1
|
CRISPR Interference (CRISPRi) Mediated Suppression of OmpR Gene in E. coli: An Alternative Approach to Inhibit Biofilm. Curr Microbiol 2022; 79:78. [DOI: 10.1007/s00284-021-02760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/30/2021] [Indexed: 11/03/2022]
|
2
|
Huesa J, Giner-Lamia J, Pucciarelli MG, Paredes-Martínez F, García-del Portillo F, Marina A, Casino P. Structure-based analyses of Salmonella RcsB variants unravel new features of the Rcs regulon. Nucleic Acids Res 2021; 49:2357-2374. [PMID: 33638994 PMCID: PMC7913699 DOI: 10.1093/nar/gkab060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
RcsB is a transcriptional regulator that controls expression of numerous genes in enteric bacteria. RcsB accomplishes this role alone or in combination with auxiliary transcriptional factors independently or dependently of phosphorylation. To understand the mechanisms by which RcsB regulates such large number of genes, we performed structural studies as well as in vitro and in vivo functional studies with different RcsB variants. Our structural data reveal that RcsB binds promoters of target genes such as rprA and flhDC in a dimeric active conformation. In this state, the RcsB homodimer docks the DNA-binding domains into the major groove of the DNA, facilitating an initial weak read-out of the target sequence. Interestingly, comparative structural analyses also show that DNA binding may stabilize an active conformation in unphosphorylated RcsB. Furthermore, RNAseq performed in strains expressing wild-type or several RcsB variants provided new insights into the contribution of phosphorylation to gene regulation and assign a potential role of RcsB in controlling iron metabolism. Finally, we delimited the RcsB box for homodimeric active binding to DNA as the sequence TN(G/A)GAN4TC(T/C)NA. This RcsB box was found in promoter, intergenic and intragenic regions, facilitating both increased or decreased gene transcription.
Collapse
Affiliation(s)
- Juanjo Huesa
- Departamento de Bioquímica y Biología Molecular, Universitat de València. Dr Moliner 50, 46100 Burjassot, Spain.,Instituto universitario de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València. Dr Moliner 50, 46100 Burjassot, Spain
| | - Joaquín Giner-Lamia
- Laboratorio de Patógenos Bacterianos Intracelulares. Centro Nacional de Biotecnología (CNB)-CSIC. Darwin 3, 28049 Madrid. Spain.,Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Campus Montegancedo, E-28223 Pozuelo de Alarcón, Madrid, Spain.,Departamento de Biotecnología y Biología Vegetal, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politócnica de Madrid, 28040 Madrid, Spain
| | - M Graciela Pucciarelli
- Laboratorio de Patógenos Bacterianos Intracelulares. Centro Nacional de Biotecnología (CNB)-CSIC. Darwin 3, 28049 Madrid. Spain.,Centro de Biología Molecular 'Severo Ochoa' (CBMSO)-CSIC. Departamento de Biología Molecular. Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Paredes-Martínez
- Departamento de Bioquímica y Biología Molecular, Universitat de València. Dr Moliner 50, 46100 Burjassot, Spain.,Instituto universitario de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València. Dr Moliner 50, 46100 Burjassot, Spain
| | - Francisco García-del Portillo
- Laboratorio de Patógenos Bacterianos Intracelulares. Centro Nacional de Biotecnología (CNB)-CSIC. Darwin 3, 28049 Madrid. Spain
| | - Alberto Marina
- Department of Genomic and Proteomic, Instituto de Biomedicina de Valencia (IBV-CSIC), Jaume Roig 11, 46010 Valencia, Spain.,Group 739 of the Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER) del Instituto de Salud Carlos III, Spain
| | - Patricia Casino
- Departamento de Bioquímica y Biología Molecular, Universitat de València. Dr Moliner 50, 46100 Burjassot, Spain.,Instituto universitario de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València. Dr Moliner 50, 46100 Burjassot, Spain.,Group 739 of the Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER) del Instituto de Salud Carlos III, Spain
| |
Collapse
|
3
|
Structural basis for promoter DNA recognition by the response regulator OmpR. J Struct Biol 2020; 213:107638. [PMID: 33152421 DOI: 10.1016/j.jsb.2020.107638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 11/21/2022]
Abstract
OmpR, a response regulator of the EnvZ/OmpR two-component system (TCS), controls the reciprocal regulation of two porin proteins, OmpF and OmpC, in bacteria. During signal transduction, OmpR (OmpR-FL) undergoes phosphorylation at its conserved Asp residue in the N-terminal receiver domain (OmpRn) and recognizes the promoter DNA from its C-terminal DNA-binding domain (OmpRc) to elicit an adaptive response. Apart from that, OmpR regulates many genes in Escherichia coli and is important for virulence in several pathogens. However, the molecular mechanism of the regulation and the structural basis of OmpR-DNA binding is still not fully clear. In this study, we presented the crystal structure of OmpRc in complex with the F1 region of the ompF promoter DNA from E. coli. Our structural analysis suggested that OmpRc binds to its cognate DNA as a homodimer, only in a head-to-tail orientation. Also, the OmpRc apo-form showed a unique domain-swapped crystal structure under different crystallization conditions. Biophysical experimental data, such as NMR, fluorescent polarization and thermal stability, showed that inactive OmpR-FL (unphosphorylated) could bind to promoter DNA with a weaker binding affinity as compared with active OmpR-FL (phosphorylated) or OmpRc, and also confirmed that phosphorylation may only enhance DNA binding. Furthermore, the dimerization interfaces in the OmpRc-DNA complex structure identified in this study provide an opportunity to understand the regulatory role of OmpR and explore the potential for this "druggable" target.
Collapse
|
4
|
Modulation of Response Regulator CheY Reaction Kinetics by Two Variable Residues That Affect Conformation. J Bacteriol 2020; 202:JB.00089-20. [PMID: 32424010 DOI: 10.1128/jb.00089-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/09/2020] [Indexed: 01/16/2023] Open
Abstract
Microorganisms and plants utilize two-component systems to regulate adaptive responses to changing environmental conditions. Sensor kinases detect stimuli and alter their autophosphorylation activity accordingly. Signal propagation occurs via the transfer of phosphoryl groups from upstream kinases to downstream response regulator proteins. Removal of phosphoryl groups from the response regulator typically resets the system. Members of the same protein family may catalyze phosphorylation and dephosphorylation reactions with different efficiencies, exhibiting rate constants spanning many orders of magnitude to accommodate response time scales from milliseconds to days. We previously found that variable positions one or two residues to the C-terminal side of the conserved Asp phosphorylation site (D+2) or Thr/Ser (T+1/T+2) in response regulators alter reaction kinetics by direct interaction with phosphodonor or phosphoacceptor molecules. Here, we explore the kinetic effects of amino acid substitutions at the two positions immediately C-terminal to the conserved Lys (K+1/K+2) in the model Escherichia coli response regulator CheY. We measured CheY autophosphorylation and autodephosphorylation rate constants for 27 pairs of K+1/K+2 residues that represent 84% of naturally occurring response regulators. Effects on autodephosphorylation were modest, but autophosphorylation rate constants varied by 2 orders of magnitude, suggesting that the K+1/K+2 positions influence reaction kinetics by altering the conformational spectrum sampled by CheY at equilibrium. Additional evidence supporting this indirect mechanism includes the following: the effect on autophosphorylation rate constants is independent of the phosphodonor, the autophosphorylation rate constants and dissociation constants for the phosphoryl group analog BeF3 - are inversely correlated, and the K+1/K+2 positions are distant from the phosphorylation site.IMPORTANCE We have identified five variable positions in response regulators that allow the rate constants of autophosphorylation and autodephosporylation reactions each to be altered over 3 orders of magnitude in CheY. The distributions of variable residue combinations across response regulator subfamilies suggest that distinct mechanisms associated with different variable positions allow reaction rates to be tuned independently during evolution for diverse biological purposes. This knowledge could be used in synthetic-biology applications to adjust the properties (e.g., background noise and response duration) of biosensors and may allow prediction of response regulator reaction kinetics from the primary amino acid sequence.
Collapse
|
5
|
Kenney LJ, Anand GS. EnvZ/OmpR Two-Component Signaling: An Archetype System That Can Function Noncanonically. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0001-2019. [PMID: 32003321 PMCID: PMC7192543 DOI: 10.1128/ecosalplus.esp-0001-2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Indexed: 01/09/2023]
Abstract
Two-component regulatory systems represent the major paradigm for signal transduction in prokaryotes. The simplest systems are composed of a sensor kinase and a response regulator. The sensor is often a membrane protein that senses a change in environmental conditions and is autophosphorylated by ATP on a histidine residue. The phosphoryl group is transferred onto an aspartate of the response regulator, which activates the regulator and alters its output, usually resulting in a change in gene expression. In this review, we present a historical view of the archetype EnvZ/OmpR two-component signaling system, and then we provide a new view of signaling based on our recent experiments. EnvZ responds to cytoplasmic signals that arise from changes in the extracellular milieu, and OmpR acts canonically (requiring phosphorylation) to regulate the porin genes and noncanonically (without phosphorylation) to activate the acid stress response. Herein, we describe how insights gleaned from stimulus recognition and response in EnvZ are relevant to nearly all sensor kinases and response regulators.
Collapse
Affiliation(s)
- Linda J Kenney
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Mechanobiology Institute, T-Lab, National University of Singapore, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
6
|
Bourret RB, Silversmith RE. Measuring the Activities of Two-Component Regulatory System Phosphatases. Methods Enzymol 2018; 607:321-351. [PMID: 30149864 DOI: 10.1016/bs.mie.2018.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two-component regulatory systems (TCSs) are used for signal transduction by organisms from all three phylogenetic domains of the living world. TCSs use transient protein phosphorylation and dephosphorylation reactions to convert stimuli into appropriate responses to changing environmental conditions. Phosphoryl groups flow from ATP to sensor kinases (which detect stimuli) to response regulators (which implement responses) to inorganic phosphate (Pi). The phosphorylation state of response regulators controls their output activity. The rate at which phosphoryl groups are removed from response regulators correlates with the timescale of the corresponding biological function. Dephosphorylation reactions are fastest in chemotaxis TCS and slower in other TCS. Response regulators catalyze their own dephosphorylation, but at least five types of phosphatases are known to enhance dephosphorylation of response regulators. In each case, the phosphatases are believed to stimulate the intrinsic autodephosphorylation reaction. We discuss in depth the properties of TCS (particularly the differences between chemotaxis and nonchemotaxis TCS) relevant to designing in vitro assays for TCS phosphatases. We describe detailed assay methods for chemotaxis TCS phosphatases using loss of 32P, change in intrinsic fluorescence as a result of dephosphorylation, or release of Pi. The phosphatase activities of nonchemotaxis TCS phosphatases are less well characterized. We consider how the properties of nonchemotaxis TCS affect assay design and suggest suitable modifications for phosphatases from nonchemotaxis TCS, with an emphasis on the Pi release method.
