1
|
Sambaturu N, Fray EJ, Hariharan V, Wu F, Zitzmann C, Simonetti FR, Barouch DH, Siliciano JD, Siliciano RF, Ribeiro RM, Perelson AS, Molina-París C, Leitner T. SIV proviruses seeded later in infection are harbored in short-lived CD4 + T cells. Cell Rep 2025; 44:115663. [PMID: 40327506 PMCID: PMC12160121 DOI: 10.1016/j.celrep.2025.115663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/24/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
The human immunodeficiency virus (HIV) can persist in a latent form as integrated DNA (provirus) in resting CD4+ T cells unaffected by antiretroviral therapy. Despite being a major obstacle for eradication efforts, it remains unclear which infected cells survive, persist, and ultimately enter the long-lived reservoir. Here, we determine the genetic divergence and integration times of simian immunodeficiency virus (SIV) envelope sequences collected from infected macaques. We show that the proviral divergence and the phylogenetically estimated integration times display a biphasic decline over time. Investigating the dynamics of the mutational distributions, we show that SIV genomes in short-lived cells are, on average, more diverged, while long-lived cells contain less diverged virus. The change in the mutational distributions over time explains the observed biphasic decline in the divergence of the proviruses. This suggests that long-lived cells harbor viruses deposited earlier in infection, while short-lived cells predominantly harbor more recent viruses.
Collapse
Affiliation(s)
- Narmada Sambaturu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; School of Systems Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, NY, USA
| | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vivek Hariharan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carolin Zitzmann
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Carmen Molina-París
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Thomas Leitner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
2
|
Gray CN, Ashokkumar M, Janssens DH, Kirchherr JL, Allard B, Hsieh E, Hafer TL, Archin NM, Browne EP, Emerman M. Integrator complex subunit 12 knockout overcomes a transcriptional block to HIV latency reversal. eLife 2025; 13:RP103064. [PMID: 40207620 PMCID: PMC11984954 DOI: 10.7554/elife.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing toward inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells of people living with HIV (PLWH). We performed a CRISPR screen in conjunction with AZD5582 & I-BET151 and identified a member of the Integrator complex as a target to improve this LRA combination, specifically Integrator complex subunit 12 (INTS12). Integrator functions as a genome-wide attenuator of transcription that acts on elongation through its RNA cleavage and phosphatase modules. Knockout of INTS12 improved latency reactivation at the transcriptional level and is more specific to the HIV-1 provirus than AZD5582 & I-BET151 treatment alone. We found that INTS12 is present on chromatin at the promoter of HIV and therefore its effect on HIV may be direct. Additionally, we observed more RNAPII in the gene body of HIV only with the combination of INTS12 knockout with AZD5582 & I-BET151, indicating that INTS12 induces a transcriptional elongation block to viral reactivation. Moreover, knockout of INTS12 increased HIV-1 reactivation in CD4 T cells from virally suppressed PLWH ex vivo, and we detected viral RNA in the supernatant from CD4 T cells of all three virally suppressed PLWH tested upon INTS12 knockout, suggesting that INTS12 prevents full-length HIV RNA production in primary T cells. Finally, we found that INTS12 more generally limits the efficacy of a variety of LRAs with different mechanisms of action.
Collapse
Affiliation(s)
- Carley N Gray
- Department of Microbiology, University of WashingtonSeattleUnited States
| | - Manickam Ashokkumar
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Derek H Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Jennifer L Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Emily Hsieh
- Molecular and Cellular Biology Graduate Program, University of WashingtonSeattleUnited States
| | - Terry L Hafer
- Division of Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Nancie M Archin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Edward P Browne
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| |
Collapse
|
3
|
Falling Iversen E, Miller IG, Søgaard O, Danesh A, Jones BR. A Participant-Derived Xenograft Mouse Model to Decode Autologous Mechanisms of HIV Control and Evaluate Immunotherapies. Bio Protoc 2025; 15:e5254. [PMID: 40224654 PMCID: PMC11986693 DOI: 10.21769/bioprotoc.5254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Human immunodeficiency virus (HIV) remains a global health challenge with major research efforts being directed toward the unmet needs for a vaccine and a safe and scalable cure. Antiretroviral therapy (ART) suppresses viral replication but does not cure infection and so requires lifelong adherence. HIV-specific CD8+ T-cell responses play a crucial role in long-term HIV control as demonstrated in elite controllers, highlighting their potential in HIV cure strategies. Various HIV mouse models-including the human-hematopoietic stem cell (Hu-HSC) mouse, the bone marrow, liver, and thymus (BLT) mouse, and the human peripheral blood leukocyte (Hu-PBL) mouse-have deepened the understanding of HIV dynamics and facilitated the development of therapeutics. We developed the HIV participant-derived xenograft (HIV PDX) mouse model to enable long-term in vivo evaluation of bona fide autologous T-cell mechanisms of HIV control, including the antiviral activity of primary memory CD8+ (mCD8+) T cells taken directly from people with or without HIV, as well as testing potential immunotherapies. Additionally, this model faithfully recapitulates virus escape mutations in response to sustained CD8+ T-cell pressure, enabling the assessment of strategies to curb virus escape. In this model, NSG mice are engrafted with purified memory CD4+ (mCD4+) cells and infected with HIV; then, they receive autologous CD8+ T cells or T-cell products. Key advantages of this model include the minimization of graft-versus-host disease (GvHD), which severely limits peripheral blood mononuclear cell (PBMC) or total CD4-engrafted mice, the ability to evaluate long-term natural donor-specific T-cell responses in vivo, and the lack of use of human fetal tissues required for most humanized mouse models of HIV. Key features • Long-term evaluation of bona fide autologous T cells. • Evaluation of immunomodulating drugs and T-cell products. • The protocol requires access to a BSL2+ tissue culture room, BSL2+ animal facility, and 6+ weeks to complete.
Collapse
Affiliation(s)
| | - Itzayana G. Miller
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Ole Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ali Danesh
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Brad R. Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
4
|
Hariharan V, White JA, Dragoni F, Fray EJ, Pathoulas N, Moskovljevic M, Zhang H, Singhal A, Lai J, Beg SA, Scully EP, Gilliams EA, Block DS, Keruly J, Moore RD, Siliciano JD, Simonetti FR, Siliciano RF. Superinfection with intact HIV-1 results in conditional replication of defective proviruses and nonsuppressible viremia in people living with HIV-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647291. [PMID: 40236094 PMCID: PMC11996531 DOI: 10.1101/2025.04.04.647291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
During replication of some RNA viruses, defective particles can spontaneously arise and interfere with wild-type (WT) virus replication. Recently, engineered versions of these defective interfering particles (DIPs) have been proposed as an HIV-1 therapeutic. However, DIPs have yet to be reported in people with HIV-1 (PWH). Here, we find DIPs in PWH who have a rare, polyclonal form of non-suppressible viremia (NSV). While antiretroviral therapy (ART) rapidly reduces viremia to undetectable levels, some individuals experience sustained viremia due to virus production from cell clones harboring intact or defective proviruses. We characterized the source of NSV in two PWH who never reached undetectable viral load despite ART adherence. Remarkably, in each participant, we found a diverse set of defective viral genomes all sharing the same fatal deletions. We found that this paradoxical accumulation of mutations by viruses with fatal defects was driven by superinfection with intact viruses, resulting in mobilization of defective genomes and accumulation of additional mutations during untreated infection. We show that these defective proviruses interfere with WT virus replication, conditionally replicate, and, in one case, have an R 0 > 1, enabling in vivo spread. Despite this, clinical outcomes show no evidence of a beneficial effect of these DIPs.
Collapse
|
5
|
Politza AJ, Liu T, Kshirsagar A, Dong M, Ahamed A, Khalid MAU, Jones R, Seshu U, Risher K, Pinto CN, Zhu Y, Guan W. ViraLite: An Ultracompact HIV Viral Load Self-Testing System with Internal Quality Control. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.01.25325036. [PMID: 40236396 PMCID: PMC11998842 DOI: 10.1101/2025.04.01.25325036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The availability of effective antiretroviral therapy has made HIV manageable, provided patients have consistent access to routine viral load (VL) testing. Nonetheless, access to frequent VL testing remains limited. There is a need for accessible, user-friendly testing systems that allow people living with HIV (PLHIV) to monitor their VL more frequently and empower self-management. Here, we developed ViraLite, a sample-to-answer, compact, accessible, and battery-powered system for HIV viral load monitoring. The system is built upon a probe-based RT-LAMP assay that allows for multiplexed detection and quantification. An internal quality control targeting the RNase P was incorporated to enhance the reliability of the results. A software-reconfigurable real-time sensing system empowered by machine learning and a smartphone-guided protocol was developed in tandem to analyze the multiplexed assay. We analyzed 45 clinically archived samples using ViraLite and benchmarked our results against qRT-PCR, which showed 21 positive and 23 negative samples. Using our process control, ViraLite first identified 17 inconclusive samples that would otherwise be classified as negative. Then, ViraLite classified 14 out of 15 HIV-positive samples (93.3%) and 13 out of 13 HIV-negative samples (100%). The incorporation of RNase P as a process control increased the sensitivity of ViraLite from 66.66% to 93.33%, while maintaining a high specificity (100%). To assess the acceptance of ViraLite among PLHIV, we recruited 480 participants from online and three clinical sites to complete a survey. Over 86% of participants indicated ViraLite had benefits in convenience and privacy, on the other hand 61% of participants indicated concerns with test accuracy. The integration of compact hardware, a reliable assay, and smartphone guidance provides an accurate, easy to use system for PLHIV to self-manage their viral load and update their prescriptions frequently.
Collapse
Affiliation(s)
- Anthony J. Politza
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Aneesh Kshirsagar
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Ming Dong
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Ahasan Ahamed
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, United States
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47408
| | | | - Roland Jones
- Departments of Pathology and Laboratory Medicine and Pharmacology, Milton S. Hershey Medical Center and Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Uttara Seshu
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Kathryn Risher
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Casey N. Pinto
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, United States
- The Pennsylvania State University Cancer Institute, Cancer Control Program, Hershey, PA, United States
| | - Yusheng Zhu
- Departments of Pathology and Laboratory Medicine and Pharmacology, Milton S. Hershey Medical Center and Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Weihua Guan
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47408
| |
Collapse
|
6
|
Esman A, Salamaikina S, Kirichenko A, Vinokurov M, Fomina D, Sikamov K, Syrkina A, Pokrovskaya A, Akimkin V. Promoter Methylation of HIV Coreceptor-Related Genes CCR5 and CXCR4: Original Research. Viruses 2025; 17:465. [PMID: 40284908 PMCID: PMC12030890 DOI: 10.3390/v17040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/29/2025] Open
Abstract
The persistence of human immunodeficiency virus (HIV) within viral reservoirs poses significant challenges to eradication efforts. Epigenetic alterations, including DNA methylation, are potential factors influencing the latency and persistence of HIV. This study details the development and application of techniques to assess CpG methylation in the promoter regions of the CCR5 and CXCR4 genes, which are key HIV-1 coreceptors. Using both Sanger sequencing and pyrosequencing methods, we examined 51 biological samples from 17 people living with HIV at three time points: baseline (week 0) and post-antiretroviral therapy (ART) at weeks 24 and 48. Our results revealed that CXCR4 promoter CpG sites were largely unmethylated, while CCR5 promoter CpGs exhibited significant variability in methylation levels. Specifically, CCR5 CpG 1 showed a significant decrease in methylation from week 0 to week 48, while CXCR4 CpG 3 displayed a significant decrease between week 0 and week 24. These differences were statistically significant when compared with non-HIV-infected controls. These findings demonstrate distinct methylation patterns between CCR5 and CXCR4 promoters in people living with HIV over time, suggesting that epigenetic modifications may play a role in regulating the persistence of HIV-1. Our techniques provide a reliable framework for assessing gene promoter methylation and could be applied in further research on the epigenetics of HIV.
