1
|
Reyaz E, Tandon R, Beg MA, Dey R, Puri N, Salotra P, Nakhasi HL, Selvapandiyan A. Proteome profile of Leishmania donovani Centrin1 -/- parasite-infected human macrophage cell line and its implications in determining possible mechanisms of protective immunity. Microbes Infect 2024; 26:105340. [PMID: 38663721 DOI: 10.1016/j.micinf.2024.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Our developed cell division-specific 'centrin' gene deleted Leishmania donovani (LdCen1-/-) the causative parasite of the fatal visceral-leishmaniasis (VL), exhibits a selective growth arrest at the intracellular stage and is anticipated as a live attenuated vaccine candidate against VL. LdCen1-/- immunization in animals has shown increased IFN-γ secreting CD4+ and CD8+ T cells along with protection conferred by a protective proinflammatory immune response. A label-free proteomics approach has been employed to understand the physiology of infection and predict disease interceptors during Leishmania-host interactions. Proteomic modulation after infection of human macrophage cell lines suggested elevated annexin A6, implying involvement in various biological processes such as membrane repair, transport, actin dynamics, cell proliferation, survival, differentiation, and inflammation, thereby potentiating its immunological protective capacity. Additionally, S100A8 and S100A9 proteins, known for maintaining homeostatic balance in regulating the inflammatory response, have been upregulated after infection. The inhibitory clade of serpins, known to inhibit cysteine proteases (CPs), was upregulated in host cells after 48 h of infection. This is reflected in the diminished expression of CPs in the parasites during infection. Such proteome analysis confirms LdCen1-/- efficacy as a vaccine candidate and predicts potential markers in future vaccine development strategies against infectious diseases.
Collapse
Affiliation(s)
- Enam Reyaz
- JH-Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Rati Tandon
- JH-Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Mirza Adil Beg
- JH-Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20993, USA
| | - A Selvapandiyan
- JH-Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Basmenj ER, Arastonejad M, Mamizadeh M, Alem M, KhalatbariLimaki M, Ghiabi S, Khamesipour A, Majidiani H, Shams M, Irannejad H. Engineering and design of promising T-cell-based multi-epitope vaccine candidates against leishmaniasis. Sci Rep 2023; 13:19421. [PMID: 37940672 PMCID: PMC10632461 DOI: 10.1038/s41598-023-46408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is a very common parasitic infection in subtropical areas worldwide. Throughout decades, there have been challenges in vaccine design and vaccination against CL. The present study introduced novel T-cell-based vaccine candidates containing IFN-γ Inducing epitopic fragments from Leishmania major (L. major) glycoprotein 46 (gp46), cathepsin L-like and B-like proteases, histone H2A, glucose-regulated protein 78 (grp78) and stress-inducible protein 1 (STI-1). For this aim, top-ranked human leukocyte antigen (HLA)-specific, IFN-γ Inducing, antigenic, CD4+ and CD8+ binders were highlighted. Four vaccine candidates were generated using different spacers (AAY, GPGPG, GDGDG) and adjuvants (RS-09 peptide, human IFN-γ, a combination of both, Mycobacterium tuberculosis Resuscitation promoting factor E (RpfE)). Based on the immune simulation profile, those with RS-09 peptide (Leish-App) and RpfE (Leish-Rpf) elicited robust immune responses and their tertiary structure were further refined. Also, molecular docking of the selected vaccine models with the human toll-like receptor 4 showed proper interactions, particularly for Leish-App, for which molecular dynamics simulations showed a stable connection with TLR-4. Upon codon optimization, both models were finally ligated into the pET28a( +) vector. In conclusion, two potent multi-epitope vaccine candidates were designed against CL and evaluated using comprehensive in silico methods, while further wet experiments are, also, recommended.
Collapse
Affiliation(s)
| | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Mina Mamizadeh
- Department of Dermatology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mahsa Alem
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mahdi KhalatbariLimaki
- Department of Pharmaceutical Sciences, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Shadan Ghiabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, 14155-6383, Iran
| | - Hamidreza Majidiani
- Healthy Aging Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
do Socorro Silva da Veiga A, Silveira FT, da Silva EO, Júnior JAPD, Araújo SC, Campos MB, do Rosário Marinho AM, Brandão GC, Vale VV, Percário S, Dolabela MF. Activity of alkaloids from Aspidosperma nitidum against Leishmania (Leishmania) amazonensis. Sci Rep 2022; 12:8662. [PMID: 35606396 PMCID: PMC9126982 DOI: 10.1038/s41598-022-12396-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
This study evaluated the morphological changes caused by fractions and subfractions, obtained from barks of Aspidosperna nitidum, against L. (L.) amazonensis promastigotes. The ethanolic extract (EE) obtained through the maceration of trunk barks was subjected to an acid-base partition, resulting the neutral (FN) and the alkaloid (FA) fractions, and fractionation under reflux, yielded hexane (FrHEX), dichloromethane (FrDCL), ethyl acetate (FrACoET), and methanol (FrMEOH) fractions. The FA was fractionated and three subfractions (SF5-6, SF8, and SF9) were obtained and analyzed by HPLC-DAD and 1H NMR. The antipromastigote activity of all samples was evaluated by MTT, after that, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for the active fractions were performed. Chromatographic analyzes suggest the presence of alkaloids in EE, FN, FA, and FrDCL. The fractionation of FA led to the isolation of the indole alkaloid dihydrocorynantheol (SF8 fractions). The SF5-6, dihydrocorynantheol and SF-9 samples were active against promastigotes, while FrDCL was moderately active. The SEM analysis revealed cell rounding and changes in the flagellum of the parasites. In the TEM analysis, the treated promastigotes showed changes in flagellar pocket and kinetoplast, and presence of lipid inclusions. These results suggest that alkaloids isolated from A. nitidum are promising as leishmanicidal.
Collapse
Affiliation(s)
| | | | - Edilene Oliveira da Silva
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
- Postgraduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | | | | | | | - Andrey Moacir do Rosário Marinho
- Postgraduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | | | - Valdicley Vieira Vale
- Postgraduate Program in Pharmaceutical Innovation, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Sandro Percário
- Postgraduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Maria Fâni Dolabela
- Postgraduate Program in Pharmaceutical Innovation, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil.
- Postgraduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil.
| |
Collapse
|
4
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
5
|
Escrivani DO, Charlton RL, Caruso MB, Burle-Caldas GA, Borsodi MPG, Zingali RB, Arruda-Costa N, Palmeira-Mello MV, de Jesus JB, Souza AMT, Abrahim-Vieira B, Freitag-Pohl S, Pohl E, Denny PW, Rossi-Bergmann B, Steel PG. Chalcones identify cTXNPx as a potential antileishmanial drug target. PLoS Negl Trop Dis 2021; 15:e0009951. [PMID: 34780470 PMCID: PMC8664226 DOI: 10.1371/journal.pntd.0009951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/10/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
With current drug treatments failing due to toxicity, low efficacy and resistance; leishmaniasis is a major global health challenge that desperately needs new validated drug targets. Inspired by activity of the natural chalcone 2’,6’-dihydroxy-4’-methoxychalcone (DMC), the nitro-analogue, 3-nitro-2’,4’,6’- trimethoxychalcone (NAT22, 1c) was identified as potent broad spectrum antileishmanial drug lead. Structural modification provided an alkyne containing chemical probe that labelled a protein within the parasite that was confirmed as cytosolic tryparedoxin peroxidase (cTXNPx). Crucially, labelling is observed in both promastigote and intramacrophage amastigote life forms, with no evidence of host macrophage toxicity. Incubation of the chalcone in the parasite leads to ROS accumulation and parasite death. Deletion of cTXNPx, by CRISPR-Cas9, dramatically impacts upon the parasite phenotype and reduces the antileishmanial activity of the chalcone analogue. Molecular docking studies with a homology model of in-silico cTXNPx suggest that the chalcone is able to bind in the putative active site hindering access to the crucial cysteine residue. Collectively, this work identifies cTXNPx as an important target for antileishmanial chalcones. Leishmaniasis is an insect vector-borne parasitic disease. With >350 million people world wide considered at risk, 12 million people currently infected and an economic cost that can be estimated in terms of >3.3 million working life years lost, leishmaniasis is a major global health challenge. The disease is of particular importance in Brazil. Current treatment of leishmaniasis is difficult requiring a long, costly course of drug treatment using old drugs with poor safety indications requiring close medical supervision. Moreover, resistance to current antileishmanials is growing, emphasising a major need for new drug targets. In earlier work we had identified a naturally inspired chalcone which had promising antileishmanial activity but with no known mode of action. In this work we use an analogue of this molecule as an activity based probe to identify a protein target of the chalcone. This protein, cTXNPx, has a major role in protecting the parasite against attack by reactive oxygen species in the host cell. By inhibiting this protein the parasite can no longer survive in the host. Collectively this work validates cTXNPx as a drug target with the chalcone as a lead structure for future drug discovery programmes.
Collapse
Affiliation(s)
- Douglas O. Escrivani
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Rebecca L. Charlton
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Marjolly B. Caruso
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela A. Burle-Caldas
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Maria Paula G. Borsodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Russolina B. Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Arruda-Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jéssica B. de Jesus
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Stefanie Freitag-Pohl
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Ehmke Pohl
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Paul W. Denny
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (BR-B); (PGS)
| | - Patrick G. Steel
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
- * E-mail: (BR-B); (PGS)
| |
Collapse
|
6
|
Cysteine proteases as potential targets for anti-trypanosomatid drug discovery. Bioorg Med Chem 2021; 46:116365. [PMID: 34419821 DOI: 10.1016/j.bmc.2021.116365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Leishmaniasis and trypanosomiasis are endemic neglected disease in South America and Africa and considered a significant public health problem, mainly in poor communities. The limitations of the current available therapeutic options, including the lack of specificity, relatively high toxicity, and the drug resistance acquiring, drive the constant search for new targets and therapeutic options. Advances in knowledge of parasite biology have revealed essential enzymes involved in the replication, survival, and pathogenicity of Leishmania and Trypanosoma species. In this scenario, cysteine proteases have drawn the attention of researchers and they are being proposed as promising targets for drug discovery of antiprotozoal drugs. In this systematic review, we will provide an update on drug discovery strategies targeting the cysteine proteases as potential targets for chemotherapy against protozoal neglected diseases.
