1
|
Bernardini A, Mantovani R. Q-rich activation domains: flexible 'rulers' for transcription start site selection? Trends Genet 2024:S0168-9525(24)00272-5. [PMID: 39648061 DOI: 10.1016/j.tig.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 12/10/2024]
Abstract
Recent findings broadened the function of RNA polymerase II (Pol II) proximal promoter motifs from quantitative regulators of transcription to important determinants of transcription start site (TSS) position. These motifs are recognized by transcription factors (TFs) that we propose to term 'ruler' TFs (rTFs), such as NRF1, NF-Y, YY1, ZNF143, BANP, and members of the SP, ETS, and CRE families, sharing as a common feature a glutamine-rich (Q-rich) effector domain also enriched in valine, isoleucine, and threonine (QVIT-rich). We propose that rTFs guide TSS location by constraining the position of the pre-initiation complex (PIC) during its promoter recognition phase through a specialized, and still enigmatic, class of activation domains.
Collapse
Affiliation(s)
- Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
2
|
Gao F, Yang S, Wang J, Zhu G. cAMP-PKA cascade: An outdated topic for depression? Biomed Pharmacother 2022; 150:113030. [PMID: 35486973 DOI: 10.1016/j.biopha.2022.113030] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022] Open
Abstract
Depression is a common neuropsychiatric disorder characterized by persistent depressed mood and causes serious socioeconomic burden worldwide. Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, deficiency of monoamine transmitters, neuroinflammation and abnormalities of the gut flora are strongly associated with the onset of depression. The cyclic AMP (cAMP)/protein kinase A (PKA) cascade, a major cross-species cellular signaling pathway, is supposed as important player and regulator of depression onset by controlling synaptic plasticity, cytokinesis, transcriptional regulation and HPA axis. In the central nervous system, the cAMP-PKA cascade can dynamically shape neural circuits by enhancing synaptic plasticity, and affect K+ channels by phosphorylating Kir4.1, thereby regulating neuronal excitation. The reduction of cAMP-PKA cascade affects neuronal excitation as well as synaptic plasticity, ultimately leading to pathological outcome of depression, while activation of cAMP-PKA cascade would provide a rapid antidepressant effect. In this review, we proposed to reconsider the function of cAMP-PKA cascade, especially in the rapid antidepressant effect. Local activation or indirect activation of PKA through adjusting anchor proteins would provide new idea for acute treatment of depression.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
3
|
Zhu X, Dubey D, Bermudez C, Porter BE. Suppressing cAMP response element-binding protein transcription shortens the duration of status epilepticus and decreases the number of spontaneous seizures in the pilocarpine model of epilepsy. Epilepsia 2015; 56:1870-8. [PMID: 26419901 DOI: 10.1111/epi.13211] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Current epilepsy therapies directed at altering the function of neurotransmitter receptors or ion channels, or release of synaptic vesicles fail to prevent seizures in approximately 30% of patients. A better understanding of the molecular mechanism underlying epilepsy is needed to provide new therapeutic targets. The activity of cyclic AMP (cAMP) response element-binding protein (CREB), a major transcription factor promoting CRE-mediated transcription, increases following a prolonged seizure called status epilepticus. It is also increased in the seizure focus of patients with medically intractable focal epilepsy. Herein we explored the effect of acute suppression of CREB activity on status epilepticus and spontaneous seizures in a chronic epilepsy model. METHODS Pilocarpine chemoconvulsant was used to induce status epilepticus. To suppress CREB activity, a transgenic mouse line expressing an inducible dominant negative mutant of CREB (CREB(IR) ) with a serine to alanine 133 substitution was used. Status epilepticus and spontaneous seizures of transgenic and wild-type mice were analyzed using video-electroencephalography (EEG) to assess the effect of CREB suppression on seizures. RESULTS Our findings indicate that activation of CREB(IR) shortens the duration of status epilepticus. The frequency of spontaneous seizures decreased in mice with chronic epilepsy during CREB(IR) induction; however, the duration of the spontaneous seizures was unchanged. Of interest, we found significantly reduced levels of phospho-CREB Ser133 upon activation of CREB(IR) , supporting prior work suggesting that binding to the CRE site is important for CREB phosphorylation. SIGNIFICANCE Our results suggest that CRE transcription supports seizure activity both during status epilepticus and in spontaneous seizures. Thus, blocking of CRE transcription is a novel target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pediatrics and Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A.,Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Deepti Dubey