Collapse
Affiliation(s)
- Robert B Bourret
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States.
| | - Ruth E Silversmith
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Luebke JL, Eaton DS, Sachleben JR, Crosson S. Allosteric control of a bacterial stress response system by an anti-σ factor. Mol Microbiol 2018; 107:164-179. [PMID: 29052909 PMCID: PMC5760481 DOI: 10.1111/mmi.13868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 11/28/2022]
Abstract
Bacterial signal transduction systems commonly use receiver (REC) domains, which regulate adaptive responses to the environment as a function of their phosphorylation state. REC domains control cell physiology through diverse mechanisms, many of which remain understudied. We have defined structural features that underlie activation of the multi-domain REC protein, PhyR, which functions as an anti-anti-σ factor and regulates transcription of genes required for stress adaptation and host-microbe interactions in Alphaproteobacteria. Though REC phosphorylation is necessary for PhyR function in vivo, we did not detect expected changes in inter-domain interactions upon phosphorylation by solution X-ray scattering. We sought to understand this result by defining additional molecular requirements for PhyR activation. We uncovered specific interactions between unphosphorylated PhyR and an intrinsically disordered region (IDR) of the anti-σ factor, NepR, by solution NMR spectroscopy. Our data support a model whereby nascent NepR(IDR)-PhyR interactions and REC phosphorylation coordinately impart the free energy to shift PhyR to an open, active conformation that binds and inhibits NepR. This mechanism ensures PhyR is activated only when NepR and an activating phosphoryl signal are present. Our study provides new structural understanding of the molecular regulatory logic underlying a conserved environmental response system.
Collapse
Affiliation(s)
- Justin L. Luebke
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | - Daniel S. Eaton
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | - Joseph R. Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, Illinois, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Silversmith RE, Bourret RB. Fluorescence Measurement of Kinetics of CheY Autophosphorylation with Small Molecule Phosphodonors. Methods Mol Biol 2018; 1729:321-335. [PMID: 29429101 DOI: 10.1007/978-1-4939-7577-8_25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Escherichia coli chemotaxis protein CheY is a model receiver domain containing a native tryptophan residue that serves as a fluorescent probe for CheY autophosphorylation with small molecule phosphodonors. Here we describe fluorescence measurement of apparent bimolecular rate constants for reaction of wild type and mutant CheY with phosphodonors acetyl phosphate, phosphoramidate, or monophosphoimidazole. Step-by-step protocols to synthesize phosphoramidate (K+ salt) and monophosphoimidazole (Na+ salt), which are not commercially available, are provided. Key factors to consider in developing autophosphorylation assays for other response regulators are also discussed.
Collapse
Affiliation(s)
- Ruth E Silversmith
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Robert B Bourret
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Chakraborty S, Winardhi RS, Morgan LK, Yan J, Kenney LJ. Non-canonical activation of OmpR drives acid and osmotic stress responses in single bacterial cells. Nat Commun 2017; 8:1587. [PMID: 29138484 PMCID: PMC5686162 DOI: 10.1038/s41467-017-02030-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022] Open
Abstract
Unlike eukaryotes, bacteria undergo large changes in osmolality and cytoplasmic pH. It has been described that during acid stress, bacteria internal pH promptly acidifies, followed by recovery. Here, using pH imaging in single living cells, we show that following acid stress, bacteria maintain an acidic cytoplasm and the osmotic stress transcription factor OmpR is required for acidification. The activation of this response is non-canonical, involving a regulatory mechanism requiring the OmpR cognate kinase EnvZ, but not OmpR phosphorylation. Single cell analysis further identifies an intracellular pH threshold ~6.5. Acid stress reduces the internal pH below this threshold, increasing OmpR dimerization and DNA binding. During osmotic stress, the internal pH is above the threshold, triggering distinct OmpR-related pathways. Preventing intracellular acidification of Salmonella renders it avirulent, suggesting that acid stress pathways represent a potential therapeutic target. These results further emphasize the advantages of single cell analysis over studies of population averages.
Collapse
Affiliation(s)
- Smarajit Chakraborty
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Ricksen S Winardhi
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore.,Department of Physics, National University of Singapore, Singapore, 117551, Singapore
| | - Leslie K Morgan
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA.,Department of Microbiology & Immunology, University of Illinois-Chicago, Chicago, IL, 60612, USA
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore.,Department of Physics, National University of Singapore, Singapore, 117551, Singapore
| | - Linda J Kenney
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore. .,Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA. .,Department of Microbiology & Immunology, University of Illinois-Chicago, Chicago, IL, 60612, USA. .,Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
| |
Collapse
|
10
|
Corrêa F, Gardner KH. Basis of Mutual Domain Inhibition in a Bacterial Response Regulator. Cell Chem Biol 2016; 23:945-954. [PMID: 27524295 DOI: 10.1016/j.chembiol.2016.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/12/2016] [Accepted: 07/08/2016] [Indexed: 01/12/2023]
Abstract
Information transmission in biological signaling networks is commonly considered to be a unidirectional flow of information between protein partners. According to this view, many bacterial response regulator proteins utilize input receiver (REC) domains to "switch" functional outputs, using REC phosphorylation to shift pre-existing equilibria between inactive and active conformations. However, recent data indicate that output domains themselves also shift such equilibria, implying a "mutual inhibition" model. Here we use solution nuclear magnetic resonance to provide a mechanistic basis for such control in a PhyR-type response regulator. Our structure of the isolated, non-phosphorylated REC domain surprisingly reveals a fully active conformation, letting us identify structural and dynamic changes imparted by the output domain to inactivate the full-length protein. Additional data reveal transient structural changes within the full-length protein, facilitating activation. Our data provide a basis for understanding the changes that REC and output domains undergo to set a default "inactive" state.
Collapse
Affiliation(s)
- Fernando Corrêa
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA; Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA; Biochemistry, Chemistry and Biology PhD Programs, Graduate Center, The City University of New York, New York, NY 10016, USA.
| |
Collapse
|
11
|
Shimada T, Takada H, Yamamoto K, Ishihama A. Expanded roles of two-component response regulator OmpR in Escherichia coli: genomic SELEX search for novel regulation targets. Genes Cells 2015; 20:915-31. [PMID: 26332955 DOI: 10.1111/gtc.12282] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/26/2015] [Indexed: 12/22/2022]
Abstract
The two-component system (TCS) is a sophisticated bacterial signal transduction system for regulation of genome transcription in response to environmental conditions. The EnvZ-OmpR system is one of the well-characterized TCS of Escherichia coli, responding to changes in environmental osmolality. Regulation has largely focused on the differential expression of two porins, OmpF and OmpC, which transport small molecules across the outer membrane. Recently, it has become apparent that OmpR serves a more global regulatory role and regulates additional targets. To identify the entire set of regulatory targets of OmpR, we performed the genomic SELEX screening of OmpR-binding sites along the E. coli genome. As a result, more than 30 novel genes have been identified to be under the direct control of OmpR. One abundant group includes the genes encoding a variety of membrane-associated transporters that mediate uptake or efflux of small molecules, while another group encodes a set of transcription regulators, raising a concept that OmpR is poised to control a diverse set of responses by altering downstream transcriptional regulators.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Micro-Nano Technology Research Center, Hosei University, Koganai, Tokyo, 184-8584, Japan.,Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuda, Yokohama, 226-8503, Japan
| | - Hiraku Takada
- Micro-Nano Technology Research Center, Hosei University, Koganai, Tokyo, 184-8584, Japan
| | - Kaneyoshi Yamamoto
- Micro-Nano Technology Research Center, Hosei University, Koganai, Tokyo, 184-8584, Japan.,Department of Frontier Bioscience, Hosei University, Koganai, Tokyo, 184-8584, Japan
| | - Akira Ishihama
- Micro-Nano Technology Research Center, Hosei University, Koganai, Tokyo, 184-8584, Japan.,Department of Frontier Bioscience, Hosei University, Koganai, Tokyo, 184-8584, Japan
| |
Collapse
|
12
|
Foo YH, Spahn C, Zhang H, Heilemann M, Kenney LJ. Single cell super-resolution imaging of E. coli OmpR during environmental stress. Integr Biol (Camb) 2015; 7:1297-308. [PMID: 26156621 DOI: 10.1039/c5ib00077g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-component signaling systems are a major strategy employed by bacteria, and to some extent, yeast and plants, to respond to environmental stress. The EnvZ/OmpR system in E. coli responds to osmotic and acid stress and is responsible for regulating the protein composition of the outer membrane. EnvZ is a histidine kinase located in the inner membrane. Upon activation, it is autophosphorylated by ATP and subsequently, it activates OmpR. Phosphorylated OmpR binds with high affinity to the regulatory regions of the ompF and ompC porin genes to regulate their transcription. We set out to visualize these two-components in single bacterial cells during different environmental stress conditions and to examine the subsequent modifications to the bacterial nucleoid as a result. We created a chromosomally-encoded, active, fluorescent OmpR-PAmCherry fusion protein and compared its expression levels with RNA polymerase. Quantitative western blotting had indicated that these two proteins were expressed at similar levels. From our images, it is evident that OmpR is significantly less abundant compared to RNA polymerase. In cross-sectional axial images, we observed OmpR molecules closely juxtaposed near the inner membrane during acidic and hyposomotic growth. In acidic conditions, the chromosome was compacted. Surprisingly, under acidic conditions, we also observed evidence of a spatial correlation between the DNA and the inner membrane, suggesting a mechanical link through an active DNA-OmpR-EnvZ complex. This work represents the first direct visualization of a response regulator with respect to the bacterial chromosome.