Collapse
|
7
|
Koeller CM, Smith TK, Gulick AM, Bangs JD. p67: a cryptic lysosomal hydrolase in Trypanosoma brucei? Parasitology 2021; 148:1271-1276. [PMID: 33070788 PMCID: PMC8053727 DOI: 10.1017/s003118202000195x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/22/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
p67 is a type I transmembrane glycoprotein of the terminal lysosome of African trypanosomes. Its biosynthesis involves transport of an initial gp100 ER precursor to the lysosome, followed by cleavage to N-terminal (gp32) and C-terminal (gp42) subunits that remain non-covalently associated. p67 knockdown is lethal, but the only overt phenotype is an enlarged lysosome (~250 to >1000 nm). Orthologues have been characterized in Dictyostelium and mammals. These have processing pathways similar to p67, and are thought to have phospholipase B-like (PLBL) activity. The mouse PLBD2 crystal structure revealed that the PLBLs represent a subgroup of the larger N-terminal nucleophile (NTN) superfamily, all of which are hydrolases. NTNs activate by internal autocleavage mediated by a nucleophilic residue, i.e. Cys, Ser or Thr, on the upstream peptide bond to form N-terminal α (gp32) and C-terminal β (gp42) subunits that remain non-covalently associated. The N-terminal residue of the β subunit is then catalytic in subsequent hydrolysis reactions. All PLBLs have a conserved Cys/Ser dipeptide at the α/β junction (Cys241/Ser242 in p67), mutation of which renders p67 non-functional in RNAi rescue assays. p67 orthologues are found in many clades of parasitic protozoa, thus p67 is the founding member of a group of hydrolases that likely play a role broadly in the pathogenesis of parasitic infections.
Collapse
Affiliation(s)
- Carolina M. Koeller
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY14203, USA
| | - Terry K. Smith
- Schools of Biology & Chemistry, BSRC, University of St. Andrews, St Andrews, FifeKY16 9ST, UK
| | - Andrew M. Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY14203, USA
| | - James D. Bangs
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY14203, USA
| |
Collapse
|
8
|
Rawat A, Roy M, Jyoti A, Kaushik S, Verma K, Srivastava VK. Cysteine proteases: Battling pathogenic parasitic protozoans with omnipresent enzymes. Microbiol Res 2021; 249:126784. [PMID: 33989978 DOI: 10.1016/j.micres.2021.126784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
Millions of people worldwide lie at the risk of parasitic protozoic infections that kill over a million people each year. The rising inefficacy of conventional therapeutics to combat these diseases, mainly due to the development of drug resistance to a handful of available licensed options contributes substantially to the rising burden of these ailments. Cysteine proteases are omnipresent enzymes that are critically implicated in the pathogenesis of protozoic infections. Despite their significance and druggability, cysteine proteases as therapeutic targets have not yet been translated into the clinic. The review presents the significance of cysteine proteases of members of the genera Plasmodium, Entamoeba, and Leishmania, known to cause Malaria, Amoebiasis, and Leishmaniasis, respectively, the protozoic diseases with the highest morbidity and mortality. Further, projecting them as targets for molecular tools like the CRISPR-Cas technology for favorable manipulation, exploration of obscure genomes, and achieving a better insight into protozoic functioning. Overcoming the hurdles that prevent us from gaining a better insight into the functioning of these enzymes in protozoic systems is a necessity. Managing the burden of parasitic protozoic infections pivotally depends upon the betterment of molecular tools and therapeutic concepts that will pave the path to an array of diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Aadish Rawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Mrinalini Roy
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Kuldeep Verma
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, India
| | - Vijay Kumar Srivastava
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India.
| |
Collapse
|
9
|
Paik D, Pramanik PK, Chakraborti T. Curative efficacy of purified serine protease inhibitor PTF3 from potato tuber in experimental visceral leishmaniasis. Int Immunopharmacol 2020; 85:106623. [PMID: 32504996 DOI: 10.1016/j.intimp.2020.106623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
To overcome the drug toxicity and frequent resistance of parasites against the conventional drugs for the healing of human visceral leishmaniasis, innovative plant derived antileishmanial components are very imperative. Fuelled by the complications of clinically available antileishmanial drugs, a novel potato serine protease inhibitor was identified with its efficacy on experimental visceral leishmaniasis (VL). The serine protease inhibitors from potato tuber extract (PTEx) bearing molecular mass of 39 kDa (PTF1), 23 kDa (PTF2) and 17 kDa (PTF3) were purified and identified. Among them, PTF3 was selected as the most active inhibitor (IC50 143.5 ± 2.4 µg/ml) regarding its antileishmanial property. Again, intracellular amastigote load was reduced upto 83.1 ± 1.7% in pre-treated parasite and 88.5 ± 0.5% in in vivo model with effective dose of PTF3. Protective immune response by PTF3 was noted with increased production of antimicrobial substances and up-regulation of pro-inflammatory cytokines. Therapeutic potency of PTF3 is also followed by 80% survival in infected hamster. The peptide mass fingerprint (MALDI-TOF) results showed similarity of PTF3 with serine protease inhibitors database. Altogether, these results strongly propose the effectiveness of PTF3 as potent immunomodulatory therapeutics for controlling VL.
Collapse
Affiliation(s)
- Dibyendu Paik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
10
|
Hartigan A, Kosakyan A, Pecková H, Eszterbauer E, Holzer AS. Transcriptome of Sphaerospora molnari (Cnidaria, Myxosporea) blood stages provides proteolytic arsenal as potential therapeutic targets against sphaerosporosis in common carp. BMC Genomics 2020; 21:404. [PMID: 32546190 PMCID: PMC7296530 DOI: 10.1186/s12864-020-6705-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/27/2020] [Indexed: 01/24/2023] Open
Abstract
Background Parasites employ proteases to evade host immune systems, feed and replicate and are often the target of anti-parasite strategies to disrupt these interactions. Myxozoans are obligate cnidarian parasites, alternating between invertebrate and fish hosts. Their genes are highly divergent from other metazoans, and available genomic and transcriptomic datasets are limited. Some myxozoans are important aquaculture pathogens such as Sphaerospora molnari replicating in the blood of farmed carp before reaching the gills for sporogenesis and transmission. Proliferative stages cause a massive systemic lymphocyte response and the disruption of the gill epithelia by spore-forming stages leads to respiratory problems and mortalities. In the absence of a S. molnari genome, we utilized a de novo approach to assemble the first transcriptome of proliferative myxozoan stages to identify S. molnari proteases that are upregulated during the first stages of infection when the parasite multiplies massively, rather than in late spore-forming plasmodia. Furthermore, a subset of orthologs was used to characterize 3D structures and putative druggable targets. Results An assembled and host filtered transcriptome containing 9436 proteins, mapping to 29,560 contigs was mined for protease virulence factors and revealed that cysteine proteases were most common (38%), at a higher percentage than other myxozoans or cnidarians (25–30%). Two cathepsin Ls that were found upregulated in spore-forming stages with a presenilin like aspartic protease and a dipeptidyl peptidase. We also identified downregulated proteases in the spore-forming development when compared with proliferative stages including an astacin metallopeptidase and lipases (qPCR). In total, 235 transcripts were identified as putative proteases using a MEROPS database. In silico analysis of highly transcribed cathepsins revealed potential drug targets within this data set that should be prioritised for development. Conclusions In silico surveys for proteins are essential in drug discovery and understanding host-parasite interactions in non-model systems. The present study of S. molnari’s protease arsenal reveals previously unknown proteases potentially used for host exploitation and immune evasion. The pioneering dataset serves as a model for myxozoan virulence research, which is of particular importance as myxozoan diseases have recently been shown to emerge and expand geographically, due to climate change.
Collapse
Affiliation(s)
- Ashlie Hartigan
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia.
| | - Anush Kosakyan
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| | - Hana Pecková
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| | - Edit Eszterbauer
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| |
Collapse
|
11
|
de Oliveira VVG, Aranda de Souza MA, Cavalcanti RRM, de Oliveira Cardoso MV, Leite ACL, da Silva Junior VA, de Figueiredo RCBQ. Study of in vitro biological activity of thiazoles on Leishmania (Leishmania) infantum. J Glob Antimicrob Resist 2020; 22:414-421. [PMID: 32165288 DOI: 10.1016/j.jgar.2020.02.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/18/2019] [Accepted: 02/22/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES In the prospection of possible agents against neglected diseases, thiazole compounds are presented as promising candidates and are known to have activity against trypanosomatid parasites. Thus, this work aimed to evaluate the effects of thiazole compounds on Leishmania infantum, the aetiological agent of visceral leishmaniasis. METHODS Thiazole compounds (five thiazoacetylpyridines [TAPs-01, -04, -05, -06, -09) and five thiazopyridines [TPs-01, -04, -05, -06, -09]) were tested regarding their leishmanicidal activity on both promastigote and amastigote forms of L. infantum. Cytotoxicity was tested using peritoneal macrophages of BALB/c mice. Ultrastructural analyses were performed to identify possible intracellular targets of the most effective compound on promastigote forms. To observe routes that can clarify the possible mechanism of action of the compounds on the intracellular amastigote forms, the nitrite dosage was performed. RESULTS All compounds inhibited the growth of promastigote and presented low cytotoxicity, being more selective to the parasite than to mammalian cells. All compounds tested were able to decrease macrophage infection. There was a significant decrease in the survival rate of the amastigote when compared with the untreated cells, with TAP-04 presenting the best index. TAP-04 induced ultrastructural changes that are related to cell death by apoptosis. None of the macrophage groups infected with L. infantum and subsequently treated showed increased nitrite release. CONCLUSIONS The low toxicity to mammalian cells and the leishmanicidal activity observed demonstrate that the synthesis of drugs based in thiosemicarbazone nucleus, thiazole and pyridine derivatives are promising for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Vinícius Vasconcelos Gomes de Oliveira
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Brazil; Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão, Brazil.