- The Department of Neurology, School of Medicine, Stanford University, Stanford, California, U.S.A
| | - Camilo Bermudez
- Department of Pediatrics and Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A
| | - Brenda E Porter
- Department of Pediatrics and Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A.,The Department of Neurology, School of Medicine, Stanford University, Stanford, California, U.S.A.,The Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
4
|
Mitton B, Cho EC, Aldana-Masangkay GI, Sakamoto KM. The function of cyclic-adenosine monophosphate responsive element-binding protein in hematologic malignancies. Leuk Lymphoma 2011; 52:2057-63. [DOI: 10.3109/10428194.2011.584994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Fogarty NME, Mayhew TM, Ferguson-Smith AC, Burton GJ. A quantitative analysis of transcriptionally active syncytiotrophoblast nuclei across human gestation. J Anat 2011; 219:601-10. [PMID: 21883201 DOI: 10.1111/j.1469-7580.2011.01417.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The syncytiotrophoblast (STB) epithelial covering of the human placenta is a unique terminally differentiated, multi-nucleated syncytium. No mitotic bodies are observed in the STB, which is sustained by continuous fusion of underlying cytotrophoblast cells (CTB). As a result, STB nuclei are of different ages. Morphologically, they display varying degrees of chromatin compaction, suggesting progressive maturational changes. Until recently, it was thought that STB nuclei were transcriptionally inactive, with all the mRNAs required by the syncytium being incorporated upon fusion of CTB. However, recent research has shown the presence of the active form of RNA polymerase II (RNA Pol II) in some STB nuclei. In this study, we confirm the presence of transcriptional activity in STB nuclei by demonstrating immunoreactivity for a transcription factor and an RNA polymerase I (RNA Pol I) co-factor, phospho-cAMP response element-binding protein and phospho-upstream binding factor, respectively. We also show, through immunoco-localisation studies, that a proportion of STB nuclei are both RNA Pol I and II transcriptionally active. Finally, we quantify the numerical densities of nuclei immunopositive and immunonegative for RNA Pol II in the STB of normal placentas of 11-39 weeks gestational age using an unbiased stereological counting tool, the physical disector. These data were combined with estimates of the volume of trophoblast to calculate total numbers of both types of nuclei at each gestational age. We found no correlation between gestational age and the numerical density of RNA Pol II-positive nuclei in the villous trophoblast (r = 0.39, P > 0.05). As the number of STB nuclei increases exponentially during gestation, we conclude that the number of transcriptionally active nuclei increases in proportion to trophoblast volume. The ratio of active to inactive nuclei remains constant at 3.9:1. These findings confirm that the majority of STB nuclei have intrinsic transcriptional activity, and that the STB is not dependent on CTB fusion for the provision of transcripts.
Collapse
Affiliation(s)
- N M E Fogarty
- Department Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
6
|
Kaleem A, Hoessli DC, Haq IU, Walker-Nasir E, Butt A, Iqbal Z, Zamani Z, Shakoori AR. CREB in long-term potentiation in hippocampus: role of post-translational modifications-studies In silico. J Cell Biochem 2011; 112:138-46. [PMID: 21053365 DOI: 10.1002/jcb.22909] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The multifunctionality of proteins is dictated by post-translational modifications (PTMs) which involve the attachment of small functional groups such as phosphate and acetate, as well as carbohydrate moieties. These functional groups make the protein perform various functions in different environments. PTMs play a crucial role in memory and learning. Phosphorylation of synaptic proteins and transcription factors regulate the generation and storage of memory. Among these is the cAMP-regulated element binding protein CREB that regulates CRE containing genes like c-fos. Both phosphorylation and acetylation control the function of CREB as a transcription factor. CREB is also susceptible to O-GlcNAc modification, which inhibits its activity. O-GlcNAc modification occurs on the same or neighboring Ser/Thr residues akin to phosphorylation. An interplay between these modifications was shown to operate in nuclear and cytoplasmic proteins. In this study computational methods were utilized to predict different modification sites in CREB. These in silico results suggest that phosphorylation, O-GlcNAc modification and acetylation modulate the transcriptional activity of CREB and thus dictate its contribution to synaptic plasticity.