Collapse
Affiliation(s)
- Yong Hwee Foo
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore 117411
| | | | | | | | | |
Collapse
|
13
|
Immormino RM, Starbird CA, Silversmith RE, Bourret RB. Probing Mechanistic Similarities between Response Regulator Signaling Proteins and Haloacid Dehalogenase Phosphatases. Biochemistry 2015; 54:3514-27. [PMID: 25928369 DOI: 10.1021/acs.biochem.5b00286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Response regulator signaling proteins and phosphatases of the haloacid dehalogenase (HAD) superfamily share strikingly similar folds, active site geometries, and reaction chemistry. Proteins from both families catalyze the transfer of a phosphoryl group from a substrate to one of their own aspartyl residues, and subsequent hydrolysis of the phosphoprotein. Notable differences include an additional Asp that functions as an acid/base catalyst and an active site well-structured prior to phosphorylation in HAD phosphatases. Both features contribute to reactions substantially faster than those for response regulators. To investigate mechanisms underlying the functional differences between response regulators and HAD phosphatases, we characterized five double mutants of the response regulator CheY designed to mimic HAD phosphatases. Each mutant contained the extra Asp paired with a phosphatase-inspired substitution to potentially position the Asp properly. Only CheY DR (Arg as the anchor) exhibited enhanced rates of both autophosphorylation with phosphoramidate and autodephosphorylation compared to those of wild-type CheY. Crystal structures of CheY DR complexed with MoO4(2-) or WO4(2-) revealed active site hydrogen bonding networks similar to those in HAD·substrate complexes, with the extra Asp positioned for direct interaction with the leaving group (phosphorylation) or nucleophile (dephosphorylation). However, CheY DR reaction kinetics did not exhibit the pH sensitivities expected for acid/base catalysis. Biochemical analysis indicated CheY DR had an enhanced propensity to adopt the active conformation without phosphorylation, but a crystal structure revealed unphosphorylated CheY DR was not locked in the active conformation. Thus, the enhanced reactivity of CheY DR reflected partial acquisition of catalytic and structural features of HAD phosphatases.
Collapse
Affiliation(s)
- Robert M Immormino
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, United States
| | - Chrystal A Starbird
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, United States
| | - Ruth E Silversmith
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, United States
| | - Robert B Bourret
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, United States
| |
Collapse
|
14
|
Schmidl SR, Sheth RU, Wu A, Tabor JJ. Refactoring and optimization of light-switchable Escherichia coli two-component systems. ACS Synth Biol 2014; 3:820-31. [PMID: 25250630 DOI: 10.1021/sb500273n] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Light-switchable proteins enable unparalleled control of molecular biological processes in live organisms. Previously, we have engineered red/far-red and green/red photoreversible two-component signal transduction systems (TCSs) with transcriptional outputs in E. coli and used them to characterize and control synthetic gene circuits with exceptional quantitative, temporal, and spatial precision. However, the broad utility of these light sensors is limited by bulky DNA encoding, incompatibility with commonly used ligand-responsive transcription factors, leaky output in deactivating light, and less than 10-fold dynamic range. Here, we compress the four genes required for each TCS onto two streamlined plasmids and replace all chemically inducible and evolved promoters with constitutive, engineered versions. Additionally, we systematically optimize the expression of each sensor histidine kinase and response regulator, and redesign both pathway output promoters, resulting in low leakiness and 72- and 117-fold dynamic range, respectively. These second-generation light sensors can be used to program the expression of more genes over a wider range and can be more easily combined with additional plasmids or moved to different host strains. This work demonstrates that bacterial TCSs can be optimized to function as high-performance sensors for scientific and engineering applications.
Collapse
Affiliation(s)
- Sebastian R. Schmidl
- Department of Bioengineering and ‡Department of
Biochemistry and Cell Biology, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Ravi U. Sheth
- Department of Bioengineering and ‡Department of
Biochemistry and Cell Biology, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Andrew Wu
- Department of Bioengineering and ‡Department of
Biochemistry and Cell Biology, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey J. Tabor
- Department of Bioengineering and ‡Department of
Biochemistry and Cell Biology, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
15
|
Dual-site phosphorylation of the control of virulence regulator impacts group a streptococcal global gene expression and pathogenesis. PLoS Pathog 2014; 10:e1004088. [PMID: 24788524 PMCID: PMC4006921 DOI: 10.1371/journal.ppat.1004088] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/10/2014] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation relays are a major mechanism by which bacteria alter transcription in response to environmental signals, but understanding of the functional consequences of bacterial response regulator phosphorylation is limited. We sought to characterize how phosphorylation of the control of virulence regulator (CovR) protein from the major human pathogen group A Streptococcus (GAS) influences GAS global gene expression and pathogenesis. CovR mainly serves to repress GAS virulence factor-encoding genes and has been shown to homodimerize following phosphorylation on aspartate-53 (D53) in vitro. We discovered that CovR is phosphorylated in vivo and that such phosphorylation is partially heat-stable, suggesting additional phosphorylation at non-aspartate residues. Using mass spectroscopy along with targeted mutagenesis, we identified threonine-65 (T65) as an additional CovR phosphorylation site under control of the serine/threonine kinase (Stk). Phosphorylation on T65, as mimicked by the recombinant CovR T65E variant, abolished in vitro CovR D53 phosphorylation. Similarly, isoallelic GAS strains that were either unable to be phosphorylated at D53 (CovR-D53A) or had functional constitutive phosphorylation at T65 (CovR-T65E) had essentially an identical gene repression profile to each other and to a CovR-inactivated strain. However, the CovR-D53A and CovR-T65E isoallelic strains retained the ability to positively influence gene expression that was abolished in the CovR-inactivated strain. Consistent with these observations, the CovR-D53A and CovR-T65E strains were hypervirulent compared to the CovR-inactivated strain in a mouse model of invasive GAS disease. Surprisingly, an isoalleic strain unable to be phosphorylated at CovR T65 (CovR-T65A) was hypervirulent compared to the wild-type strain, as auto-regulation of covR gene expression resulted in lower covR gene transcript and CovR protein levels in the CovR-T65A strain. Taken together, these data establish that CovR is phosphorylated in vivo and elucidate how the complex interplay between CovR D53 activating phosphorylation, T65 inhibiting phosphorylation, and auto-regulation impacts streptococcal host-pathogen interaction. Group A Streptococcus (GAS) causes a variety of human diseases ranging from mild throat infections to deadly invasive infections. The capacity of GAS to cause infections at such diverse locations is dependent on its ability to precisely control the production of a broad variety of virulence factors. The control of virulence regulator (CovR) is a master regulator of GAS genes encoding virulence factors. It is known that CovR can be phosphorylated on aspartate-53 in vitro and that such phosphorylation increases its regulatory activity, but what additional factors influence CovR-mediated gene expression have not been established. Herein we show for the first time that CovR is phosphorylated in vivo and that phosphorylation of CovR on threonine-65 by the threonine/serine kinase Stk prevents aspartate-53 phosphorylation, thereby decreasing CovR regulatory activity. Further, while CovR-mediated gene repression is highly dependent on aspartate-53 phosphorylation, CovR-mediated gene activation proceeds via a phosphorylation-independent mechanism. Modifications in CovR phosphorylation sites significantly affected the expression of GAS virulence factors during infection and markedly altered the ability of GAS to cause disease in mice. These data establish that multiple inter-related pathways converge to influence CovR phosphorylation, thereby providing new insight into the complex regulatory network used by GAS during infection.
Collapse
|
16
|
Battesti A, Hoskins JR, Tong S, Milanesio P, Mann JM, Kravats A, Tsegaye YM, Bougdour A, Wickner S, Gottesman S. Anti-adaptors provide multiple modes for regulation of the RssB adaptor protein. Genes Dev 2014; 27:2722-35. [PMID: 24352426 PMCID: PMC3877760 DOI: 10.1101/gad.229617.113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A set of small protein anti-adaptors stabilizes the E. coli stress transcription factor RpoS by inhibiting the adaptor protein. In this study, Gottesman and colleagues isolate RssB mutants resistant to anti-adaptor action. Each of the anti-adaptors is unique in its interaction with RssB and sensitivity to RssB mutants. Interestingly, mutations in the C-terminal PP2C domain activate RssB and are similar to constitutively activated mutants found in a very different bacterial PP2C protein. The results provide insight into how anti-adaptors perturb response regulator function and activation. RpoS, an RNA polymerase σ factor, controls the response of Escherichia coli and related bacteria to multiple stress responses. During nonstress conditions, RpoS is rapidly degraded by ClpXP, mediated by the adaptor protein RssB, a member of the response regulator family. In response to stress, RpoS degradation ceases. Small anti-adaptor proteins—IraP, IraM, and IraD, each made under a different stress condition—block RpoS degradation. RssB mutants resistant to either IraP or IraM were isolated and analyzed in vivo and in vitro. Each of the anti-adaptors is unique in its interaction with RssB and sensitivity to RssB mutants. One class of mutants defined an RssB N-terminal region close to the phosphorylation site and critical for interaction with IraP but unnecessary for IraM and IraD function. A second class, in the RssB C-terminal PP2C-like domain, led to activation of RssB function. These mutants allowed the response regulator to act in the absence of phosphorylation but did not abolish interaction with anti-adaptors. This class of mutants is broadly resistant to the anti-adaptors and bears similarity to constitutively activated mutants found in a very different PP2C protein. The mutants provide insight into how the anti-adaptors perturb RssB response regulator function and activation.