Collapse
Affiliation(s)
- Anna Esman
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Svetlana Salamaikina
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Alina Kirichenko
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Michael Vinokurov
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Darya Fomina
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
- State Research Center—Burnazyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Kirill Sikamov
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Arina Syrkina
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Anastasia Pokrovskaya
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Vasily Akimkin
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| |
Collapse
|
7
|
Zhang X, Wu S, Lin Y, Zhang W, Zhang Y, Li X, Li L, Zhang H, Liu B, He X. Development of an Assay Evaluating the Inducible HIV-1 Latent Reservoir Based on Reverse Transcription Droplet Digital PCR for Unspliced/Intact Viral RNA. J Med Virol 2025; 97:e70295. [PMID: 40088087 DOI: 10.1002/jmv.70295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/29/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
HIV-1 establishes a stable latent reservoir in host cells such as CD4+ T lymphocytes, which cannot be recognized by the immune system. Accurately assessing the active latent reservoir by HIV-1 RNA is crucial for the clinical diagnoses and treatment. Reverse transcription (RT)-polymerase chain reaction (PCR)-based assays are commonly employed to detect HIV-1 reservoirs in clinical settings, but single-site probe designs limit their ability to distinguish between intact and defective HIV-1 proviral transcripts. In this study, we present and optimize a RT-droplet digital PCR-based assay (RT-ddPCR) that accurately quantifies unspliced/intact intracellular HIV-1 RNA, which sensitively detects the activity of HIV-1 latent reservoirs. By testing with various latency-reversing agents (LRAs) in multiple HIV-1 latent cell line models, we demonstrated that our method is more accurate than traditional RT-PCR-based assays for HIV-1 RNA. Moreover, the unspliced/intact HIV-1 RNA assay was used to monitor HIV-1 latent reservoir activity in individuals undergoing analytical treatment interruption (ATI) after antiviral therapeutic intervention. The level of unspliced/intact HIV-1 RNA in peripheral blood mononuclear cells (PBMCs), with an increase in unspliced/intact viral RNA levels detectable before viral rebound in plasma, positively correlated with the initial viral load at rebound. Compared to culture-based methods for detecting inducible reservoirs, this approach significantly reduces the required cell quantity, operational complexity, and detection time. The highly sensitive RT-ddPCR detection of unspliced/intact HIV-1 RNA shows good correlation with the viral rebound following ATI, which will also be valuable for predicting inducible viral reservoir size. This finding supports the assay's utility for faster and more accurate prediction of viral rebound and timely initiation of intervention therapy.
Collapse
Grants
- This work was supported by National Key Research and Development program (2024YFC2311103), National Natural Science Foundation of China (82471862, 92369205, 92169201, 82171825, 82201934), Guangdong Basic and Applied Basic Research Foundation (2022B1111020004, SL2022A04J01923), Health Commission of Guangdong Province Program (0920220202), Guangzhou Basic and Applied Basic Research Foundation (202201011028, 2023A04J1077).
Collapse
Affiliation(s)
- Xu Zhang
- Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Shiyu Wu
- Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Yingtong Lin
- Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Wanying Zhang
- Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Zhang
- Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Xiaomin Li
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Linghua Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhang
- Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Bingfeng Liu
- Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Xin He
- Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Gray CN, Ashokkumar M, Janssens DH, Kirchherr J, Allard B, Hsieh E, Hafer TL, Archin NM, Browne EP, Emerman M. Integrator complex subunit 12 knockout overcomes a transcriptional block to HIV latency reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.30.610517. [PMID: 39257755 PMCID: PMC11383676 DOI: 10.1101/2024.08.30.610517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing towards inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells from people living with HIV (PLWH). We performed a CRISPR screen in conjunction with AZD5582 & I-BET151 and identified a member of the Integrator complex as a target to improve this LRA combination, specifically Integrator complex subunit 12 (INTS12). Integrator functions as a genome-wide attenuator of transcription that acts on elongation through its RNA cleavage and phosphatase modules. Knockout of INTS12 improved latency reactivation at the transcriptional level and is more specific to the HIV-1 provirus than AZD5582 & I-BET151 treatment alone. We found that INTS12 is present on chromatin at the promoter of HIV and therefore its effect on HIV may be direct. Additionally, we observed more RNAPII in the gene body of HIV only with the combination of INTS12 knockout with AZD5582 & I-BET151, indicating that INTS12 induces a transcriptional elongation block to viral reactivation. Moreover, knockout of INTS12 increased HIV-1 reactivation in CD4 T cells from virally suppressed PLWH ex vivo, and we detected viral RNA in the supernatant from CD4 T cells of all three virally suppressed PLWH tested upon INTS12 knockout suggesting that INTS12 prevents full-length HIV RNA production in primary T cells. Finally, we found that INTS12 more generally limits the efficacy of a variety of LRAs with different mechanisms of action.
Collapse
Affiliation(s)
- Carley N. Gray
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Manickam Ashokkumar
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Derek H. Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jennifer Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Hsieh
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Terry L. Hafer
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nancie M. Archin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edward P. Browne
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
9
|
Clain JA, Picard M, Rabezanahary H, André S, Boutrais S, Goma Matsetse E, Dewatines J, Dueymes Q, Thiboutot E, Racine G, Soundaramourty C, Mammano F, Corbeau P, Zghidi-Abouzid O, Estaquier J. Immune Alterations and Viral Reservoir Atlas in SIV-Infected Chinese Rhesus Macaques. Infect Dis Rep 2025; 17:12. [PMID: 39997464 PMCID: PMC11855486 DOI: 10.3390/idr17010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Over the last decades, our projects have been dedicated to clarifying immunopathological and virological events associated with Human Immunodeficiency Virus (HIV) infection. METHODS By using non-human primate models of pathogenic and non-pathogenic lentiviral infections, we aimed at identifying the cells and tissues in which the virus persists, despite antiretroviral therapy (ART). Indeed, the eradication of viral reservoirs is a major challenge for HIV cure. RESULTS We present a series of results performed in rhesus macaques of Chinese origin deciphering the virological and immunological events associated with ART that can be of interest for people living with HIV. CONCLUSIONS This model could be of interest for understanding in whole body the clinical alteration that persist despite ART.
Collapse
Affiliation(s)
- Julien A. Clain
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Morgane Picard
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Henintsoa Rabezanahary
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Sonia André
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Steven Boutrais
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Ella Goma Matsetse
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Juliette Dewatines
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Quentin Dueymes
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Elise Thiboutot
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Gina Racine
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Calaiselvy Soundaramourty
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Fabrizio Mammano
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
- Institut national de la santé et de la recherche médicale (Inserm) U1259 MAVIVHe, Université de Tours, 37032 Tours, France
| | - Pierre Corbeau
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002, 34094 Montpellier, France;
| | - Ouafa Zghidi-Abouzid
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Jérôme Estaquier
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| |
Collapse
|
10
|
Laeremans T, Janssens A, Aerts JL. From natural defenders to therapeutic warriors: NK cells in HIV immunotherapy. Immunotherapy 2025; 17:133-145. [PMID: 39905963 PMCID: PMC11901454 DOI: 10.1080/1750743x.2025.2460965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells both play essential roles in controlling viral infections by eliminating virus-infected cells. Unlike CTLs, which require priming and activation by antigen-presenting cells, NK cells possess a remarkable capacity to mount a rapid antiviral immune response immediately after infection. Additionally, they can bolster the adaptive immune system by secreting cytokines and directly interacting with other immune cells. However, during chronic human immunodeficiency virus (HIV) infection, various immune cells, including NK cells, experience functional impairments. This has led to the exploration of NK cell-based immunotherapy as a promising strategy to reverse these dysfunctions and contribute to the pursuit of a functional cure for HIV. Building on the success of NK cell therapies in cancer treatment, these approaches offer significant potential for transforming the HIV cure field. This review provides a comprehensive overview of the latest advances in NK cell-based immunotherapy for HIV, outlining the progress made and the key challenges that must be overcome to achieve a functional cure for people living with HIV.
Collapse
Affiliation(s)
- Thessa Laeremans
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Faculty of Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Amber Janssens
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Faculty of Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Joeri L. Aerts
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Faculty of Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
11
|
Moskovljevic M, Dragoni F, Board NL, Wu F, Lai J, Zhang H, White JR, Hoh R, Lynn K, Tebas P, Mounzer K, Deeks SG, Montaner LJ, Siliciano JD, Siliciano RF, Simonetti FR. Cognate antigen engagement induces HIV-1 expression in latently infected CD4 + T cells from people on long-term antiretroviral therapy. Immunity 2024; 57:2928-2944.e6. [PMID: 39612916 PMCID: PMC11896817 DOI: 10.1016/j.immuni.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Despite antiretroviral therapy (ART), HIV-1 persists in latently infected CD4+ T cells, preventing a cure. Antigens drive the proliferation of infected cells, precluding latent reservoir decay. However, the relationship between antigen recognition and HIV-1 gene expression is poorly understood because most studies of latency reversal use agents that induce non-specific global T cell activation. Here, we isolated rare CD4+ T cells responding to cytomegalovirus (CMV) or HIV-1 Gag antigens from people living with HIV-1 on long-term ART and assessed T cell activation and HIV-1 RNA expression upon coculture with autologous dendritic cells (DCs) presenting cognate antigens. Presentation of cognate antigens ex vivo induced broad T cell activation (median 42-fold increase in CD154+CD69+ cells) and significantly increased HIV-1 transcription (median 4-fold), mostly through the induction of rare cells with higher viral expression. Thus, despite low proviral inducibility, antigen recognition can promote HIV-1 expression, potentially contributing to spontaneous reservoir activity and viral rebound upon ART interruption.
Collapse
Affiliation(s)
- Milica Moskovljevic
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Filippo Dragoni
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nathan L Board
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Fengting Wu
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jun Lai
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Rebecca Hoh
- Division of HIV, School of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Kenneth Lynn
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pablo Tebas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karam Mounzer
- Jonathan Lax Treatment Center, Philadelphia FIGHT, Philadelphia, PA 19107, USA
| | - Steven G Deeks
- Division of HIV, School of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | | | - Janet D Siliciano
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| | - Francesco R Simonetti
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Gomez-Rivera F, Terry VH, Chen C, Painter MM, Virgilio MC, Yaple-Maresh ME, Collins KL. Variation in HIV-1 Tat activity is a key determinant in the establishment of latent infection. JCI Insight 2024; 10:e184711. [PMID: 39636695 PMCID: PMC11790021 DOI: 10.1172/jci.insight.184711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024] Open
Abstract
Despite effective treatment, human immunodeficiency virus (HIV) persists in optimally treated people as a transcriptionally silent provirus. Latently infected cells evade the immune system and the harmful effects of the virus, thereby creating a long-lasting reservoir of HIV. To gain a deeper insight into the molecular mechanisms of HIV latency establishment, we constructed a series of HIV-1 fluorescent reporter viruses that distinguish active versus latent infection. We unexpectedly observed that the proportion of active to latent infection depended on a limiting viral factor, which created a bottleneck that could be overcome by superinfection of the cell, T cell activation, or overexpression of HIV-1 transactivator of transcription (Tat). In addition, we found that tat and regulator of expression of virion proteins (Rev) expression levels varied among HIV molecular clones and that tat levels were an important variable in latency establishment. Lower rev levels limited viral protein expression whereas lower Tat levels or mutation of the Tat binding element promoted latent infection that was resistant to reactivation even in fully activated primary T cells. Nevertheless, we found that combinations of latency reversal agents targeting both cellular activation and histone acetylation pathways overcame deficiencies in the Tat/TAR axis of transcription regulation. These results provide additional insight into the mechanisms of latency establishment and inform Tat-centered approaches to cure HIV.
Collapse
Affiliation(s)
| | | | | | | | - Maria C. Virgilio
- Department of Computational Medicine and Bioinformatics
- Cellular and Molecular Biology Program, and
| | | | - Kathleen L. Collins
- Graduate Program in Immunology
- Department of Internal Medicine
- Cellular and Molecular Biology Program, and
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Kelly K, Bekka S, Persaud D. Research Toward a Cure for Perinatal HIV. Clin Perinatol 2024; 51:895-910. [PMID: 39487027 PMCID: PMC11939119 DOI: 10.1016/j.clp.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
In virtually all people living with HIV-1 (PLWH), including children, HIV-1 integrates and becomes latent in CD4+ T cells, forming a latent HIV-1 reservoir that current antiretroviral drugs and immune surveillance mechanisms cannot target. This latent infection in CD4+ T cells renders HIV-1 infection lifelong and incurable. Consequently, there is intense research focused on identifying therapeutic strategies to reduce and control the latent reservoir, aiming to avert a lifetime of antiretroviral therapy for PLWH. This review discusses the global efforts for children and adolescents living with HIV-1.
Collapse
Affiliation(s)
- Kristen Kelly
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Ross 1133, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Soumia Bekka
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Ross 1133, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Deborah Persaud
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1170, 720 Rutland Avenue, Baltimore, MD 21205, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Tadese BK, Hennessy F, Salmon P, Holbrook T, Prajapati G. Adherence to antiretroviral therapy and its association with quality of life among people with HIV in the United States. AIDS Care 2024; 36:1869-1881. [PMID: 39159289 DOI: 10.1080/09540121.2024.2391439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
Adherence to antiretroviral therapy (ART) is critical for people with HIV (PWH) to achieve and maintain virologic suppression and minimize drug resistance. This study aimed to use real-world data to characterize ART adherence and its effect on quality of life (QoL) in PWH. Data were drawn from the Adelphi HIV Disease Specific Programme™, a cross-sectional survey of physicians and PWH in the United States, conducted June-October 2021. Demographic and clinical characteristics, ART adherence and treatment satisfaction for PWH were reported by physicians. PWH completed standardized QoL questionnaires. Adherence level was categorized into completely, mostly and less adherent. Regression analysis was used to investigate factors associated with adherence and the association between adherence and QoL measures. Of 578 PWH, 189 (32.7%) were not completely adherent. Having AIDS-defining illnesses, anxiety/depression or being symptomatic was significantly associated with lower adherence. Reasons for poor adherence included forgetting, difficulties integrating into routine and side effects. QoL scores were significantly higher in the completely adherent group. These findings highlight the strong association between suboptimal adherence and QoL among PWH and key factors and PWH reasons that may lead to suboptimal adherence. Interventions aimed at improving the QoL of PWH by understanding these factors are warranted.
