1
|
Basnet A, Thomas DD, Landreth KM, Damron FH, Liu TW. Immune Response to Bioluminescence Imaging Reporters in Murine Tumor Models. Mol Imaging Biol 2025; 27:341-352. [PMID: 40234300 PMCID: PMC12162783 DOI: 10.1007/s11307-025-02010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
PURPOSE Imaging reporters have been widely employed in cancer research to monitor real-time tumor burden and metastatic spread. These tools offer a valuable approach for non-invasive imaging of tumor dynamics over time. With the established understanding that tumor immunology plays a critical role in cancer progression, it is essential to ensure that the chosen imaging reporters used to study tumor-immune interactions do not inadvertently elicit an immune response. This study aimed to investigate the immune response to bioluminescence reporters used for in vivo tracking of tumor cells in immunocompetent murine models. PROCEDURES The in vitro and in vivo growth effects of two stably expressed bioluminescence reporter genes, a red-shifted firefly luciferase and a click beetle green luciferase, were evaluated in four different cancer cell lines. Differences in parental and reporter-expressing cancer cell immune cell composition, activation, and secreted cytokine levels were evaluated using flow cytometry, cytokine arrays and ELISAs. RESULTS The data revealed no significant differences in in vitro cell proliferation between parental and reporter cancer cell lines. In vivo subcutaneous tumor growth was not observed in tumor cells stably expressing the red-shifted firefly luciferase. Cells labeled with click beetle green luciferase demonstrated no significant differences in in vivo subcutaneous tumor growth compared to parental cells. Tumor cells expressing red-shifted firefly luciferase induced an increase in activated and cytotoxic T cells compared to parental and click beetle green luciferase, suggesting enhanced immunogenicity. Furthermore, the tumor-immune composition and cytokine production were similar between parental and click beetle green luciferase-labeled tumor cells. CONCLUSIONS These findings demonstrate that the stable expression of click beetle green luciferase in cancer cells, in contrast to red-shifted firefly luciferase, has minimal immunogenicity and does not alter tumor development in immunocompetent mice. We report detailed characterization studies of bioluminescence reporter cells, providing essential considerations for their use in investigating tumor-immune interactions in syngeneic murine tumor models.
Collapse
Affiliation(s)
- Angisha Basnet
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Dylan D Thomas
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Kaitlyn M Landreth
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA
| | - Tracy W Liu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA.
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
2
|
Morinaga S, Yamamoto N, Yamauchi K, Hayashi K, Kimura H, Miwa S, Igarashi K, Higuchi T, Tsuchiya H, Demura S, Hoffman RM. The Role of Microsurgery and Fluorescent-reporter Genes in Establishing Mouse Models for Real-Time Imaging of Metastatic Cancer-Cell Trafficking and Colony Formation: A Revolutionary and Disruptive Technology for Metastasis Research. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:544-557. [PMID: 39238629 PMCID: PMC11372698 DOI: 10.21873/cdp.10362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 09/07/2024]
Abstract
The field of experimental microsurgery was pioneered by the great microsurgeon Sun Lee, who developed the foundation of transplant surgery in the clinic. Dr Lee also played a seminal role in introducing microsurgery to establish mouse models of cancer. In 1990, at the age of 70, Dr Lee demonstrated microsurgery techniques to the mouse-model team at AntiCancer Inc., leading to the development of the surgical orthotopic implant (SOI) technique and the first orthotopic mouse models of cancer that metastasized in a pattern similar to clinical cancer. At the beginning of the present century, one of us (NY) from Kanazawa University School of Medicine became a visiting scientist at AntiCancer to learn SOI and develop mouse models of cancer using cancer cells expressing fluorescent reporter genes, such as green fluorescent protein (GFP) and red fluorescent protein (RFP), in order to image metastatic cancer cells trafficking in real time. Since then, a total of eight young surgeons from Kanazawa University have been visiting researchers at AntiCancer, developing SOI mouse models of cancer to visualize cancer cells in vivo, tracking all stages of metastasis in real time. The present perspective review summarizes this seminal work, which has revolutionized the field of metastasis research.
Collapse
Affiliation(s)
- Sei Morinaga
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kensuke Yamauchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Higuchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Satoru Demura
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
3
|
Yamashita K, Suetsugu A, Hayashi S, Shimizu M, Hoffman RM. EL4 Murine-Lymphoma-Stromal-Cell Fusion Hybrids Observed With Multiple Distinct Morphologies in the Primary Tumor and Metastatic Organs of a Syngeneic Mouse Model. In Vivo 2024; 38:2115-2121. [PMID: 39187323 PMCID: PMC11363744 DOI: 10.21873/invivo.13673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND/AIM We and others have previously shown that cell fusion plays an important role in cancer metastasis. Color coding of cancer and stromal cells with spectrally-distinct fluorescent proteins is a powerful tool, as pioneered by our laboratory to detect cell fusion. We have previously reported color-coded cell fusion between cancer cells and stromal cells in metastatic sites by using color-coded EL4 murine lymphoma cells and host mice expressing spectrally-distinct fluorescent proteins. Cell fusion occurred between cancer cells or, between cancer cells and normal cells, such as macrophages, fibroblasts, and mesenchymal stem cells. In the present study, the aim was to morphologically classify the fusion-hybrid cells observed in the primary tumor and multiple metastases EL4 formed from cells expressing red fluorescent protein (RFP) in transgenic mice expressing green fluorescent protein (GFP), in a syngeneic model. MATERIALS AND METHODS RFP-expressing EL4 murine lymphoma cells were cultured in vitro. EL4-RFP cells were harvested and injected intraperitoneally into immunocompetent transgenic C57/BL6-GFP mice to establish a syngeneic model. Two weeks later, mice were sacrificed and each organ was harvested, cultured, and observed using confocal microscopy. RESULTS EL4 intraperitoneal tumors (primary) and metastases in the lung, liver, blood, and bone marrow were formed. All tumors were harvested and cultured. In all specimens, RFP-EL4 cells, GFP-stromal cells, and fused yellow-fluorescent hybrid cells were observed. The fused hybrid cells showed various morphologies. Immune cell-like round-shaped yellow-fluorescent fused cells had a tendency to decrease with time in liver metastases and circulating blood. In contrast fibroblast-like spindle-shaped yellow-fluorescent fused cells increased in the intraperitoneal primary tumor, lung metastases, and bone marrow. CONCLUSION Cell fusion between EL4-RFP cells and GFP stromal cells occurred in primary tumors and all metastatic sites. The morphology of the fused hybrid cells varied in the primary and metastatic sites. The present results suggest that fused cancer and stromal hybrid cells of varying morphology may play an important role in cancer progression.
Collapse
Affiliation(s)
- Koji Yamashita
- Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, U.S.A.;
- Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
4
|
Sun T, Zhao H, Hu L, Shao X, Lu Z, Wang Y, Ling P, Li Y, Zeng K, Chen Q. Enhanced optical imaging and fluorescent labeling for visualizing drug molecules within living organisms. Acta Pharm Sin B 2024; 14:2428-2446. [PMID: 38828150 PMCID: PMC11143489 DOI: 10.1016/j.apsb.2024.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 06/05/2024] Open
Abstract
The visualization of drugs in living systems has become key techniques in modern therapeutics. Recent advancements in optical imaging technologies and molecular design strategies have revolutionized drug visualization. At the subcellular level, super-resolution microscopy has allowed exploration of the molecular landscape within individual cells and the cellular response to drugs. Moving beyond subcellular imaging, researchers have integrated multiple modes, like optical near-infrared II imaging, to study the complex spatiotemporal interactions between drugs and their surroundings. By combining these visualization approaches, researchers gain supplementary information on physiological parameters, metabolic activity, and tissue composition, leading to a comprehensive understanding of drug behavior. This review focuses on cutting-edge technologies in drug visualization, particularly fluorescence imaging, and the main types of fluorescent molecules used. Additionally, we discuss current challenges and prospects in targeted drug research, emphasizing the importance of multidisciplinary cooperation in advancing drug visualization. With the integration of advanced imaging technology and molecular design, drug visualization has the potential to redefine our understanding of pharmacology, enabling the analysis of drug micro-dynamics in subcellular environments from new perspectives and deepening pharmacological research to the levels of the cell and organelles.
Collapse
Affiliation(s)
- Ting Sun
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huanxin Zhao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Luyao Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xintian Shao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- School of Life Sciences, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Zhiyuan Lu
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yuli Wang
- Tianjin Pharmaceutical DA REN TANG Group Corporation Limited Traditional Chinese Pharmacy Research Institute, Tianjin 300457, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemistry Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Peixue Ling
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kewu Zeng
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qixin Chen
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
5
|
Ampudia-Mesias E, Cameron CS, Yoo E, Kelly M, Anderson SM, Manning R, Abrahante Lloréns JE, Moertel CL, Yim H, Odde DJ, Saydam N, Saydam O. The OTX2 Gene Induces Tumor Growth and Triggers Leptomeningeal Metastasis by Regulating the mTORC2 Signaling Pathway in Group 3 Medulloblastomas. Int J Mol Sci 2024; 25:4416. [PMID: 38674001 PMCID: PMC11050316 DOI: 10.3390/ijms25084416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.