Collapse
Affiliation(s)
- Aurelia Battesti
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Creager-Allen RL, Silversmith RE, Bourret RB. A link between dimerization and autophosphorylation of the response regulator PhoB. J Biol Chem 2013; 288:21755-69. [PMID: 23760278 DOI: 10.1074/jbc.m113.471763] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Response regulator proteins within two-component signal transduction systems are activated by phosphorylation and can catalyze their own covalent phosphorylation using small molecule phosphodonors. To date, comprehensive kinetic characterization of response regulator autophosphorylation is limited to CheY, which follows a simple model of phosphodonor binding followed by phosphorylation. We characterized autophosphorylation of the response regulator PhoB, known to dimerize upon phosphorylation. In contrast to CheY, PhoB time traces exhibited an initial lag phase and gave apparent pseudo-first order rate constants that increased with protein concentration. Furthermore, plots of the apparent autophosphorylation rate constant versus phosphodonor concentration were sigmoidal, as were PhoB binding isotherms for the phosphoryl group analog BeF3(-). Successful mathematical modeling of the kinetic data necessitated inclusion of the formation of a PhoB heterodimer (one phosphorylated and one unphosphorylated monomer) with an enhanced rate of phosphorylation. Specifically, dimerization constants for the PhoB heterodimer and homodimer (two phosphorylated monomers) were similar, but the rate constant for heterodimer phosphorylation was ~10-fold higher than for the monomer. In a test of the model, disruption of the known PhoB(N) dimerization interface by mutation led to markedly slower and noncooperative autophosphorylation kinetics. Furthermore, phosphotransfer from the sensor kinase PhoR was enhanced by dimer formation. Phosphorylation-mediated dimerization allows many response regulators to bind to tandem DNA-binding sites and regulate transcription. Our data challenge the notion that response regulator dimers primarily form between two phosphorylated monomers and raise the possibility that response regulator heterodimers containing one phosphoryl group may participate in gene regulation.
Collapse
Affiliation(s)
- Rachel L Creager-Allen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7290, USA
| | | | | |
Collapse
|
18
|
Thomas SA, Immormino RM, Bourret RB, Silversmith RE. Nonconserved active site residues modulate CheY autophosphorylation kinetics and phosphodonor preference. Biochemistry 2013; 52:2262-73. [PMID: 23458124 DOI: 10.1021/bi301654m] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In two-component signal transduction, response regulator proteins contain the catalytic machinery for their own covalent phosphorylation and can catalyze phosphotransfer from a partner sensor kinase or autophosphorylate using various small molecule phosphodonors. Although response regulator autophosphorylation is physiologically relevant and a powerful experimental tool, the kinetic determinants of the autophosphorylation reaction and how those determinants might vary for different response regulators and phosphodonors are largely unknown. We characterized the autophosphorylation kinetics of 21 variants of the model response regulator Escherichia coli CheY that contained substitutions primarily at nonconserved active site positions D + 2 (CheY residue 59) and T + 2 (CheY residue 89), two residues C-terminal to conserved D57 and T87, respectively. Overall, the CheY variants exhibited a >10(5)-fold range of rate constants (kphos/KS) for reaction with phosphoramidate, acetyl phosphate, or monophosphoimidazole, with the great majority of rates enhanced versus that of wild-type CheY. Although phosphodonor preference varied substantially, nearly all the CheY variants reacted faster with phosphoramidate than acetyl phosphate. Correlation between the increased positive charge of the D + 2 and T + 2 side chains and faster rates indicated electrostatic interactions are a kinetic determinant. Moreover, sensitivities of rate constants to ionic strength indicated that both long-range and localized electrostatic interactions influence autophosphorylation kinetics. The increased nonpolar surface area of the D + 2 and T + 2 side chains also correlated with an enhanced autophosphorylation rate, especially for reaction with phosphoramidate and monophosphoimidazole. Computer docking suggested that highly accelerated monophosphoimidazole autophosphorylation rates for CheY variants with a tyrosine at position T + 2 likely reflect structural mimicry of phosphotransfer from the sensor kinase histidyl phosphate.
Collapse
Affiliation(s)
- Stephanie A Thomas
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | | | | | | |
Collapse
|
19
|
Boulanger A, Chen Q, Hinton DM, Stibitz S. In vivo phosphorylation dynamics of the Bordetella pertussis virulence-controlling response regulator BvgA. Mol Microbiol 2013; 88:156-72. [PMID: 23489959 DOI: 10.1111/mmi.12177] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 11/28/2022]
Abstract
We have used protein electrophoresis through polyacrylamide gels derivatized with the proprietary ligand Phos-tag™ to separate the response regulator BvgA from its phosphorylated counterpart BvgA∼P. This approach has allowed us to readily ascertain the degree of phosphorylation of BvgA in in vitro reactions, or in crude lysates of Bordetella pertussis grown under varying laboratory conditions. We have used this technique to examine the kinetics of BvgA phosphorylation after shift of B. pertussis cultures from non-permissive to permissive conditions, or of its dephosphorylation following a shift from permissive to non-permissive conditions. Our results provide the first direct evidence that levels of BvgA∼P in vivo correspond temporally to the expression of early and late BvgA-regulated virulence genes. We have also examined a number of other aspects of BvgA function predicted from previous studies and by analogy with other two-component response regulators. These include the site of BvgA phosphorylation, the exclusive role of the cognate BvgS sensor kinase in its phosphorylation in Bordetella pertussis, and the effect of the T194M mutation on phosphorylation. We also detected the phosphorylation of a small but consistent fraction of BvgA purified after expression in Escherichia coli.
Collapse
Affiliation(s)
- Alice Boulanger
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
20
|
Barbieri CM, Wu T, Stock AM. Comprehensive analysis of OmpR phosphorylation, dimerization, and DNA binding supports a canonical model for activation. J Mol Biol 2013; 425:1612-26. [PMID: 23399542 DOI: 10.1016/j.jmb.2013.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 01/22/2013] [Accepted: 02/02/2013] [Indexed: 11/16/2022]
Abstract
The OmpR/PhoB family of response regulators (RRs) is the largest class of two-component system signal transduction proteins. Extensive biochemical and structural characterization of these transcription factors has provided insights into their activation and DNA-binding mechanisms. For the most part, OmpR/PhoB family proteins are thought to become activated through phosphorylation from their cognate histidine kinase partners, which in turn facilitates an allosteric change in the RR, enabling homodimerization and subsequently enhanced DNA binding. Incongruently, it has been suggested that OmpR, the eponymous member of this RR family, becomes activated via different mechanisms, whereby DNA binding plays a central role in facilitating dimerization and phosphorylation. Characterization of the rate and extent of the phosphorylation of OmpR and OmpR DNA-binding mutants following activation of the EnvZ/OmpR two-component system shows that DNA binding is not essential for phosphorylation of OmpR in vivo. In addition, detailed analyses of the energetics of DNA binding and dimerization of OmpR in both its unphosphorylated and phosphorylated state indicate that phosphorylation enhances OmpR dimerization and that this dimerization enhancement is the energetic driving force for phosphorylation-mediated regulation of OmpR-DNA binding. These findings suggest that OmpR phosphorylation-mediated activation follows the same paradigm as the other members of the OmpR/PhoB family of RRs in contrast to previously proposed models of OmpR activation.
Collapse
Affiliation(s)
- Christopher M Barbieri
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 679 Hoes Lane West, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
21
|
Chen HD, Jewett MW, Groisman EA. An allele of an ancestral transcription factor dependent on a horizontally acquired gene product. PLoS Genet 2012; 8:e1003060. [PMID: 23300460 PMCID: PMC3531487 DOI: 10.1371/journal.pgen.1003060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/16/2012] [Indexed: 12/22/2022] Open
Abstract
Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.
Collapse
Affiliation(s)
- H. Deborah Chen
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mollie W. Jewett
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eduardo A. Groisman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
22
|
Moorthy BS, Anand GS. Multistate Allostery in Response Regulators: Phosphorylation and Mutagenesis Activate RegA via Alternate Modes. J Mol Biol 2012; 417:468-87. [DOI: 10.1016/j.jmb.2012.01.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/26/2012] [Accepted: 01/31/2012] [Indexed: 11/25/2022]
|
23
|
Phosphorylated CpxR restricts production of the RovA global regulator in Yersinia pseudotuberculosis. PLoS One 2011; 6:e23314. [PMID: 21876746 PMCID: PMC3158067 DOI: 10.1371/journal.pone.0023314] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 07/15/2011] [Indexed: 01/06/2023] Open
Abstract
Background RovA is a global transcriptional regulator of gene expression in pathogenic Yersinia. RovA levels are kept in check by a sophisticated layering of distinct transcriptional and post-transcriptional regulatory mechanisms. In the enteropathogen Y. pseudotuberculosis, we have previously reported that the extracytoplasmic stress sensing CpxA-CpxR two-component regulatory system modulates rovA expression. Methodology/Principal Findings In this study, we characterized CpxR phosphorylation (CpxR∼P) in vitro, and determined that phosphorylation was necessary for CpxR to efficiently bind to the PCR-amplified upstream regulatory region of rovA. The precise CpxR∼P binding site was mapped by a nuclease protection assay and directed mutagenesis confirmed that in vivo binding to the rovA promoter inhibits transcription. Reduced RovA production was most pronounced following CpxR∼P accumulation in the Yersinia cytoplasm during chronic Cpx pathway activation and by the indiscriminate phosphodonor action of acetyl phosphate. Conclusions/Significance Cpx pathway activation restricts levels of the RovA global regulator. The regulatory influence of CpxR∼P must therefore extend well beyond periplasmic quality control in the Yersinia envelope, to include genes involved in environmental survival and pathogenicity.
Collapse
|
24
|
Barbieri CM, Mack TR, Robinson VL, Miller MT, Stock AM. Regulation of response regulator autophosphorylation through interdomain contacts. J Biol Chem 2010; 285:32325-35. [PMID: 20702407 PMCID: PMC2952233 DOI: 10.1074/jbc.m110.157164] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/29/2010] [Indexed: 11/17/2022] Open
Abstract
DNA-binding response regulators (RRs) of the OmpR/PhoB subfamily alternate between inactive and active conformational states, with the latter having enhanced DNA-binding affinity. Phosphorylation of an aspartate residue in the receiver domain, usually via phosphotransfer from a cognate histidine kinase, stabilizes the active conformation. Many of the available structures of inactive OmpR/PhoB family proteins exhibit extensive interfaces between the N-terminal receiver and C-terminal DNA-binding domains. These interfaces invariably involve the α4-β5-α5 face of the receiver domain, the locus of the largest differences between inactive and active conformations and the surface that mediates dimerization of receiver domains in the active state. Structures of receiver domain dimers of DrrB, DrrD, and MtrA have been determined, and phosphorylation kinetics were analyzed. Analysis of phosphotransfer from small molecule phosphodonors has revealed large differences in autophosphorylation rates among OmpR/PhoB RRs. RRs with substantial domain interfaces exhibit slow rates of phosphorylation. Rates are greatly increased in isolated receiver domain constructs. Such differences are not observed between autophosphorylation rates of full-length and isolated receiver domains of a RR that lacks interdomain interfaces, and they are not observed in histidine kinase-mediated phosphotransfer. These findings suggest that domain interfaces restrict receiver domain conformational dynamics, stabilizing an inactive conformation that is catalytically incompetent for phosphotransfer from small molecule phosphodonors. Inhibition of phosphotransfer by domain interfaces provides an explanation for the observation that some RRs cannot be phosphorylated by small molecule phosphodonors in vitro and provides a potential mechanism for insulating some RRs from small molecule-mediated phosphorylation in vivo.