Collapse
Affiliation(s)
- Afshan Kaleem
- Institute of Molecular Sciences and Bioinformatics, Lahore, Pakistan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Piera-Velazquez S, Hawkins DF, Whitecavage M, Colter DC, Stokes DG, Jimenez SA. Regulation of the human SOX9 promoter by Sp1 and CREB. Exp Cell Res 2007; 313:1069-79. [PMID: 17289023 PMCID: PMC2118054 DOI: 10.1016/j.yexcr.2007.01.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 12/21/2006] [Accepted: 01/02/2007] [Indexed: 10/23/2022]
Abstract
The transcription factor SOX9 is essential for multiple steps during skeletal development, including mesenchymal cell chondrogenesis and endochondral bone formation. We recently reported that the human SOX9 proximal promoter region is regulated by the CCAAT-binding factor through two CCAAT boxes located within 100 bp of the transcriptional start site. Here we report that the human SOX9 proximal promoter is also regulated by the cyclic-AMP response element binding protein (CREB) and Sp1. We show by DNaseI protection and EMSA analysis that CREB and Sp1 interact with specific sites within the SOX9 proximal promoter region. By transient transfection analysis we also demonstrate that mutations of the CREB and Sp1 binding sites result in a profound reduction of SOX9 promoter activity. Chromatin immunoprecipitation (ChIP) assay demonstrated that both Sp1 and CREB interact with the SOX9 promoter in vivo. Finally, we demonstrate that IL-1beta treatment of chondrocytes isolated from human normal and osteoarthritic (OA) cartilage down-regulates SOX9 promoter activity, an effect accompanied by a reduction of Sp1 binding to the SOX9 proximal promoter.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergio A. Jimenez
- *Address all correspondence to: Sergio A. Jimenez, M.D., Thomas Jefferson University, Department of Medicine. Division of Rheumatology, 233 S. 10 Street, Room 509 BLSB, Philadelphia, PA 19107-5541, Phone: 215-503-5042, Fax: 215-923-4649,
| |
Collapse
|
9
|
Johannessen M, Delghandi MP, Seternes OM, Johansen B, Moens U. Synergistic activation of CREB-mediated transcription by forskolin and phorbol ester requires PKC and depends on the glutamine-rich Q2 transactivation domain. Cell Signal 2004; 16:1187-99. [PMID: 15240013 DOI: 10.1016/j.cellsig.2004.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2004] [Accepted: 03/15/2004] [Indexed: 11/24/2022]
Abstract
Recruitment of a RNA polymerase II complex by the glutamine-rich Q2 domain of cAMP response element-binding protein (CREB) allows basal transcriptional activity, while recruitment of CBP/p300 through signal-induced phosphorylation of the kinase-inducible domain at serine-133 enhances CREB-dependent transcription. Here we demonstrate that co-administration of forskolin and phorbol ester TPA to NIH3T3 cells provoked a dose-dependent increase in phosphoserine-133. CREB- and Q2-dependent transcription, as well as transcription by other glutamine-rich transcription factors, but not by transcription factors lacking glutamine-rich regions, augmented synergistically in the presence of both stimuli. Synergistic activation was abograted by specific inhibition of protein kinase C (PKC), but not of PKA. Co-stimulation increased the basal activity of a minimal, CREB-independent promoter. Therefore, Q2, which directly interacts with the RNA polymerase II initiation complex, may transmit the increased basal promoter activity provoked by these stimuli to CREB, thereby contributing to synergistic activation of CREB-mediated transcription. This synergism may have important implications on glutamine-rich transcription factor-target genes.
Collapse
Affiliation(s)
- Mona Johannessen
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, Tromsø N-9037, Norway
| | | | | | | | | |
Collapse
|
10
|
Nedialkov YA, Triezenberg SJ. Quantitative assessment of in vitro interactions implicates TATA-binding protein as a target of the VP16C transcriptional activation region. Arch Biochem Biophys 2004; 425:77-86. [PMID: 15081896 DOI: 10.1016/j.abb.2004.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2004] [Revised: 03/02/2004] [Indexed: 11/18/2022]
Abstract
Models of mechanisms of transcriptional activation in eukaryotes frequently invoke direct interactions of transcriptional activation domains with target proteins including general transcription factors or coactivators such as chromatin modifying complexes. The potent transcriptional activation domain (AD) of the VP16 protein of herpes simplex virus has previously been shown to interact with several general transcription factors including the TATA-binding protein (TBP), TBP-associated factor 9 (TAF9), TFIIA, and TFIIB. In surface plasmon resonance assays, a module of the VP16 AD designated VP16C (residues 452-490) bound to TBP with an affinity notably stronger than to TAF9, TFIIA or TFIIB. Moreover, the interaction of VP16C with TBP correlated well with transcriptional activity for a panel of VP16C substitution variants. These results support models in which the interactions of ADs with TBP play an important role in transcriptional activation.