Collapse
Affiliation(s)
- Elisabet Ampudia-Mesias
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Charles S. Cameron
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Eunjae Yoo
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea;
| | - Marcus Kelly
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | - Sarah M. Anderson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | - Riley Manning
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | | | - Christopher L. Moertel
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Hyungshin Yim
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea;
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | | | - Okay Saydam
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| |
Collapse
|
6
|
Kubota Y, Wang A, Chang N, Tarantino S, Gallagher S, Aoki Y, Masaki N, Obara K, Morinaga S, Tsunoda T, Hoffman RM. Precise Non-invasive Imaging Mouse Model of Pancreatic Cancer: Very Narrow Band-width Laser Fluorescence Excitation of Green Fluorescent Protein Provides Ultra-bright Tumor Images With no Skin Autofluorescence. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:30-33. [PMID: 38173656 PMCID: PMC10758840 DOI: 10.21873/cdp.10281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
Background/Aim Pancreatic cancer is a recalcitrant disease with 5-year survival of only 12%. Improved mouse models of pancreatic cancer are critical for discovery of effective therapeutics. Materials and Methods Orthotopic mouse nude-mouse models of pancreatic cancer were established with the human pancreatic-cancer cell line Panc-1 expressing green fluorescent protein (GFP) by transplanting tumor fragments into the pancreas, using the procedure of surgical orthotopic implantation (SOI). Four weeks after establishment of the orthotopic models, the mice were imaged with the Analytik Jena UVP Biospectrum Advanced with a very-narrow-band-width excitation at 487 nm and peak emission at 513 nm. Results Non-invasive fluorescence imaging of the mice implanted with Panc-1-GFP showed a very bright tumor in the area of the pancreas and peritoneal cavity. The skin background autofluorescence was absent. When a laparotomy was performed on the mouse for open imaging, the tumor on the pancreas was clearly imaged. There was very clear concordance of the non-invasive image and the image obtained during laparotomy. Conclusion A precise orthotopic mouse model of pancreatic cancer was developed in which there was high concordance between non-invasive and invasive fluorescence imaging due to the ultra-bright signal and ultra-low background using very-narrow-band-width laser fluorescence excitation. This model can be used for high-throughput in vivo screening for improved therapeutics for pancreatic cancer.
Collapse
Affiliation(s)
- Yutaro Kubota
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
- Division of Internal Medicine, Department of Medical Oncology, Showa University School of Medicine, Tokyo, Japan
| | | | | | | | | | - Yusuke Aoki
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Noriyuki Masaki
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Koya Obara
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Sei Morinaga
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Takuya Tsunoda
- Division of Internal Medicine, Department of Medical Oncology, Showa University School of Medicine, Tokyo, Japan
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
7
|
Kubota Y, Aoki Y, Wang A, Chang N, Tarantino S, Gallagher S, Tsunoda T, Hoffman RM. Non-invasive Fluorescence Imaging of Breast Cancer Metastasis to the Brain in an Orthotopic Nude-mouse Model With Very-narrow-band-width Laser Excitation of Red Fluorescent Protein Resulting in an Ultra-bright Signal Without Skin Autofluorescence. In Vivo 2024; 38:69-72. [PMID: 38148053 PMCID: PMC10756473 DOI: 10.21873/invivo.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM Breast-cancer metastasis to the brain is an intractable disease. To discover improved therapy for this disease, we developed a precise non-invasively-imageable orthotopic nude-mouse model, using very-narrow-band-width laser fluorescence excitation. MATERIALS AND METHODS Female nu/nu nude mice, aged 4-8 weeks, were inoculated through the midline of the skull with triple-negative human MDA-MB-231 breast cancer cells (5×105) expressing red fluorescent protein (RFP). The mice were imaged with the Analytik Jena UVP Biospectrum Advanced at 520 nm excitation with peak emission at 605 nm. RESULTS Three weeks after injection of MDA-MB-231-RFP cells in the brain, non-invasive fluorescence images of the breast tumor growing on the brain were obtained. The images of the tumor were very bright, with well-defined margins with no detectable skin autofluorescence background. Images obtained at various angles showed that the extent of the tumor margins could be precisely measured. A skin flap over the skull confirmed that the tumor was growing on the surface of the brain which is a frequent occurrence in breast cancer. CONCLUSION A precise orthotopic model of RFP-expressing breast-cancer metastasis to the brain was developed that could be non-invasively imaged with very-narrow-band-width laser excitation, resulting in an ultra-bright, ultra-low-background signal. The model will be useful in discovering improved therapeutics for this recalcitrant disease.
Collapse
Affiliation(s)
- Yutaro Kubota
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
- Division of Internal Medicine, Department of Medical Oncology, Showa University School of Medicine, Tokyo, Japan
| | - Yusuke Aoki
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | | | | | | | | | - Takuya Tsunoda
- Division of Internal Medicine, Department of Medical Oncology, Showa University School of Medicine, Tokyo, Japan
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, U.S.A.;
- Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
8
|
Wang X, Gou Z, Lv JJ, Zuo Y. A novel coumarin-TPA based fluorescent probe for turn-on hypochlorite detection and lipid-droplet-polarity bioimaging in cancer cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121481. [PMID: 35691171 DOI: 10.1016/j.saa.2022.121481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
A novel fluorescent compound, named C-TPA, based on coumarin (acceptor) and triphenylamine (donor) was facilely designed and fabricated through a one-step Suzuki coupling reaction. As a donor group, triphenylamine can efficiently enhance the fluorescence intensity and photostability of coumarin, and thus improve the detection efficiency. C-TPA-S was obtained from C-TPA treated with Lawesson's reagent and C-TPA-S can be used for the turn-on detection of hypochlorite through oxidative desulfurization with a low detection limit of 0.12 μM. Moreover, the intramolecular charge transfer process between the donor and acceptor group endows C-TPA with solvatochromism property and makes C-TPA a good candidate for polarity detection. The C-TPA with bright green fluorescence was highly efficient for imaging the microenvironment of polarity both in living cells and tissues with high selectivity and photostability, which can be applied in the diagnosis for the cancer cells.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Zhiming Gou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Jing-Jing Lv
- Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang 325035, PR China
| | - Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| |
Collapse
|
9
|
Yuzhakova D, Kiseleva E, Shirmanova M, Shcheslavskiy V, Sachkova D, Snopova L, Bederina E, Lukina M, Dudenkova V, Yusubalieva G, Belovezhets T, Matvienko D, Baklaushev V. Highly Invasive Fluorescent/Bioluminescent Patient-Derived Orthotopic Model of Glioblastoma in Mice. Front Oncol 2022; 12:897839. [PMID: 35912166 PMCID: PMC9326400 DOI: 10.3389/fonc.2022.897839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Development of the novel diagnostic and therapeutic approaches in neuro-oncology requires tumor models that closely reproduce the biological features of patients' tumors. Patient-derived xenografts (PDXs) are recognized as a valuable and the most "close-to-patient" tool for preclinical studies. However, their establishment is complicated by the factors related to both the surgical material and technique of the orthotopic implantation. The aim of this work was to develop a patient-derived glioblastoma multiform (GBM) model that stably co-expresses luciferase and a far-red fluorescent protein for monitoring of tumor progression in the brain and, using this model, to validate new diagnostic methods-macroscopic fluorescence lifetime imaging (macro-FLIM) and cross-polarization optical coherence tomography (CP OCT). The established model was similar to the original patient's GBM in terms of histological and immunohistochemical features and possessed reproducible growth in nude mice, which could be observed by both fluorescence and bioluminescence imaging. Our results demonstrated the high potential of macro-FLIM and CP OCT for intraoperative differentiation of GBM from the white matter. Thus, the dual-labeled PDX model of GBM proved to be an excellent approach for observation of tumor development by optical methods.
Collapse
Affiliation(s)
- Diana Yuzhakova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Elena Kiseleva
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Marina Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Vladislav Shcheslavskiy
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- R&D Department, Becker&Hickl GmbH, Berlin, Germany
| | - Daria Sachkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ludmila Snopova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Evgeniya Bederina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Maria Lukina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Laboratory of Molecular Oncology, Federal Research and Clinical Center of Physical and Chemical Medicine, Moscow, Russia
| | - Varvara Dudenkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Gaukhar Yusubalieva
- Biomedical Research Center, Federal Research and Clinical Center, Federal Medical and Biological Agency, Moscow, Russia
- Laboratory of Molecular Mechanisms of Regeneration and Aging, Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Tatyana Belovezhets
- Department of Molecular Immunology, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Daria Matvienko
- Department of Molecular Immunology, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Vladimir Baklaushev
- Biomedical Research Center, Federal Research and Clinical Center, Federal Medical and Biological Agency, Moscow, Russia
- Laboratory of Molecular Mechanisms of Regeneration and Aging, Engelhardt Institute of Molecular Biology, Moscow, Russia
| |
Collapse
|
10
|
Abstract
Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging.
Collapse
Affiliation(s)
- Seongje Hong
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Siyeon Rhee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Korea
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Hong S, Rhee S, Jung KO. In vivo molecular and single cell imaging. BMB Rep 2022; 55:267-274. [PMID: 35651326 PMCID: PMC9252890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 02/21/2025] Open
Abstract
Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging. [BMB Reports 2022; 55(6): 267-274].
Collapse
Affiliation(s)
- Seongje Hong
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Korea, CA 94305, USA
| | - Siyeon Rhee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Korea, CA 94305, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Nakada A, Maruyama T, Kamiya M, Hanaoka K, Urano Y. Rapid Visualization of Deeply Located Tumors In Vivo by Intravenous Administration of a γ-Glutamyltranspeptidase-Activated Fluorescent Probe. Bioconjug Chem 2022; 33:523-529. [PMID: 35166539 DOI: 10.1021/acs.bioconjchem.2c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously showed that spraying the fluorescent probe gGlu-HMRG (γ-glutamyl hydroxymethyl rhodamine green) can visualize even tiny tumors on the mesentery and peritoneal wall of tumor-bearing mice. However, during surgery, repeated spraying is necessary to detect tumors located deep within organs. Here, we examine whether deeply located tumors can be stained by intravenous administration of this probe. In mice bearing subcutaneous tumors, intravenous administration of gGlu-HMRG resulted in a rapid and specific increase of fluorescence in the tumor, which was visible to the naked eye within 5 min, and the maximum fluorescence intensity ratio of tumor to normal tissue (T/N = 4.3) was reached at 30 min. In mice bearing lung tumors, the T/N ratio reached approximately 20 at 30 min after administration, and deeply located tumors were clearly visualized. These results suggest that intravenous administration of gGlu-HMRG may be a useful technique in fluorescence-guided surgery of tumors.