Collapse
|
15
|
Ismail SD, Sebaa S, Abrahams B, Nason MC, Mumby MJ, Dikeakos JD, Joseph SB, Moeser M, Swanstrom R, Garrett N, Williamson C, Quinn TC, Abrahams MR, Redd AD. The role of Nef in the long-term persistence of the replication-competent HIV reservoir in South African women. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621615. [PMID: 39554110 PMCID: PMC11565997 DOI: 10.1101/2024.11.01.621615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
HIV-1 Nef mediates immune evasion and viral pathogenesis in part through downregulation of cell surface cluster of differentiation 4 (CD4) and major histocompatibility complex class I (MHC-I) on infected cells. While Nef function of circulating viral populations found early in infection has been associated with reservoir size in early-treated cohorts, there is limited research on how its activity impacts reservoir size in people initiating treatment during chronic infection. In addition, there is little research on its role in persistence of viral variants during long-term antiretroviral therapy (ART). Phylogenetically distinct nef genes (n=82) with varying estimated times of reservoir entry were selected from viral outgrowth variants stimulated from the reservoir of South African women living with HIV who initiated ART during chronic infection (n=16). These nef genes were synthesized and used in a pseudovirus infection assay that measures CD4 and MHC-I downregulation via flow cytometry. Downregulation measures were compared to the size of the replication-competent viral reservoir (RC-VR), estimated by quantitative viral outgrowth assay (QVOA) at 5 years after treatment initiation, as well as proviral survival time. Maximum Nef-mediated MHC-I downregulation was significantly associated with RC-VR size (p=0.034), but this association was not observed for CD4 downregulation. Conversely, we did not find a consistent association between intraparticipant MHC-I or CD4 downregulation and the variant timing of entry into the reservoir. These data support a role for Nef-mediated MHC-I downregulation in determining RC-VR size, but more work is needed to determine Nef's role in the survival of individual viral variants over time.
Collapse
Affiliation(s)
- Sherazaan D. Ismail
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shorok Sebaa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Bianca Abrahams
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Martha C. Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Mitchell J. Mumby
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sarah B. Joseph
- Department of Microbiology & Immunology; University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew Moeser
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Swanstrom
- Department of Microbiology & Immunology; University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, University of Kwazulu-Natal, Durban, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of Kwazulu-Natal, Durban, South Africa
- National Health Laboratory Services of South Africa, Johannesburg, South Africa
| | - Thomas C. Quinn
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa-Rose Abrahams
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Andrew D. Redd
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| |
Collapse
|
16
|
Scott GY, Worku D. HIV vaccination: Navigating the path to a transformative breakthrough-A review of current evidence. Health Sci Rep 2024; 7:e70089. [PMID: 39319247 PMCID: PMC11420300 DOI: 10.1002/hsr2.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Background and Aim Human immunodeficiency virus (HIV) remains a significant global health challenge, with approximately 39 million people living with HIV worldwide as of 2022. Despite progress in antiretroviral therapy, achieving the UNAIDS "95-95-95" target to end the HIV epidemic by 2025 faces challenges, particularly in sub-Saharan Africa. The pursuit of an HIV vaccine is crucial, offering durable immunity and the potential to end the epidemic. Challenges in vaccine development include the lack of known immune correlates, suitable animal models, and HIV's high mutation rate. This study aims to explore the current state of HIV vaccine development, focusing on the challenges and innovative approaches being investigated. Methods In writing this review, we conducted a search of medical databases such as PubMed, ResearchGate, Web of Science, Google Scholar, and Scopus. The exploration of messenger ribonucleic acid vaccines, which have proven successful in the SARS-CoV-2 pandemic, presents a promising avenue for HIV vaccine development. Understanding HIV-1's ability to infiltrate various bodily compartments, establish reservoirs, and manipulate immune responses is critical. Robust cytotoxic T lymphocytes and broadly neutralizing antibodies are identified as key components, though their production faces challenges. Innovative approaches, including computational learning and advanced drug delivery systems, are being investigated to effectively activate the immune system. Results and Conclusions Discrepancies between animal models and human responses have hindered the progress of vaccine development. Despite these challenges, ongoing research is focused on overcoming these obstacles through advanced methodologies and technologies. Addressing the challenges in HIV vaccine development is paramount to realizing an effective HIV-1 vaccine and achieving the goal of ending the epidemic. The integration of innovative approaches and a deeper understanding of HIV-1's mechanisms are essential steps toward this transformative breakthrough.
Collapse
Affiliation(s)
- Godfred Yawson Scott
- Department of Medical DiagnosticsKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Dominic Worku
- Infectious Diseases DepartmentMorriston Hospital, Heol Maes EglwysMorristonUnited Kingdom
- Public Health WalesCardiffUnited Kingdom
| |
Collapse
|
17
|
Dias J, Fabozzi G, Fourati S, Chen X, Liu C, Ambrozak DR, Ransier A, Laboune F, Hu J, Shi W, March K, Maximova AA, Schmidt SD, Samsel J, Talana CA, Ernste K, Ko SH, Lucas ME, Radecki PE, Boswell KL, Nishimura Y, Todd JP, Martin MA, Petrovas C, Boritz EA, Doria-Rose NA, Douek DC, Sékaly RP, Lifson JD, Asokan M, Gama L, Mascola JR, Pegu A, Koup RA. Administration of anti-HIV-1 broadly neutralizing monoclonal antibodies with increased affinity to Fcγ receptors during acute SHIV AD8-EO infection. Nat Commun 2024; 15:7461. [PMID: 39198422 PMCID: PMC11358508 DOI: 10.1038/s41467-024-51848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through their Fab and Fc domains, respectively. So far, bNAbs with enhanced Fc effector functions in vitro have only been tested in NHPs during chronic simian-HIV (SHIV) infection. Here, we investigate the effects of administering in acute SHIVAD8-EO infection either wild-type (WT) bNAbs or bNAbs carrying the S239D/I332E/A330L (DEL) mutation, which increases binding to FcγRs. Emergence of virus in plasma and lymph nodes (LNs) was delayed by bNAb treatment and occurred earlier in monkeys given DEL bNAbs than in those given WT bNAbs, consistent with faster clearance of DEL bNAbs from plasma. DEL bNAb-treated monkeys had higher levels of circulating virus-specific IFNγ single-producing CD8+ CD69+ T cells than the other groups. In LNs, WT bNAbs were evenly distributed between follicular and extrafollicular areas, but DEL bNAbs predominated in the latter. At week 8 post-challenge, LN monocytes and NK cells from DEL bNAb-treated monkeys upregulated proinflammatory signaling pathways and LN T cells downregulated TNF signaling via NF-κB. Overall, bNAbs with increased affinity to FcγRs shape innate and adaptive cellular immunity, which may be important to consider in future strategies of passive bNAb therapy.
Collapse
Affiliation(s)
- Joana Dias
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Giulia Fabozzi
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Slim Fourati
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Xuejun Chen
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cuiping Liu
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David R Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Farida Laboune
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jianfei Hu
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wei Shi
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kylie March
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna A Maximova
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen D Schmidt
- Humoral Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jakob Samsel
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Institute for Biomedical Sciences, George Washington University, Washington, D.C., USA
| | - Chloe A Talana
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Keenan Ernste
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sung Hee Ko
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Margaret E Lucas
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierce E Radecki
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristin L Boswell
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John-Paul Todd
- Translational Research Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Malcolm A Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eli A Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Humoral Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rafick-Pierre Sékaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mangaiarkarasi Asokan
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lucio Gama
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Amarendra Pegu
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Zhou M, Yang T, Yuan M, Li X, Deng J, Wu S, Zhong Z, Lin Y, Zhang W, Xia B, Wu Y, Wang L, Chen T, Liu R, Pan T, Ma X, Li L, Liu B, Zhang H. ORC1 enhances repressive epigenetic modifications on HIV-1 LTR to promote HIV-1 latency. J Virol 2024; 98:e0003524. [PMID: 39082875 PMCID: PMC11334468 DOI: 10.1128/jvi.00035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/21/2024] [Indexed: 08/21/2024] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) reservoir consists of latently infected cells which present a major obstacle to achieving a functional cure for HIV-1. The formation and maintenance of HIV-1 latency have been extensively studied, and latency-reversing agents (LRAs) that can reactivate latent HIV-1 by targeting the involved host factors are developed; however, their clinical efficacies remain unsatisfactory. Therefore, it is imperative to identify novel targets for more potential candidates or better combinations for LRAs. In this study, we utilized CRISPR affinity purification in situ of regulatory elements system to screen for host factors associated with the HIV-1 long terminal repeat region that could potentially be involved in HIV-1 latency. We successfully identified that origin recognition complex 1 (ORC1), the largest subunit of the origin recognition complex, contributes to HIV-1 latency in addition to its function in DNA replication initiation. Notably, ORC1 is enriched on the HIV-1 promoter and recruits a series of repressive epigenetic elements, including DNMT1 and HDAC1/2, and histone modifiers, such as H3K9me3 and H3K27me3, thereby facilitating the establishment and maintenance of HIV-1 latency. Moreover, the reactivation of latent HIV-1 through ORC1 depletion has been confirmed across various latency cell models and primary CD4+ T cells from people living with HIV-1. Additionally, we comprehensively validated the properties of liquid-liquid phase separation (LLPS) of ORC1 from multiple perspectives and identified the key regions that promote the formation of LLPS. This property is important for the recruitment of ORC1 to the HIV-1 promoter. Collectively, these findings highlight ORC1 as a potential novel target implicated in HIV-1 latency and position it as a promising candidate for the development of novel LRAs. IMPORTANCE Identifying host factors involved in maintaining human immunodeficiency virus type 1 (HIV-1) latency and understanding their mechanisms prepares the groundwork to discover novel targets for HIV-1 latent infection and provides further options for the selection of latency-reversing agents in the "shock" strategy. In this study, we identified a novel role of the DNA replication factor origin recognition complex 1 (ORC1) in maintaining repressive chromatin structures surrounding the HIV-1 promoter region, thereby contributing to HIV-1 latency. This discovery expands our understanding of the non-replicative functions of the ORC complex and provides a potential therapeutic strategy for HIV-1 cure.
Collapse
Affiliation(s)
- Mo Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tao Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Yuan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyu Li
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jieyi Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shiyu Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihan Zhong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingtong Lin
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wanying Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baijin Xia
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Science), Guangzhou, China
| | - Yating Wu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Science), Guangzhou, China
| | - Lilin Wang
- Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Tao Chen
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Ruxin Liu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ting Pan
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Linghua Li
- Center for Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Pitchai FNN, Tanner EJ, Khetan N, Vasen G, Levrel C, Kumar AJ, Pandey S, Ordonez T, Barnette P, Spencer D, Jung SY, Glazier J, Thompson C, Harvey-Vera A, Son HI, Strathdee SA, Holguin L, Urak R, Burnett J, Burgess W, Busman-Sahay K, Estes JD, Hessell A, Fennessey CM, Keele BF, Haigwood NL, Weinberger LS. Engineered deletions of HIV replicate conditionally to reduce disease in nonhuman primates. Science 2024; 385:eadn5866. [PMID: 39116226 PMCID: PMC11545966 DOI: 10.1126/science.adn5866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/06/2024] [Indexed: 08/10/2024]
Abstract
Antiviral therapies with reduced frequencies of administration and high barriers to resistance remain a major goal. For HIV, theories have proposed that viral-deletion variants, which conditionally replicate with a basic reproductive ratio [R0] > 1 (termed "therapeutic interfering particles" or "TIPs"), could parasitize wild-type virus to constitute single-administration, escape-resistant antiviral therapies. We report the engineering of a TIP that, in rhesus macaques, reduces viremia of a highly pathogenic model of HIV by >3log10 following a single intravenous injection. Animal lifespan was significantly extended, TIPs conditionally replicated and were continually detected for >6 months, and sequencing data showed no evidence of viral escape. A single TIP injection also suppressed virus replication in humanized mice and cells from persons living with HIV. These data provide proof of concept for a potential new class of single-administration antiviral therapies.