Collapse
Affiliation(s)
- Yuri A Nedialkov
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|
11
|
Dvir A, Conaway JW, Conaway RC. Assays for investigating the mechanism of promoter escape by RNA polymerase II. Methods Enzymol 2004; 370:733-40. [PMID: 14712687 DOI: 10.1016/s0076-6879(03)70059-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Arik Dvir
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309, USA
| | | | | |
Collapse
|
12
|
Boulon S, Dantonel JC, Binet V, Vié A, Blanchard JM, Hipskind RA, Philips A. Oct-1 potentiates CREB-driven cyclin D1 promoter activation via a phospho-CREB- and CREB binding protein-independent mechanism. Mol Cell Biol 2002; 22:7769-79. [PMID: 12391146 PMCID: PMC134723 DOI: 10.1128/mcb.22.22.7769-7779.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin D1, the regulatory subunit for mid-G(1) cyclin-dependent kinases, controls the expression of numerous cell cycle genes. A cyclic AMP-responsive element (CRE), located upstream of the cyclin D1 mRNA start site, integrates mitogenic signals that target the CRE-binding factor CREB, which can recruit the transcriptional coactivator CREB-binding protein (CBP). We describe an alternative mechanism for CREB-driven cyclin D1 induction that involves the ubiquitous POU domain protein Oct-1. In the breast cancer cell line MCF-7, overexpression of Oct-1 or its POU domain strongly increases transcriptional activation of cyclin D1 and GAL4 reporter genes that is specifically dependent upon CREB but independent of Oct-1 DNA binding. Gel retardation and chromatin immunoprecipitation assays confirm that POU forms a complex with CREB bound to the cyclin D1 CRE. In solution, CREB interaction with POU requires the CREB Q2 domain and, notably, occurs with CREB that is not phosphorylated on Ser 133. Accordingly, Oct-1 also potently enhances transcriptional activation mediated by a Ser133Ala CREB mutant. Oct-1/CREB synergy is not diminished by the adenovirus E1A 12S protein, a repressor of CBP coactivator function. In contrast, E1A strongly represses CBP-enhanced transactivation by CREB phosphorylated on Ser 133. Our observation that Oct-1 potentiates CREB-dependent cyclin D1 transcriptional activity independently of Ser 133 phosphorylation and E1A-sensitive coactivator function offers a new paradigm for the regulation of cyclin D1 induction by proliferative signals.
Collapse
Affiliation(s)
- Séverine Boulon
- Institut de Génétique Moléculaire, CNRS, UMR 5535, IFR24, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Transcription of protein-coding genes is one of the most fundamental processes that underlies all life and is a primary mechanism of biological regulation. In eukaryotic cells, transcription depends on the formation of a complex at the promoter region of the gene that minimally includes RNA polymerase II and several auxiliary proteins known as the general transcription factors. Transcription initiation follows at the promoter site given the availability of nucleoside triphosphates and ATP. Soon after the polymerase begins the synthesis of the nascent mRNA chain, it enters a critical stage, referred to as promoter escape, that is characterized by physical and functional instability of the transcription complex. These include formation of abortive transcripts, strong dependence on ATP cofactor, the general transcription factor TFIIH and downstream template. These criteria are no longer in effect when the nascent RNA reaches a length of 14-15 nucleotides. Towards the end of promoter escape, disruption or adjustment of protein-protein and protein-DNA interactions, including the release of some of the general transcription factors from the early transcription complex is to be expected, allowing the transition to the elongation stage of transcription. In this review, we examine the experimental evidence that defines promoter escape as a distinct stage in transcription, and point out areas where critical information is missing.