Collapse
Affiliation(s)
- Akihiro Nakada
- DMPK Research Laboratory, Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Company, Limited, 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Takuma Maruyama
- Toxicology Research Laboratory, Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Company, Limited, 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Near IR-plasmon enhanced guided fluorescence and thermal imaging of tissue subsurface target using ICG-labeled gold nanourchin and protein contrast agent: implication of stability. Lasers Med Sci 2022; 37:2145-2156. [PMID: 34993706 DOI: 10.1007/s10103-021-03471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
A dual-function nanocomposite agent (NCA) was prepared for deep tissue fluorescence and thermal imaging. The results showed that a combination of some agents such as gold nanourchins (GNU) and indocyanine green (ICG) can have spectral overlapping and hence some peak broadening. Despite 83% and 92% loss of NCA fluorescence after tissue layers L1 and L2, respectively, there was sufficient signal detected for imaging the target buried under the tissue. No fluorescence was detected after L3. A significant contribution was made by GNU for both the fluorescence signal due to the plasmon-enhanced fluorescence (PEF) effect and the thermal heating because of local surface plasmon resonance (LSPR) due to its sharp tips. In the first case, PEF occurred within the first 40 s then followed by a gradual quenching by 23% in 4 min and 72% in the following 6 min. During the second quenching time, the emission signal was blue shifted by 10 nm. Of the three samples, sample 2 (S2) indicated the highest temperature rise ≈ 60 °C in 50 s; sample 3 (S3) produced the lowest temperature of ≈ 33 °C in 250 s after the first layer, thus showing BSA acting as a heat sink. Both the heating and cooling time are determined by the thermal properties of the material such as conductivity and diffusivity. Finally, despite the advantages of PEF, the photostability and quenching rate of a dye molecule must be considered in a dynamic detection monitoring system to account and compensate for the effect of contrast agent quality variation.
Collapse
|
14
|
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen responsible of coronavirus disease 2019 (COVID-19), has devastated public health services and economies worldwide. Despite global efforts to contain the COVID-19 pandemic, SARS-CoV-2 is now found in over 200 countries and has caused an upward death toll of over 1 million human lives as of November 2020. To date, only one Food and Drug Administration (FDA)-approved therapeutic drug (Remdesivir) and a monoclonal antibody, MAb (Bamlanivimab) are available for the treatment of SARS-CoV-2. As with other viruses, studying SARS-CoV-2 requires the use of secondary approaches to detect the presence of the virus in infected cells. To overcome this limitation, we have generated replication-competent recombinant (r)SARS-CoV-2 expressing fluorescent (Venus or mCherry) or bioluminescent (Nluc) reporter genes. Vero E6 cells infected with reporter-expressing rSARS-CoV-2 can be easily detected via fluorescence or luciferase expression and display a good correlation between reporter gene expression and viral replication. Moreover, rSARS-CoV-2 expressing reporter genes have comparable plaque sizes and growth kinetics to those of wild-type virus, rSARS-CoV-2/WT. We used these reporter-expressing rSARS-CoV-2 to demonstrate their feasibility to identify neutralizing antibodies (NAbs) or antiviral drugs. Our results demonstrate that reporter-expressing rSARS-CoV-2 represent an excellent option to identify therapeutics for the treatment of SARS-CoV-2, where reporter gene expression can be used as valid surrogates to track viral infection. Moreover, the ability to manipulate the viral genome opens the feasibility of generating viruses expressing foreign genes for their use as vaccines for the treatment of SARS-CoV-2 infection.IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19), has significantly impacted the human health and economic status worldwide. There is an urgent need to identify effective prophylactics and therapeutics for the treatment of SARS-CoV-2 infection and associated COVID-19 disease. The use of fluorescent- or luciferase-expressing reporter expressing viruses has significantly advanced viral research. Here, we generated recombinant (r)SARS-CoV-2 expressing fluorescent (Venus and mCherry) or luciferase (Nluc) reporter genes and demonstrate that they represent an excellent option to track viral infections in vitro. Importantly, reporter-expressing rSARS-CoV-2 display similar growth kinetics and plaque phenotype that their wild-type counterpart (rSARS-CoV-2/WT), demonstrating their feasibility to identify drugs and/or neutralizing antibodies (NAbs) for the therapeutic treatment of SARS-CoV-2. Henceforth, these reporter-expressing rSARS-CoV-2 can be used to interrogate large libraries of compounds and/or monoclonal antibodies (MAb), in high-throughput screening settings, to identify those with therapeutic potential against SARS-CoV-2.
Collapse
|
15
|
Yano S, Tazawa H, Kishimoto H, Kagawa S, Fujiwara T, Hoffman RM. Real-Time Fluorescence Image-Guided Oncolytic Virotherapy for Precise Cancer Treatment. Int J Mol Sci 2021; 22:E879. [PMID: 33477279 PMCID: PMC7830621 DOI: 10.3390/ijms22020879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy is one of the most promising, emerging cancer therapeutics. We generated three types of telomerase-specific replication-competent oncolytic adenovirus: OBP-301; a green fluorescent protein (GFP)-expressing adenovirus, OBP-401; and Killer-Red-armed OBP-301. These oncolytic adenoviruses are driven by the human telomerase reverse transcriptase (hTERT) promoter; therefore, they conditionally replicate preferentially in cancer cells. Fluorescence imaging enables visualization of invasion and metastasis in vivo at the subcellular level; including molecular dynamics of cancer cells, resulting in greater precision therapy. In the present review, we focused on fluorescence imaging applications to develop precision targeting for oncolytic virotherapy. Cell-cycle imaging with the fluorescence ubiquitination cell cycle indicator (FUCCI) demonstrated that combination therapy of an oncolytic adenovirus and a cytotoxic agent could precisely target quiescent, chemoresistant cancer stem cells (CSCs) based on decoying the cancer cells to cycle to S-phase by viral treatment, thereby rendering them chemosensitive. Non-invasive fluorescence imaging demonstrated that complete tumor resection with a precise margin, preservation of function, and prevention of distant metastasis, was achieved with fluorescence-guided surgery (FGS) with a GFP-reporter adenovirus. A combination of fluorescence imaging and laser ablation using a KillerRed-protein reporter adenovirus resulted in effective photodynamic cancer therapy (PDT). Thus, imaging technology and the designer oncolytic adenoviruses may have clinical potential for precise cancer targeting by indicating the optimal time for administering therapeutic agents; accurate surgical guidance for complete resection of tumors; and precise targeted cancer-specific photosensitization.
Collapse
Affiliation(s)
- Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
- Center for Graduate Medical Education, Okayama University Hospital, Okayama 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
- Center of Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, CA 92111, USA;
- Department of Surgery, University of California, San Diego, CA 92093, USA
| |
Collapse
|
16
|
In vivo cell tracking with viral vector mediated genetic labeling. J Neurosci Methods 2020; 350:109021. [PMID: 33316318 DOI: 10.1016/j.jneumeth.2020.109021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Cell tracking is a useful technique to monitor specific cell populations for their morphology, development, proliferation, migration, interaction, function, and other properties, both in vitro and in vivo. Using different materials and methodologies to label the target cells directly or indirectly, the dynamic biological processes in living organisms can be visualized with appropriate detection techniques. Viruses, with the unique ability to deliver exogenous genes into host cells, have been used as vectors to mediate gene transfer. Genetic labeling of target cells by viral vectors endows the cells to express reporter genes with high efficiency and specificity. In conjunction with corresponding imaging techniques, cells labeled with different genetic reporters mediated by different viral vectors can be monitored across spatial and temporal scales to fulfill various purposes and address different questions. In the present review, we introduce the basic principle of viral vectors in cell tracking and highlight the examples of cell tracking in various research areas.
Collapse
|
17
|
Sun YU, Nishino H, Zhao M, Miyake K, Sugisawa N, Yamamoto J, Tashiro Y, Inubushi S, Hamada K, Zhu G, Lim H, Hoffman RM. A Non-invasive Imageable GFP-expressing Mouse Model of Orthotopic Human Bladder Cancer. In Vivo 2020; 34:3225-3231. [PMID: 33144427 DOI: 10.21873/invivo.12158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND/AIM A more realistic mouse model of bladder cancer is necessary to develop effective drugs for the disease. Tumor models enhanced by bright fluorescent-reporter genes to follow the disease in real-time would enhance the ability to accurately predict the efficacy of various therapeutics on this particularly-malignant human cancer. MATERIALS AND METHODS A highly-fluorescent green fluorescent protein (GFP)-expressing bladder cancer model was orthotopically established in nude mice using the UM-UC-3 human bladder-cancer cell line (UM-UC-3-GFP). Fragments from a subcutaneous tumor of UM-UC-3-GFP were surgically implanted into the nude mouse bladder. Non-invasive and intra-vital fluorescence imaging was obtained with a simple imaging box. RESULTS The GFP-expressing orthotopic bladder tumor was imaged in real-time non-invasively as well as intra-vitally, with the two methods correlating at r=0.99. CONCLUSION This is the first non-invasive-fluorescence-imaging orthotopic model of bladder cancer and can be used for rapidly screening novel effective agents for this recalcitrant disease.