Collapse
Affiliation(s)
- Christopher M. Barbieri
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635 and
| | - Timothy R. Mack
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Graduate School of Biomedical Sciences, and
| | - Victoria L. Robinson
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635 and
| | - Matthew T. Miller
- From the Center for Advanced Biotechnology and Medicine
- the Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854-8066
| | - Ann M. Stock
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635 and
| |
Collapse
|
25
|
Pathak A, Goyal R, Sinha A, Sarkar D. Domain structure of virulence-associated response regulator PhoP of Mycobacterium tuberculosis: role of the linker region in regulator-promoter interaction(s). J Biol Chem 2010; 285:34309-18. [PMID: 20814030 DOI: 10.1074/jbc.m110.135822] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The PhoP and PhoR proteins from Mycobacterium tuberculosis form a highly specific two-component system that controls expression of genes involved in complex lipid biosynthesis and regulation of unknown virulence determinants. The several functions of PhoP are apportioned between a C-terminal effector domain (PhoPC) and an N-terminal receiver domain (PhoPN), phosphorylation of which regulates activation of the effector domain. Here we show that PhoPN, on its own, demonstrates PhoR-dependent phosphorylation. PhoPC, the truncated variant bearing the DNA binding domain, binds in vitro to the target site with affinity similar to that of the full-length protein. To complement the finding that residues spanning Met(1) to Arg(138) of PhoP constitute the minimal functional PhoPN, we identified Arg(150) as the first residue of the distal PhoPC domain capable of DNA binding on its own, thereby identifying an interdomain linker. However, coupling of two functional domains together in a single polypeptide chain is essential for phosphorylation-coupled DNA binding by PhoP. We discuss consequences of tethering of two domains on DNA binding and demonstrate that linker length and not individual residues of the newly identified linker plays a critical role in regulating interdomain interactions. Together, these results have implications for the molecular mechanism of transmission of conformation change associated with phosphorylation of PhoP that results in the altered DNA recognition by the C-terminal domain.
Collapse
Affiliation(s)
- Anuj Pathak
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39A, Chandigarh 160036, India
| | | | | | | |
Collapse
|
26
|
Kenney LJ. How important is the phosphatase activity of sensor kinases? Curr Opin Microbiol 2010; 13:168-76. [PMID: 20223700 DOI: 10.1016/j.mib.2010.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/29/2022]
Abstract
In two-component signaling systems, phosphorylated response regulators (RRs) are often dephosphorylated by their partner kinases in order to control the in vivo concentration of phospho-RR (RR approximately P). This activity is easily demonstrated in vitro, but these experiments have typically used very high concentrations of the histidine kinase (HK) compared to the RR approximately P. Many two-component systems exhibit exquisite control over the ratio of HK to RR in vivo. The question thus arises as to whether the phosphatase activity of HKs is significant in vivo. This topic will be explored in the present review.
Collapse
Affiliation(s)
- Linda J Kenney
- Department of Microbiology & Immunology, University of Illinois at Chicago, 835 S. Wolcott St. M/C 790, Chicago, IL 60612, USA.
| |
Collapse
|
27
|
Bourret RB. Receiver domain structure and function in response regulator proteins. Curr Opin Microbiol 2010; 13:142-9. [PMID: 20211578 DOI: 10.1016/j.mib.2010.01.015] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
During signal transduction by two-component regulatory systems, sensor kinases detect and encode input information while response regulators (RRs) control output. Most receiver domains function as phosphorylation-mediated switches within RRs, but some transfer phosphoryl groups in multistep phosphorelays. Conserved features of receiver domain amino acid sequence correlate with structure and hence function. Receiver domains catalyze their own phosphorylation and dephosphorylation in reactions requiring a divalent cation. Molecular dynamics simulations are supplementing structural investigation of the conformational changes that underlie receiver domain switch function. As understanding of features shared by all receiver domains matures, factors conferring differences (e.g. in reaction rate or specificity) are receiving increased attention. Numerous examples of atypical receiver or pseudo-receiver domains that function without phosphorylation have recently been characterized.
Collapse
Affiliation(s)
- Robert B Bourret
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA.
| |
Collapse
|
28
|
Measurement of Response Regulator Autodephosphorylation Rates Spanning Six Orders of Magnitude. Methods Enzymol 2010; 471:89-114. [DOI: 10.1016/s0076-6879(10)71006-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Pazy Y, Wollish AC, Thomas SA, Miller PJ, Collins EJ, Bourret RB, Silversmith RE. Matching biochemical reaction kinetics to the timescales of life: structural determinants that influence the autodephosphorylation rate of response regulator proteins. J Mol Biol 2009; 392:1205-20. [PMID: 19646451 DOI: 10.1016/j.jmb.2009.07.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/17/2009] [Accepted: 07/22/2009] [Indexed: 11/17/2022]
Abstract
In two-component regulatory systems, covalent phosphorylation typically activates the response regulator signaling protein, and hydrolysis of the phosphoryl group reestablishes the inactive state. Despite highly conserved three-dimensional structures and active-site features, the rates of catalytic autodephosphorylation for different response regulators vary by a factor of almost 10(6). Previous studies identified two variable active-site residues, corresponding to Escherichia coli CheY residues 59 and 89, that modulate response regulator autodephosphorylation rates about 100-fold. Here, a set of five CheY mutants, which match other "model" response regulators (ArcA, CusR, DctD, FixJ, PhoB, or Spo0F) at variable active-site positions corresponding to CheY residues 14, 59, and 89, were characterized functionally and structurally in an attempt to identify mechanisms that modulate autodephosphorylation rate. As expected, the autodephosphorylation rates of the CheY mutants were reduced 6- to 40-fold relative to wild-type CheY, but all still autodephosphorylated 12- to 80-fold faster than their respective model response regulators. Comparison of X-ray crystal structures of the five CheY mutants (complexed with the phosphoryl group analogue BeF(3)(-)) to wild-type CheY or corresponding model response regulator structures gave strong evidence for steric obstruction of the phosphoryl group from the attacking water molecule as one mechanism to enhance phosphoryl group stability. Structural data also suggested that impeding the change of a response regulator from the active to the inactive conformation might retard the autodephosphorylation reaction if the two processes are coupled, and that the residue at position '58' may contribute to rate modulation. A given combination of amino acids at positions '14', '59', and '89' adopted similar conformations regardless of protein context (CheY or model response regulator), suggesting that knowledge of residue identity may be sufficient to predict autodephosphorylation rate, and hence the kinetics of the signaling response, in the response regulator family of proteins.
Collapse
Affiliation(s)
- Yael Pazy
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Najle SR, Inda ME, de Mendoza D, Cybulski LE. Oligomerization of Bacillus subtilis DesR is required for fine tuning regulation of membrane fluidity. Biochim Biophys Acta Gen Subj 2009; 1790:1238-43. [PMID: 19595746 DOI: 10.1016/j.bbagen.2009.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 06/27/2009] [Accepted: 07/01/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND The DesK-DesR two-component system regulates the order of membrane lipids in the bacterium Bacillus subtilis by controlling the expression of the des gene coding for the delta 5-acyl-lipid desaturase. To activate des transcription, the membrane-bound histidine kinase DesK phosphorylates the response regulator DesR. This covalent modification of the regulatory domain of dimeric DesR promotes, in a cooperative fashion, the hierarchical occupation of two adjacent, non-identical, DesR-P binding sites, so that there is a shift in the equilibrium toward the tetrameric active form of the response regulator. However, the mechanism of regulation of DesR activity by phosphorylation and oligomerization is not well understood. METHODS We employed deletion analysis and reporter fusions to study the role of the N-terminal domain on DesR activity. In addition, electromobility shift assays were used to analyze the binding capacity of the transcription factor to deletion mutants of the des promoter. RESULTS We show that DesR lacking the N-terminal domain is still able to bind to the des promoter. We also demonstrate that if the RA site is moved closer to the -35 region of Pdes, the adjacent site RB is dispensable for activation. GENERAL SIGNIFICANCE Our results indicate that the unphosphorylated regulatory domain of DesR obstructs the access of the recognition helix of DesR to its DNA target. In addition, we present evidence showing that RB is physiologically relevant to control the activation of the des gene when the levels of DesR-P reach a critical threshold.
Collapse
Affiliation(s)
- Sebastián R Najle
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2002LRK) Rosario, Argentina
| | | | | | | |
Collapse
|
31
|
Groban ES, Clarke EJ, Salis HM, Miller SM, Voigt CA. Kinetic buffering of cross talk between bacterial two-component sensors. J Mol Biol 2009; 390:380-93. [PMID: 19445950 DOI: 10.1016/j.jmb.2009.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 11/26/2022]
Abstract
Two-component systems are a class of sensors that enable bacteria to respond to environmental and cell-state signals. The canonical system consists of a membrane-bound sensor histidine kinase that autophosphorylates in response to a signal and transfers the phosphate to an intracellular response regulator. Bacteria typically have dozens of two-component systems. The key questions are whether these systems are linear and, if they are, how cross talk between systems is buffered. In this work, we studied the EnvZ/OmpR and CpxA/CpxR systems from Escherichia coli, which have been shown previously to exhibit slow cross talk in vitro. Using in vitro radiolabeling and a rapid quenched-flow apparatus, we experimentally measured 10 biochemical parameters capturing the cognate and non-cognate phosphotransfer reactions between the systems. These data were used to parameterize a mathematical model that was used to predict how cross talk is affected as different genes are knocked out. It was predicted that significant cross talk between EnvZ and CpxR only occurs for the triple mutant DeltaompR DeltacpxA DeltaactA-pta. All seven combinations of these knockouts were made to test this prediction and only the triple mutant demonstrated significant cross talk, where the cpxP promoter was induced 280-fold upon the activation of EnvZ. Furthermore, the behavior of the other knockouts agrees with the model predictions. These results support a kinetic model of buffering where both the cognate bifunctional phosphatase activity and the competition between regulator proteins for phosphate prevent cross talk in vivo.