Collapse
MESH Headings
- HeLa Cells
- Humans
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/physiology
- RNA Polymerase II/chemistry
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/metabolism
- Sarcosine/analogs & derivatives
- Sarcosine/pharmacology
- Transcription Factor TFIIH
- Transcription Factors, General/chemistry
- Transcription Factors, General/metabolism
- Transcription Factors, TFII/genetics
- Transcription Factors, TFII/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Arik Dvir
- Department of Biological Sciences, Oakland University, Rochester, MI 48309-4401, USA.
| |
Collapse
|
14
|
Ainbinder E, Revach M, Wolstein O, Moshonov S, Diamant N, Dikstein R. Mechanism of rapid transcriptional induction of tumor necrosis factor alpha-responsive genes by NF-kappaB. Mol Cell Biol 2002; 22:6354-62. [PMID: 12192035 PMCID: PMC135646 DOI: 10.1128/mcb.22.18.6354-6362.2002] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-kappaB induces the expression of genes involved in immune response, apoptosis, inflammation, and the cell cycle. Certain NF-kappaB-responsive genes are activated rapidly after the cell is stimulated by cytokines and other extracellular signals. However, the mechanism by which these genes are activated is not entirely understood. Here we report that even though NF-kappaB interacts directly with TAF(II)s, induction of NF-kappaB by tumor necrosis factor alpha (TNF-alpha) does not enhance TFIID recruitment and preinitiation complex formation on some NF-kappaB-responsive promoters. These promoters are bound by the transcription apparatus prior to TNF-alpha stimulus. Using the immediate-early TNF-alpha-responsive gene A20 as a prototype promoter, we found that the constitutive association of the general transcription apparatus is mediated by Sp1 and that this is crucial for rapid transcriptional induction by NF-kappaB. In vitro transcription assays confirmed that NF-kappaB plays a postinitiation role since it enhances the transcription reinitiation rate whereas Sp1 is required for the initiation step. Thus, the consecutive effects of Sp1 and NF-kappaB on the transcription process underlie the mechanism of their synergy and allow rapid transcriptional induction in response to cytokines.
Collapse
Affiliation(s)
- Elena Ainbinder
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
15
|
Felinski EA, Quinn PG. The coactivator dTAF(II)110/hTAF(II)135 is sufficient to recruit a polymerase complex and activate basal transcription mediated by CREB. Proc Natl Acad Sci U S A 2001; 98:13078-83. [PMID: 11687654 PMCID: PMC60827 DOI: 10.1073/pnas.241337698] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A specific TATA binding protein-associated factor (TAF), dTAF(II)110/hTAF(II)135, interacts with cAMP response element binding protein (CREB) through its constitutive activation domain (CAD), which recruits a polymerase complex and activates transcription. The simplest explanation is that the TAF is a coactivator, but several studies have questioned this role of TAFs. Using a reverse two-hybrid analysis in yeast, we previously mapped the interaction between dTAF(II)110 (amino acid 1-308) and CREB to conserved hydrophobic amino acid residues in the CAD. That mapping was possible only because CREB fails to activate transcription in yeast, where all TAFs are conserved, except for the TAF recognizing CREB. To test whether CREB fails to activate transcription in yeast because it lacks a coactivator, we fused dTAF(II)110 (amino acid 1-308) to the TATA binding protein domain of the yeast scaffolding TAF, yTAF(II)130. Transformation of yeast with this hybrid TAF conferred activation by the CAD, indicating that interaction with yTFIID is sufficient to recruit a polymerase complex and activate transcription. The hybrid TAF did not mediate activation by VP16 or vitamin D receptor, each of which interacts with TFIIB, but not with dTAF(II)110 (amino acid 1-308). Enhancement of transcription activation by dTAF(II)110 in mammalian cells required interaction with both the CAD and TFIID and was inhibited by mutation of core hydrophobic residues in the CAD. These data demonstrate that dTAF(II)110/hTAF(II)135 acts as a coactivator to recruit TFIID and polymerase and that this mechanism of activation is conserved in eukaryotes.
Collapse
Affiliation(s)
- E A Felinski
- Department of Cellular and Molecular Physiology and Program in Cellular and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
16
|
Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001; 2:599-609. [PMID: 11483993 DOI: 10.1038/35085068] [Citation(s) in RCA: 1985] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transcription factor CREB -- for 'cyclic AMP response element-binding protein' -- functions in glucose homeostasis, growth-factor-dependent cell survival, and has been implicated in learning and memory. CREB is phosphorylated in response to various signals, but how is specificity achieved in these signalling pathways?