Collapse
Affiliation(s)
- Y U Sun
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Hiroto Nishino
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Ming Zhao
- AntiCancer, Inc., San Diego, CA, U.S.A
| | - Kentaro Miyake
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Norihiko Sugisawa
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Jun Yamamoto
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Yoshihiko Tashiro
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Sachiko Inubushi
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Kazuyuki Hamada
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Guangwei Zhu
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Hyein Lim
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, U.S.A. .,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| |
Collapse
|
18
|
Valcourt DM, Kapadia CH, Scully MA, Dang MN, Day ES. Best Practices for Preclinical In Vivo Testing of Cancer Nanomedicines. Adv Healthc Mater 2020; 9:e2000110. [PMID: 32367687 PMCID: PMC7473451 DOI: 10.1002/adhm.202000110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/17/2020] [Indexed: 01/06/2023]
Abstract
Significant advances have been made in the development of nanoparticles for cancer treatment in recent years. Despite promising results in preclinical animal models, cancer nanomedicines often fail in clinical trials. This failure rate could be reduced by defining stringent criteria for testing and quality control during the design and development stages, and by performing carefully planned preclinical studies in relevant animal models. This article discusses best practices for the evaluation of nanomedicines in murine tumor models. First, a recommended set of experiments to perform is introduced, including discussion of the types of data to collect during these studies. This is followed by an outline of various tumor models and their clinical relevance. Next, different routes of nanoparticle administration are overviewed, followed by a summary of important controls to include in in vivo studies of nanomedicine. Finally, animal welfare considerations are discussed, and an overview of the steps involved in achieving US Food and Drug Administration approval after animal studies are completed is provided. Researchers should use this report as a guideline for effective preclinical evaluation of cancer nanomedicine. As the community adopts best practices for in vivo testing, the rate of clinical translation of cancer nanomedicines is likely to improve.
Collapse
Affiliation(s)
- Danielle M Valcourt
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Chintan H Kapadia
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Mackenzie A Scully
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Megan N Dang
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Materials Science & Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
- Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown Stanton Road, Newark, DE, 19713, USA
| |
Collapse
|
19
|
Li J, Li B, Sun J, Ma C, Wan S, Li Y, Göstl R, Herrmann A, Liu K, Zhang H. Engineered Near-Infrared Fluorescent Protein Assemblies for Robust Bioimaging and Therapeutic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000964. [PMID: 32162422 DOI: 10.1002/adma.202000964] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 05/21/2023]
Abstract
Fluorescent proteins are investigated extensively as markers for the imaging of cells and tissues that are treated by gene transfection. However, limited transfection efficiency and lack of targeting restrict the clinical application of this method rooted in the challenging development of robust fluorescent proteins for in vivo bioimaging. To address this, a new type of near-infrared (NIR) fluorescent protein assemblies manufactured by genetic engineering is presented. Due to the formation of well-defined nanoparticles and spectral operation within the phototherapeutic window, the NIR protein aggregates allow stable and specific tumor imaging via simple exogenous injection. Importantly, in vivo tumor metastases are tracked and this overcomes the limitations of in vivo imaging that can only be implemented relying on the gene transfection of fluorescent proteins. Concomitantly, the efficient loading of hydrophobic drugs into the protein nanoparticles is demonstrated facilitating the therapy of tumors in a mouse model. It is believed that these theranostic NIR fluorescent protein assemblies, hence, show great potential for the in vivo detection and therapy of cancer.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Chao Ma
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Sikang Wan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuanxin Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Robert Göstl
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, Aachen, 52056, Germany
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, Aachen, 52056, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Alzubi MA, Boyd DC, Harrell JC. The utility of the "Glowing Head" mouse for breast cancer metastasis research. Clin Exp Metastasis 2020; 37:241-246. [PMID: 31938954 DOI: 10.1007/s10585-020-10020-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/07/2020] [Indexed: 11/29/2022]
Abstract
The expression of cellular reporters to label cancer cells, such as green fluorescent protein (GFP) and luciferase, can stimulate immune responses and effect tumor growth. Recently, a mouse model that expresses GFP and luciferase in the anterior pituitary gland was generated to tolerize mice to these proteins; the "Glowing Head" mouse. Mice were obtained from a commercial vendor, bred, and then used for tumor growth and metastasis studies. The transgene expression of luciferase was assessed within tumor-naïve mice as well as mice with mammary tumors or metastases. Tumor-free mice with white fur, compared to black fur, allowed for stronger luciferase transgene expression to be observed in the pituitary, sternum, and femur. Growth of four different luciferase-expressing mouse cancer cell lines readily occurred in the mammary gland. Though sternum expression of the luciferase transgene occurred in cancer-free mice, growth or death of luciferase positive cancer cells in the lung could be observed. Liver metastases seeded by portal vein injections of luciferase positive cancer cell lines were completely distinct from luciferase transgene expression. Though lung and brain metastasis studies have limitations, the Glowing Head mouse can be useful to inhibit immune system rejection of luciferase or GFP expressing cancer cells. This mouse model is most beneficial for studies of mammary tumors and liver metastases.
Collapse
Affiliation(s)
- Mohammad A Alzubi
- Integrative Life Sciences Program, Virginia Commonwealth University, Richmond, VA, USA.,Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - David C Boyd
- Integrative Life Sciences Program, Virginia Commonwealth University, Richmond, VA, USA.,Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - J Chuck Harrell
- Integrative Life Sciences Program, Virginia Commonwealth University, Richmond, VA, USA. .,Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA. .,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
21
|
Zhao H, Liu C, Gu Z, Dong L, Li F, Yao C, Yang D. Persistent Luminescent Nanoparticles Containing Hydrogels for Targeted, Sustained, and Autofluorescence-Free Tumor Metastasis Imaging. NANO LETTERS 2020; 20:252-260. [PMID: 31793303 DOI: 10.1021/acs.nanolett.9b03755] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Metastasis is the primary cause of cancer morbidity and mortality. To obtain an effective diagnosis and treatment, precise imaging of tumor metastasis is required. Here we prepared persistent luminescent nanoparticles (PLNPs) containing a hydrogel (PL-gel) for targeted, sustained, and autofluorescence-free tumor metastasis imaging. PLNPs offered renewable long-lasting near-infrared (NIR) emitting without in situ radiation, favoring deep tissue penetration imaging without background interference. PLNPs were conjugated with 4-carboxyphenyl boronic acid (CPBA) to yield PLNPs-CPBA, which specifically recognized metastatic breast cancer cells (MBA-MD-231 cells) and enabled receptor-mediated endocytosis for specific cancer cell labeling. The PLNPs-CPBA-labeled cancer cells enabled sensitive imaging performance and high viability without influencing the migration and invasiveness of cancer cells for long-term tracking. PLNPs-CPBA were further encapsulated inside alginate to generate PL-gel for sustained PLNPs-CPBA release and tumor cell labeling, and the PL-gel showed enhanced renewable persistent luminescence compared to the PLNPs-CPBA suspension. The metastasis in the mouse breast cancer model was continuously tracked by persistent luminescence imaging, showing that PL-gel achieved noninvasive and highly selective imaging of tumor metastasis without background interference. Our PL-gel could be rationally designed to specifically target other types of cancer cells and thus provide a powerful and generic platform for the study of tumor metastasis.