| | - Mary Angela Aranda de Souza
- Departamento de Microbiologia, Centro de Pesquisas Aggeu Magalhães, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | | | | | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | |
Collapse
|
12
|
Di Maggio LS, Tirloni L, Pinto AFM, Diedrich JK, Yates JR, Carmona C, Berasain P, da Silva Vaz I. A proteomic comparison of excretion/secretion products in Fasciola hepatica newly excysted juveniles (NEJ) derived from Lymnaea viatrix or Pseudosuccinea columella. Exp Parasitol 2019; 201:11-20. [PMID: 31022392 DOI: 10.1016/j.exppara.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/19/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
The characteristics of parasitic infections are often tied to host behavior. Although most studies have investigated definitive hosts, intermediate hosts can also play a role in shaping the distribution and accumulation of parasites. This is particularly relevant in larval stages, where intermediate host's behavior could potentially interfere in the molecules secreted by the parasite into the next host during infection. To investigate this hypothesis, we used a proteomic approach to analyze excretion/secretion products (ESP) from Fasciola hepatica newly excysted juveniles (NEJ) derived from two intermediate host species, Lymnaea viatrix and Pseudosuccinea columella. The two analyzed proteomes showed differences in identity, abundance, and functional classification of the proteins. This observation could be due to differences in the biological cycle of the parasite in the host, environmental aspects, and/or host-dependent factors. Categories such as protein modification machinery, protease inhibitors, signal transduction, and cysteine-rich proteins showed different abundance between samples. More specifically, differences in abundance of individual proteins such as peptidyl-prolyl cis-trans isomerase, thioredoxin, cathepsin B, cathepsin L, and Kunitz-type inhibitors were identified. Based on the differences identified between NEJ ESP samples, we can conclude that the intermediate host is a factor influencing the proteomic profile of ESP in F. hepatica.
Collapse
Affiliation(s)
- Lucía Sánchez Di Maggio
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Unidad de Biología Parasitaria, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; College of Veterinary Medicine, Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Antônio F M Pinto
- Department of Molecular Medicine, The Scripps Research Institute, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, CA, USA
| | - Carlos Carmona
- Unidad de Biología Parasitaria, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Patricia Berasain
- Unidad de Biología Parasitaria, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay.
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Koeller CM, Bangs JD. Processing and targeting of cathepsin L (TbCatL) to the lysosome in
Trypanosoma brucei. Cell Microbiol 2019; 21:e12980. [DOI: 10.1111/cmi.12980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Carolina M. Koeller
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences University at Buffalo (SUNY) Buffalo New York USA
| | - James D. Bangs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences University at Buffalo (SUNY) Buffalo New York USA
| |
Collapse
|
14
|
Hernandez HW, Soeung M, Zorn KM, Ashoura N, Mottin M, Andrade CH, Caffrey CR, de Siqueira-Neto JL, Ekins S. High Throughput and Computational Repurposing for Neglected Diseases. Pharm Res 2018; 36:27. [PMID: 30560386 PMCID: PMC6792295 DOI: 10.1007/s11095-018-2558-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/09/2018] [Indexed: 12/21/2022]
Abstract
Purpose Neglected tropical diseases (NTDs) represent are a heterogeneous group of communicable diseases that are found within the poorest populations of the world. There are 23 NTDs that have been prioritized by the World Health Organization, which are endemic in 149 countries and affect more than 1.4 billion people, costing these developing economies billions of dollars annually. The NTDs result from four different causative pathogens: protozoa, bacteria, helminth and virus. The majority of the diseases lack effective treatments. Therefore, new therapeutics for NTDs are desperately needed. Methods We describe various high throughput screening and computational approaches that have been performed in recent years. We have collated the molecules identified in these studies and calculated molecular properties. Results Numerous global repurposing efforts have yielded some promising compounds for various neglected tropical diseases. These compounds when analyzed as one would expect appear drug-like. Several large datasets are also now in the public domain and this enables machine learning models to be constructed that then facilitate the discovery of new molecules for these pathogens. Conclusions In the space of a few years many groups have either performed experimental or computational repurposing high throughput screens against neglected diseases. These have identified compounds which in many cases are already approved drugs. Such approaches perhaps offer a more efficient way to develop treatments which are generally not a focus for global pharmaceutical companies because of the economics or the lack of a viable market. Other diseases could perhaps benefit from these repurposing approaches. Electronic supplementary material The online version of this article (10.1007/s11095-018-2558-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Melinda Soeung
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina, 27606, USA
| | | | - Melina Mottin
- LabMol - Laboratory for Molecular Modeling and Drug Design Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO, 74605-170, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO, 74605-170, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, 92093, USA
| | - Jair Lage de Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, 92093, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina, 27606, USA.
| |
Collapse
|
15
|
Siqueira-Neto JL, Debnath A, McCall LI, Bernatchez JA, Ndao M, Reed SL, Rosenthal PJ. Cysteine proteases in protozoan parasites. PLoS Negl Trop Dis 2018; 12:e0006512. [PMID: 30138453 PMCID: PMC6107107 DOI: 10.1371/journal.pntd.0006512] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cysteine proteases (CPs) play key roles in the pathogenesis of protozoan parasites, including cell/tissue penetration, hydrolysis of host or parasite proteins, autophagy, and evasion or modulation of the host immune response, making them attractive chemotherapeutic and vaccine targets. This review highlights current knowledge on clan CA cysteine proteases, the best-characterized group of cysteine proteases, from 7 protozoan organisms causing human diseases with significant impact: Entamoeba histolytica, Leishmania species (sp.), Trypanosoma brucei, T. cruzi, Cryptosporidium sp., Plasmodium sp., and Toxoplasma gondii. Clan CA proteases from three organisms (T. brucei, T. cruzi, and Plasmodium sp.) are well characterized as druggable targets based on in vitro and in vivo models. A number of candidate inhibitors are under development. CPs from these organisms and from other protozoan parasites should be further characterized to improve our understanding of their biological functions and identify novel targets for chemotherapy.
Collapse
Affiliation(s)
- Jair L. Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Laura-Isobel McCall
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Jean A. Bernatchez
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Momar Ndao
- National Reference Centre for Parasitology, The Research Institute of the McGill University Health Center, Montreal, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sharon L. Reed
- Departments of Pathology and Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
16
|
Fernando DD, Reynolds SL, Zakrzewski M, Mofiz E, Papenfuss AT, Holt D, Fischer K. Phylogenetic relationships, stage-specific expression and localisation of a unique family of inactive cysteine proteases in Sarcoptes scabiei. Parasit Vectors 2018; 11:301. [PMID: 29769145 PMCID: PMC5956821 DOI: 10.1186/s13071-018-2862-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/23/2018] [Indexed: 11/17/2022] Open
Abstract
Background Scabies is worldwide one of the most common, yet neglected, parasitic skin infections, affecting a wide range of mammals including humans. Limited treatment options and evidence of emerging mite resistance against the currently used drugs drive our research to explore new therapeutic candidates. Previously, we discovered a multicopy family of genes encoding cysteine proteases with their catalytic sites inactivated by mutation (SMIPP-Cs). This protein family is unique in parasitic scabies mites and is absent in related non-burrowing mites. We postulated that the SMIPP-Cs have evolved as an adaptation to the parasitic lifestyle of the scabies mite. To formulate testable hypotheses for their functions and to propose possible strategies for translational research we investigated whether the SMIPP-Cs are common to all scabies mite varieties and where within the mite body as well as when throughout the parasitic life-cycle they are expressed. Results SMIPP-C sequences from human, pig and dog mites were analysed bioinformatically and the phylogenetic relationships between the SMIPP-C multi-copy gene families of human, pig and dog mites were established. Results suggest that amplification of the SMIPP-C genes occurred in a common ancestor and individual genes evolved independently in the different mite varieties. Recombinant human mite SMIPP-C proteins were produced and used for murine polyclonal antibody production. Immunohistology on skin sections from human patients localised the SMIPP-Cs in the mite gut and in mite faeces within in the epidermal skin burrows. SMIPP-C transcription into mRNA in different life stages was assessed in human and pig mites by reverse transcription followed by droplet digital PCR (ddPCR). High transcription levels of SMIPP-C genes were detected in the adult female life stage in comparison to all other life stages. Conclusions The fact that the SMIPP-Cs are unique to three Sarcoptes varieties, present in all burrowing life stages and highly expressed in the digestive system of the infective adult female life stage may highlight an essential role in parasitism. As they are excreted from the gut in scybala they presumably are able to interact or interfere with host proteins present in the epidermis. Electronic supplementary material The online version of this article (10.1186/s13071-018-2862-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deepani D Fernando
- QIMR Berghofer Medical Research Institute, Infectious Diseases Program, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.,School of Veterinary Sciences, University of Queensland, Gatton, QLD, 4343, Australia.,Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Simone L Reynolds
- QIMR Berghofer Medical Research Institute, Infectious Diseases Program, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Martha Zakrzewski
- QIMR Berghofer Medical Research Institute, Infectious Diseases Program, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Ehtesham Mofiz
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, 3000, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Deborah Holt
- Menzies School of Health Research, Charles Darwin University, Casuarina, Northern Territory, Australia
| | - Katja Fischer
- QIMR Berghofer Medical Research Institute, Infectious Diseases Program, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
17
|
Singh T, Fakiola M, Oommen J, Singh AP, Singh AK, Smith N, Chakravarty J, Sundar S, Blackwell JM. Epitope-Binding Characteristics for Risk versus Protective DRB1 Alleles for Visceral Leishmaniasis. THE JOURNAL OF IMMUNOLOGY 2018; 200:2727-2737. [PMID: 29507109 DOI: 10.4049/jimmunol.1701764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/08/2018] [Indexed: 11/19/2022]
Abstract
HLA-DRB1 is the major genetic risk factor for visceral leishmaniasis (VL). We used SNP2HLA to impute HLA-DRB1 alleles and SNPTEST to carry out association analyses in 889 human cases and 977 controls from India. NetMHCIIpan 2.1 was used to map epitopes and binding affinities across 49 Leishmania vaccine candidates, as well as across peptide epitopes captured from dendritic cells treated with crude Leishmania Ag and identified using mass spectrometry and alignment to amino acid sequences of a reference Leishmania genome. Cytokines were measured in peptide-stimulated whole blood from 26 cured VL cases and eight endemic healthy controls. HLA-DRB1*1501 and DRB1*1404/DRB1*1301 were the most significant protective and risk alleles, respectively, with specific residues at aa positions 11 and 13 unique to protective alleles. We observed greater peptide promiscuity in sequence motifs for 9-mer core epitopes predicted to bind to risk (*1404/*1301) compared with protective (*1501) DRB1 alleles. There was a higher frequency of basic amino acids in DRB1*1404/*1301-specific epitopes compared with hydrophobic and polar amino acids in DRB1*1501-specific epitopes at anchor residues pocket 4 and pocket 6, which interact with residues at DRB1 positions 11 and 13. Cured VL patients made variable, but robust, IFN-γ, TNF, and IL-10 responses to 20-mer peptides based on captured epitopes, with peptides based on DRB1*1501-captured epitopes resulting in a higher proportion (odds ratio 2.23, 95% confidence interval 1.17-4.25, p = 0.017) of patients with IFN-γ/IL-10 ratios > 2-fold compared with peptides based on DRB1*1301-captured epitopes. Our data provide insight into the molecular mechanisms underpinning the association of HLA-DRB1 alleles with risk versus protection in VL in humans.