Collapse
Affiliation(s)
- Eli S Groban
- University of California, San Francisco, 94158, USA
| | | | | | | | | |
Collapse
|
32
|
Lin WJ, Walthers D, Connelly JE, Burnside K, Jewell KA, Kenney LJ, Rajagopal L. Threonine phosphorylation prevents promoter DNA binding of the Group B Streptococcus response regulator CovR. Mol Microbiol 2009; 71:1477-95. [PMID: 19170889 DOI: 10.1111/j.1365-2958.2009.06616.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
All living organisms communicate with the external environment for their survival and existence. In prokaryotes, communication is achieved by two-component systems (TCS) comprising histidine kinases and response regulators. In eukaryotes, signalling is accomplished by serine/threonine and tyrosine kinases. Although TCS and serine/threonine kinases coexist in prokaryotes, direct cross-talk between these families was first described in Group B Streptococcus (GBS). A serine/threonine kinase (Stk1) and a TCS (CovR/CovS) co-regulate toxin expression in GBS. Typically, promoter binding of regulators like CovR is controlled by phosphorylation of the conserved active site aspartate (D53). In this study, we show that Stk1 phosphorylates CovR at threonine 65. The functional consequence of threonine phosphorylation of CovR in GBS was evaluated using phosphomimetic and silencing substitutions. GBS encoding the phosphomimetic T65E allele are deficient for CovR regulation unlike strains encoding the non-phosphorylated T65A allele. Further, compared with wild-type or T65A CovR, the T65E CovR is unable to bind promoter DNA and is decreased for phosphorylation at D53, similar to Stk1-phosphorylated CovR. Collectively, we provide evidence for a novel mechanism of response regulator control that enables GBS (and possibly other prokaryotes) to fine-tune gene expression for environmental adaptation.
Collapse
Affiliation(s)
- Wan-Jung Lin
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, WA 98101, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Carroll RK, Liao X, Morgan LK, Cicirelli EM, Li Y, Sheng W, Feng X, Kenney LJ. Structural and functional analysis of the C-terminal DNA binding domain of the Salmonella typhimurium SPI-2 response regulator SsrB. J Biol Chem 2009; 284:12008-19. [PMID: 19126546 DOI: 10.1074/jbc.m806261200] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In bacterial pathogenesis, virulence gene regulation is controlled by two-component regulatory systems. In Escherichia coli, the EnvZ/OmpR two-component system is best understood as regulating expression of outer membrane proteins, but in Salmonella enterica, OmpR activates transcription of the SsrA/B two-component system located on Salmonella pathogenicity island 2 (SPI-2). The response regulator SsrB controls expression of a type III secretory system in which effectors modify the vacuolar membrane and prevent its degradation via the endocytic pathway. Vacuolar modification enables Salmonella to survive and replicate in the macrophage phagosome and disseminate to the liver and spleen to cause systemic infection. The signals that activate EnvZ and SsrA are unknown but are related to the acidic pH encountered in the vacuole. Our previous work established that SsrB binds to regions of DNA that are AT-rich, with poor sequence conservation. Although SsrB is a major virulence regulator in Salmonella, very little is known regarding how it binds DNA and activates transcription. In the present work, we solved the structure of the C-terminal DNA binding domain of SsrB (SsrB(C)) by NMR and analyzed the effect of amino acid substitutions on function. We identified residues in the DNA recognition helix (Lys(179), Met(186)) and the dimerization interface (Val(197), Leu(201)) that are important for SsrB transcriptional activation and DNA binding. An essential cysteine residue in the N-terminal receiver domain was also identified (Cys(45)), and the effect of Cys(203) on dimerization was evaluated. Our results suggest that although disulfide bond formation is not required for dimerization, dimerization occurs upon DNA binding and is required for subsequent activation of transcription. Disruption of the dimer interface by a C203E substitution reduces SsrB activity. Modification of Cys(203) or Cys(45) may be an important mode of SsrB inactivation inside the host.
Collapse
Affiliation(s)
- Ronan K Carroll
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Two-component signal transduction based on phosphotransfer from a histidine protein kinase to a response regulator protein is a prevalent strategy for coupling environmental stimuli to adaptive responses in bacteria. In both histidine kinases and response regulators, modular domains with conserved structures and biochemical activities adopt different conformational states in the presence of stimuli or upon phosphorylation, enabling a diverse array of regulatory mechanisms based on inhibitory and/or activating protein-protein interactions imparted by different domain arrangements. This review summarizes some of the recent structural work that has provided insight into the functioning of bacterial histidine kinases and response regulators. Particular emphasis is placed on identifying features that are expected to be conserved among different two-component proteins from those that are expected to differ, with the goal of defining the extent to which knowledge of previously characterized two-component proteins can be applied to newly discovered systems.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School and Howard Hughes Medical Institute, Piscataway, New Jersey 08854-5627
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School and Howard Hughes Medical Institute, Piscataway, New Jersey 08854-5627
| |
Collapse
|
35
|
Lacal J, Guazzaroni ME, Gutiérrez-del-Arroyo P, Busch A, Vélez M, Krell T, Ramos JL. Two levels of cooperativeness in the binding of TodT to the tod operon promoter. J Mol Biol 2008; 384:1037-47. [PMID: 18950641 DOI: 10.1016/j.jmb.2008.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 09/26/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
The TodS/TodT two-component system controls the expression of tod genes for toluene degradation in Pseudomonas putida. TodT binds to two pseudopalindromes at -106 (Box-1) and -85 (Box-2), as well as to a half-palindrome (Box-3), with respect to the main transcription initiation site in the PtodX promoter. TodT recognizes each half-palindrome in Boxes-1 and -2, but affinities for these sequences are lower than those for the pseudopalindromes, pointing towards positive cooperativeness in intrabox recognition. TodT's affinity for DNA fragments containing two vicinal boxes (either Boxes-1 and -2 or Boxes-2 and -3) is higher than its affinity for individual boxes, suggesting interbox cooperativeness. Similar patterns of cooperativeness were observed for the recombinant TodT DNA-binding domain [C-terminal TodT fragment (aa 154-206) (C-TodT)], suggesting important cooperativeness determinants in this domain. Occupation of PtodX by TodT is initiated at Box-1, and optimization of its palindromic order increases affinity in vitro; however, this does not result in enhanced in vivo gene expression. Mutations at either half of the Box-1 palindrome have no significant effects on transcriptional activity, whereas mutations in the entire Box-1 cause a 12-fold reduction. Using atomic force microscopy, we show that TodT induces a DNA hairpin bend at PtodX between Boxes-2 and -3, as supported by footprint studies showing a hyperreactive nucleotide at G -68. The N-terminal part of TodT seems to play a central role in hairpin formation, since C-TodT neither induces a bend nor causes G -68 hyperreactivity in footprints. This hairpin seems important for transcriptional activation, since C-TodT binding to PtodX does not stimulate transcription.
Collapse
Affiliation(s)
- Jesús Lacal
- Department of Environmental Protection, Estación Experimental del Zaidín,Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Thomas SA, Brewster JA, Bourret RB. Two variable active site residues modulate response regulator phosphoryl group stability. Mol Microbiol 2008; 69:453-65. [PMID: 18557815 DOI: 10.1111/j.1365-2958.2008.06296.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many signal transduction networks control their output by switching regulatory elements on or off. To synchronize biological response with environmental stimulus, switching kinetics must be faster than changes in input. Two-component regulatory systems (used for signal transduction by bacteria, archaea and eukaryotes) switch via phosphorylation or dephosphorylation of the receiver domain in response regulator proteins. Although receiver domains share conserved active site residues and similar three-dimensional structures, rates of self-catalysed dephosphorylation span a >or= 40,000-fold range in response regulators that control diverse biological processes. For example, autodephosphorylation of the chemotaxis response regulator CheY is 640-fold faster than Spo0F, which controls sporulation. Here we demonstrate that substitutions at two variable active site positions decreased CheY autodephosphorylation up to 40-fold and increased the Spo0F rate up to 110-fold. Particular amino acids had qualitatively similar effects in different response regulators. However, mutant proteins matched to other response regulators at the two key variable positions did not always exhibit similar autodephosphorylation kinetics. Therefore, unknown factors also influence absolute rates. Understanding the effects that particular active site amino acid compositions have on autodephosphorylation rate may allow manipulation of phosphoryl group stability for useful purposes, as well as prediction of signal transduction kinetics from amino acid sequence.
Collapse
Affiliation(s)
- Stephanie A Thomas
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | | | | |
Collapse
|
37
|
Rhee JE, Sheng W, Morgan LK, Nolet R, Liao X, Kenney LJ. Amino acids important for DNA recognition by the response regulator OmpR. J Biol Chem 2008; 283:8664-77. [PMID: 18195018 PMCID: PMC2417188 DOI: 10.1074/jbc.m705550200] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 12/27/2007] [Indexed: 11/06/2022] Open
Abstract
Response regulators undergo regulated phosphorylation and dephosphorylation at conserved aspartic acid residues in bacterial signal transduction systems. OmpR is a winged helix-turnhelix DNA-binding protein that functions as a global regulator in bacteria and is also important in pathogenesis. A detailed mechanistic picture of how OmpR binds to DNA and activates transcription is lacking. We used NMR spectroscopy to solve the solution structure of the C-terminal domain of OmpR (OmpR(C)) and to analyze the chemical shift changes that occur upon DNA binding. There is little overlap in the interaction surface with residues of PhoB that were reportedly involved in protein/protein interactions in its head-to-tail dimer. Multiple factors account for the lack of overlap. One is that the spacing between the OmpR half-sites is shorter than observed with PhoB, requiring the arrangement of the two OmpR molecules to be different from that of the PhoB dimer on DNA. A second is the demonstration herein that OmpR can bind to its high affinity site as a monomer. As a result, OmpR(C) appears to be capable of adopting alternative orientations depending on the precise base composition of the binding site, which also contributes to the lack of overlap. In the presence of DNA, chemical shift changes occur in OmpR in the recognition alpha-helix 3, the loop between beta-strand 4 and alpha-helix 1, and the loop between beta-strands 5 and 6. DNA contact residues are Val(203) (T), Arg(207) (G), and Arg(209) (phosphate backbone). Our results suggest that OmpR binds to DNA as a monomer and then forms a symmetric or asymmetric dimer, depending on the binding site. We propose that during activation OmpR binds to DNA and undergoes a conformational change that promotes phosphorylation of the N-terminal receiver domain, the receiver domains dimerize, and then the second monomer binds to DNA. The flexible linker of OmpR enables the second monomer to bind in multiple orientations (head-to-tail and head-to-head), depending on the specific DNA contacts.