Collapse
Affiliation(s)
- Huaixin Zhao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Chunxia Liu
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Luxi Dong
- State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin 300350 , P. R. China
| | - Feng Li
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Chi Yao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| |
Collapse
|
22
|
Campos Y, Sola FJ, Almirall A, Fuentes G, Eich C, Que I, Chan A, Kaijzel E, Tabata Y, Quintanilla L, Rodríguez‐Cabello JC, Cruz LJ. Design, construction, and biological testing of an implantable porous trilayer scaffold for repairing osteoarthritic cartilage. J Tissue Eng Regen Med 2019; 14:355-368. [DOI: 10.1002/term.3001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Yaima Campos
- Translational Nanobiomaterials and Imaging, Department of RadiologyLeiden University Medical Centre Leiden The Netherlands
- Biomaterials CenterUniversity of Havana Havana Cuba
| | | | - Amisel Almirall
- Biomaterials CenterUniversity of Havana Havana Cuba
- Laboratory of Biomaterials, Department of Regeneration Science and EngineeringInstitute for Frontier Life and Medical Sciences, Kyoto University Kyoto Japan
| | - Gastón Fuentes
- Translational Nanobiomaterials and Imaging, Department of RadiologyLeiden University Medical Centre Leiden The Netherlands
- Biomaterials CenterUniversity of Havana Havana Cuba
- Laboratory of Biomaterials, Department of Regeneration Science and EngineeringInstitute for Frontier Life and Medical Sciences, Kyoto University Kyoto Japan
- Bioforge Lab, Campus Miguel Delibes, CIBER‐BBNUniversidad de Valladolid, Edificio LUCIA Valladolid Spain
| | - Christina Eich
- Translational Nanobiomaterials and Imaging, Department of RadiologyLeiden University Medical Centre Leiden The Netherlands
| | - Ivo Que
- Translational Nanobiomaterials and Imaging, Department of RadiologyLeiden University Medical Centre Leiden The Netherlands
| | - Alan Chan
- Percuros B.V. Leiden The Netherlands
| | - Eric Kaijzel
- Translational Nanobiomaterials and Imaging, Department of RadiologyLeiden University Medical Centre Leiden The Netherlands
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and EngineeringInstitute for Frontier Life and Medical Sciences, Kyoto University Kyoto Japan
| | - Luis Quintanilla
- Bioforge Lab, Campus Miguel Delibes, CIBER‐BBNUniversidad de Valladolid, Edificio LUCIA Valladolid Spain
| | - José C. Rodríguez‐Cabello
- Bioforge Lab, Campus Miguel Delibes, CIBER‐BBNUniversidad de Valladolid, Edificio LUCIA Valladolid Spain
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging, Department of RadiologyLeiden University Medical Centre Leiden The Netherlands
| |
Collapse
|
23
|
Yan T, Zeng Q, Wang L, Wang N, Cao H, Xu X, Chen X. Harnessing the Power of Optical Microscopic and Macroscopic Imaging for Natural Products as Cancer Therapeutics. Front Pharmacol 2019; 10:1438. [PMID: 31849680 PMCID: PMC6892944 DOI: 10.3389/fphar.2019.01438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/11/2019] [Indexed: 01/03/2023] Open
Abstract
Natural products (NPs) are an important source for new drug discovery over the past decades, which have been demonstrated to be effectively used in cancer prevention, treatment, and adjuvant therapy. Many methods, such as the genomic and metabolomic approaches, immunochemistry, mass spectrometry, and chromatography, have been used to study the effects of NPs on cancer as well as themselves. Because of the advantages in specificity, sensitivity, high throughput, and cost-effectiveness, optical imaging (OI) approaches, including optical microscopic imaging and macroscopic imaging techniques have also been applied in the studies of NPs. Optical microscopic imaging can observe NPs as cancer therapeutics at the cellular level and analyze its cytotoxicity and mechanism of action. Optical macroscopic imaging observes the distribution, metabolic pathway, and target lesions of NPs in vivo, and evaluates NPs as cancer therapeutics at the whole-body level in small living animals. This review focuses on the recent advances in NPs as cancer therapeutics, with particular emphasis on the powerful use of optical microscopic and macroscopic imaging techniques, including the studies of observation of ingestion by cells, anticancer mechanism, and in vivo delivery. Finally, we prospect the wider application and future potential of OI approaches in NPs as cancer therapeutics.
Collapse
Affiliation(s)
- Tianyu Yan
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi’an, China
| | - Qi Zeng
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi’an, China
| | - Lin Wang
- School of Information Sciences and Technology, Northwest University, Xi’an, China
| | - Nan Wang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi’an, China
| | - Honghao Cao
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi’an, China
| | - Xinyi Xu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi’an, China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi’an, China
| |
Collapse
|
24
|
Al-Gubory KH. Shedding light on fibered confocal fluorescence microscopy: Applications in biomedical imaging and therapies. JOURNAL OF BIOPHOTONICS 2019; 12:e201900146. [PMID: 31343844 DOI: 10.1002/jbio.201900146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Discoveries of major importance in life sciences and preclinical research are linked to the invention of microscopes that enable imaging of cells and their microstructures. Imaging technologies involving in vivo procedures using fluorescent dyes that permit labelling of cells have been developed over the last two decades. Fibered confocal fluorescence microscopy (FCFM) is an imaging technology equipped with fiber-optic probes to deliver light to organs and tissues of live animals. This enables not only in vivo detection of fluorescent signals and visualization of cells, but also the study of dynamic processes, such cell proliferation, apoptosis and angiogenesis, under physiological and pathological conditions. This will allow the diagnosis of diseased organs and tissues and the evaluation of the efficacy of new therapies in animal models of human diseases. The aim of this report is to shed light on FCFM and its potential medical applications and discusses some factors that compromise the reliability and reproducibility of monitoring biological processes by FCFM. This report also highlights the issues concerning animal experimentation and welfare, and the contributions of FCFM to the 3Rs principals, replacement, reduction and refinement.
Collapse
Affiliation(s)
- Kaïs H Al-Gubory
- National Institute for Agricultural Research, Department of Animal Physiology, Jouy-en-Josas, France
| |
Collapse
|
25
|
Rogers OC, Johnson DM, Firnberg E. mRhubarb: Engineering of monomeric, red-shifted, and brighter variants of iRFP using structure-guided multi-site mutagenesis. Sci Rep 2019; 9:15653. [PMID: 31666599 PMCID: PMC6821797 DOI: 10.1038/s41598-019-52123-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/14/2019] [Indexed: 11/23/2022] Open
Abstract
Far-red and near-infrared fluorescent proteins (FPs) enable in vivo tissue imaging with greater depth and clarity compared to FPs in the visible spectrum due to reduced light absorbance and scatter by tissues. However current tools are limited by low brightness, limited red-shifting, and a non-ideal dimeric oligomerization state. In this study we developed a monomeric variant of iRFP, termed mRhubarb713, and subsequently used a targeted and expansive multi-site mutagenesis approach to screen for variants with red-shifted spectral activity. Two monomeric variants were discovered, deemed mRhubarb719 and mRhubarb720, with red-shifted spectra and increased quantum yield compared to iRFP. These tools build on previously developed near-IR FPs and should enable improved in vivo imaging studies with a genetically encoded reporter.
Collapse
|
26
|
Ko S, Hwang B, Na JH, Lee J, Jung ST. Engineered Arabidopsis Blue Light Receptor LOV Domain Variants with Improved Quantum Yield, Brightness, and Thermostability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12037-12043. [PMID: 31581772 DOI: 10.1021/acs.jafc.9b05473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite remarkable contribution of green fluorescent protein and its variants for better understanding of various biological functions, its application for anaerobic microorganisms has been limited because molecular oxygen is essential for chromophore formation. To overcome the limitation, we engineered a plant-derived light, oxygen, or voltage (LOV) domain containing flavin mononucleotide for enhanced spectral properties. The resulting LOV variants exhibited improved fluorescence intensity (20 and 70% higher for SH3 and 70% for BR1, respectively) compared to iLOV, an LOV variant isolated in a previous study, and the quantum yields of the LOV variants (0.40 for SH3 and 0.45 for BR1) were also improved relative to that of iLOV (Q = 0.37). In addition to fluorescence intensity, the identified mutations of SH3 enabled an improved thermostability of the protein. The engineered LOV variants with enhanced spectral properties could provide a valuable tool for fluorescent molecular probes under anaerobic conditions.
Collapse
Affiliation(s)
- Sanghwan Ko
- Department of Biomedical Sciences, Graduate School of Medicine , Korea University , Seoul 02841 , Republic of Korea
- Department of Applied Chemistry , Kookmin University , Seoul 02707 , Republic of Korea
| | - Bora Hwang
- Department of Applied Chemistry , Kookmin University , Seoul 02707 , Republic of Korea
| | - Jung-Hyun Na
- Department of Applied Chemistry , Kookmin University , Seoul 02707 , Republic of Korea
- Division of Discovery and Optimization, New Drug Development Center , Osong Medical Innovation Foundation , Cheongju , Chungcheongbuk-do 28160 , Republic of Korea
| | - Jisun Lee
- Department of Biomedical Sciences, Graduate School of Medicine , Korea University , Seoul 02841 , Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School of Medicine , Korea University , Seoul 02841 , Republic of Korea
| |
Collapse
|
27
|
Yang C, Wang Q, Ding W. Recent progress in the imaging detection of enzyme activities in vivo. RSC Adv 2019; 9:25285-25302. [PMID: 35530057 PMCID: PMC9070033 DOI: 10.1039/c9ra04508b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
Enzymatic activities are important for normal physiological processes and are also critical regulatory mechanisms for many pathologies. Identifying the enzyme activities in vivo has considerable importance in disease diagnoses and monitoring of the physiological metabolism. In the past few years, great strides have been made towards the imaging detection of enzyme activity in vivo based on optical modality, MRI modality, nuclear modality, photoacoustic modality and multifunctional modality. This review summarizes the latest advances in the imaging detection of enzyme activities in vivo reported within the past years, mainly concentrating on the probe design, imaging strategies and demonstration of enzyme activities in vivo. This review also highlights the potential challenges and the further directions of this field.