Collapse
Affiliation(s)
- Fathima N. Nagoor Pitchai
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Elizabeth J. Tanner
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Neha Khetan
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Gustavo Vasen
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Clara Levrel
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Arjun J. Kumar
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Tracy Ordonez
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Philip Barnette
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - David Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
- Absci Corporation, Vancouver, WA, USA
| | - Seung-Yong Jung
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
| | - Joshua Glazier
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
| | - Cassandra Thompson
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alicia Harvey-Vera
- Global Health Sciences, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- US-Mexico Border Health Commission, Tijuana, Mexico
| | - Hye-In Son
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
| | - Steffanie A. Strathdee
- Global Health Sciences, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Leo Holguin
- Global Health Sciences, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ryan Urak
- Center for Gene Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - John Burnett
- Center for Gene Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - William Burgess
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
- Faculty of Health, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- School of Health and Biomedical Sciences College of Science, Engineering and Health RMIT University, Melbourne, Australia
| | - Ann Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nancy L. Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Leor S. Weinberger
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
20
|
Yoosefian M, Sabaghian H, Kermanshahaninezhad SO. The interplay of COVID-19 and HIV: A comprehensive review of clinical outcomes and demographic associations. J Natl Med Assoc 2024; 116:362-377. [PMID: 39138033 DOI: 10.1016/j.jnma.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
AIM The COVID-19 pandemic posed unprecedented challenges to global healthcare, particularly affecting respiratory systems and impacting individuals with pre-existing conditions, including those with HIV. METHOD HIV's impact on clinical outcomes was assessed in four Statistical Population, synchronized with control groups. The study also explored the influence of SARS-CoV-2 and COVID-19 treatments. Ultimately, a comparison was drawn between patients with and without HIV. RESULTS In the first Statistical Population of COVID-19 patients with HIV, predominantly African-American men with risk factors such as obesity, hypertension, and diabetes were present. Diagnostic results showed no significant differences between the two groups. In the second Statistical Population, half of the patients were asymptomatic, with diagnoses mostly based on clinical symptoms; 6 individuals developed severe respiratory illness. In the third Statistical Population, 81 % of patients were treated at home, and all hospitalized patients had CD4+ lymphocyte counts above 350 cells/mm³. Most patients improved, with fatalities attributed to comorbid conditions. In the fourth Statistical Population, HIV patients were less likely to benefit from antimicrobial drugs, and mortality was higher, though synchronized analysis did not reveal significant differences. CONCLUSION HIV patients are more susceptible to COVID-19, but the direct impact is less significant than other factors. Additional factors contribute to increased risk, while early improvement, accurate diagnosis, and intensive care reduce fatalities.
Collapse
Affiliation(s)
- Mehdi Yoosefian
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran; Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran.
| | - Hanieh Sabaghian
- Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran
| | | |
Collapse
|
21
|
Chou TC, Maggirwar NS, Marsden MD. HIV Persistence, Latency, and Cure Approaches: Where Are We Now? Viruses 2024; 16:1163. [PMID: 39066325 PMCID: PMC11281696 DOI: 10.3390/v16071163] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The latent reservoir remains a major roadblock to curing human immunodeficiency virus (HIV) infection. Currently available antiretroviral therapy (ART) can suppress active HIV replication, reduce viral loads to undetectable levels, and halt disease progression. However, antiretroviral drugs are unable to target cells that are latently infected with HIV, which can seed viral rebound if ART is stopped. Consequently, a major focus of the field is to study the latent viral reservoir and develop safe and effective methods to eliminate it. Here, we provide an overview of the major mechanisms governing the establishment and maintenance of HIV latency, the key challenges posed by latent reservoirs, small animal models utilized to study HIV latency, and contemporary cure approaches. We also discuss ongoing efforts to apply these approaches in combination, with the goal of achieving a safe, effective, and scalable cure for HIV that can be extended to the tens of millions of people with HIV worldwide.
Collapse
Affiliation(s)
- Tessa C. Chou
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
| | - Nishad S. Maggirwar
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
| | - Matthew D. Marsden
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
- Department of Medicine, Division of Infectious Disease, School of Medicine, University of California, Irvine, CA 92617, USA
| |
Collapse
|
22
|
Tolomeo M, Cascio A. The Complex Dysregulations of CD4 T Cell Subtypes in HIV Infection. Int J Mol Sci 2024; 25:7512. [PMID: 39062756 PMCID: PMC11276885 DOI: 10.3390/ijms25147512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection remains an important global public health problem. About 40 million people are infected with HIV, and this infection caused about 630,000 deaths in 2022. The hallmark of HIV infection is the depletion of CD4+ T helper lymphocytes (Th cells). There are at least seven different Th subtypes, and not all are the main targets of HIV. Moreover, the effect of the virus in a specific subtype can be completely different from that of the others. Although the most compromised Th subtype in HIV infection is Th17, HIV can induce important dysregulations in other subtypes, such as follicular Th (Tfh) cells and regulatory Th cells (Treg cells or Tregs). Several studies have shown that HIV can induce an increase in the immunosuppressive activity of Tregs without causing a significant reduction in their numbers, at least in the early phase of infection. The increased activity of this Th subtype seems to play an important role in determining the immunodeficiency status of HIV-infected patients, and Tregs may represent a new target for innovative anti-HIV therapies, including the so-called "Kick and Kill" therapeutic method whose goal is the complete elimination of the virus and the healing of HIV infection. In this review, we report the most important findings on the effects of HIV on different CD4+ T cell subtypes, the molecular mechanisms by which the virus impairs the functions of these cells, and the implications for new anti-HIV therapeutic strategies.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| |
Collapse
|
23
|
Phan T, Conway JM, Pagane N, Kreig J, Sambaturu N, Iyaniwura S, Li JZ, Ribeiro RM, Ke R, Perelson AS. Understanding early HIV-1 rebound dynamics following antiretroviral therapy interruption: The importance of effector cell expansion. PLoS Pathog 2024; 20:e1012236. [PMID: 39074163 PMCID: PMC11309407 DOI: 10.1371/journal.ppat.1012236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/08/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Most people living with HIV-1 experience rapid viral rebound once antiretroviral therapy is interrupted; however, a small fraction remain in viral remission for an extended duration. Understanding the factors that determine whether viral rebound is likely after treatment interruption can enable the development of optimal treatment regimens and therapeutic interventions to potentially achieve a functional cure for HIV-1. We built upon the theoretical framework proposed by Conway and Perelson to construct dynamic models of virus-immune interactions to study factors that influence viral rebound dynamics. We evaluated these models using viral load data from 24 individuals following antiretroviral therapy interruption. The best-performing model accurately captures the heterogeneity of viral dynamics and highlights the importance of the effector cell expansion rate. Our results show that post-treatment controllers and non-controllers can be distinguished based on the effector cell expansion rate in our models. Furthermore, these results demonstrate the potential of using dynamic models incorporating an effector cell response to understand early viral rebound dynamics post-antiretroviral therapy interruption.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jessica M. Conway
- Department of Mathematics, Pennsylvania State University, College Township, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, College Township, Pennsylvania, United States of America
| | - Nicole Pagane
- Program in Computational and Systems Biology, Massachusetts Institute of Technology; Cambridge, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, Massachusetts, United States of America
| | - Jasmine Kreig
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Narmada Sambaturu
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Sarafa Iyaniwura
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jonathan Z. Li
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ruian Ke
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
24
|
Molnar SM, Kim Y, Wieczorek L, Williams A, Patil KA, Khatkar P, Santos MF, Mensah G, Lorico A, Polonis VR, Kashanchi F. Extracellular vesicle isolation methods identify distinct HIV-1 particles released from chronically infected T-cells. J Extracell Vesicles 2024; 13:e12476. [PMID: 38978287 PMCID: PMC11231049 DOI: 10.1002/jev2.12476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/16/2024] [Indexed: 07/10/2024] Open
Abstract
The current study analyzed the intersecting biophysical, biochemical, and functional properties of extracellular particles (EPs) with the human immunodeficiency virus type-1 (HIV-1) beyond the currently accepted size range for HIV-1. We isolated five fractions (Frac-A through Frac-E) from HIV-infected cells by sequential differential ultracentrifugation (DUC). All fractions showed a heterogeneous size distribution with median particle sizes greater than 100 nm for Frac-A through Frac-D but not for Frac-E, which contained small EPs with an average size well below 50 nm. Synchronized and released cultures contained large infectious EPs in Frac-A, with markers of amphisomes and viral components. Additionally, Frac-E uniquely contained EPs positive for CD63, HSP70, and HIV-1 proteins. Despite its small average size, Frac-E contained membrane-protected viral integrase, detectable only after SDS treatment, indicating that it is enclosed in vesicles. Single particle analysis with dSTORM further supported these findings as CD63, HIV-1 integrase, and the viral surface envelope (Env) glycoprotein (gp) colocalized on the same Frac-E particles. Surprisingly, Frac-E EPs were infectious, and infectivity was significantly reduced by immunodepleting Frac-E with anti-CD63, indicating the presence of this protein on the surface of infectious small EPs in Frac-E. To our knowledge, this is the first time that extracellular vesicle (EV) isolation methods have identified infectious small HIV-1 particles (smHIV-1) that are under 50 nm. Collectively, our data indicate that the crossroads between EPs and HIV-1 potentially extend beyond the currently accepted biophysical properties of HIV-1, which may have further implications for viral pathogenesis.
Collapse
Affiliation(s)
- Sebastian M. Molnar
- Military HIV‐1 Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Lindsay Wieczorek
- Military HIV‐1 Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Anastasia Williams
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Kajal Ashok Patil
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Mark F. Santos
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Gifty Mensah
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Aurelio Lorico
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Victoria R. Polonis
- Military HIV‐1 Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| |
Collapse
|
25
|
Mdluli T, Slike BM, Curtis DJ, Shubin Z, Tran U, Li Y, Dussupt V, Mendez-Rivera L, Pinyakorn S, Stieh DJ, Tomaka FL, Schuitemaker H, Pau MG, Colby DJ, Kroon E, Sacdalan C, de Souza M, Phanupak N, Hsu DC, Ananworanich J, Ake JA, Trautmann L, Vasan S, Robb ML, Krebs SJ, Paquin-Proulx D, Rolland M. Mosaic vaccine-induced antibody-dependent cellular phagocytosis associated with delayed HIV-1 viral load rebound post treatment interruption. Cell Rep 2024; 43:114344. [PMID: 38850529 PMCID: PMC11298786 DOI: 10.1016/j.celrep.2024.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/19/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024] Open
Abstract
A heterologous Ad26/MVA vaccine was given prior to an analytic treatment interruption (ATI) in people living with HIV-1 (mainly CRF01_AE) who initiated antiretroviral treatment (ART) during acute HIV-1. We investigate the impact of Ad26/MVA vaccination on antibody (Ab)-mediated immune responses and their effect on time to viral rebound. The vaccine mainly triggers vaccine-matched binding Abs while, upon viral rebound post ATI, infection-specific CRF01_AE binding Abs increase in all participants. Binding Abs are not associated with time to viral rebound. The Ad26/MVA mosaic vaccine profile consists of correlated non-CRF01_AE binding Ab and Fc effector features, with strong Ab-dependent cellular phagocytosis (ADCP) responses. CRF01_AE-specific ADCP responses (measured either prior to or post ATI) are significantly higher in individuals with delayed viral rebound. Our results suggest that vaccines eliciting cross-reactive responses with circulating viruses in a target population could be beneficial and that ADCP responses may play a role in viral control post treatment interruption.
Collapse
Affiliation(s)
- Thembi Mdluli
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Bonnie M Slike
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Daniel J Curtis
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Zhanna Shubin
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ursula Tran
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Yifan Li
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Vincent Dussupt
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Letzibeth Mendez-Rivera
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Suteeraporn Pinyakorn
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Daniel J Stieh
- Janssen Vaccines & Prevention BV, 2333 Leiden CN, the Netherlands
| | | | | | - Maria G Pau
- Janssen Vaccines & Prevention BV, 2333 Leiden CN, the Netherlands
| | - Donn J Colby
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; SEARCH, Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Eugène Kroon
- SEARCH, Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Carlo Sacdalan
- SEARCH, Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Mark de Souza
- SEARCH, Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Nittaya Phanupak
- SEARCH, Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Denise C Hsu
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Jintanat Ananworanich
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Julie A Ake
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Lydie Trautmann
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Sandhya Vasan
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Merlin L Robb
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Shelly J Krebs
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Dominic Paquin-Proulx
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Morgane Rolland
- US Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.
| |
Collapse
|
26
|
Immonen TT, Fennessey CM, Lipkey L, Newman L, Macairan A, Bosche M, Waltz N, Del Prete GQ, Lifson JD, Keele BF. No evidence for ongoing replication on ART in SIV-infected macaques. Nat Commun 2024; 15:5093. [PMID: 38877003 PMCID: PMC11178840 DOI: 10.1038/s41467-024-49369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
The capacity of HIV-1 to replicate during optimal antiretroviral therapy (ART) is challenging to assess directly. To gain greater sensitivity to detect evolution on ART, we used a nonhuman primate (NHP) model providing precise control over the level of pre-ART evolution and more comprehensive analyses than are possible with clinical samples. We infected 21 rhesus macaques (RMs) with the barcoded virus SIVmac239M and initiated ART early to minimize baseline genetic diversity. RMs were treated for 285-1200 days. We used several tests of molecular evolution to compare 1352 near-full-length (nFL) SIV DNA single genome sequences from PBMCs, lymph nodes, and spleen obtained near the time of ART initiation and those present after long-term ART, none of which showed significant changes to the SIV DNA population during ART in any animal. To investigate the possibility of ongoing replication in unsampled putative tissue sanctuaries during ART, we discontinued treatment in four animals and confirmed that none of the 336 nFL SIV RNA sequences obtained from rebound plasma viremia showed evidence of evolution. The rigorous nature of our analyses reinforced the emerging consensus of a lack of appreciable ongoing replication on effective ART and validates the relevance of this NHP model for cure studies.
