estrogenic 8-PN by the colonic microbiota. The aim of this study was to investigate the biological activity of 8-PN and Ix using in vitro models representing key stages of colorectal carcinogenesis, namely cell growth and viability (MTT assay), cell-cycle progression (DNA content assay), DNA damage (Comet assay), and invasion (Matrigel assay). A significant decrease in Caco-2 cell viability was noted after both 8-PN and Ix treatments at the higher doses (40 and 50 μM, respectively) although the impact on cell cycle differed between the two compounds. The decreased cell viability observed after Ix treatment was associated with a concentration-dependent increase in G2/M and an increased sub-G1 cell-cycle fraction, whereas treatment with 8-PN was associated with an elevated G0/G1 and an increased sub-G1 cell-cycle fraction. Significant antigenotoxic activity was noted at all 8-PN concentrations tested (5-40 μM). Although significant antigenotoxic activity was also noted with Ix treatment at ≤25 μM, at a higher dose, Ix itself exerted genotoxic activity. In a dose-dependent manner, both compounds inhibited HT115 cell invasion with reductions up to 52 and 46% for Ix and 8-PN, respectively, in comparison to untreated cells. This study demonstrated that both Ix and its gut microbial metabolite 8-PN exert anticancer effects on models of key stages of colon tumourigenesis.
Collapse
Affiliation(s)
- Philip Allsopp
- Northern Ireland Centre for Food and Health, University of Ulster, Coleraine, Co. Derry, Northern Ireland, UK.
| | | | | | | | | |
Collapse
|
46
|
Ting H, Deep G, Agarwal R. Molecular mechanisms of silibinin-mediated cancer chemoprevention with major emphasis on prostate cancer. AAPS J 2013; 15:707-16. [PMID: 23588585 PMCID: PMC3691417 DOI: 10.1208/s12248-013-9486-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 04/02/2013] [Indexed: 02/08/2023] Open
Abstract
Despite advances in early detection, prostate cancer remains the second highest cancer mortality in American men, and even successful interventions are associated with enormous health care costs as well as prolonged deleterious effects on quality of patient life. Prostate cancer chemoprevention is one potential avenue to alleviate these burdens. It is a regime whereby long-term treatments are intended to prevent or arrest cancer development, in contrast to more direct intervention upon disease diagnosis. Based on this intention, cancer chemoprevention generally focuses on the use of nontoxic chemical agents which are well-tolerated for prolonged usage that is necessary to address prostate cancer's multistage and lengthy period of progression. One such nontoxic natural agent is the flavonoid silibinin, derived from the milk thistle plant (Silybum marianum), which has ancient medicinal usage and potent antioxidant activity. Based on these properties, silibinin has been investigated in a host of cancer models where it exhibits broad-spectrum efficacy against cancer progression both in vitro and in vivo without noticeable toxicity. Specifically in prostate cancer models, silibinin has shown the ability to modulate cell signaling, proliferation, apoptosis, epithelial to mesenchymal transition, invasion, metastasis, and angiogenesis, which taken together provides strong support for silibinin as a candidate prostate cancer chemopreventive agent.
Collapse
Affiliation(s)
- Harold Ting
- />Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Gagan Deep
- />Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
- />University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Rajesh Agarwal
- />Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
- />University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
- />Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, Room V20-2118, Box C238, Aurora, Colorado 80045 USA
| |
Collapse
|
47
|
Syntheses of prodelphinidin B3 and C2, and their antitumor activities through cell cycle arrest and caspase-3 activation. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.02.087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Mokhtari MJ, Motamed N, Shokrgozar MA. Evaluation of silibinin on the viability, migration and adhesion of the human prostate adenocarcinoma (PC-3) cell line. Cell Biol Int 2013; 32:888-92. [DOI: 10.1016/j.cellbi.2008.03.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 03/01/2008] [Accepted: 03/28/2008] [Indexed: 01/09/2023]
|
49
|
|
50
|
Caputo F, Vegliante R, Ghibelli L. Redox modulation of the DNA damage response. Biochem Pharmacol 2012; 84:1292-306. [PMID: 22846600 DOI: 10.1016/j.bcp.2012.07.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 01/09/2023]
Abstract
Lesions to DNA trigger the DNA-damage response (DDR), a complex, multi-branched cell-intrinsic process targeted to DNA repair, or elimination of the damaged cells by apoptosis. DDR aims at reducing permanence of mutated cells, decreasing the risk of tumor development: the more stringent the response, the lower the likelihood that sub-lethally damaged, unrepaired cells survive and proliferate. Accordingly, leakage often occurs in tumor cells with compromised DDR, accumulating mutations and accelerating tumor progression. Oxidations mediate DNA damage upon different insults such as UV, X and γ radiation, pollutants, poisons, or endogenous disequilibria, producing different types of lesions that trigger DDR, which can be alleviated by antioxidants. But reactive oxygen species (ROS), and the enzymes involved in their production or scavenging, also participate in DDR signaling, modulating the activity of key enzymes, and regulating the stringency of DDR. Accordingly, antioxidant enzymes such as superoxide dismutase play intimate and complex roles in tumor development, exceeding the basal roles of preventing the initial DNA damage. Likewise, it is emerging that dietary antioxidants help controlling tumor onset and progression by preventing DNA damage and by acting on cell cycle checkpoints, opening a novel and promising frontier to anticancer therapy.
Collapse
Affiliation(s)
- Fanny Caputo
- Dipartimento di Scienze e Tecnologie Chimiche, Universita' di Roma Tor Vergata, Roma, Italy
| | | | | |
Collapse
|