Collapse
Affiliation(s)
- Chunjie Yang
- College of Health Science, Yuncheng Polytechnic College Yuncheng Shanxi 044000 PR China
- College of Food Science and Engineering, Northwest A&F University Yangling Shaanxi 712100 PR China
| | - Qian Wang
- College of Food Science and Engineering, Northwest A&F University Yangling Shaanxi 712100 PR China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University Yangling Shaanxi 712100 PR China
| |
Collapse
|
28
|
Dos Santos NV, Saponi CF, Greaves TL, Pereira JFB. Revealing a new fluorescence peak of the enhanced green fluorescent protein using three-dimensional fluorescence spectroscopy. RSC Adv 2019; 9:22853-22858. [PMID: 35514499 PMCID: PMC9067124 DOI: 10.1039/c9ra02567g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/16/2019] [Indexed: 11/21/2022] Open
Abstract
Fluorescent proteins have many applications as biomarkers and biosensors in the medical and biological fields. Their success was largely supported by modifications of the first isolated fluorescent protein, the wild-type Green Fluorescent Protein (wtGFP), which allowed the development of improved variants such as the Enhanced GFP (EGFP). The first reports on EGFP indicated that the protein presented a single form and fluorescence peak, in contrast to the two conformations observed in wtGFP. However, after experimental determination of the crystalline structure of EGFP, two conformations were found, generating questions regarding the relationship between EGFP structure and its spectral characteristics. To resolve the controversy, this study evaluated EGFP 3D fluorescence spectra at lower wavelengths and under distinct conditions (different concentrations, pH and temperatures), revealing the existence of a second fluorescence peak for this protein. It was possible to confirm that the new peak was not a reflection of the intrinsic fluorescence of proteins or an artefact from the 3D fluorescence spectroscopy. It was also shown that the second peak is pH dependent, sensitive to high temperatures and linearly related to EGFP concentration, confirming a direct relationship between the new fluorescence peak and EGFP protein structure. In addition to the revelation of the new EGFP fluorescence peak, this study demonstrated that 3D fluorescence can be used as powerful technique in the discovery of other elusive fluorophores. Three-dimensional fluorescence spectroscopy as a powerful tool to identify a new fluorescence peak of Enhanced Green Fluorescent Protein (EGFP).![]()
Collapse
Affiliation(s)
- Nathalia Vieira Dos Santos
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP) Rodovia Araraquara-Jaú/Km 01 14800-903 Araraquara SP Brazil +55-16-3301-4675.,School of Science, College of Science, Engineering and Health, Royal Melbourne Institute of Technology 124 La Trobe Street 3000 Melbourne VIC Australia
| | - Carolina Falaschi Saponi
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP) Rodovia Araraquara-Jaú/Km 01 14800-903 Araraquara SP Brazil +55-16-3301-4675.,School of Science, College of Science, Engineering and Health, Royal Melbourne Institute of Technology 124 La Trobe Street 3000 Melbourne VIC Australia
| | - Tamar Louise Greaves
- School of Science, College of Science, Engineering and Health, Royal Melbourne Institute of Technology 124 La Trobe Street 3000 Melbourne VIC Australia
| | - Jorge Fernando Brandão Pereira
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP) Rodovia Araraquara-Jaú/Km 01 14800-903 Araraquara SP Brazil +55-16-3301-4675
| |
Collapse
|
29
|
Yim MS, Son EJ, Kim HN, Ryu EK. A TAT-conjugated peptide inhibitor of polo-like kinase 1 for in vivo tumor imaging. J Anal Sci Technol 2019. [DOI: 10.1186/s40543-019-0187-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
30
|
Vodopyanov SS, Kunin MA, Garanina AS, Grinenko NF, Vlasova KY, Mel'nikov PA, Chekhonin VP, Sukhinich KK, Makarov AV, Naumenko VA, Abakumov MA, Majouga AG. Preparation and Testing of Cells Expressing Fluorescent Proteins for Intravital Imaging of Tumor Microenvironment. Bull Exp Biol Med 2019; 167:123-130. [PMID: 31183645 DOI: 10.1007/s10517-019-04475-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 10/26/2022]
Abstract
Intravital microscopy is widely used for in vivo studies of the mechanisms of carcinogenesis and response to antitumor therapy. For visualization of tumor cells in vivo, cell lines expressing fluorescent proteins are needed. Expression of exogenous proteins can affect cell growth rate and their tumorigenic potential. Therefore, comprehensive analysis of the morphofunctional properties of transduced cells is required for creating appropriate models of tumor microenvironment. In the present study, six lines of mouse tumor cells expressing green and red fluorescent proteins were derived. Analysis of cells morphology, growth kinetics, and response to chemotherapy in vitro revealed no significant differences between wild-type and transduced cell lines. Introduction of fluorescent proteins into the genome of 4T1 (murine breast cancer) and B16-F10 (murine melanoma) cells did not affect tumor growth rate after subcutaneous implantation to mice, while both CT26-GFP and CT26-RFP cells (murine colon cancer) were rejected starting from day 8 after implantation. Elucidation of the mechanisms underlying CT26-GFP/RFP rejection is required to modify transduction technique for creating the models of tumor microenvironment accessible for in vivo visualization. Transduced 4T1 and B16-F10 cell lines can be used for intravital microscopic imaging of tumor cells, neoplastic vasculature, and leukocyte subpopulations.
Collapse
Affiliation(s)
- S S Vodopyanov
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), Moscow, Russia.
| | - M A Kunin
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - A S Garanina
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), Moscow, Russia
| | - N F Grinenko
- V. P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K Yu Vlasova
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - P A Mel'nikov
- V. P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Chekhonin
- V. P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K K Sukhinich
- N. K. Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - A V Makarov
- V. P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V A Naumenko
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), Moscow, Russia
| | - M A Abakumov
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), Moscow, Russia
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A G Majouga
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
- D. I. Mendeleev University of Chemical Technology, Moscow, Russia
| |
Collapse
|
31
|
Zhou K, Ding Y, Vuletic I, Tian Y, Li J, Liu J, Huang Y, Sun H, Li C, Ren Q, Lu Y. In vivo long-term investigation of tumor bearing mKate2 by an in-house fluorescence molecular imaging system. Biomed Eng Online 2018; 17:187. [PMID: 30594200 PMCID: PMC6310933 DOI: 10.1186/s12938-018-0615-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/05/2018] [Indexed: 11/10/2022] Open
Abstract
Background Optical imaging is one of the most common, low-cost imaging tools used for investigating the tumor biological behavior in vivo. This study explores the feasibility and sensitivity of a near infrared fluorescent protein mKate2 for a long-term non-invasive tumor imaging in BALB/c nude mice, by using a low-power optical imaging system. Methods In this study, breast cancer cell line MDA-MB-435s expressing mKate2 and MDA-MB-231 expressing a dual reporter gene firefly luciferase (fLuc)-GFP were used as cell models. Tumor cells were implanted in different animal body compartments including subcutaneous, abdominal and deep tissue area and closely monitored in real-time. A simple and low-power optical imaging system was set up to image both fluorescence and bioluminescence in live animals. Results The presence of malignant tissue was further confirmed by histopathological assay. Considering its lower exposure time and no need of substrate injection, mKate2 is considered a superior choice for subcutaneous imaging compared with fLuc. On the contrary, fLuc has shown to be a better option when monitoring the tumor in a diffusive area such as abdominal cavity. Furthermore, both reporter genes have shown good stability and sensitivity for deep tissue imaging, i.e. tumor within the liver. In addition, fLuc has shown to be an excellent method for detecting tumor cells in the lung. Conclusions The combination of mKate2 and fLuc offers a superior choice for long-term non-invasive real-time investigation of tumor biological behavior in vivo.
Collapse
Affiliation(s)
- Kedi Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Yichen Ding
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Ivan Vuletic
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Yonglu Tian
- Laboratory Animal Centre, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Jun Li
- Laboratory Animal Centre, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Jinghao Liu
- Laboratory Animal Centre, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Yixing Huang
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Hongfang Sun
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China.
| | - Changhui Li
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Yanye Lu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China.
| |
Collapse
|
32
|
Real-Time Determination of the Cell-Cycle Position of Individual Cells within Live Tumors Using FUCCI Cell-Cycle Imaging. Cells 2018; 7:cells7100168. [PMID: 30322204 PMCID: PMC6210921 DOI: 10.3390/cells7100168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022] Open
Abstract
Most cytotoxic agents have limited efficacy for solid cancers. Cell-cycle phase analysis at the single-cell level in solid tumors has shown that the majority of cancer cells in tumors is not cycling and is therefore resistant to cytotoxic chemotherapy. Intravital cell-cycle imaging within tumors demonstrated the cell-cycle position and distribution of cancer cells within a tumor, and cell-cycle dynamics during chemotherapy. Understanding cell-cycle dynamics within tumors should provide important insights into novel treatment strategies.
Collapse
|
33
|
Shcheslavskiy VI, Shirmanova MV, Dudenkova VV, Lukyanov KA, Gavrina AI, Shumilova AV, Zagaynova E, Becker W. Fluorescence time-resolved macroimaging. OPTICS LETTERS 2018; 43:3152-3155. [PMID: 29957804 DOI: 10.1364/ol.43.003152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
While laser scanning fluorescence lifetime imaging (FLIM) is a powerful approach for cell biology, its small field of view (typically less than 1 mm) makes it impractical for the imaging of large biological samples that is often required for biomedical applications. Here we present a system that allows performing FLIM on macroscopic samples as large as 18 mm with a lateral resolution of 15 μm. The performance of the system is verified with FLIM of endogenous metabolic cofactor reduced nicotinamide adenine dinucleotide (phosphate), NAD(P)H, and genetically encoded fluorescent protein mKate2 in a mouse tumor in vivo.
Collapse
|
34
|
Cryo-Imaging and Software Platform for Analysis of Molecular MR Imaging of Micrometastases. Int J Biomed Imaging 2018; 2018:9780349. [PMID: 29805438 PMCID: PMC5899875 DOI: 10.1155/2018/9780349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/24/2018] [Indexed: 11/25/2022] Open
Abstract
We created and evaluated a preclinical, multimodality imaging, and software platform to assess molecular imaging of small metastases. This included experimental methods (e.g., GFP-labeled tumor and high resolution multispectral cryo-imaging), nonrigid image registration, and interactive visualization of imaging agent targeting. We describe technological details earlier applied to GFP-labeled metastatic tumor targeting by molecular MR (CREKA-Gd) and red fluorescent (CREKA-Cy5) imaging agents. Optimized nonrigid cryo-MRI registration enabled nonambiguous association of MR signals to GFP tumors. Interactive visualization of out-of-RAM volumetric image data allowed one to zoom to a GFP-labeled micrometastasis, determine its anatomical location from color cryo-images, and establish the presence/absence of targeted CREKA-Gd and CREKA-Cy5. In a mouse with >160 GFP-labeled tumors, we determined that in the MR images every tumor in the lung >0.3 mm2 had visible signal and that some metastases as small as 0.1 mm2 were also visible. More tumors were visible in CREKA-Cy5 than in CREKA-Gd MRI. Tape transfer method and nonrigid registration allowed accurate (<11 μm error) registration of whole mouse histology to corresponding cryo-images. Histology showed inflammation and necrotic regions not labeled by imaging agents. This mouse-to-cells multiscale and multimodality platform should uniquely enable more informative and accurate studies of metastatic cancer imaging and therapy.