Collapse
Affiliation(s)
- Taina T Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Leslie Lipkey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Laura Newman
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Agatha Macairan
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Marjorie Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nora Waltz
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
27
|
Blazkova J, Whitehead EJ, Schneck R, Shi V, Justement JS, Rai MA, Kennedy BD, Manning MR, Praiss L, Gittens K, Wender PA, Oguz C, Lack J, Moir S, Chun TW. Immunologic and Virologic Parameters Associated With Human Immunodeficiency Virus (HIV) DNA Reservoir Size in People With HIV Receiving Antiretroviral Therapy. J Infect Dis 2024; 229:1770-1780. [PMID: 38128541 PMCID: PMC11492273 DOI: 10.1093/infdis/jiad595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND A better understanding of the dynamics of human immunodeficiency virus (HIV) reservoirs in CD4+ T cells of people with HIV (PWH) receiving antiretroviral therapy (ART) is crucial for developing therapies to eradicate the virus. METHODS We conducted a study involving 28 aviremic PWH receiving ART with high and low levels of HIV DNA. We analyzed immunologic and virologic parameters and their association with the HIV reservoir size. RESULTS The frequency of CD4+ T cells carrying HIV DNA was associated with higher pre-ART plasma viremia, lower pre-ART CD4+ T-cell counts, and lower pre-ART CD4/CD8 ratios. During ART, the High group maintained elevated levels of intact HIV proviral DNA, cell-associated HIV RNA, and inducible virion-associated HIV RNA. HIV sequence analysis showed no evidence for preferential accumulation of defective proviruses nor higher frequencies of clonal expansion in the High versus Low group. Phenotypic and functional T-cell analyses did not show enhanced immune-mediated virologic control in the Low versus High group. Of considerable interest, pre-ART innate immunity was significantly higher in the Low versus High group. CONCLUSIONS Our data suggest that innate immunity at the time of ART initiation may play an important role in modulating the dynamics and persistence of viral reservoirs in PWH.
Collapse
Affiliation(s)
- Jana Blazkova
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Emily J Whitehead
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Rachel Schneck
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Victoria Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - J Shawn Justement
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - M Ali Rai
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Brooke D Kennedy
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Maegan R Manning
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Lauren Praiss
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Kathleen Gittens
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland
| | - Paul A Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, California
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| |
Collapse
|
28
|
Joy J, Gervassi A, Chen L, Kirshenbaum B, Styrchak S, Ko D, McLaughlin S, Shao D, Kosmider E, Edlefsen PT, Maenza J, Collier AC, Mullins JI, Horton H, Frenkel LM. Antigen specificities and proviral integration sites differ in HIV-infected cells by timing of antiretroviral treatment initiation. J Clin Invest 2024; 134:e159569. [PMID: 38833307 PMCID: PMC11245156 DOI: 10.1172/jci159569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Despite effective antiretroviral therapy (ART), persons living with HIV harbor reservoirs of persistently infected CD4+ cells, which constitute a barrier to cure. Initiation of ART during acute infection reduces the size of the HIV reservoir, and we hypothesized that in addition, it would favor integration of proviruses in HIV-specific CD4+ T cells, while initiation of ART during chronic HIV infection would favor relatively more proviruses in herpesvirus-specific cells. We further hypothesized that proviruses in acute ART initiators would be integrated into antiviral genes, whereas integration sites (ISs) in chronic ART initiators would favor genes associated with cell proliferation and exhaustion. We found that the HIV DNA distribution across HIV-specific versus herpesvirus-specific CD4+ T cells was as hypothesized. HIV ISs in acute ART initiators were significantly enriched in gene sets controlling lipid metabolism and HIF-1α-mediated hypoxia, both metabolic pathways active in early HIV infection. Persistence of these infected cells during prolonged ART suggests a survival advantage. ISs in chronic ART initiators were enriched in a gene set controlling EZH2 histone methylation, and methylation has been associated with diminished long terminal repeat transcription. These differences that we found in antigen specificities and IS distributions within HIV-infected cells might be leveraged in designing cure strategies tailored to the timing of ART initiation.
Collapse
Affiliation(s)
- Jaimy Joy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Ana Gervassi
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lennie Chen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | - Sheila Styrchak
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Daisy Ko
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Sherry McLaughlin
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Danica Shao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ewelina Kosmider
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Medicine
- Department of Global Health
| | - Helen Horton
- Center for Infectious Disease Research, Seattle, Washington, USA
| | - Lisa M. Frenkel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Medicine
- Department of Global Health
- Department of Pediatrics, and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
29
|
Alagaratnam J, Stöhr W, Hamlyn E, Porter K, Toombs J, Heslegrave A, Zetterberg H, Gisslén M, Underwood J, Schechter M, Kaleebu P, Tambussi G, Kinloch S, Miro JM, Kelleher AD, Babiker A, Frater J, Winston A, Fidler S. Impact of interrupting antiretroviral therapy started during primary HIV-1 infection on plasma neurofilament light chain protein, a marker of neuronal injury: The SPARTAC trial. J Virus Erad 2024; 10:100381. [PMID: 38988673 PMCID: PMC11234014 DOI: 10.1016/j.jve.2024.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Objective Antiretroviral therapy (ART)-conferred suppression of HIV replication limits neuronal injury and inflammation. ART interruption tests efficacy in HIV cure trials and viral rebound after ART interruption may induce neuronal injury. We investigated the impact of protocol-defined ART interruption, commenced during primary HIV-1 infection (PHI) on a biomarker of neuro-axonal injury (neurofilament light protein (NfL)), and its associations with inflammation (D-dimer and interleukin-6 (IL-6)) and HIV-1 reservoir size (total HIV-1 DNA). Design Retrospective study measuring plasma NfL in 83 participants enrolled in SPARTAC randomised to receive 48-weeks ART initiated during PHI, followed by ART interruption. Methods NfL (Simoa immunoassay, Quanterix™) was measured before ART, after 48 weeks on ART, and 12 weeks after stopping ART. Plasma D-dimer and IL-6, and total HIV-1 DNA in peripheral CD4+ T-cells results were available in a subset of participants. Longitudinal NfL changes were assessed using mixed models, and associations with clinical and laboratory parameters using linear regression. Results NfL decreased following 48-weeks ART (geometric mean 6.9 to 5.8 pg/mL, p = 0.006) with no further significant change up to 12-weeks post-stopping ART despite viral rebound in the majority of participants (median 1.7 to 3.9 plasma HIV-1 RNA log10 copies/mL). Higher baseline NfL was independently associated with higher plasma HIV-1 RNA (p = 0.020) and older age (p = 0.002). While NfL was positively associated with D-dimer (n = 48; p = 0.002), there was no significant association with IL-6 (n = 48) or total HIV-1 DNA (n = 51). Conclusions Using plasma NfL as a surrogate marker, a decrease in neuro-axonal injury was observed in a cohort of participants following ART initiation during PHI, with no evidence of neuro-axonal injury rebound following ART interruption for up to 12 weeks, despite viral rebound in the majority of participants.
Collapse
Affiliation(s)
- Jasmini Alagaratnam
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Genitourinary Medicine/ HIV Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Wolfgang Stöhr
- Medical Research Council Clinical Trials Unit at University College London, London, United Kingdom
| | - Elizabeth Hamlyn
- Caldecot Centre, Kings College Hospital NHS Foundation Trust, London, United Kingdom
| | - Kholoud Porter
- Institute for Global Health, University College London, London, United Kingdom
| | - Jamie Toombs
- UK Dementia Research Institute at University College London, London, United Kingdom
| | - Amanda Heslegrave
- UK Dementia Research Institute at University College London, London, United Kingdom
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Jonathan Underwood
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mauro Schechter
- Projeto Praça Onze, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Entebbe, Uganda
| | | | - Sabine Kinloch
- Department of Infection and Immunity, Royal Free Hospital, Pond Street, London, United Kingdom
| | - Jose M Miro
- Infectious Diseases Service, Hospital Clinic - IDIBAPS. University of Barcelona, Barcelona, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Abdel Babiker
- Medical Research Council Clinical Trials Unit at University College London, London, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Alan Winston
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Genitourinary Medicine/ HIV Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Sarah Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Genitourinary Medicine/ HIV Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
30
|
Singh S, Deshetty UM, Ray S, Oladapo A, Horanieh E, Buch S, Periyasamy P. Non-Coding RNAs in HIV Infection, NeuroHIV, and Related Comorbidities. Cells 2024; 13:898. [PMID: 38891030 PMCID: PMC11171711 DOI: 10.3390/cells13110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
NeuroHIV affects approximately 30-60% of people living with HIV-1 (PLWH) and is characterized by varying degrees of cognitive impairments, presenting a multifaceted challenge, the underlying cause of which is chronic, low-level neuroinflammation. Such smoldering neuroinflammation is likely an outcome of lifelong reliance on antiretrovirals coupled with residual virus replication in the brains of PLWH. Despite advancements in antiretroviral therapeutics, our understanding of the molecular mechanism(s) driving inflammatory processes in the brain remains limited. Recent times have seen the emergence of non-coding RNAs (ncRNAs) as critical regulators of gene expression, underlying the neuroinflammatory processes in HIV infection, NeuroHIV, and their associated comorbidities. This review explores the role of various classes of ncRNAs and their regulatory functions implicated in HIV infection, neuropathogenesis, and related conditions. The dysregulated expression of ncRNAs is known to exacerbate the neuroinflammatory responses, thus contributing to neurocognitive impairments in PLWH. This review also discusses the diagnostic and therapeutic potential of ncRNAs in HIV infection and its comorbidities, suggesting their utility as non-invasive biomarkers and targets for modulating neuroinflammatory pathways. Understanding these regulatory roles could pave the way for novel diagnostic strategies and therapeutic interventions in the context of HIV and its comorbidities.
Collapse
Affiliation(s)
| | | | | | | | | | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (S.S.); (U.M.D.); (S.R.); (A.O.); (E.H.)
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (S.S.); (U.M.D.); (S.R.); (A.O.); (E.H.)
| |
Collapse
|
31
|
Jain A, Canepa GE, Liou ML, Fledderman EL, Chapoval AI, Xiao L, Mukherjee I, Balogun BM, Huaman-Vergara H, Galvin JA, Kumar PN, Bordon J, Conant MA, Boyle JS. Multiple treatment interruptions and protecting HIV-specific CD4 T cells enable durable CD8 T cell response and viral control. Front Med (Lausanne) 2024; 11:1342476. [PMID: 38808136 PMCID: PMC11130509 DOI: 10.3389/fmed.2024.1342476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Human Immunodeficiency Virus (HIV) remains a global health challenge, and novel approaches to improve HIV control are significantly important. The cell and gene therapy product AGT103-T was previously evaluated (NCT04561258) for safety, immunogenicity, and persistence in seven patients for up to 180 days post infusion. In this study, we sought to investigate the impact of AGT103-T treatment upon analytical treatment interruptions (ATIs). Six patients previously infused with AGT103-T were enrolled into an ATI study (NCT05540964), wherein they suspended their antiretroviral therapy (ART) until their viral load reached 100,000 copies/mL in two successive visits, or their CD4 count was reduced to below 300 cells/μL. During the ATI, all patients experienced viral rebound followed by a notable expansion in HIV specific immune responses. The participants demonstrated up to a five-fold increase in total CD8 counts over baseline approximately 1-2 weeks followed by the peak viremia. This coincided with a rise in HIV-specific CD8 T cells, which was attributed to the increase in antigen availability and memory recall. Thus, the protocol was amended to include a second ATI with the first ATI serving as an "auto-vaccination." Four patients participated in a second ATI. During the second ATI, the Gag-specific CD8 T cells were either maintained or rose in response to viral rebound and the peak viremia was substantially decreased. The patients reached a viral set point ranging from 7,000 copies/mL to 25,000 copies/mL. Upon resuming ART, all participants achieved viral control more rapidly than during the first ATI, with CD4 counts remaining within 10% of baseline measurements and without any serious adverse events or evidence of drug resistance. In summary, the rise in CD8 counts and the viral suppression observed in 100% of the study participants are novel observations demonstrating that AGT103-T gene therapy when combined with multiple ATIs, is a safe and effective approach for achieving viral control, with viral setpoints consistently below 25,000 copies/mL and relatively stable CD4 T cell counts. We conclude that HIV cure-oriented cell and gene therapy trials should include ATI and may benefit from designs that include multiple ATIs when induction of CD8 T cells is required to establish viral control.