Collapse
Affiliation(s)
- Toolika Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi OS 221 005, India
| | - Michaela Fakiola
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Joyce Oommen
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia 6008, Australia; and
| | - Akhil Pratap Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi OS 221 005, India
| | - Abhishek K Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi OS 221 005, India
| | - Noel Smith
- Lonza Biologics PLC, Great Abington, Cambridge CB21 6GS, United Kingdom
| | - Jaya Chakravarty
- Institute of Medical Sciences, Banaras Hindu University, Varanasi OS 221 005, India
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi OS 221 005, India
| | - Jenefer M Blackwell
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; .,Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia 6008, Australia; and
| |
Collapse
|
18
|
ARAVIND M, SARAVANAN BC, MANJUNATHACHAR HV, SANKAR M, SARAVANAN R, PRASAD A, MILTON AAP, PRIYA GBHUVANA. Molecular expression and characterization of GCP7 gene of Haemonchus contortus. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i11.75853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Haemonchus contortus is a highly pathogenic and most economically important parasite of sheep and goats worldwide. The cysteine proteases from H. contortus are prime targets for vaccine development. In the present communication we report the molecular expression and characterization of cathepsin B-like cysteine protease, GCP7 gene of H. contortus to study its efficiency as target protein for immunoprophylaxis against haemonchosis in sheep and goats. The complete ORF of GCP7 gene, devoid of the signal sequence, was amplified by RT-PCR from mRNA isolated from H. contortus and was cloned initially into pTZ57R/T cloning vector and then sub-cloned in the pET32a(+) expression vector to produce GCP7 antigen. The nucleotide and deduced amino acid sequence of the GCP7 was aligned against the related sequences of H. contortus available in public domain for in silico analysis by DNA STAR and MEGA version 4.0 softwares. The nucleotide sequence revealed that the GCP7 gene of H.contortus (Indian isolate) encodes 324 amino acids (devoid of signal sequence) and its nucleotide sequence had 95.9% to 99.4% sequence homology with that of U.S.A. and previously published Indian isolates. A high level expression of recombinant (r) GCP7 protein was observed in the molecular range (Mr) of 55 kDa. The rGCP7 protein was confirmed by its specific immunoreactivity against known reference positive sheep sera.
Collapse
|
19
|
Silva DG, Ribeiro JF, De Vita D, Cianni L, Franco CH, Freitas-Junior LH, Moraes CB, Rocha JR, Burtoloso AC, Kenny PW, Leitão A, Montanari CA. A comparative study of warheads for design of cysteine protease inhibitors. Bioorg Med Chem Lett 2017; 27:5031-5035. [DOI: 10.1016/j.bmcl.2017.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 02/07/2023]
|
20
|
Fandzloch M, Arriaga JMM, Sánchez-Moreno M, Wojtczak A, Jezierska J, Sitkowski J, Wiśniewska J, Salas JM, Łakomska I. Strategies for overcoming tropical disease by ruthenium complexes with purine analog: Application against Leishmania spp. and Trypanosoma cruzi. J Inorg Biochem 2017; 176:144-155. [PMID: 28910663 DOI: 10.1016/j.jinorgbio.2017.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/01/2017] [Accepted: 08/23/2017] [Indexed: 12/29/2022]
Abstract
Tropical diseases currently constitute a major health problem and thus a challenge in the field of drug discovery. The current treatments show serious disadvantages due to cost, toxicity, long therapy duration and resistance, and the use of metal complexes as chemotherapeutic agents against these ailments appears to be a very attractive alternative. Herein, we describe three newly synthesized ruthenium complexes with a bioactive molecule, the purine analogue 5,6,7-trimethyl-1,2,4-triazolo[1,5-a]pyrimidine (tmtp): cis,fac-[RuCl2(dmso)3(tmtp)] (1), mer-[RuCl3(dmso)(H2O)(tmtp)]·2H2O (2) and fac,cis-[RuCl3(H2O)(tmtp)2] (3). Their structures were characterized using X-ray and spectroscopic methods (IR, NMR or EPR). The stability of the synthesized complexes 1-3 in various buffered solutions (pH=3-7.4) was monitored using conventional and stopped-flow techniques. The in vitro antiproliferative activity of all ruthenium complexes against promastigote forms of Leishmania spp. (L. infantum, L. braziliensis, and L. donovani) and epimastigote forms of Trypanosoma cruzi was investigated. Notably, the results showed that the activity of 1 against L. brasiliensis was more than three-fold higher than that of glucantime, and 1 showed no appreciable toxicity towards J774.2 macrophages. Additionally, 2 displayed even 141-fold lower toxicity against host cells than glucantime, demonstrating significantly higher selectivity than the reference drug. Therefore, 1 and 2 appear to be excellent candidates for further development as potential drugs for the effective treatment of leishmaniasis and Chagas disease. All novel complexes were also shown to be potent inhibitors of Fe-SOD in the studied species, while their effects on human CuZn-SOD were very low.
Collapse
Affiliation(s)
- Marzena Fandzloch
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | | | - Manuel Sánchez-Moreno
- Department of Parasitology, University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Andrzej Wojtczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Julia Jezierska
- Faculty of Chemistry, Wrocław University, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Jerzy Sitkowski
- National Medicines Institute, Chełmska 30/34, 00-725 Warszawa, Poland; Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Joanna Wiśniewska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Juan Manuel Salas
- Department of Inorganic Chemistry, University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Iwona Łakomska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| |
Collapse
|
21
|
Raghav N, Kaur R. A comparative account of sar studies of semicarbazones and thiosemicarbazones on cathepsins H and L. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Sangenito LS, d'Avila-Levy CM, Branquinha MH, Santos ALS. Nelfinavir and lopinavir impair Trypanosoma cruzi trypomastigote infection in mammalian host cells and show anti-amastigote activity. Int J Antimicrob Agents 2016; 48:703-711. [PMID: 27838277 DOI: 10.1016/j.ijantimicag.2016.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 02/08/2023]
Abstract
There is an urgent need to implement new strategies and to search for new chemotherapeutic targets to combat Chagas' disease. In this context, repositioning of clinically approved drugs appears as a viable tool to combat this and several other neglected pathologies. An example is the use of aspartic peptidase inhibitors (PIs) currently applied in human immunodeficiency virus (HIV) treatment against different infectious agents. Therefore, the main objective of this work was to verify the effects of the HIV-PIs nelfinavir and lopinavir against Trypanosoma cruzi using in vitro models of infection. Cytotoxicity assays with LLC-MK2 epithelial cells and RAW macrophages allowed an evaluation of the effects of HIV-PIs on the interaction between trypomastigotes and these cells as well as the survival of intracellular amastigotes. Pre-treatment of trypomastigotes with nelfinavir and lopinavir inhibited the association index with LLC-MK2 cells and RAW macrophages in a dose- and time-dependent manner. In addition, nelfinavir and lopinavir also significantly reduced the number of intracellular amastigotes in both mammalian cell lineages, particularly when administered in daily doses. Both compounds had no effect on nitric oxide production in infected RAW macrophages. These results open the possibility for the use of HIV-PIs as a tangible alternative in the treatment of Chagas' disease. However, the main mechanism of action of nelfinavir and lopinavir has yet to be elucidated, and more studies using in vivo models must be conducted.