Collapse
|
35
|
Zherdeva V, Kazachkina NI, Shcheslavskiy V, Savitsky AP. Long-term fluorescence lifetime imaging of a genetically encoded sensor for caspase-3 activity in mouse tumor xenografts. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-11. [PMID: 29500873 DOI: 10.1117/1.jbo.23.3.035002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Caspase-3 is known for its role in apoptosis and programmed cell death regulation. We detected caspase-3 activation in vivo in tumor xenografts via shift of mean fluorescence lifetimes of a caspase-3 sensor. We used the genetically encoded sensor TR23K based on the red fluorescent protein TagRFP and chromoprotein KFP linked by 23 amino acid residues (TagRFP-23-KFP) containing a specific caspase cleavage DEVD motif to monitor the activity of caspase-3 in tumor xenografts by means of fluorescence lifetime imaging-Forster resonance energy transfer. Apoptosis was induced by injection of paclitaxel for A549 lung adenocarcinoma and etoposide and cisplatin for HEp-2 pharynx adenocarcinoma. We observed a shift in lifetime distribution from 1.6 to 1.9 ns to 2.1 to 2.4 ns, which indicated the activation of caspase-3. Even within the same tumor, the lifetime varied presumably due to the tumor heterogeneity and the different depth of tumor invasion. Thus, processing time-resolved fluorescence images allows detection of both the cleaved and noncleaved states of the TR23K sensor in real-time mode during the course of several weeks noninvasively. This approach can be used in drug screening, facilitating the development of new anticancer agents as well as improvement of chemotherapy efficiency and its adaptation for personal treatment.
Collapse
Affiliation(s)
- Victoria Zherdeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry,, Russia
| | - Natalia I Kazachkina
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry,, Russia
| | | | - Alexander P Savitsky
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry,, Russia
| |
Collapse
|
36
|
Abstract
The adult human adipose tissue is predominantly composed of white adipocytes. However, within certain depots, adipose tissue contains thermogenically active brown-like adipocytes, which have been evolutionarily conserved in mammals. This chapter will give a brief overview on the methods used to genetically target and trace both white and brown adipocytes using techniques such as bacterial artificial chromosome (BAC) cloning to create transgenic mouse models and the tools with which genetic recombination is mediated in vivo (e.g., Cre-loxP, CreERT, and Tet-On). The chapter furthermore critically discusses the strength and limitation of the various systems used to target mature white and brown adipocytes (ap2-Cre, Adipoq-Cre, and Ucp1-Cre). Based on these systems, it is evident that our knowledge of mature adipocyte categorization into brown, white, brite, or beige adipocytes is strongly influenced by the use of the various genetic mouse models described in this chapter. Our evaluation of different studies using the aforementioned systems focuses on key genes, which have been reported to maintain adipocyte's function (insulin receptor, Raptor, or Atgl).
Collapse
Affiliation(s)
- Christian Wolfrum
- Institute of Food, Nutrition, and Health, ETH Zurich, Zürich, Switzerland
| | | |
Collapse
|
37
|
Hoffman RM. The Advantages of Using Fluorescent Proteins for In Vivo Imaging. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/cpet.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Robert M. Hoffman
- Department of Surgery, University of California San Diego California
- AntiCancer Inc San Diego California
| |
Collapse
|
38
|
Hua KT, Hong JB, Sheen YS, Huang HY, Huang YL, Chen JS, Liao YH. miR-519d Promotes Melanoma Progression by Downregulating EphA4. Cancer Res 2017; 78:216-229. [PMID: 29093007 DOI: 10.1158/0008-5472.can-17-1933] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/08/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that there is a unique cell subpopulation in melanoma that can form nonadherent melanospheres in serum-free stem cell medium, mimicking aggressive malignancy. Using melanospheres as a model to investigate progression mechanisms, we found that miR-519d overexpression was sufficient to promote cell proliferation, migration, invasion, and adhesion in vitro and lung metastatic capability in vivo The cell adhesion receptor EphA4 was determined to be a direct target of miR-519d. Forced expression of EphA4 reversed the effects of miR-519d overexpression, whereas silencing of EphA4 phenocopied the effect of miR-519d. Malignant progression phenotypes were also affected at the level of epithelial-to-mesenchymal transition and the ERK1/2 signaling pathway inversely affected by miR-519d or EphA4 expression. In clinical specimens of metastatic melanoma, we observed significant upregulation of miR-519d and downregulation of EphA4, in the latter case correlated inversely with overall survival. Taken together, our results suggest a significant functional role for miR-519d in determining EphA4 expression and melanoma progression.Significance: These results suggest a significant role for miR-519d in determining expression of a pivotal cell adhesion molecule that may impact risks of malignant progression in many cancers. Cancer Res; 78(1); 216-29. ©2017 AACR.
Collapse
Affiliation(s)
- Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jin-Bong Hong
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Shuan Sheen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-Yi Huang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ling Huang
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jau-Shiuh Chen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
39
|
Wang Z, Li J, Cao D, Liu X, Zhu D. Generation and Application of Male Mice with Specific Expression of Green Fluorescent Protein in Germ Cells. Mol Imaging Biol 2017; 18:659-66. [PMID: 27020678 DOI: 10.1007/s11307-016-0947-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The study aimed to generate a mouse line with green fluorescent protein (GFP) specifically expressed in male germ cells to assess testicular toxicity. PROCEDURES The mouse line with GFP specifically expressed in male germ cells was generated by mating a germ cell-specific transgenic Cre male mouse with a double-fluorescent reporter female mouse using Cre/loxP. The mouse line was administered ethylene glycol monomethyl ether (EGME) by oral gavage. Then, the green fluorescence intensity in the testes was used as an indicator to examine the potential for testicular toxicity testing by molecular biology, histopathology, and in vivo imaging techniques. RESULTS Specific testicular GFP expression was observed in mice. GFP was mainly expressed in the germ cell lineage and concentrated in secondary spermatocytes/spermatocytes and spermatozoa. After administration of EGME, at the organ level, the green fluorescent intensity of the testes was decreased by 11 days and had disappeared by 34 days. Frozen testicular sections stained with DAPI showed significantly decreased green fluorescence in secondary spermatocytes and sperm cells. These observations were consistent with the testis weight and results of testicular histopathology. CONCLUSIONS With the application of in vivo imaging becoming popular, this mouse line with GFP specifically expressed in the male germ cells may have some advantages for the study of reproductive toxicity.
Collapse
Affiliation(s)
- Zhiru Wang
- Laboratory Animal Center, Peking University, 5 Yiheyuan Road, Beijing, 100871, China
- School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Jun Li
- Laboratory Animal Center, Peking University, 5 Yiheyuan Road, Beijing, 100871, China
| | - Dong Cao
- Laboratory Animal Center, Peking University, 5 Yiheyuan Road, Beijing, 100871, China
| | - Xiaomei Liu
- School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China.
| | - Desheng Zhu
- Laboratory Animal Center, Peking University, 5 Yiheyuan Road, Beijing, 100871, China.
| |
Collapse
|
40
|
Adwan H, Georges R, Pervaiz A, Berger MR. Investigation of Metastasis-Related Genes: A Rat Model Mimicking Liver Metastasis of Colorectal Carcinoma. Front Oncol 2017; 7:152. [PMID: 28770169 PMCID: PMC5513954 DOI: 10.3389/fonc.2017.00152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/27/2017] [Indexed: 12/29/2022] Open
Abstract
Liver is the main target of colorectal cancer (CRC) metastasis. Currently, the number of reports is small, which describe changes in gene expression supporting liver metastasis. Here, a rat model was used for analyzing mRNA modulations during liver colonization and compared with available literature. In the model, CC531 rat CRC cells were injected via a mesenteric vein into isogenic WAG/Rij rats and re-isolated at early, intermediate, advanced, and terminal stages of liver colonization. These cells were used for RNA isolation. Microarrays were used for analyzing mRNA profiles of expression. The number of deregulated genes is comparatively large and only part of it has been studied so far. As reported to date, claudins and insulin-like growth factor-binding proteins (IGFBPs) were found to be deregulated. The fact that the chosen method is efficient is confirmed by the study of claudins and IGFBPs, which show altered expression in the initial stages of liver colonization and then return to normalcy. In addition, cadherin was described to be downregulated in epithelial-mesenchymal transition models. It can, therefore, be concluded that the models used are helpful in finding genes, which are instrumental for metastatic liver colonization.