Collapse
Affiliation(s)
- Anshika Jain
- American Gene Technologies International, Inc., Rockville, MD, United States
| | - Gaspar E. Canepa
- American Gene Technologies International, Inc., Rockville, MD, United States
| | - Mei-Ling Liou
- American Gene Technologies International, Inc., Rockville, MD, United States
| | - Emily L. Fledderman
- American Gene Technologies International, Inc., Rockville, MD, United States
| | - Andrei I. Chapoval
- American Gene Technologies International, Inc., Rockville, MD, United States
| | - Lingzhi Xiao
- American Gene Technologies International, Inc., Rockville, MD, United States
| | - Ipsita Mukherjee
- American Gene Technologies International, Inc., Rockville, MD, United States
| | - Bushirat M. Balogun
- American Gene Technologies International, Inc., Rockville, MD, United States
| | | | - Jeffrey A. Galvin
- American Gene Technologies International, Inc., Rockville, MD, United States
| | - Princy N. Kumar
- Division of Infectious Diseases and Tropical Medicine, Georgetown University School of Medicine, Washington, DC, United States
| | - José Bordon
- Washington Health Institute, Washington, DC, United States
| | - Marcus A. Conant
- American Gene Technologies International, Inc., Rockville, MD, United States
| | - Jefferey S. Boyle
- American Gene Technologies International, Inc., Rockville, MD, United States
| |
Collapse
|
32
|
Phan T, Conway JM, Pagane N, Kreig J, Sambaturu N, Iyaniwura S, Li JZ, Ribeiro RM, Ke R, Perelson AS. Understanding early HIV-1 rebound dynamics following antiretroviral therapy interruption: The importance of effector cell expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592318. [PMID: 38746144 PMCID: PMC11092759 DOI: 10.1101/2024.05.03.592318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Most people living with HIV-1 experience rapid viral rebound once antiretroviral therapy is interrupted; however, a small fraction remain in viral remission for an extended duration. Understanding the factors that determine whether viral rebound is likely after treatment interruption can enable the development of optimal treatment regimens and therapeutic interventions to potentially achieve a functional cure for HIV-1. We built upon the theoretical framework proposed by Conway and Perelson to construct dynamic models of virus-immune interactions to study factors that influence viral rebound dynamics. We evaluated these models using viral load data from 24 individuals following antiretroviral therapy interruption. The best-performing model accurately captures the heterogeneity of viral dynamics and highlights the importance of the effector cell expansion rate. Our results show that post-treatment controllers and non-controllers can be distinguished based on the effector cell expansion rate in our models. Furthermore, these results demonstrate the potential of using dynamic models incorporating an effector cell response to understand early viral rebound dynamics post-antiretroviral therapy interruption.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jessica M Conway
- Department of Mathematics, Pennsylvania State University, College Township, PA, USA
- Department of Biology, Pennsylvania State University, College Township, PA, USA
| | - Nicole Pagane
- Program in Computational and Systems Biology, Massachusetts Institute of Technology; Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
| | - Jasmine Kreig
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Narmada Sambaturu
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Sarafa Iyaniwura
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jonathan Z Li
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
33
|
Lee SK, Sondgeroth A, Xu Y, Warren J, Zhou S, Gilleece M, Hauser BM, Gay CL, Kuruc JD, Archin NM, Eron JJ, Margolis DM, Goonetilleke N, Swanstrom R. Sequence Analysis of Inducible, Replication-Competent Virus Reveals No Evidence of HIV-1 Evolution During Suppressive Antiviral Therapy, Indicating a Lack of Ongoing Viral Replication. Open Forum Infect Dis 2024; 11:ofae212. [PMID: 38756763 PMCID: PMC11097118 DOI: 10.1093/ofid/ofae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 05/18/2024] Open
Abstract
Background Persistence of HIV-1 in reservoirs necessitates life-long antiretroviral therapy (ART). There are conflicting data using genetic analysis on whether persistence includes an actively replicating reservoir with strong evidence arguing against replication. Methods We investigated the possibility of ongoing viral evolution during suppressive therapy by comparing near full-length viral genomic sequences using phylogenetic analysis of viral RNA in plasma before therapy initiation early after infection and from virus induced to grow from the latent reservoir after a period of suppressive ART. We also focused our analysis on evidence of selective pressure by drugs in the treatment regimen and at sites of selective pressure by the adaptive immune response. Results Viral genomes induced to grow from the latent reservoir from 10 participants with up to 9 years on suppressive ART were highly similar to the nearly homogeneous sequences in plasma taken early after infection at ART initiation. This finding was consistent across the entire genome and when the analysis focused on sites targeted by the drug regimen and by host selective pressure of antibody and cytotoxic T cells. The lack of viral evolution away from pretherapy sequences in spite of demonstrated selective pressure is most consistent with a lack of viral replication during reservoir persistence. Conclusions These results do not support ongoing viral replication as a mechanism of HIV-1 persistence during suppressive ART.
Collapse
Affiliation(s)
- Sook-Kyung Lee
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amy Sondgeroth
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yinyan Xu
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joanna Warren
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maria Gilleece
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Blake M Hauser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Cynthia L Gay
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - JoAnn D Kuruc
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nancie M Archin
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nilu Goonetilleke
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
34
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
35
|
Le Buanec H, Schiavon V, Merandet M, How-Kit A, Song H, Bergerat D, Fombellida-Lopez C, Bensussan A, Bouaziz JD, Burny A, Darcis G, Sajadi MM, Kottilil S, Zagury D, Gallo RC. IFNα induces CCR5 in CD4 + T cells of HIV patients causing pathogenic elevation. COMMUNICATIONS MEDICINE 2024; 4:52. [PMID: 38504093 PMCID: PMC10951336 DOI: 10.1038/s43856-024-00453-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Among people living with HIV, elite controllers (ECs) maintain an undetectable viral load, even without receiving anti-HIV therapy. In non-EC patients, this therapy leads to marked improvement, including in immune parameters, but unlike ECs, non-EC patients still require ongoing treatment and experience co-morbidities. In-depth, comprehensive immune analyses comparing EC and treated non-EC patients may reveal subtle, consistent differences. This comparison could clarify whether elevated circulating interferon-alpha (IFNα) promotes widespread immune cell alterations and persists post-therapy, furthering understanding of why non-EC patients continue to need treatment. METHODS Levels of IFNα in HIV-infected EC and treated non-EC patients were compared, along with blood immune cell subset distribution and phenotype, and functional capacities in some cases. In addition, we assessed mechanisms potentially associated with IFNα overload. RESULTS Treatment of non-EC patients results in restoration of IFNα control, followed by marked improvement in distribution numbers, phenotypic profiles of blood immune cells, and functional capacity. These changes still do not lead to EC status, however, and IFNα can induce these changes in normal immune cell counterparts in vitro. Hypothesizing that persistent alterations could arise from inalterable effects of IFNα at infection onset, we verified an IFNα-related mechanism. The protein induces the HIV coreceptor CCR5, boosting HIV infection and reducing the effects of anti-HIV therapies. EC patients may avoid elevated IFNα following on infection with a lower inoculum of HIV or because of some unidentified genetic factor. CONCLUSIONS Early control of IFNα is essential for better prognosis of HIV-infected patients.
Collapse
Affiliation(s)
- Hélène Le Buanec
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Valérie Schiavon
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Marine Merandet
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | | | - Hongshuo Song
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - David Bergerat
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Céline Fombellida-Lopez
- Laboratory of Infectious Diseases, GIGA-I3, GIGA-Institute University of Liege, 4000, Liege, Belgium
| | - Armand Bensussan
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Jean-David Bouaziz
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
- Dermatology Department, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Arsène Burny
- Laboratory of Molecular Biology, Gembloux Agrobiotech, University of Liège, Liège, Belgium
- Global Virus Network, Baltimore, MD, 21201, USA
| | - Gilles Darcis
- Laboratory of Infectious Diseases, GIGA-I3, GIGA-Institute University of Liege, 4000, Liege, Belgium
| | - Mohammad M Sajadi
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
- Global Virus Network, Baltimore, MD, 21201, USA
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shyamasundaran Kottilil
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
- Global Virus Network, Baltimore, MD, 21201, USA
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | | | - Robert C Gallo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
36
|
Horvath RM, Brumme ZL, Sadowski I. Small molecule inhibitors of transcriptional cyclin-dependent kinases impose HIV-1 latency, presenting "block and lock" treatment strategies. Antimicrob Agents Chemother 2024; 68:e0107223. [PMID: 38319085 PMCID: PMC10923280 DOI: 10.1128/aac.01072-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Current antiretroviral therapy for HIV-1 infection does not represent a cure for infection as viral rebound inevitably occurs following discontinuation of treatment. The "block and lock" therapeutic strategy is intended to enforce proviral latency and durably suppress viremic reemergence in the absence of other intervention. The transcription-associated cyclin-dependent protein kinases (tCDKs) are required for expression from the 5´ HIV-1 long-terminal repeat, but the therapeutic potential of inhibiting these kinases for enforcing HIV-1 latency has not been characterized. Here, we expanded previous observations to directly compare the effect of highly selective small molecule inhibitors of CDK7 (YKL-5-124), CDK9 (LDC000067), and CDK8/19 (Senexin A), and found each of these prevented HIV-1 provirus expression at concentrations that did not cause cell toxicity. Inhibition of CDK7 caused cell cycle arrest, whereas CDK9 and CDK8/19 inhibitors did not, and could be continuously administered to establish proviral latency. Upon discontinuation of drug administration, HIV immediately rebounded in cells that had been treated with the CDK9 inhibitor, while proviral latency persisted for several days in cells that had been treated with CDK8/19 inhibitors. These results identify the mediator kinases CDK8/CDK19 as potential "block and lock" targets for therapeutic suppression of HIV-1 provirus expression.
Collapse
Affiliation(s)
- Riley M. Horvath
- Department of Biochemistry and Molecular Biology Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Hasan J, Bok S. Plasmonic Fluorescence Sensors in Diagnosis of Infectious Diseases. BIOSENSORS 2024; 14:130. [PMID: 38534237 DOI: 10.3390/bios14030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
The increasing demand for rapid, cost-effective, and reliable diagnostic tools in personalized and point-of-care medicine is driving scientists to enhance existing technology platforms and develop new methods for detecting and measuring clinically significant biomarkers. Humanity is confronted with growing risks from emerging and recurring infectious diseases, including the influenza virus, dengue virus (DENV), human immunodeficiency virus (HIV), Ebola virus, tuberculosis, cholera, and, most notably, SARS coronavirus-2 (SARS-CoV-2; COVID-19), among others. Timely diagnosis of infections and effective disease control have always been of paramount importance. Plasmonic-based biosensing holds the potential to address the threat posed by infectious diseases by enabling prompt disease monitoring. In recent years, numerous plasmonic platforms have risen to the challenge of offering on-site strategies to complement traditional diagnostic methods like polymerase chain reaction (PCR) and enzyme-linked immunosorbent assays (ELISA). Disease detection can be accomplished through the utilization of diverse plasmonic phenomena, such as propagating surface plasmon resonance (SPR), localized SPR (LSPR), surface-enhanced Raman scattering (SERS), surface-enhanced fluorescence (SEF), surface-enhanced infrared absorption spectroscopy, and plasmonic fluorescence sensors. This review focuses on diagnostic methods employing plasmonic fluorescence sensors, highlighting their pivotal role in swift disease detection with remarkable sensitivity. It underscores the necessity for continued research to expand the scope and capabilities of plasmonic fluorescence sensors in the field of diagnostics.
Collapse
Affiliation(s)
- Juiena Hasan
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| | - Sangho Bok
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
38
|
Bekka S, Kelly K, Haaren M, Dhummakupt A, Persaud D. Age at ART initiation and proviral reservoir size in perinatal HIV-1 infection: considerations for ART-free remission. Curr Opin HIV AIDS 2024; 19:79-86. [PMID: 38169427 PMCID: PMC11715321 DOI: 10.1097/coh.0000000000000839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW Achieving ART-free remission without the need for lifelong antiretroviral treatment (ART) is a new objective in HIV-1 therapeutics. This review comprehensively examines the literature to evaluate whether the age at ART initiation in children with perinatal HIV-1 influences the size and decay of the HIV-1 reservoir. The insights gathered from this review serve to inform the field on the unique dynamics of HIV-1 reservoir size in perinatal HIV-1 infection as a function of age at ART initiation, as well as inform biomarker profiling and timing of ART-free remission strategies for children living with HIV-1 globally. RECENT FINDINGS Recent studies demonstrate that initiating very early effective ART in neonates is feasible and limits HIV-1 reservoir size. The clinical relevance of limiting the HIV-1 reservoir size in perinatal infection was recently demonstrated in the Tatelo Study, which investigated a treatment switch from ART to two broadly neutralizing antibodies (bNAbs) in very early treated children. Low proviral reservoir size was associated with sustained virologic control for 24 weeks on bNAbs. SUMMARY Immediate and early ART initiation for neonates and infants with perinatal HIV-1 is essential to restricting HIV-1 reservoir size that may enable ART-free remission.