Collapse
Affiliation(s)
- Leandro S Sangenito
- Departamento de Microbiologia Geral, Laboratório de Investigação de Peptidases, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Claudia M d'Avila-Levy
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Departamento de Microbiologia Geral, Laboratório de Investigação de Peptidases, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - André L S Santos
- Departamento de Microbiologia Geral, Laboratório de Investigação de Peptidases, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
23
|
Paik D, Das P, Naskar K, Pramanik PK, Chakraborti T. Protective inflammatory response against visceral leishmaniasis with potato tuber extract: A new approach of successful therapy. Biomed Pharmacother 2016; 83:1295-1302. [PMID: 27567589 DOI: 10.1016/j.biopha.2016.08.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/18/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022] Open
Abstract
The increasing number of drug resistance issue of Leishmania donovani strain to common drugs compels to develop new therapeutics against leishmaniasis with minimal toxicity. In this regard, bioactive phytocomponents may lead to the discovery of new medicines with appropriate efficiency. The important roles of Leishmania proteases in the virulence of Leishmania parasite make them very hopeful targets for the improvement of current remedial of leishmaniasis. As part of a hunt for new drugs, we have evaluated in vivo anti-leishmanial activity of serine protease inhibitor rich fraction (PTEx), isolated by sodium bisulfite extraction from potato tuber. The amastigote load of 25mg/kg body weight/day treated BALB/c mice showed 86.9% decrease in liver and 88.7% in case of spleen. This anti-leishmanial effect was also supported by PTEx induced immunomodulatory activity like acute formation of ROS and prolonged NO generation. The Th1/Th2 cytokine balance in splenocytes of PTEx treated animals was estimated and evaluated by ELISA assay as well as by mRNA expression using RT-PCR. Furthermore, significant survival rate (80%) was observed in PTEx treated hamsters. Thus, from the present observations we could accentuate the potential of PTEx to be employed as a new therapeutics from natural source against L. donovani. This might also provide a novel perception of natural serine protease inhibitor from potato tuber as an alternate approach for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Dibyendu Paik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Partha Das
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Kshudiram Naskar
- Infectious Disease and Immunology Division, Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
24
|
Scala A, Micale N, Piperno A, Rescifina A, Schirmeister T, Kesselring J, Grassi G. Targeting of the Leishmania mexicana cysteine protease CPB2.8ΔCTE by decorated fused benzo[b]thiophene scaffold. RSC Adv 2016. [DOI: 10.1039/c6ra05557e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A potent and highly selective anhydride-based inhibitor ofLeishmania mexicanacysteine protease CPB2.8 (IC50= 3.7 μM) was investigated by inhibition assays, NMR biomimetic experiments and docking studies.
Collapse
Affiliation(s)
- A. Scala
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| | - N. Micale
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| | - A. Piperno
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| | - A. Rescifina
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Catania
- 95125 Catania
- Italy
| | - T. Schirmeister
- Institute of Pharmacy and Biochemistry
- University of Mainz
- D 55099 Mainz
- Germany
| | - J. Kesselring
- Institute of Pharmacy and Biochemistry
- University of Mainz
- D 55099 Mainz
- Germany
| | - G. Grassi
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| |
Collapse
|
25
|
Qu ZG, Ma XT, Li WH, Zhang NZ, Yue L, Cui JM, Cai JP, Jia WZ, Fu BQ. Molecular characterization of a cathepsin F-like protease in Trichinella spiralis. Parasit Vectors 2015; 8:652. [PMID: 26692208 PMCID: PMC4687129 DOI: 10.1186/s13071-015-1270-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/10/2015] [Indexed: 02/04/2023] Open
Abstract
Background Trichinellosis is a re-emerging infectious disease, caused by Trichinella spp. Cathepsin F belongs to cysteine protease that is a major virulence factor for parasitic helminths, and it may be a potential anti-helminth drug target and vaccine candidate. The aim of this study was to clone, express and identify a cathepsin F-like protease in Trichinella spiralis and to investigate its biochemical characteristics. Methods The full-length cDNA encoding a putative cathepsin F-like protease in T. spiralis, TsCF1, was cloned and its biochemical characterization and expression profile were analyzed. Transcription of TsCF1 at different developmental stages of T. spiralis was observed by RT-PCR. The recombinant TsCF1 protein was expressed by prokaryotic expression system and recombinant TsCF1 (rTsCF1) was analyzed by western blotting. And expression of TsCF1 at muscle larvae stage was performed by immunofluorescent technique. Molecular modeling of TsCF1 and its binding mode with E-64 and K11777 were analyzed. Enzyme activity and inhibitory test with E-64 as inhibitor were investigated by using Z-Phe-Arg-AMC as specific substrate. Results Sequence analysis revealed that TsCF1 ORF encodes a protein of 366 aa with a theoretical molecular weight of 41.9 kDa and an isoelectric point of 7.46. The cysteine protease conserved active site of Cys173, His309 and Asn333 were identified and cathepsin F specific motif ERFNAQ like KLFNAQ sequence was revealed in the propeptide of TsCF1. Sequence alignment analysis revealed a higher than 40 % identity with other cathepsin F from parasitic helminth and phylogenetic analysis indicated TsCF1 located at the junction of nematode and trematode. RT-PCR revealed the gene was expressed in muscle larvae, newborn larvae and adult stages. SDS-PAGE revealed the recombinant protein was expressed with the molecular weight of 45 kDa. The purified rTsCF1 was used to immunize rabbit and the immune serum could recognize a band of about 46 kDa in soluble protein of adult, muscle larvae and ES product of muscle larvae. Immunolocalization analysis showed that TsCF1 located on the cuticle and stichosome of the muscle larvae. After renaturation rTsCF1 demonstrated substantial enzyme activity to Z-Phe-Arg-AMC substrate with the optimal pH 5.5 and this activity could be inhibited by cysteine protease inhibitor E-64. Further analysis showed the kinetic parameters of rTsCF1 to be Km = 0.5091 μM and Vmax = 6.12 RFU/s μM at pH 5.5, and the IC50 value of E64 was 135.50 ± 16.90 nM. Conclusion TsCF1 was expressed in all stages of T. spiralis and localized in the cuticle and stichosome. TsCF1 might play a role in the life cycle of T. spiralis and could be used as a potential vaccine candidate and drug target against T. spiralis infection.
Collapse
Affiliation(s)
- Zi-gang Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, P. R. China.
| | - Xue-ting Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, P. R. China.
| | - Wen-hui Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, P. R. China.
| | - Nian-zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, P. R. China.
| | - Long Yue
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, P. R. China.
| | - Jian-min Cui
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, P. R. China.
| | - Jian-ping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, P. R. China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, 225009, P. R. China.
| | - Wan-zhong Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, P. R. China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, 225009, P. R. China.
| | - Bao-quan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, P. R. China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, 225009, P. R. China.
| |
Collapse
|
26
|
Chalcones, semicarbazones and pyrazolines as inhibitors of cathepsins B, H and L. Int J Biol Macromol 2015; 80:710-24. [PMID: 26193682 PMCID: PMC7124378 DOI: 10.1016/j.ijbiomac.2015.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 11/22/2022]
Abstract
Three bio macromolecules cathepsins B, H and L of physiological and pathological significance have been selected for the study. The molecules have been designed by combining two important pharmacophores their cyclized analogues and were studied for their inhibitory effects on selected enzymes. Two isomeric forms of chalconesemicarbazones are reported for the first time. The synthesized compounds showed a competitive inhibition towards cathepsins B, H and L. Docking experiments were run along with to relate with in vitro studies.
Cathepsin B [EC 3.4.22.1], cathepsin H [EC 3.4.22.16] and cathepsin L [EC 3.4.22.15] are the most versatile lysosomal cysteine proteases and are responsible for intracellular protein degradation. These are involved in a number of pathological conditions including tissue degenerative processes. In the present work, we report the synthesis and systematic evaluation of differently substituted chalcones, chalconesemicarbazones, and diarylpyrazolines on cathepsins B, H and L activity. It was found that after a preliminary screening as cysteine protease inhibitors, chalconesemicarbazones were better inhibitors to these cysteine proteases than diarylpyrazolines followed by chalcones. All the synthesized compounds were identified as the best inhibitors to cathepsin L followed by cathepsin B and then cathepsin H. The results are compared with docking studies and it was found that all the compounds resulted in decrease in energy while interacting with the active site of the enzyme.
Collapse
|
27
|
de Sousa LRF, Wu H, Nebo L, Fernandes JB, da Silva MFDGF, Kiefer W, Schirmeister T, Vieira PC. Natural products as inhibitors of recombinant cathepsin L of Leishmania mexicana. Exp Parasitol 2015; 156:42-8. [PMID: 26044356 DOI: 10.1016/j.exppara.2015.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/11/2015] [Accepted: 05/27/2015] [Indexed: 01/18/2023]
Abstract
Cysteine proteinases (cathepsins) from Leishmania spp. are promising molecular targets against leishmaniasis. Leishmania mexicana cathepsin L is essential in the parasite life cycle and a pivotal in virulence factor in mammals. Natural products that have been shown to display antileishmanial activity were screened as part of our ongoing efforts to design inhibitors against the L. mexicana cathepsin L-like rCPB2.8. Among them, agathisflavone (1), tetrahydrorobustaflavone (2), 3-oxo-urs-12-en-28-oic acid (3), and quercetin (4) showed significant inhibitory activity on rCPB2.8 with IC50 values ranging from 0.43 to 18.03 µM. The mechanisms of inhibition for compounds 1-3, which showed Ki values in the low micromolar range (Ki = 0.14-1.26 µM), were determined. The biflavone 1 and the triterpene 3 are partially noncompetitive inhibitors, whereas biflavanone 2 is an uncompetitive inhibitor. The mechanism of action established for these leishmanicidal natural products provides a new outlook in the search for drugs against Leishmania.