Collapse
Affiliation(s)
- Jee Eun Rhee
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
38
|
Belcheva A, Golemi-Kotra D. A close-up view of the VraSR two-component system. A mediator of Staphylococcus aureus response to cell wall damage. J Biol Chem 2008; 283:12354-64. [PMID: 18326495 DOI: 10.1074/jbc.m710010200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus remains a clinical scourge. Recent studies have revealed that S. aureus is capable of mounting a response to antibiotics that target cell wall peptidoglycan biosynthesis, such as beta-lactams and vancomycin. A phosphotransfer-mediated signaling pathway composed of a histidine protein kinase, VraS, and a response regulator protein, VraR, has been linked to the coordination of this response. Herein, we report for the first time on the signal transduction mechanism of the VraSR system. We found that VraS is capable of undergoing autophosphorylation in vitro and its phosphoryl group is rapidly transferred to VraR. In addition, phosphorylated VraR undergoes rapid dephosphorylation by VraS. Evidence is presented that VraR has adopted a novel strategy in regulating the output response of the VraSR-mediated signaling pathway. The VraR effector domain inhibits formation of inactive VraR dimers and, in doing so, it holds the regulatory domain into an intermediate active state. We show that only phosphorylation induces formation of the biological active VraR-dimer species. Furthermore, we propose that damage inflicted to cell wall peptidoglycan could be the main source of the stimuli that VraR responds to due to the tight control that VraS has on the phosphorylation state of VraR. Our findings provide for the first time insights into the molecular basis for the proposed role of VraSR as a "sentinel" system capable of rapidly sensing cell wall peptidoglycan damage and coordinating a response that enhances the resistance phenotype in S. aureus.
Collapse
Affiliation(s)
- Antoaneta Belcheva
- Departments of Biology and Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | | |
Collapse
|
39
|
Wisedchaisri G, Wu M, Sherman DR, Hol WGJ. Crystal structures of the response regulator DosR from Mycobacterium tuberculosis suggest a helix rearrangement mechanism for phosphorylation activation. J Mol Biol 2008; 378:227-42. [PMID: 18353359 DOI: 10.1016/j.jmb.2008.02.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 02/13/2008] [Accepted: 02/18/2008] [Indexed: 10/22/2022]
Abstract
The response regulator DosR is essential for promoting long-term survival of Mycobacterium tuberculosis under low oxygen conditions in a dormant state and may be responsible for latent tuberculosis in one-third of the world's population. Here, we report crystal structures of full-length unphosphorylated DosR at 2.2 A resolution and its C-terminal DNA-binding domain at 1.7 A resolution. The full-length DosR structure reveals several features never seen before in other response regulators. The N-terminal domain of the full-length DosR structure has an unexpected (beta alpha)(4) topology instead of the canonical (beta alpha)(5) fold observed in other response regulators. The linker region adopts a unique conformation that contains two helices forming a four-helix bundle with two helices from another subunit, resulting in dimer formation. The C-terminal domain in the full-length DosR structure displays a novel location of helix alpha 10, which allows Gln199 to interact with the catalytic Asp54 residue of the N-terminal domain. In contrast, the structure of the DosR C-terminal domain alone displays a remarkable unstructured conformation for helix alpha 10 residues, different from the well-defined helical conformations in all other known structures, indicating considerable flexibility within the C-terminal domain. Our structures suggest a mode of DosR activation by phosphorylation via a helix rearrangement mechanism.
Collapse
Affiliation(s)
- Goragot Wisedchaisri
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
40
|
Friedland N, Mack TR, Yu M, Hung LW, Terwilliger TC, Waldo GS, Stock AM. Domain orientation in the inactive response regulator Mycobacterium tuberculosis MtrA provides a barrier to activation. Biochemistry 2007; 46:6733-43. [PMID: 17511470 PMCID: PMC2528954 DOI: 10.1021/bi602546q] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structure of MtrA, an essential gene product for the human pathogen Mycobacterium tuberculosis, has been solved to a resolution of 2.1 A. MtrA is a member of the OmpR/PhoB family of response regulators and represents the fourth family member for which a structure of the protein in its inactive state has been determined. As is true for all OmpR/PhoB family members, MtrA possesses an N-terminal regulatory domain and a C-terminal winged helix-turn-helix DNA-binding domain, with phosphorylation of the regulatory domain modulating the activity of the protein. In the inactive form of MtrA, these two domains form an extensive interface that is composed of the alpha4-beta5-alpha5 face of the regulatory domain and the C-terminal end of the positioning helix, the trans-activation loop, and the recognition helix of the DNA-binding domain. This domain orientation suggests a mechanism of mutual inhibition by the two domains. Activation of MtrA would require a disruption of this interface to allow the alpha4-beta5-alpha5 face of the regulatory domain to form the intermolecule interactions that are associated with the active state and to allow the recognition helix to interact with DNA. Furthermore, the interface appears to stabilize the inactive conformation of MtrA, potentially reducing the rate of phosphorylation of the N-terminal domain. This combination of effects may form a switch, regulating the activity of MtrA. The domain orientation exhibited by MtrA also provides a rationale for the variation in linker length that is observed within the OmpR/PhoB family of response regulators.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ann M. Stock
- To whom correspondence should be addressed at Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854. Telephone: (732) 235−4844. Fax (732) 235−5289. E-mail:
| |
Collapse
|
41
|
Gao R, Mack TR, Stock AM. Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem Sci 2007; 32:225-34. [PMID: 17433693 PMCID: PMC3655528 DOI: 10.1016/j.tibs.2007.03.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 02/07/2007] [Accepted: 03/15/2007] [Indexed: 01/29/2023]
Abstract
Response regulators (RRs) comprise a major family of signaling proteins in prokaryotes. A modular architecture that consists of a conserved receiver domain and a variable effector domain enables RRs to function as phosphorylation-regulated switches that couple a wide variety of cellular behaviors to environmental cues. Recently, advances have been made in understanding RR functions both at genome-wide and molecular levels. Global techniques have been developed to analyze RR input and output, expanding the scope of characterization of these versatile components. Meanwhile, structural studies have revealed that, despite common structures and mechanisms of function within individual domains, a range of interactions between receiver and effector domains confer great diversity in regulatory strategies, optimizing individual RRs for the specific regulatory needs of different signaling systems.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Howard Hughes Medical Institute, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
42
|
Abstract
A fundamental concept of phosphorylation-mediated signaling is the precise switching between discrete functional conformations. According to the traditional view, phosphorylation induces a new, active conformation. In this chapter, a series of NMR experiments performed on a response regulator are described that challenge this traditional notion. The combination of NMR relaxation experiments with chemical shift data and the linkage to structure/function reveals a fundamentally different activation mechanism. The NMR data for the response regulator NtrC provide kinetic (rates of interconversion), thermodynamic (relative populations), and structural (chemical shift) information for the conformational exchange process. The results demonstrate that both the inactive and active states are present before phosphorylation, and activation occurs via a shift of this preexisting equilibrium. This concept is in accordance with the energy landscape view of proteins that embraces the existence of conformational substates. We conjecture that this population-shift mechanism is a general paradigm for response regulator activation and possibly more universal for phosphorylation-mediated signaling.
Collapse
|
43
|
Affiliation(s)
- Ann M Stock
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854-5627, USA.
| | | |
Collapse
|
44
|
Dyer CM, Dahlquist FW. Switched or not?: the structure of unphosphorylated CheY bound to the N terminus of FliM. J Bacteriol 2006; 188:7354-63. [PMID: 17050923 PMCID: PMC1636273 DOI: 10.1128/jb.00637-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 07/26/2006] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation of Escherichia coli CheY increases its affinity for its target, FliM, 20-fold. The interaction between BeF(3)(-)-CheY, a phosphorylated CheY (CheY approximately P) analog, and the FliM sequence that it binds has been described previously in molecular detail. Although the conformation that unphosphorylated CheY adopts in complex with FliM was unknown, some evidence suggested that it is similar to that of CheY approximately P. To resolve the issue, we have solved the crystallographic structure of unphosphorylated, magnesium(II)-bound CheY in complex with a synthetic peptide corresponding to the target region of FliM (the 16 N-terminal residues of FliM [FliM(16)]). While the peptide conformation and binding site are similar to those of the BeF(3)(-)-CheY-FliM(16) complex, the inactive CheY conformation is largely retained in the unphosphorylated Mg(2+)-CheY-FliM(16) complex. Communication between the target binding site and the phosphorylation site, observed previously in biochemical experiments, is enabled by a network of conserved side chain interactions that partially mimic those observed in BeF(3)(-)-activated CheY. This structure makes clear the active role that the beta4-alpha4 loop plays in the Tyr(87)-Tyr(106) coupling mechanism that enables allosteric communication between the phosphorylation site and the target binding surface. Additionally, this structure provides a high-resolution view of an intermediate conformation of a response regulator protein, which had been generally assumed to be two state.