Collapse
Affiliation(s)
- Soumia Bekka
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kristen Kelly
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mareike Haaren
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Adit Dhummakupt
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deborah Persaud
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Klinnert S, Schenkel CD, Freitag PC, Günthard HF, Plückthun A, Metzner KJ. Targeted shock-and-kill HIV-1 gene therapy approach combining CRISPR activation, suicide gene tBid and retargeted adenovirus delivery. Gene Ther 2024; 31:74-84. [PMID: 37558852 PMCID: PMC10940146 DOI: 10.1038/s41434-023-00413-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
Infections with the human immunodeficiency virus type 1 (HIV-1) are incurable due the long-lasting, latent viral reservoir. The shock-and-kill cure approach aims to activate latent proviruses in HIV-1 infected cells and subsequently kill these cells with strategies such as therapeutic vaccines or immune enhancement. Here, we combined the dCas9-VPR CRISPR activation (CRISPRa) system with gRNA-V, the truncated Bid (tBid)-based suicide gene strategy and CD3-retargeted adenovirus (Ad) delivery vectors, in an all-in-one targeted shock-and-kill gene therapy approach to achieve specific elimination of latently HIV-1 infected cells. Simultaneous transduction of latently HIV-1 infected J-Lat 10.6 cells with a CD3-retargeted Ad-CRISPRa-V and Ad-tBid led to a 57.7 ± 17.0% reduction of productively HIV-1 infected cells and 2.4-fold ± 0.25 increase in cell death. The effective activation of latent HIV-1 provirus by Ad-CRISPRa-V was similar to the activation control TNF-α. The strictly HIV-1 dependent and non-leaky killing by tBid could be demonstrated. Furthermore, the high transduction efficiencies of up to 70.8 ± 0.4% by the CD3-retargeting technology in HIV-1 latently infected cell lines was the basis of successful shock-and-kill. This novel targeted shock-and-kill all-in-one gene therapy approach has the potential to safely and effectively eliminate HIV-1 infected cells in a highly HIV-1 and T cell specific manner.
Collapse
Affiliation(s)
- Sarah Klinnert
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Corinne D Schenkel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Patrick C Freitag
- Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
40
|
Li JZ, Melberg M, Kittilson A, Abdel-Mohsen M, Li Y, Aga E, Bosch RJ, Wonderlich ER, Kinslow J, Giron LB, Di Germanio C, Pilkinton M, MacLaren L, Keefer M, Fox L, Barr L, Acosta E, Ananworanich J, Coombs R, Mellors J, Deeks S, Gandhi RT, Busch M, Landay A, Macatangay B, Smith DM, for the AIDS Clinical Trials Group A5345 Study Team. Predictors of HIV rebound differ by timing of antiretroviral therapy initiation. JCI Insight 2024; 9:e173864. [PMID: 38329130 PMCID: PMC10967395 DOI: 10.1172/jci.insight.173864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUNDIdentifying factors that predict the timing of HIV rebound after treatment interruption will be crucial for designing and evaluating interventions for HIV remission.METHODSWe performed a broad evaluation of viral and immune factors that predict viral rebound (AIDS Clinical Trials Group A5345). Participants initiated antiretroviral therapy (ART) during chronic (N = 33) or early (N = 12) HIV infection with ≥ 2 years of suppressive ART and restarted ART if they had 2 viral loads ≥ 1,000 copies/mL after treatment interruption.RESULTSCompared with chronic-treated participants, early-treated individuals had smaller and fewer transcriptionally active HIV reservoirs. A higher percentage of HIV Gag-specific CD8+ T cell cytotoxic response was associated with lower intact proviral DNA. Predictors of HIV rebound timing differed between early- versus chronic-treated participants, as the strongest reservoir predictor of time to HIV rebound was level of residual viremia in early-treated participants and intact DNA level in chronic-treated individuals. We also identified distinct sets of pre-treatment interruption viral, immune, and inflammatory markers that differentiated participants who had rapid versus slow rebound.CONCLUSIONThe results provide an in-depth overview of the complex interplay of viral, immunologic, and inflammatory predictors of viral rebound and demonstrate that the timing of ART initiation modifies the features of rapid and slow viral rebound.TRIAL REGISTRATIONClinicalTrials.gov NCT03001128FUNDINGNIH National Institute of Allergy and Infectious Diseases, Merck.
Collapse
Affiliation(s)
- Jonathan Z. Li
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meghan Melberg
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Autumn Kittilson
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Yijia Li
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evgenia Aga
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ronald J. Bosch
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | | | - Clara Di Germanio
- University of California, San Francisco, San Francisco, California, USA
- Vitalant Research Institute, San Francisco, California, USA
| | - Mark Pilkinton
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Lawrence Fox
- National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | - Liz Barr
- AIDS Clinical Trials Group Community Scientific Subcommittee, Los Angeles, California, USA
| | | | | | | | - John Mellors
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven Deeks
- University of California, San Francisco, San Francisco, California, USA
| | - Rajesh T. Gandhi
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Busch
- Vitalant Research Institute, San Francisco, California, USA
| | - Alan Landay
- Rush University Medical Center, Chicago, Illinois, USA
| | | | - Davey M. Smith
- University of California, San Diego, San Diego, California, USA
| | | |
Collapse
|
41
|
Alves AMCV, de Brito ÉHS, de Araújo MFM, de Hollanda Celestino JJ, Leite ACRDM, Cruz GS, Azevedo NF, Rodrigues CF. Antifungal Susceptibility and Candida sp. Biofilm Production in Clinical Isolates of HIV-Positive Brazilian Patients under HAART Therapy. Biomedicines 2024; 12:310. [PMID: 38397912 PMCID: PMC10886575 DOI: 10.3390/biomedicines12020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of the present study was to characterize biofilms formed by Candida spp. clinical isolates (n = 19), isolated from the oral mucosa of HIV-positive patients. For characterizing the biofilms formed by several Candida sp. strains, isolated from HIV-positive patients, in terms of formed biomass, matrix composition and antifungal susceptibility profile, clinical isolates (n = 19) were collected from oral mucosa and identified. The biofilm of the samples was cultured with fluconazole (1250 mg/L), voriconazole (800 mg/L), anidulafungin (2 mg/L) or amphotericin B (2 mg/L). Afterwards, the quantification of the total biomass was performed using crystal violet assay, while the proteins and carbohydrates levels were quantified in the matrix. The results showed a predominance of C. albicans, followed by C. krusei. Around 58% of the Candida spp. biofilm had susceptibility to fluconazole and voriconazole (800 mg/L), 53% to anidulafungin and 74% to amphotericin B. C. krusei presented both the lowest and the highest biofilm matrix contents in polysaccharides and proteins. The low resistance to antifungal agents reported here was probably due to the fact that none of the participants had a prolonged exposure to these antifungals. A predominance of less virulent Candida spp. strains with low or no resistance to antifungals was observed. This can be attributed to a low fungal selective pressure. This most probably happened due to a low fungal selective pressure but also due to a good adherence to HAART therapy, which guarantees a stable and stronger immune patient response.
Collapse
Affiliation(s)
- Anelise Maria Costa Vasconcelos Alves
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza 60430-170, Ceará, Brazil;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Érika Helena Salles de Brito
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Luso-Phony, Redenção 62790-000, Ceará, Brazil; (É.H.S.d.B.); (J.J.d.H.C.); (A.C.R.d.M.L.)
| | | | - Juliana Jales de Hollanda Celestino
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Luso-Phony, Redenção 62790-000, Ceará, Brazil; (É.H.S.d.B.); (J.J.d.H.C.); (A.C.R.d.M.L.)
| | - Ana Caroline Rocha de Melo Leite
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Luso-Phony, Redenção 62790-000, Ceará, Brazil; (É.H.S.d.B.); (J.J.d.H.C.); (A.C.R.d.M.L.)
| | - Gabriela Silva Cruz
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Luso-Phony, Redenção 62790-000, Ceará, Brazil; (É.H.S.d.B.); (J.J.d.H.C.); (A.C.R.d.M.L.)
| | - Nuno Filipe Azevedo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Célia Fortuna Rodrigues
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- 1H-TOXRUN—One Health Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário—CESPU, 4585-116 Gandra PRD, Portugal
| |
Collapse
|
42
|
Rausch JW, Parvez S, Pathak S, Capoferri AA, Kearney MF. HIV Expression in Infected T Cell Clones. Viruses 2024; 16:108. [PMID: 38257808 PMCID: PMC10820123 DOI: 10.3390/v16010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The principal barrier to an HIV-1 cure is the persistence of infected cells harboring replication-competent proviruses despite antiretroviral therapy (ART). HIV-1 transcriptional suppression, referred to as viral latency, is foremost among persistence determinants, as it allows infected cells to evade the cytopathic effects of virion production and killing by cytotoxic T lymphocytes (CTL) and other immune factors. HIV-1 persistence is also governed by cellular proliferation, an innate and essential capacity of CD4+ T cells that both sustains cell populations over time and enables a robust directed response to immunological threats. However, when HIV-1 infects CD4+ T cells, this capacity for proliferation can enable surreptitious HIV-1 propagation without the deleterious effects of viral gene expression in latently infected cells. Over time on ART, the HIV-1 reservoir is shaped by both persistence determinants, with selective forces most often favoring clonally expanded infected cell populations harboring transcriptionally quiescent proviruses. Moreover, if HIV latency is incomplete or sporadically reversed in clonal infected cell populations that are replenished faster than they are depleted, such populations could both persist indefinitely and contribute to low-level persistent viremia during ART and viremic rebound if treatment is withdrawn. In this review, select genetic, epigenetic, cellular, and immunological determinants of viral transcriptional suppression and clonal expansion of HIV-1 reservoir T cells, interdependencies among these determinants, and implications for HIV-1 persistence will be presented and discussed.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.P.); (S.P.); (A.A.C.); (M.F.K.)
| | | | | | | | | |
Collapse
|
43
|
Liu Y, Binda CS, Berkhout B, Das AT. CRISPR-Cas attack of HIV-1 proviral DNA can cause unintended deletion of surrounding cellular DNA. J Virol 2023; 97:e0133423. [PMID: 37982648 PMCID: PMC10734527 DOI: 10.1128/jvi.01334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Although HIV replication can be effectively inhibited by antiretroviral therapy, this does not result in a cure as the available drugs do not inactivate the integrated HIV-1 DNA in infected cells. Consequently, HIV-infected individuals need lifelong therapy to prevent viral rebound. Several preclinical studies indicate that CRISPR-Cas gene-editing systems can be used to achieve permanent inactivation of the viral DNA. It was previously shown that this inactivation was due to small inactivating mutations at the targeted sites in the HIV genome and to excision or inversion of the viral DNA fragment between two target sites. We, here, demonstrate that CRISPR-Cas treatment also causes large unintended deletions, which can include surrounding chromosomal sequences. As the loss of chromosomal sequences may cause oncogenic transformation of the cell, such unintended large deletions form a potential safety risk in clinical application of this antiviral application and possibly all CRISPR-Cas gene-editing approaches.
Collapse
Affiliation(s)
- Ye Liu
- Amsterdam UMC, location University of Amsterdam, Laboratory of Experimental Virology, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Caroline S. Binda
- Amsterdam UMC, location University of Amsterdam, Laboratory of Experimental Virology, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Ben Berkhout
- Amsterdam UMC, location University of Amsterdam, Laboratory of Experimental Virology, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Atze T. Das
- Amsterdam UMC, location University of Amsterdam, Laboratory of Experimental Virology, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Cossarini F, Aberg JA, Chen BK, Mehandru S. Viral Persistence in the Gut-Associated Lymphoid Tissue and Barriers to HIV Cure. AIDS Res Hum Retroviruses 2023; 40:54-65. [PMID: 37450338 PMCID: PMC10790554 DOI: 10.1089/aid.2022.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
More than 40 years after the first reported cases of what then became known as acquired immunodeficiency syndrome (AIDS), tremendous progress has been achieved in transforming the disease from almost universally fatal to a chronic manageable condition. Nonetheless, the efforts to find a preventative vaccine or a cure for the underlying infection with Human Immunodeficiency Virus (HIV) remain largely unsuccessful. Many challenges intrinsic to the virus characteristics and host response need to be overcome for either goal to be achieved. This article will review the obstacles to an effective HIV cure, specifically the steps involved in the generation of HIV latency, focusing on the role of the gut-associated lymphoid tissue, which has received less attention compared with the peripheral blood, despite being the largest repository of lymphoid tissue in the human body, and a large site for HIV persistence.
Collapse
Affiliation(s)
- Francesca Cossarini
- Division of Infectious Diseases, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
- Precision Immunology Institute, Icahn School at Mount Sinai, New York, New York, USA
| | - Judith A. Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
- Precision Immunology Institute, Icahn School at Mount Sinai, New York, New York, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School at Mount Sinai, New York, New York, USA
- Division of Gastroenterology, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
| |
Collapse
|
45
|
Sperber HS, Raymond KA, Bouzidi MS, Ma T, Valdebenito S, Eugenin EA, Roan NR, Deeks SG, Winning S, Fandrey J, Schwarzer R, Pillai SK. The hypoxia-regulated ectonucleotidase CD73 is a host determinant of HIV latency. Cell Rep 2023; 42:113285. [PMID: 37910505 PMCID: PMC10838153 DOI: 10.1016/j.celrep.2023.113285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/04/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Deciphering the mechanisms underlying viral persistence is critical to achieving a cure for human immunodeficiency virus (HIV) infection. Here, we implement a systems approach to discover molecular signatures of HIV latently infected CD4+ T cells, identifying the immunosuppressive, adenosine-producing ectonucleotidase CD73 as a key surface marker of latent cells. Hypoxic conditioning, reflecting the lymphoid tissue microenvironment, increases the frequency of CD73+ CD4+ T cells and promotes HIV latency. Transcriptomic profiles of CD73+ CD4+ T cells favor viral quiescence, immune evasion, and cell survival. CD73+ CD4+ T cells are capable of harboring a functional HIV reservoir and reinitiating productive infection ex vivo. CD73 or adenosine receptor blockade facilitates latent HIV reactivation in vitro, mechanistically linking adenosine signaling to viral quiescence. Finally, tissue imaging of lymph nodes from HIV-infected individuals on antiretroviral therapy reveals spatial association between CD73 expression and HIV persistence in vivo. Our findings warrant development of HIV-cure strategies targeting the hypoxia-CD73-adenosine axis.