Collapse
Affiliation(s)
- Lorena R F de Sousa
- Department of Chemistry, Federal University of São Carlos, Washington Luís Km 235, São Carlos, SP 13565-905, Brazil; Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Hongmei Wu
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Liliane Nebo
- Department of Chemistry, Federal University of São Carlos, Washington Luís Km 235, São Carlos, SP 13565-905, Brazil
| | - João B Fernandes
- Department of Chemistry, Federal University of São Carlos, Washington Luís Km 235, São Carlos, SP 13565-905, Brazil
| | - Maria F das G F da Silva
- Department of Chemistry, Federal University of São Carlos, Washington Luís Km 235, São Carlos, SP 13565-905, Brazil
| | - Werner Kiefer
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Paulo C Vieira
- Department of Chemistry, Federal University of São Carlos, Washington Luís Km 235, São Carlos, SP 13565-905, Brazil.
| |
Collapse
|
28
|
Antiprotozoal activity of (E)-cinnamic N-acylhydrazone derivatives. Molecules 2014; 19:20374-81. [PMID: 25490429 PMCID: PMC6271834 DOI: 10.3390/molecules191220374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/29/2014] [Accepted: 12/01/2014] [Indexed: 01/07/2023] Open
Abstract
A series of 14 (E)-cinnamic N-acylhydrazone derivatives, designed through molecular hybridization between the (E)-1-(benzo[d][1,3]dioxol-5-yl)-3-(4-bromophenyl)prop-2-en-1-one and (E)-3-hydroxy-N'-((2-hydroxynaphthalen-1-yl)methylene)-7-methoxy-2-naphthohydrazide, were tested for in vitro antiparasitic activity upon axenic amastigote forms of Leishmania donovani and bloodstream forms of Trypamosoma brucei rhodesiense. The derivative (2E)-3-(4-hydroxy-3-methoxy-5-nitrophenyl)-N'-[(1E)-phenylmethylene]acrylohydrazide showed moderate antileishmanial activity (IC50 = 6.27 µM) when compared to miltefosine, the reference drug (IC50 = 0.348 µM). However, the elected compound showed an excellent selectivity index; in one case it was not cytotoxic against mammalian L-6 cells. The most active antitrypanosomal compound, the derivative (E)-N'-(3,4-dihydroxybenzylidene)cinnamohydrazide (IC50 = 1.93 µM), was cytotoxic against mammalian L-6 cells.
Collapse
|
29
|
Nagle A, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, Chennamaneni N, Pendem N, Buckner FS, Gelb M, Molteni V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem Rev 2014; 114:11305-47. [PMID: 25365529 PMCID: PMC4633805 DOI: 10.1021/cr500365f] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Advait
S. Nagle
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shilpi Khare
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Arun Babu Kumar
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frantisek Supek
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andriy Buchynskyy
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Casey J. N. Mathison
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Naveen
Kumar Chennamaneni
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Nagendar Pendem
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frederick S. Buckner
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Michael
H. Gelb
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Valentina Molteni
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
30
|
Why strategies to control Leishmania spp. multiplication based on the use of proteinase inhibitors should consider multiple targets and not only a single enzyme. J Mol Model 2014; 20:2465. [PMID: 25296889 DOI: 10.1007/s00894-014-2465-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
The use of proteinases as targets to develop novel chemotherapies against Leishmania spp. infections is a very promising strategy. Based on a previous study by Goyal et al. [J Mol Model (2014) 20:2099], we discuss herein the idea that only a combined treatment with distinct proteinase inhibitors would be an effective antileishmanial therapy.
Collapse
|
31
|
Identification and characterization of a cathepsin-L-like peptidase in Eimeria tenella. Parasitol Res 2014; 113:4335-48. [DOI: 10.1007/s00436-014-4107-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 08/26/2014] [Indexed: 11/26/2022]
|
32
|
Quesne MG, Ward RA, de Visser SP. Cysteine protease inhibition by nitrile-based inhibitors: a computational study. Front Chem 2013; 1:39. [PMID: 24790966 PMCID: PMC3982517 DOI: 10.3389/fchem.2013.00039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/15/2013] [Indexed: 12/31/2022] Open
Abstract
Cysteine protease enzymes are important for human physiology and catalyze key protein degradation pathways. These enzymes react via a nucleophilic reaction mechanism that involves a cysteine residue and the proton of a proximal histidine. Particularly efficient inhibitors of these enzymes are nitrile-based, however, the details of the catalytic reaction mechanism currently are poorly understood. To gain further insight into the inhibition of these molecules, we have performed a combined density functional theory and quantum mechanics/molecular mechanics study on the reaction of a nitrile-based inhibitor with the enzyme active site amino acids. We show here that small perturbations to the inhibitor structure can have dramatic effects on the catalysis and inhibition processes. Thus, we investigated a range of inhibitor templates and show that specific structural changes reduce the inhibitory efficiency by several orders of magnitude. Moreover, as the reaction takes place on a polar surface, we find strong differences between the DFT and QM/MM calculated energetics. In particular, the DFT model led to dramatic distortions from the starting structure and the convergence to a structure that would not fit the enzyme active site. In the subsequent QM/MM study we investigated the use of mechanical vs. electronic embedding on the kinetics, thermodynamics and geometries along the reaction mechanism. We find minor effects on the kinetics of the reaction but large geometric and thermodynamics differences as a result of inclusion of electronic embedding corrections. The work here highlights the importance of model choice in the investigation of this biochemical reaction mechanism.
Collapse
Affiliation(s)
- Matthew G Quesne
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, University of Manchester Manchester, UK
| | | | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, University of Manchester Manchester, UK
| |
Collapse
|
33
|
Cysteine protease is a major component in the excretory/secretory products of Euclinostomum heterostomum (Digenea: Clinostomidae). Parasitol Res 2013; 113:65-71. [PMID: 24135870 DOI: 10.1007/s00436-013-3627-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/26/2013] [Indexed: 01/13/2023]
Abstract
Cysteine proteases of parasite organisms play numerous indispensable roles in tissue penetration, feeding, immunoevasion, virulence, egg hatching and metacercarial excystment. They are critical key enzymes in the biology of parasites and have been exploited as serodiagnostic markers, therapeutic and vaccine targets. In the present study, the cysteine proteases in the in vitro released excretory/secretory (E/S) products of the digenetic trematode parasite, Euclinostomum heterostomum have been analysed. The encysted progenetic metacercariae of E. heterostomum collected from the infected liver and kidney of Channa punctatus were excysted in vitro and incubated in phosphate buffer at 37 ± 1 °C, and the E/S products released were analysed. The spectrophotometric analysis of the proteases revealed active hydrolysis of chromogenic substrate, azocoll, in a time-, temperature- and pH-dependent manner. Optimum activity was observed at pH 7.0 at 37 ± 1 °C, and with 1 mM each of various protease inhibitors (Mini Protease Inhibitor Cocktail, ethylene diaminetetraacetic acid, phenyl methyl sulphonyl fluoride, iodoacetamide and 1,10-phenanthroline) used, significant inhibition was observed by iodoacetamide and 85% of inhibition at a concentration of 2 mM, suggesting that cysteine protease is a major component in the E/S of this parasite. Four discrete protease bands of Mr 36, 39, 43 and 47 kDa were identified by gelatin-substrate zymography. Maximum gelatinolytic activity was observed at pH 7.0, and among various inhibitors used, almost complete disappearance of protease bands was observed by 2 mM iodoacetamide. The proteolytic cleavage of bovine serum albumin, bovine haemoglobin and human haemoglobin in vitro were also studied.
Collapse
|
34
|
Schröder J, Noack S, Marhöfer RJ, Mottram JC, Coombs GH, Selzer PM. Identification of semicarbazones, thiosemicarbazones and triazine nitriles as inhibitors of Leishmania mexicana cysteine protease CPB. PLoS One 2013; 8:e77460. [PMID: 24146999 PMCID: PMC3797739 DOI: 10.1371/journal.pone.0077460] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022] Open
Abstract
Cysteine proteases of the papain superfamily are present in nearly all eukaryotes. They play pivotal roles in the biology of parasites and inhibition of cysteine proteases is emerging as an important strategy to combat parasitic diseases such as sleeping sickness, Chagas' disease and leishmaniasis. Homology modeling of the mature Leishmania mexicana cysteine protease CPB2.8 suggested that it differs significantly from bovine cathepsin B and thus could be a good drug target. High throughput screening of a compound library against this enzyme and bovine cathepsin B in a counter assay identified four novel inhibitors, containing the warhead-types semicarbazone, thiosemicarbazone and triazine nitrile, that can be used as leads for antiparasite drug design. Covalent docking experiments confirmed the SARs of these lead compounds in an effort to understand the structural elements required for specific inhibition of CPB2.8. This study has provided starting points for the design of selective and highly potent inhibitors of L. mexicana cysteine protease CPB that may also have useful efficacy against other important cysteine proteases.
Collapse
Affiliation(s)
- Jörg Schröder
- Molecular Discovery Sciences, MSD Animal Health Innovation GmbH, Schwabenheim, Germany
| | - Sandra Noack
- Molecular Discovery Sciences, MSD Animal Health Innovation GmbH, Schwabenheim, Germany
| | - Richard J. Marhöfer
- Molecular Discovery Sciences, MSD Animal Health Innovation GmbH, Schwabenheim, Germany
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Graham H. Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- * E-mail: (PMS); (GHC)
| | - Paul M. Selzer
- Molecular Discovery Sciences, MSD Animal Health Innovation GmbH, Schwabenheim, Germany
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
- * E-mail: (PMS); (GHC)
| |
Collapse
|
35
|
Rana S, Dikhit MR, Rani M, Moharana KC, Sahoo GC, Das P. CPDB: cysteine protease annotation database in Leishmania species. Integr Biol (Camb) 2013; 4:1351-7. [PMID: 23001143 DOI: 10.1039/c2ib20131c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
UNLABELLED There has been a revival of interest in Cysteine protease for Visceral Leishmaniasis (VL) attributed to massive outbreaks of leishmaniasis in the tropical region. The cysteine protease database (CPDB) was designed to find data related to cysteine protease (CP) of different species of Leishmania and Trypanosoma brucei in a single platform. This has reflected in substantial increase in the submission of Leishmania genome sequences to NCBI (National Center for Biotechnology Information) database. The CPDB database aims to provide a summary of data analysis, such as physiochemical and molecular properties, proteolytic cleavage sites, classification into functional families using SVMProt and other ExPASy tools. The main aim of this database is to provide different protein inhibitors of cysteine protease groups that were collected from literature and make available their 3-D structures through JMol with JAVA platform. These CP inhibitors are freely downloadable and also have added links for functional analyses of other proteins, which is helpful for users. All this information in CPDB, a single platform, will prove to be of great help for researchers who are involved in drug discovery and analysis of other physiochemical and molecular properties of the protein. AVAILABILITY the database is available for free at.