Collapse
MESH Headings
- Activating Transcription Factor 1
- Alternative Splicing
- Animals
- Binding Sites
- Cyclic AMP/physiology
- Cyclic AMP Response Element Modulator
- Cyclic AMP Response Element-Binding Protein/chemistry
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/physiology
- Cyclic AMP-Dependent Protein Kinases/physiology
- DNA Methylation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Gene Expression Regulation/physiology
- Gene Products, tax/physiology
- Growth Substances/physiology
- Human T-lymphotropic virus 1/genetics
- Leucine Zippers
- Macromolecular Substances
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Genetic
- Models, Molecular
- Multigene Family
- Nuclear Proteins/physiology
- Phosphorylation
- Protein Conformation
- Protein Processing, Post-Translational
- Regulatory Sequences, Nucleic Acid
- Repressor Proteins
- Second Messenger Systems/physiology
- Stress, Physiological/genetics
- Stress, Physiological/metabolism
- Trans-Activators/physiology
- Transcription Factors/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- B Mayr
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
17
|
Streeper RS, Hornbuckle LA, Svitek CA, Goldman JK, Oeser JK, O'Brien RM. Protein kinase A phosphorylates hepatocyte nuclear factor-6 and stimulates glucose-6-phosphatase catalytic subunit gene transcription. J Biol Chem 2001; 276:19111-8. [PMID: 11279202 DOI: 10.1074/jbc.m101442200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Glucose-6-phosphatase is a multicomponent system that catalyzes the terminal step in gluconeogenesis. To examine the effect of the cAMP signal transduction pathway on expression of the gene encoding the mouse glucose-6-phosphatase catalytic subunit (G6Pase), the liver-derived HepG2 cell line was transiently co-transfected with a series of G6Pase-chloramphenicol acetyltransferase fusion genes and an expression vector encoding the catalytic subunit of cAMP-dependent protein kinase A (PKA). PKA markedly stimulated G6Pase-chloramphenicol acetyltransferase fusion gene expression, and mutational analysis of the G6Pase promoter revealed that multiple cis-acting elements were required for this response. One of these elements was mapped to the G6Pase promoter region between -114 and -99, and this sequence was shown to bind hepatocyte nuclear factor (HNF)-6. This HNF-6 binding site was able to confer a stimulatory effect of PKA on the expression of a heterologous fusion gene; a mutation that abolished HNF-6 binding also abolished the stimulatory effect of PKA. Further investigation revealed that PKA phosphorylated HNF-6 in vitro. Site-directed mutation of three consensus PKA phosphorylation sites in the HNF-6 carboxyl terminus markedly reduced this phosphorylation. These results suggest that the stimulatory effect of PKA on G6Pase fusion gene transcription in HepG2 cells may be mediated in part by the phosphorylation of HNF-6.
Collapse
Affiliation(s)
- R S Streeper
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
18
|
Felinski EA, Kim J, Lu J, Quinn PG. Recruitment of an RNA polymerase II complex is mediated by the constitutive activation domain in CREB, independently of CREB phosphorylation. Mol Cell Biol 2001; 21:1001-10. [PMID: 11158288 PMCID: PMC99555 DOI: 10.1128/mcb.21.4.1001-1010.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2000] [Accepted: 11/14/2000] [Indexed: 11/20/2022] Open
Abstract
The cAMP response element binding protein (CREB) is a bifunctional transcription activator, exerting its effects through a constitutive activation domain (CAD) and a distinct kinase inducible domain (KID), which requires phosphorylation of Ser-133 for activity. Both CAD and phospho-KID have been proposed to recruit polymerase complexes, but this has not been directly tested. Here, we show that the entire CREB activation domain or the CAD enhanced recruitment of a complex containing TFIID, TFIIB, and RNA polymerase II to a linked promoter. The nuclear extracts used mediated protein kinase A (PKA)-inducible transcription, but phosphorylation of CRG (both of the CREB activation domains fused to the Gal4 DNA binding domain) or KID-G4 did not mediate recruitment of a complex, and mutation of the PKA site in CRG abolished transcription induction by PKA but had no effect upon recruitment. The CREB-binding protein (CBP) was not detected in the recruited complex. Our results support a model for transcription activation in which the interaction between the CREB CAD and hTAFII130 of TFIID promotes the recruitment of a polymerase complex to the promoter.
Collapse
Affiliation(s)
- E A Felinski
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|