Collapse
Affiliation(s)
- Hannah S Sperber
- Vitalant Research Institute, San Francisco, CA, USA; Free University of Berlin, Institute of Biochemistry, Berlin, Germany; University of California, San Francisco, San Francisco, CA, USA; University Hospital Essen, Institute for Translational HIV Research, Essen, Germany
| | - Kyle A Raymond
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA
| | - Mohamed S Bouzidi
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA
| | - Tongcui Ma
- University of California, San Francisco, San Francisco, CA, USA; Gladstone Institutes, San Francisco, CA, USA
| | | | | | - Nadia R Roan
- University of California, San Francisco, San Francisco, CA, USA; Gladstone Institutes, San Francisco, CA, USA
| | - Steven G Deeks
- University of California, San Francisco, San Francisco, CA, USA
| | - Sandra Winning
- University of Duisburg-Essen, Institute for Physiology, Essen, Germany
| | - Joachim Fandrey
- University of Duisburg-Essen, Institute for Physiology, Essen, Germany
| | - Roland Schwarzer
- University Hospital Essen, Institute for Translational HIV Research, Essen, Germany.
| | - Satish K Pillai
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
46
|
Van Gulck E, Pardons M, Nijs E, Verheyen N, Dockx K, Van Den Eynde C, Battivelli E, Vega J, Florence E, Autran B, Archin NM, Margolis DM, Katlama C, Hamimi C, Van Den Wyngaert I, Eyassu F, Vandekerckhove L, Boden D. A truncated HIV Tat demonstrates potent and specific latency reversal activity. Antimicrob Agents Chemother 2023; 67:e0041723. [PMID: 37874295 PMCID: PMC10649039 DOI: 10.1128/aac.00417-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/09/2023] [Indexed: 10/25/2023] Open
Abstract
A major barrier to HIV-1 cure is caused by the pool of latently infected CD4 T-cells that persist under combination antiretroviral therapy (cART). This latent reservoir is capable of producing replication-competent infectious viruses once prolonged suppressive cART is withdrawn. Inducing the reactivation of HIV-1 gene expression in T-cells harboring a latent provirus in people living with HIV-1 under cART may result in depletion of this latent reservoir due to cytopathic effects or immune clearance. Studies have investigated molecules that reactivate HIV-1 gene expression, but to date, no latency reversal agent has been identified to eliminate latently infected cells harboring replication-competent HIV in cART-treated individuals. Stochastic fluctuations in HIV-1 tat gene expression have been described and hypothesized to allow the progression into proviral latency. We hypothesized that exposing latently infected CD4+ T-cells to Tat would result in effective latency reversal. Our results indicate the capacity of a truncated Tat protein and mRNA to reactivate HIV-1 in latently infected T-cells ex vivo to a similar degree as the protein kinase C agonist: phorbol 12-myristate 13-acetate, without T-cell activation or any significant transcriptome perturbation.
Collapse
Affiliation(s)
- Ellen Van Gulck
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marion Pardons
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Erik Nijs
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nick Verheyen
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Koen Dockx
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Christel Van Den Eynde
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Emilie Battivelli
- Janssen Infectious Diseases, A Division of Janssen Pharmaceutica NV, Brisbane, California, USA
| | - Jerel Vega
- Arcturus Therapeutics, Science Center Drive, San Diego, California, USA
| | | | - Brigitte Autran
- Faculty of Medicine Sorbonne-University, CIMI-Paris, UPMC/Inserm, Paris, France
| | - Nancie M. Archin
- University of North Carolina School of Medicine and UNC, HIV Cure Center, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- University of North Carolina School of Medicine and UNC, HIV Cure Center, Chapel Hill, North Carolina, USA
| | - Christine Katlama
- Department Infectious Diseases, Hospital Pitié Salpetière, Sorbonne-University and IPLESP, Paris, France
| | - Chiraz Hamimi
- Faculty of Medicine Sorbonne-University, CIMI-Paris, UPMC/Inserm, Paris, France
| | - Ilse Van Den Wyngaert
- Discovery Sciences, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Filmon Eyassu
- Discovery Sciences, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Daniel Boden
- Janssen Infectious Diseases, A Division of Janssen Pharmaceutica NV, Brisbane, California, USA
| |
Collapse
|
47
|
Lambrechts L, Bonine N, Verstraeten R, Pardons M, Noppe Y, Rutsaert S, Van Nieuwerburgh F, Van Criekinge W, Cole B, Vandekerckhove L. HIV-PULSE: a long-read sequencing assay for high-throughput near full-length HIV-1 proviral genome characterization. Nucleic Acids Res 2023; 51:e102. [PMID: 37819007 PMCID: PMC10639044 DOI: 10.1093/nar/gkad790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
A deep understanding of the composition of the HIV-1 reservoir is necessary for the development of targeted therapies and the evaluation of curative efforts. However, current near full-length (NFL) HIV-1 proviral genome sequencing assays are based on labor-intensive and costly principles of repeated PCRs at limiting dilution, restricting their scalability. To address this, we developed a high-throughput, long-read sequencing assay called HIV-PULSE (HIV Proviral UMI-mediated Long-read Sequencing). This assay uses unique molecular identifiers (UMIs) to tag individual HIV-1 genomes, allowing for the omission of the limiting dilution step and enabling long-range PCR amplification of many NFL genomes in a single PCR reaction, while simultaneously overcoming poor single-read accuracy. We optimized the assay using HIV-infected cell lines and then applied it to blood samples from 18 individuals living with HIV on antiretroviral therapy, yielding a total of 1308 distinct HIV-1 genomes. Benchmarking against the widely applied Full-Length Individual Proviral Sequencing assay revealed similar sensitivity (11 vs 18%) and overall good concordance, although at a significantly higher throughput. In conclusion, HIV-PULSE is a cost-efficient and scalable assay that allows for the characterization of the HIV-1 proviral landscape, making it an attractive method to study the HIV-1 reservoir composition and dynamics.
Collapse
Affiliation(s)
- Laurens Lambrechts
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
- BioBix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Noah Bonine
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
- BioBix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Rita Verstraeten
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
- BioBix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Marion Pardons
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
| | - Ytse Noppe
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Wim Van Criekinge
- BioBix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Basiel Cole
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
48
|
Paryad-Zanjani S, Jagarapu A, Piovoso MJ, Zurakowski R. Ongoing HIV replication in lymph node sanctuary sites in treated individuals contributes to the total latent HIV at a very slow rate. J Theor Biol 2023; 575:111651. [PMID: 37898364 PMCID: PMC10680438 DOI: 10.1016/j.jtbi.2023.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Lymph nodes (LNs) serve as a sanctuary site for HIV viruses due to the heterogeneous distribution of the antiretrovirals (ARVs) inside the LNs. There is an ongoing debate whether this represents ongoing cycles of viral replication in the LNs or merely residual virus production by latently infected cells. Previous work has claimed that the measured levels of genetic variation in proviruses sampled from the blood were inconsistent with ongoing replication. However, it is not clear what rate of variation is consistent with ongoing replication in small sanctuary sites. In this study, we used a spherically symmetric compartmental ODE model to track the HIV viral dynamics in the LN and predict the contribution of ongoing replication within the LN to the whole-body proviral pool in an ARV-suppressed person living with HIV. This model tracks the reaction-diffusion dynamics of uninfected, actively infected, and latently infected T-cells as well as free virus within the LN parenchyma and the blood, and distinguishes between latently infected cells created before ARV therapy and during ARV therapy. We simulated suppressive therapy beginning in year 5 post-infection. Each LN sanctuary site had a volume of 1 ml, and we considered cases of 1 ml, 30 ml, and 250 ml total volume, which represent a single active sanctuary site, moderate systemic involvement, and involvement of the total lymphoid tissue. Viral load in the blood rapidly dropped and remained below the limit of detection in all cases but remained high in the LN sanctuary sites. Novel latent cells increased systemically over time but very slowly, taking between 25 and 50 years to reach 5 % of the total latent pool, depending on the volume of lymphoid tissue involvement. Putative sanctuary sites in LNs are limited in volume and produce novel latent cells slowly. Assays to detect genetic drift due to such sites would require very deep sequencing if sampling only from the blood. Previous studies showing a lack of genetic drift are consistent with the expected contribution of ongoing replication in lymph node sanctuary sites.
Collapse
Affiliation(s)
| | - Aditya Jagarapu
- Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Michael J Piovoso
- Electrical and Computer Engineering, University of Delaware, Newark, DE, USA
| | - Ryan Zurakowski
- Biomedical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
49
|
Sambaturu N, Fray EJ, Wu F, Zitzmann C, Simonetti FR, Barouch DH, Siliciano JD, Siliciano RF, Ribeiro RM, Perelson AS, Molina-París C, Leitner T. Last in first out: SIV proviruses seeded later in infection are harbored in short-lived CD4 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565539. [PMID: 37961482 PMCID: PMC10635124 DOI: 10.1101/2023.11.03.565539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
HIV can persist in a latent form as integrated DNA (provirus) in resting CD4+ T cells of infected individuals and as such is unaffected by antiretroviral therapy (ART). Despite being a major obstacle for eradication efforts, the genetic variation and timing of formation of this latent reservoir remains poorly understood. Previous studies on when virus is deposited in the latent reservoir have come to contradictory conclusions. To reexamine the genetic variation of HIV in CD4+ T cells during ART, we determined the divergence in envelope sequences collected from 10 SIV infected rhesus macaques. We found that the macaques displayed a biphasic decline of the viral divergence over time, where the first phase lasted for an average of 11.6 weeks (range 4-28 weeks). Motivated by recent observations that the HIV-infected CD4+ T cell population is composed of short- and long-lived subsets, we developed a model to study the divergence dynamics. We found that SIV in short-lived cells was on average more diverged, while long-lived cells harbored less diverged virus. This suggests that the long-lived cells harbor virus deposited starting earlier in infection and continuing throughout infection, while short-lived cells predominantly harbor more recent virus. As these cell populations decayed, the overall proviral divergence decline matched that observed in the empirical data. This model explains previous seemingly contradictory results on the timing of virus deposition into the latent reservoir, and should provide guidance for future eradication efforts.
Collapse
Affiliation(s)
- Narmada Sambaturu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Carolin Zitzmann
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Carmen Molina-París
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Thomas Leitner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
50
|
Kumar MR, Fray EJ, Bender AM, Zitzmann C, Ribeiro RM, Perelson AS, Barouch DH, Siliciano JD, Siliciano RF. Biphasic decay of intact SHIV genomes following initiation of antiretroviral therapy complicates analysis of interventions targeting the reservoir. Proc Natl Acad Sci U S A 2023; 120:e2313209120. [PMID: 37844236 PMCID: PMC10614214 DOI: 10.1073/pnas.2313209120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023] Open
Abstract
The latent reservoir for HIV-1 in resting CD4+ T cells persists despite antiretroviral therapy (ART) and precludes cure. Reservoir-targeting interventions are evaluated in ART-treated macaques infected with simian immunodeficiency virus (SIV) or simian-human immunodeficiency virus (SHIV). Efficacy is determined by reservoir measurements before and after the intervention. However, most proviruses persisting in the setting of ART are defective. In addition, intact HIV-1 and SIV genomes undergo complex, multiphasic decay observable when new infection events are blocked by ART. Intervention-induced elimination of latently infected cells must be distinguished from natural decay. Here, we address these issues for SHIV. We describe an intact proviral DNA assay that allows digital counting of SHIV genomes lacking common fatal defects. We show that intact SHIV genomes in circulating CD4+ T cells undergo biphasic decay during the first year of ART, with a rapid first phase (t1/2 = 30.1 d) and a slower second phase (t1/2 = 8.1 mo) that is still more rapid that the slow decay observed in people with HIV-1 on long-term ART (t1/2 = 3.7 y). In SHIV models, most interventions are tested during 2nd phase decay. Natural 2nd phase decay must be considered in evaluating interventions as most infected cells present at this time do not become part of the stable reservoir. In addition, for interventions tested during 2nd phase decay, a caveat is that the intervention may not be equally effective in people with HIV on long-term ART whose reservoirs are dominated by latently infected cells with a slower decay rate.
Collapse
Affiliation(s)
- Mithra R. Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Emily J. Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Alexandra M. Bender
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | | | | | | | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA02215
| | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
- HHMI, Baltimore, MD21205
| |
Collapse
|