Collapse
Affiliation(s)
- Sindhuprava Rana
- Biomedical Informatics Division, Rajendra Memorial Research Institute of Medical Sciences, Agam Kuan, Patna, India800007.
| | | | | | | | | | | |
Collapse
|
36
|
Schröder J, Klinger A, Oellien F, Marhöfer RJ, Duszenko M, Selzer PM. Docking-based virtual screening of covalently binding ligands: an orthogonal lead discovery approach. J Med Chem 2013; 56:1478-90. [PMID: 23350811 DOI: 10.1021/jm3013932] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In pharmaceutical industry, lead discovery strategies and screening collections have been predominantly tailored to discover compounds that modulate target proteins through noncovalent interactions. Conversely, covalent linkage formation is an important mechanism for a quantity of successful drugs in the market, which are discovered in most cases by hindsight instead of systematical design. In this article, the implementation of a docking-based virtual screening workflow for the retrieval of covalent binders is presented considering human cathepsin K as a test case. By use of the docking conditions that led to the best enrichment of known actives, 44 candidate compounds with unknown activity on cathepsin K were finally selected for experimental evaluation. The most potent inhibitor, 4-(N-phenylanilino)-6-pyrrolidin-1-yl-1,3,5-triazine-2-carbonitrile (CP243522), showed a K(i) of 21 nM and was confirmed to have a covalent reversible mechanism of inhibition. The presented approach will have great potential in cases where covalent inhibition is the desired drug discovery strategy.
Collapse
Affiliation(s)
- Jörg Schröder
- MSD Animal Health Innovation GmbH, Zur Propstei, D-55270 Schwabenheim, Germany
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Silva-Almeida M, Pereira BAS, Ribeiro-Guimarães ML, Alves CR. Proteinases as virulence factors in Leishmania spp. infection in mammals. Parasit Vectors 2012; 5:160. [PMID: 22871236 PMCID: PMC3436776 DOI: 10.1186/1756-3305-5-160] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/12/2012] [Indexed: 11/10/2022] Open
Abstract
Leishmania parasites cause human tegumentary and visceral infections that are commonly referred to as leishmaniasis. Despite the high incidence and prevalence of cases, leishmaniasis has been a neglected disease because it mainly affects developing countries. The data obtained from the analysis of patients' biological samples and from assays with animal models confirm the involvement of an array of the parasite's components in its survival inside the mammalian host. These components are classified as virulence factors. In this review, we focus on studies that have explored the role of proteinases as virulence factors that promote parasite survival and immune modulation in the mammalian host. Additionally, the direct involvement of proteinases from the host in lesion evolution is analyzed. The gathered data shows that both parasite and host proteinases are involved in the clinical manifestation of leishmaniasis. It is interesting to note that although the majority of the classes of proteinases are present in Leishmania spp., only cysteine-proteinases, metalloproteinases and, to a lesser scale, serine-proteinases have been adequately studied. Members from these classes have been implicated in tissue invasion, survival in macrophages and immune modulation by parasites. This review reinforces the importance of the parasite proteinases, which are interesting candidates for new chemo or immunotherapies, in the clinical manifestations of leishmaniasis.
Collapse
Affiliation(s)
- Mariana Silva-Almeida
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC, Fiocruz, Avenida Brasil, 4365 Manguinhos Pavilhão Leônidas Deane-Sala 209, CEP: 21040-900, Rio de Janeiro, RJ, Brasil
| | | | | | | |
Collapse
|
39
|
Leishmania (L.) amazonensis peptidase activities inside the living cells and in their lysates. Mol Biochem Parasitol 2012; 184:82-9. [DOI: 10.1016/j.molbiopara.2012.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/13/2012] [Accepted: 04/27/2012] [Indexed: 11/22/2022]
|
40
|
Abstract
Several protozoan parasites undergo a complex life cycle that alternates between an invertebrate vector and a vertebrate host. Adaptations to these different environments by the parasites are achieved by drastic changes in their morphology and metabolism. The malaria parasites must be transmitted to a mammal from a mosquito as part of their life cycle. Upon entering the mammalian host, extracellular malaria sporozoites reach the liver and invade hepatocytes, wherein they meet the challenge of becoming replication-competent schizonts. During the process of conversion, the sporozoite selectively discards organelles that are unnecessary for the parasite growth in liver cells. Among the organelles that are cleared from the sporozoite are the micronemes, abundant secretory vesicles that facilitate the adhesion of the parasite to hepatocytes. Organelles specialized in sporozoite motility and structure, such as the inner membrane complex (a major component of the motile parasite's cytoskeleton), are also eliminated from converting parasites. The high degree of sophistication of the metamorphosis that occurs at the onset of the liver-form development cascade suggests that the observed changes must be multifactorial. Among the mechanisms implicated in the elimination of sporozoite organelles, the degradative process called autophagy contributes to the remodelling of the parasite interior and the production of replicative liver forms. In a broader context, the importance of the role played by autophagy during the differentiation of protozoan parasites that cycle between insects and vertebrates is nowadays clearly emerging. An exciting prospect derived from these observations is that the parasite proteins involved in the autophagic process may represent new targets for drug development.
Collapse
|
41
|
Paladi CDS, Pimentel IAS, Katz S, Cunha RLOR, Judice WADS, Caires ACF, Barbiéri CL. In vitro and in vivo activity of a palladacycle complex on Leishmania (Leishmania) amazonensis. PLoS Negl Trop Dis 2012; 6:e1626. [PMID: 22616018 PMCID: PMC3352823 DOI: 10.1371/journal.pntd.0001626] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
Background Antitumor cyclopalladated complexes with low toxicity to laboratory animals have shown leishmanicidal effect. These findings stimulated us to test the leishmanicidal property of one palladacycle compound called DPPE 1.2 on Leishmania (Leishmania) amazonensis, an agent of simple and diffuse forms of cutaneous leishmaniasis in the Amazon region, Brazil. Methodology/Principal Findings Promastigotes of L. (L.) amazonensis and infected bone marrow-derived macrophages were treated with different concentrations of DPPE 1.2. In in vivo assays foot lesions of L. (L.) amazonensis-infected BALB/c mice were injected subcutaneously with DPPE 1.2 and control animals received either Glucantime or PBS. The effect of DPPE 1.2 on cathepsin B activity of L. (L.) amazonensis amastigotes was assayed spectrofluorometrically by use of fluorogenic substrates. The main findings were: 1) axenic L. (L.) amazonensis promastigotes were destroyed by nanomolar concentrations of DPPE 1.2 (IC50 = 2.13 nM); 2) intracellular parasites were killed by DPPE 1.2 (IC50 = 128.35 nM), and the drug displayed 10-fold less toxicity to macrophages (CC50 = 1,267 nM); 3) one month after intralesional injection of DPPE 1.2 infected BALB/c mice showed a significant decrease of foot lesion size and a reduction of 97% of parasite burdens when compared to controls that received PBS; 4) DPPE 1.2 inhibited the cysteine protease activity of L. (L.) amazonensis amastigotes and more significantly the cathepsin B activity. Conclusions/Significance The present results demonstrated that DPPE 1.2 can destroy L. (L.) amazonensis in vitro and in vivo at concentrations that are non toxic to the host. We believe these findings support the potential use of DPPE 1.2 as an alternative choice for the chemotherapy of leishmaniasis. Leishmaniasis is an important public health problem with an estimated annual incidence of 1.5 million of new human cases of cutaneous leishmaniasis and 500,000 of visceral leishmaniasis. Treatment of the diseases is limited by toxicity and parasite resistance to the drugs currently in use, validating the need to develop new leishmanicidal compounds. We evaluated the killing by the palladacycle complex DPPE 1.2 of Leishmania (Leishmania) amazonensis, an agent of human cutaneous leishmaniasis in the Amazon region, Brazil. DPPE 1.2 destroyed promastigotes of L. (L.) amazonensis in vitro at nanomolar concentrations, whereas intracellular amastigotes were killed at drug concentrations 10-fold less toxic than those displayed to macrophages. L. (L.) amazonensis-infected BALB/c mice treated by intralesional injection of DPPE 1.2 exhibited a significant decrease of foot lesion sizes and a 97% reduction of parasite burdens when compared to untreated controls. Additional experiments indicated the inhibition of the cathepsin B activity of L. (L.) amazonensis amastigotes by DPPE 1.2. Further studies are needed to explore the potential of DPPE 1.2 as an additional option for the chemotherapy of leishmaniasis.
Collapse
Affiliation(s)
- Carolina de Siqueira Paladi
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Simone Katz
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Rodrigo L. O. R. Cunha
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Wagner Alves de Souza Judice
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, São Paulo, Brazil
| | - Antonio C. F. Caires
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, São Paulo, Brazil
| | - Clara Lúcia Barbiéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
42
|
Singh B, Sundar S. Leishmaniasis: vaccine candidates and perspectives. Vaccine 2012; 30:3834-42. [PMID: 22475861 DOI: 10.1016/j.vaccine.2012.03.068] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/12/2012] [Accepted: 03/20/2012] [Indexed: 11/28/2022]
Abstract
Leishmania is a protozoan parasite and a causative agent of the various clinical forms of leishmaniasis. High cost, resistance and toxic side effects of traditional drugs entail identification and development of therapeutic alternatives. The sound understanding of parasite biology is key for identifying novel drug targets, that can induce the cell mediated immunity (mainly CD4+ and CD8+ IFN-gamma mediated responses) polarized towards a Th1 response. These aspects are important in designing a new vaccine along with the consideration of the candidates with respect to their ability to raise memory response in order to improve the vaccine performance. This review is an effort to identify molecules according to their homology with the host and their ability to be used as potent vaccine candidates.