Collapse
Affiliation(s)
- Collin M Dyer
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, 93106, USA
| | | |
Collapse
|
45
|
Guhaniyogi J, Robinson VL, Stock AM. Crystal structures of beryllium fluoride-free and beryllium fluoride-bound CheY in complex with the conserved C-terminal peptide of CheZ reveal dual binding modes specific to CheY conformation. J Mol Biol 2006; 359:624-45. [PMID: 16674976 PMCID: PMC3666561 DOI: 10.1016/j.jmb.2006.03.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/16/2006] [Accepted: 03/22/2006] [Indexed: 01/25/2023]
Abstract
Chemotaxis, the environment-specific swimming behavior of a bacterial cell is controlled by flagellar rotation. The steady-state level of the phosphorylated or activated form of the response regulator CheY dictates the direction of flagellar rotation. CheY phosphorylation is regulated by a fine equilibrium of three phosphotransfer activities: phosphorylation by the kinase CheA, its auto-dephosphorylation and dephosphorylation by its phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two spatially distinct protein-protein contacts: tethering of the two proteins to each other and formation of an active site for dephosphorylation. The former involves interaction of phosphorylated CheY with the small highly conserved C-terminal helix of CheZ (CheZ(C)), an indispensable structural component of the functional CheZ protein. To understand how the CheZ(C) helix, representing less than 10% of the full-length protein, ascertains molecular specificity of binding to CheY, we have determined crystal structures of CheY in complex with a synthetic peptide corresponding to 15 C-terminal residues of CheZ (CheZ(200-214)) at resolutions ranging from 2.0 A to 2.3A. These structures provide a detailed view of the CheZ(C) peptide interaction both in the presence and absence of the phosphoryl analog, BeF3-. Our studies reveal that two different modes of binding the CheZ(200-214) peptide are dictated by the conformational state of CheY in the complex. Our structures suggest that the CheZ(C) helix binds to a "meta-active" conformation of inactive CheY and it does so in an orientation that is distinct from the one in which it binds activated CheY. Our dual binding mode hypothesis provides implications for reverse information flow in CheY and extends previous observations on inherent resilience in CheY-like signaling domains.
Collapse
Affiliation(s)
- Jayita Guhaniyogi
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, USA
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA 679 Hoes Lane, Piscataway, NJ 08854
| | - Victoria L. Robinson
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, USA
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA 679 Hoes Lane, Piscataway, NJ 08854
- Howard Hughes Medical Institute, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, USA
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA 679 Hoes Lane, Piscataway, NJ 08854
- Howard Hughes Medical Institute, 679 Hoes Lane, Piscataway, NJ 08854, USA
- Corresponding author.
| |
Collapse
|
46
|
Perron-Savard P, De Crescenzo G, Moual HL. Dimerization and DNA binding of the Salmonella enterica PhoP response regulator are phosphorylation independent. MICROBIOLOGY-SGM 2006; 151:3979-3987. [PMID: 16339942 DOI: 10.1099/mic.0.28236-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Salmonella enterica, PhoP is the response regulator of the PhoP/PhoQ two-component regulatory system that controls the expression of various virulence factors in response to external Mg2+. Previous studies have shown that phosphorylation of a PhoP variant with a C-terminal His tag (PhoP(His)) enhances dimerization and binding to target DNA. Here, the effect of phosphorylation on the oligomerization and DNA binding properties of both wild-type PhoP (PhoP) and PhoP(His) are compared. Gel filtration chromatography showed that PhoP exists as a mixture of monomer and dimer regardless of its phosphorylation state. In contrast, unphosphorylated PhoP(His) was mostly monomeric, whereas PhoP(His) approximately P existed as a mixture of monomer and dimer. By monitoring the tryptophan fluorescence of the proteins and the fluorescence of the probe 1-anilinonaphthalene-8-sulfonic acid bound to them, it was found that PhoP and PhoP(His) exhibited different spectral properties. The interaction between PhoP or PhoP(His) and the PhoP box of the mgtA promoter was monitored by surface plasmon resonance. Binding of PhoP to the PhoP box was barely influenced by phosphorylation. In contrast, phosphorylation of PhoP(His) clearly increased the interaction of PhoP(His) with target DNA. Altogether, these data show that a His tag at the C-terminus of PhoP affects its biochemical properties, most likely by affecting its conformation and/or its oligomerization state. More importantly, these results show that wild-type PhoP dimerization and interaction with target DNA are independent of phosphorylation, which is in contrast to the previously proposed model.
Collapse
Affiliation(s)
- Philippe Perron-Savard
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada H3A 2B4
| | - Gregory De Crescenzo
- Protein-Protein Interaction Facility, Sheldon Biotechnology Centre, McGill University, Montréal, Québec, Canada H3A 2B4
| | - Hervé Le Moual
- Faculty of Dentistry, McGill University, Montréal, Québec, Canada H3A 2B4
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada H3A 2B4
| |
Collapse
|
47
|
Feng X, Walthers D, Oropeza R, Kenney LJ. The response regulator SsrB activates transcription and binds to a region overlapping OmpR binding sites at Salmonella pathogenicity island 2. Mol Microbiol 2005; 54:823-35. [PMID: 15491370 DOI: 10.1111/j.1365-2958.2004.04317.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OmpR activates expression of the two-component regulatory system located on Salmonella pathogenicity island 2 (SPI-2) that controls the expression of a type III secretion system, as well as many other genes required for systemic infection in mice. Measurements of SsrA and SsrB protein levels under different growth conditions indicate that expression of these two components is uncoupled, i.e. SsrB is produced in the absence of ssrA and vice versa. This result was suggested from our previous studies, in which two promoters at ssrA/B were identified. The isolated C-terminus of SsrB binds to DNA and protects regions upstream of ssrA, ssrB and srfH from DNase I digestion. Furthermore, the C-terminus of SsrB alone is capable of activating transcription in the absence of the N-terminus. Results from beta-galactosidase assays indicate that the N-terminal phosphorylation domain inhibits the C-terminal effector domain. A previous study from our laboratory reported that ssrA-lacZ and ssrB-lacZ transcriptional fusions were substantially reduced in an ssrB null strain. Results from DNase I protection assays provide direct evidence that SsrB binds at ssrA and ssrB, although the binding sites lie within the transcribed regions. Additional regulators clearly affect gene expression at this important locus, and here we provide evidence that SlyA, a transcription factor that contributes to Salmonella virulence, also affects ssrA/B gene expression.
Collapse
Affiliation(s)
- Xiuhong Feng
- Department of Microbiology and Immunology, University of Illinois at Chicago, 835 S. Wolcott Avenue, M/C 790, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
48
|
Maris AE, Walthers D, Mattison K, Byers N, Kenney LJ. The Response Regulator OmpR Oligomerizes via β-Sheets to Form Head-to-head Dimers. J Mol Biol 2005; 350:843-56. [PMID: 15979641 DOI: 10.1016/j.jmb.2005.05.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 05/18/2005] [Accepted: 05/24/2005] [Indexed: 11/29/2022]
Abstract
In Escherichia coli, the EnvZ/OmpR two-component regulatory system regulates expression of the porin genes ompF and ompC in response to changes in osmolarity. It has recently become apparent that OmpR functions as a global regulator, by regulating the expression of many genes in addition to the porin genes. OmpR consists of two domains; phosphorylation of the N-terminal receiver domain increases DNA binding affinity of the C-terminal domain and vice versa. Many response regulators including PhoB and FixJ dimerize upon phosphorylation. Here, we demonstrate that OmpR dimerization is stimulated by phosphorylation or by DNA binding. The dimerization interface revealed here was unanticipated and had previously not been predicted. Using the accepted head-to-tail tandem-binding model as a guide, we set out to examine the intermolecular interactions between OmpR dimers bound to DNA by protein-protein cross-linking methods. Surprisingly, amino acid positions that we expected to form cross-linked dimers did not. Conversely, positions predicted not to form dimers did. Because of these results, we designed a series of 23 cysteine-substituted OmpR mutants that were used to investigate dimer interfaces formed via the beta-sheet region. This four-stranded beta-sheet is a unique feature of the OmpR group of winged helix-turn-helix proteins. Many of the cysteine-substituted mutants are dominant to wild-type OmpR, are phosphorylated by acetyl phosphate as well as the cognate kinase EnvZ, and the cross-linked proteins are capable of binding to DNA. Our results are consistent with a model in which OmpR binds to DNA in a head-to-head orientation, in contrast to the previously proposed asymmetric head-to-tail model. They also raise the possibility that OmpR may be capable of adopting more than one orientation as it binds to a vast array of genes to activate or repress transcription.
Collapse
Affiliation(s)
- Ann E Maris
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | | | |
Collapse
|
49
|
Li L, Kehoe DM. In vivo analysis of the roles of conserved aspartate and histidine residues within a complex response regulator. Mol Microbiol 2005; 55:1538-52. [PMID: 15720559 DOI: 10.1111/j.1365-2958.2005.04491.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RcaC is the founding member of a group of large response regulators with complex domain combinations containing at least two receiver domains, an OmpR-class winged helix-turn-helix DNA binding domain, and a histidine phosphotransfer (HPt) domain. Within its two receiver and HPt domains, RcaC contains consensus phosphorylation sites at aspartates 51, 576 and histidine 316. RcaC operates in the pathway regulating transcription of genes encoding components of photosynthetic light harvesting antenna to changes in light colour. We show that phycocyanin gene expression requires RcaC. RcaC contributes to light regulation of phycoerythrin genes, but is not part of the second light regulation pathway controlling these genes. Substitutions at aspartate 51 or histidine 316 severely impaired light responsiveness while substitutions at aspartate 576 had little effect. Complete loss of light regulation, measured by phycocyanin gene expression, only occurred in the triple mutant. We conclude that aspartate 51 primarily controls light colour responsiveness and is regulated by histidine 316, and that these residues are likely phosphorylated in red light and dephosphorylated in green light. The carboxy-terminal receiver domain has a minor role in controlling this response. RcaC abundance is also light regulated and depends on aspartate 51 and histidine 316, but not aspartate 576.
Collapse
Affiliation(s)
- Lina Li
- Department of Biology, 1001 East 3rd Street, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
50
|
Shin D, Groisman EA. Signal-dependent binding of the response regulators PhoP and PmrA to their target promoters in vivo. J Biol Chem 2004; 280:4089-94. [PMID: 15569664 DOI: 10.1074/jbc.m412741200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Low Mg2+ promotes phosphorylation of the response regulators PhoP and PmrA and transcription of their activated genes in Salmonella enterica. Using chromatin immunoprecipitation, we have now determined that the PhoP and PmrA proteins are recruited to the regulatory region of their target genes when bacteria experience low Mg2+ but not when they are grown in high Mg2+. Even when the PhoP protein was artificially produced at 4-fold higher levels than the wild-type strain, promoter occupancy required the low Mg2+ signal. Substitution of the predicted phosphorylation site Asp-52 with a valine residue abolished phosphorylation of the PhoP protein, resulting in loss of PhoP binding to target promoters and transcription of PhoP-activated genes. Our results indicate that the promoter binding ability of the PhoP and PmrA proteins occurring in low Mg2+ is correlated with phosphorylation of these proteins in vivo.
Collapse
Affiliation(s)
- Dongwoo Shin
- Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|