Collapse
Affiliation(s)
- Bhawana Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, UP, India
| | | |
Collapse
|
43
|
Identification of lead compounds targeting the cathepsin B-like enzyme of Eimeria tenella. Antimicrob Agents Chemother 2011; 56:1190-201. [PMID: 22143531 DOI: 10.1128/aac.05528-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cysteine peptidases have been implicated in the development and pathogenesis of Eimeria. We have identified a single-copy cathepsin B-like cysteine peptidase gene in the genome database of Eimeria tenella (EtCatB). Molecular modeling of the predicted protein suggested that it differs significantly from host enzymes and could be a good drug target. EtCatB was expressed and secreted as a soluble, active, glycosylated mature enzyme from Pichia pastoris. Biochemical characterization of the recombinant enzyme confirmed that it is cathepsin B-like. Screening of a focused library against the enzyme identified three inhibitors (a nitrile, a thiosemicarbazone, and an oxazolone) that can be used as leads for novel drug discovery against Eimeria. The oxazolone scaffold is a novel cysteine peptidase inhibitor; it may thus find widespread use.
Collapse
|
44
|
Silverman JS, Schwartz KJ, Hajduk SL, Bangs JD. Late endosomal Rab7 regulates lysosomal trafficking of endocytic but not biosynthetic cargo in Trypanosoma brucei. Mol Microbiol 2011; 82:664-78. [PMID: 21923766 DOI: 10.1111/j.1365-2958.2011.07842.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present the first functional analysis of the small GTPase, TbRab7, in Trypanosoma brucei. TbRab7 defines discrete late endosomes closely juxtaposed to the terminal p67(+) lysosome. RNAi indicates that TbRab7 is essential in bloodstream trypanosomes. Initial rates of endocytosis were unaffected, but lysosomal delivery of cargo, including tomato lectin (TL) and trypanolytic factor (TLF) were blocked. These accumulate in a dispersed internal compartment of elevated pH, likely derived from the late endosome. Surface binding of TL but not TLF was reduced, suggesting that cellular distribution of flagellar pocket receptors is differentially regulated by TbRab7. TLF activity was reduced approximately threefold confirming that lysosomal delivery is critical for trypanotoxicity. Unexpectedly, delivery of endogenous proteins, p67 and TbCatL, were unaffected indicating that TbRab7 does not regulate biosynthetic lysosomal trafficking. Thus, unlike mammalian cells and yeast, lysosomal trafficking of endocytosed and endogenous proteins occur via different routes and/or are regulated differentially. TbRab7 silencing had no effect on a cryptic default pathway to the lysosome, suggesting that the default lysosomal reporters p67ΔTM, p67ΔCD and VSGΔGPI do not utilize the endocytic pathway as previously proposed. Surprisingly, conditional knockout indicates that TbRab7 may be non-essential in procyclic insect form trypanosomes.
Collapse
Affiliation(s)
- Jason S Silverman
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
45
|
Brennand A, Gualdrón-López M, Coppens I, Rigden DJ, Ginger ML, Michels PA. Autophagy in parasitic protists: Unique features and drug targets. Mol Biochem Parasitol 2011; 177:83-99. [DOI: 10.1016/j.molbiopara.2011.02.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/30/2011] [Accepted: 02/02/2011] [Indexed: 12/24/2022]
|
46
|
Drug discovery and the use of computational approaches for infectious diseases. Future Med Chem 2011; 3:1011-25. [DOI: 10.4155/fmc.11.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
For centuries infectious diseases were the scourge of humanity, overcome only by the discovery of vaccination and penicillin. With an armamentarium of effective antibiotics, vaccines and drugs at hand, infectious diseases for many years were considered to be negligible. With the onset of the AIDS pandemic, the return of tuberculosis and influenza (e.g., swine influenza) this notion has changed in recent years. Drug discovery for infectious diseases, therefore, is again gaining increasing interest. This article discusses the drug-discovery process in this area and introduces major computational approaches used to identify suitable drug targets and to discover and optimize chemical lead compounds towards drug candidates using examples from antiparasitic drug discovery.
Collapse
|
47
|
Duszenko M, Ginger ML, Brennand A, Gualdrón-López M, Colombo MI, Coombs GH, Coppens I, Jayabalasingham B, Langsley G, de Castro SL, Menna-Barreto R, Mottram JC, Navarro M, Rigden DJ, Romano PS, Stoka V, Turk B, Michels PAM. Autophagy in protists. Autophagy 2011; 7:127-58. [PMID: 20962583 DOI: 10.4161/auto.7.2.13310] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation, turnover of macromolecules and organelles, and defense against parasitic invaders. During the last 10-20 years, molecular components of the autophagic machinery have been discovered, revealing a complex interactome of proteins and lipids, which, in a concerted way, induce membrane formation to engulf cellular material and target it for lysosomal degradation. Here, our emphasis is autophagy in protists. We discuss experimental and genomic data indicating that the canonical autophagy machinery characterized in animals and fungi appeared prior to the radiation of major eukaryotic lineages. Moreover, we describe how comparative bioinformatics revealed that this canonical machinery has been subject to moderation, outright loss or elaboration on multiple occasions in protist lineages, most probably as a consequence of diverse lifestyle adaptations. We also review experimental studies illustrating how several pathogenic protists either utilize autophagy mechanisms or manipulate host-cell autophagy in order to establish or maintain infection within a host. The essentiality of autophagy for the pathogenicity of many parasites, and the unique features of some of the autophagy-related proteins involved, suggest possible new targets for drug discovery. Further studies of the molecular details of autophagy in protists will undoubtedly enhance our understanding of the diversity and complexity of this cellular phenomenon and the opportunities it offers as a drug target.
Collapse
Affiliation(s)
- Michael Duszenko
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Steert K, Berg M, Mottram JC, Westrop GD, Coombs GH, Cos P, Maes L, Joossens J, Van der Veken P, Haemers A, Augustyns K. α-ketoheterocycles as inhibitors of Leishmania mexicana cysteine protease CPB. ChemMedChem 2011; 5:1734-48. [PMID: 20799311 DOI: 10.1002/cmdc.201000265] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cysteine proteases of the papain superfamily are present in nearly all eukaryotes and also play pivotal roles in the biology of parasites. Inhibition of cysteine proteases is emerging as an important strategy to combat parasitic diseases such as sleeping sickness, Chagas disease, and leishmaniasis. Inspired by the in vivo antiparasitic activity of the vinylsulfone-based cysteine protease inhibitors, a series of α-ketoheterocycles were developed as reversible inhibitors of a recombinant L. mexicana cysteine protease, CPB2.8. Three isoxazoles and especially one oxadiazole compound are potent reversible inhibitors of CPB2.8; however, in vitro whole-organism screening against a panel of protozoan parasites did not fully correlate with the observed inhibition of the cysteine protease.
Collapse
Affiliation(s)
- Koen Steert
- Department of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Aziridine-2,3-dicarboxylate-based cysteine cathepsin inhibitors induce cell death in Leishmania major associated with accumulation of debris in autophagy-related lysosome-like vacuoles. Antimicrob Agents Chemother 2010; 54:5028-41. [PMID: 20855728 DOI: 10.1128/aac.00327-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papain-like cysteine cathepsins expressed by Leishmania play a key role in the life cycle of these parasites, turning them into attractive targets for the development of new drugs. We previously demonstrated that two compounds of a series of peptidomimetic aziridine-2,3-dicarboxylate [Azi(OBn)(2)]-based inhibitors, Boc-(S)-Leu-(R)-Pro-(S,S)-Azi(OBn)(2) (compound 13b) and Boc-(R)-Leu-(S)-Pro-(S,S)-Azi(OBn)(2) (compound 13e), reduced the growth and viability of Leishmania major and the infection rate of macrophages while not showing cytotoxicity against host cells. In the present study, we characterized the mode of action of inhibitors 13b and 13e in L. major. Both compounds targeted leishmanial cathepsin B-like cysteine cathepsin cysteine proteinase C, as shown by fluorescence proteinase activity assays and active-site labeling with biotin-tagged inhibitors. Furthermore, compounds 13b and 13e were potent inducers of cell death in promastigotes, characterized by cell shrinkage, reduction of mitochondrial transmembrane potential, and increased DNA fragmentation. Transmission electron microscopic studies revealed the enrichment of undigested debris in lysosome-like organelles participating in micro- and macroautophagy-like processes. The release of digestive enzymes into the cytoplasm after rupture of membranes of lysosome-like vacuoles resulted in the significant digestion of intracellular compartments. However, the plasma membrane integrity of compound-treated promastigotes was maintained for several hours. Taken together, our results suggest that the induction of cell death in Leishmania by cysteine cathepsin inhibitors 13b and 13e is different from mammalian apoptosis and is caused by incomplete digestion in autophagy-related lysosome-like vacuoles.
Collapse
|
50
|
Helminthic invasion of the central nervous system: many roads lead to Rome. Parasitol Int 2010; 59:491-6. [PMID: 20709186 DOI: 10.1016/j.parint.2010.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 11/20/2022]
Abstract
Invasion of the central nervous system (CNS) by parasitic worms often represents most severe complication of human helminthiasis. The pathways from the portal of entry to the CNS are manifold and differ from species to species. In this mini-review, we analysed the contemporary knowledge and current concepts of the routes pathogenic helminths take to gain access to brain, spinal cord and subarachnoid space.
Collapse
|