Collapse
Affiliation(s)
- Hassan Adwan
- Faculty of Pharmacy and Biotechnology, Department of Pharmacology and Toxicology, The German University in Cairo, Cairo, Egypt
| | - Rania Georges
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| | - Asim Pervaiz
- Department of Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
41
|
Xiao L, Tian X, Harihar S, Li Q, Li L, Welch DR, Zhou A. Gd 2O 3-doped silica @ Au nanoparticles for in vitro imaging cancer biomarkers using surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 181:218-225. [PMID: 28365452 PMCID: PMC5427483 DOI: 10.1016/j.saa.2017.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/26/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
There has been an interest in developing multimodal approaches to combine the advantages of individual imaging modalities, as well as to compensate for respective weaknesses. We previously reported a composite nano-system composed of gadolinium-doped mesoporous silica nanoparticle and gold nanoparticle (Gd-Au NPs) as an efficient MRI contrast agent for in vivo cancer imaging. However, MRI lacks sensitivity and is unsuitable for in vitro cancer detection. Thus, here we performed a study to use the Gd-Au NPs for detection and imaging of a widely recognized human cancer biomarker, epidermal growth factor receptor (EGFR), in individual human cancer cells with surface-enhanced Raman scattering (SERS). The Gd-Au NPs were sequentially conjugated with a monoclonal antibody recognizing EGFR and a Raman reporter molecule, 4-meraptobenzoic acid (MBA), to generate a characteristic SERS signal at 1075cm-1. By spatially mapping the SERS intensity at 1075cm-1, cellular distribution of EGFR and its relocalization on the plasma membrane were measured in situ. In addition, the EGFR expression levels in three human cancer cell lines (S18, A431 and A549) were measured using this SERS probe, which were consistent with the comparable measurements using immunoblotting and immunofluorescence. Our SERS results show that functionalized Gd-Au NPs successfully targeted EGFR molecules in three human cancer cell lines and monitored changes in single cell EGFR distribution in situ, demonstrating its potential to study cell activity under physiological conditions. This SERS study, combined with our previous MRI study, suggests the Gd-Au nanocomposite is a promising candidate contrast agent for multimodal cancer imaging.
Collapse
Affiliation(s)
- Lifu Xiao
- Department of Biological Engineering, Utah State University, Logan, UT 84322-4105, USA
| | - Xiumei Tian
- Department of Biomedical Engineering, Guangzhou Medical College, Guangzhou 510182, People's Republic of China
| | - Sitaram Harihar
- Department of Cancer Biology, The University of Kansas Medical Center and The University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Qifei Li
- Department of Biological Engineering, Utah State University, Logan, UT 84322-4105, USA; Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning 530003, Guangxi, People's Republic of China
| | - Li Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center and The University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Anhong Zhou
- Department of Biological Engineering, Utah State University, Logan, UT 84322-4105, USA.
| |
Collapse
|
42
|
Zhou Y, Wu J, Bian Z, Suo J, Zheng G, Dai Q. Fourier ptychographic microscopy using wavelength multiplexing. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:66006. [PMID: 28613346 DOI: 10.1117/1.jbo.22.6.066006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
Fourier ptychographic microscopy (FPM) is a recently developed technique stitching low-resolution images in Fourier domain to realize wide-field high-resolution imaging. However, the time-consuming process of image acquisition greatly narrows its applications in dynamic imaging. We report a wavelength multiplexing strategy to speed up the acquisition process of FPM several folds. A proof-of-concept system is built to verify its feasibility. Distinguished from many current multiplexing methods in Fourier domain, we explore the potential of high-speed FPM in spectral domain. Compatible with most existing FPM methods, our strategy provides an approach to high-speed gigapixel microscopy. Several experimental results are also presented to validate the strategy.
Collapse
Affiliation(s)
- You Zhou
- Tsinghua University, Department of Automation, Beijing, China
| | - Jiamin Wu
- Tsinghua University, Department of Automation, Beijing, China
| | - Zichao Bian
- University of Connecticut, Biomedical Engineering, and Electrical and Computer Engineering, Storrs, Connecticut, United States
| | - Jinli Suo
- Tsinghua University, Department of Automation, Beijing, China
| | - Guoan Zheng
- University of Connecticut, Biomedical Engineering, and Electrical and Computer Engineering, Storrs, Connecticut, United States
| | - Qionghai Dai
- Tsinghua University, Department of Automation, Beijing, China
| |
Collapse
|
43
|
Hoffman RM. Strategies for In Vivo Imaging Using Fluorescent Proteins. J Cell Biochem 2017; 118:2571-2580. [DOI: 10.1002/jcb.25677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/25/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Robert M. Hoffman
- AntiCancer, Inc.; San Diego California
- Department of Surgery; University of California San Diego; San Diego California
| |
Collapse
|
44
|
Fernandes RS, dos Santos Ferreira D, de Aguiar Ferreira C, Giammarile F, Rubello D, de Barros ALB. Development of imaging probes for bone cancer in animal models. A systematic review. Biomed Pharmacother 2016; 83:1253-1264. [DOI: 10.1016/j.biopha.2016.08.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 12/13/2022] Open
|
45
|
Establishment of an mKate2-Expressing Cell Line for Non-Invasive Real-Time Breast Cancer In Vivo Imaging. Mol Imaging Biol 2016; 17:811-8. [PMID: 25902968 DOI: 10.1007/s11307-015-0853-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Non-invasive real-time in vivo imaging experiments using mice as animal models have become crucial for understanding cancer development and treatment. In this study, we have developed and validated a new breast cancer cell line MDA-MB-435s that stably express a far-red fluorescence protein (mKate2) and that could serve as a highly valuable cell model for studying breast cancer detection and therapy using in vivo fluorescence imaging in nude mice. PROCEDURES The new cell line (MDA-MB-435s-mKate2) was constructed by plasmid transfection. The stability and sensitivity of mKate2, and the cell biological activities, were tested in vitro using different experimental approaches. For its potential use in tumor growth research and drug therapy in vivo, MDA-MB-435s-mKate2 was validated using the immunocompromised Balb/c nude mice tumor model. In addition, the new cell line has been characterized as a luteinizing hormone-releasing hormone receptor (LHRHR) positive cell line. RESULTS Firstly, MDA-MB-435s-mKate2 has shown a stable chromosomal integration of the amplified mKate2 gene and good fluorescence sensitivity for detection using a fluorescence reflectance imaging (FRI) device. Compared to its parental cell line, no significant difference in cell migration, proliferation, and clone formation was observed in vitro. Secondly, using the quantification of tumor-fluorescence surface area in live animals, we were able to monitor and detect the tumor progress or tumor inhibition rate (by Paclitaxel treatment) non-invasively and in real-time. Furthermore, MDA-MB-435s-mKate2 has been positively tested for LHRHR; these findings open the possibility to use this cell line for future studies of breast cancer therapy based on LHRH analogs in vivo. CONCLUSION In the present research, we have successfully built the MDA-MB-435s-mKate2 cell line that can be used as a suitable cell model for breast cancer therapy and anti-cancer drug evaluation by non-invasive fluorescence imaging in mice.
Collapse
|
46
|
Dobosz M, Haupt U, Scheuer W. Improved decision making for prioritizing tumor targeting antibodies in human xenografts: Utility of fluorescence imaging to verify tumor target expression, antibody binding and optimization of dosage and application schedule. MAbs 2016; 9:140-153. [PMID: 27661454 DOI: 10.1080/19420862.2016.1238996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Preclinical efficacy studies of antibodies targeting a tumor-associated antigen are only justified when the expression of the relevant antigen has been demonstrated. Conventionally, antigen expression level is examined by immunohistochemistry of formalin-fixed paraffin-embedded tumor tissue section. This method represents the diagnostic "gold standard" for tumor target evaluation, but is affected by a number of factors, such as epitope masking and insufficient antigen retrieval. As a consequence, variances and discrepancies in histological staining results can occur, which may influence decision-making and therapeutic outcome. To overcome these problems, we have used different fluorescence-labeled therapeutic antibodies targeting human epidermal growth factor receptor (HER) family members and insulin-like growth factor-1 receptor (IGF1R) in combination with fluorescence imaging modalities to determine tumor antigen expression, drug-target interaction, and biodistribution and tumor saturation kinetics in non-small cell lung cancer xenografts. For this, whole-body fluorescence intensities of labeled antibodies, applied as a single compound or antibody mixture, were measured in Calu-1 and Calu-3 tumor-bearing mice, then ex vivo multispectral tumor tissue analysis at microscopic resolution was performed. With the aid of this simple and fast imaging method, we were able to analyze the tumor cell receptor status of HER1-3 and IGF1R, monitor the antibody-target interaction and evaluate the receptor binding sites of anti-HER2-targeting antibodies. Based on this, the most suitable tumor model, best therapeutic antibody, and optimal treatment dosage and application schedule was selected. Predictions drawn from obtained imaging data were in excellent concordance with outcome of conducted preclinical efficacy studies. Our results clearly demonstrate the great potential of combined in vivo and ex vivo fluorescence imaging for the preclinical development and characterization of monoclonal antibodies.
Collapse
Affiliation(s)
- Michael Dobosz
- a Discovery Oncology, Pharmaceutical Research and Early Development, Roche Innovation Center Munich , Penzberg , Germany
| | - Ute Haupt
- a Discovery Oncology, Pharmaceutical Research and Early Development, Roche Innovation Center Munich , Penzberg , Germany
| | - Werner Scheuer
- a Discovery Oncology, Pharmaceutical Research and Early Development, Roche Innovation Center Munich , Penzberg , Germany
| |
Collapse
|
47
|
Ercolin ACM, Roballo KCS, Casals JB, Pieri NCG, Souza AF, Barreto RDSN, Bressan FF, Feitosa MLT, Miglino MA, Meirelles FV, Ambrósio CE. Rabbit olfactory stem cells. Isolation protocol and characterization. Acta Cir Bras 2016; 31:59-66. [PMID: 26840357 DOI: 10.1590/s0102-865020160010000009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/20/2015] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To describe a new technique for isolation of a mesenchymal stem cells (MSCs) population from the olfactory mucosa in rabbits. METHODS Olfactory stem cells (OSCs) were retrieved from under the cribriform plate of the Ethmoid bone. Several assays were accomplished to characterize the cell population and attest its viability in vitro. The cells were submitted to flow cytometry with the antibodies CD34, CD45, CD73, CD79, CD90 and CD105 and also they were induced to differentiate in three lineages. Functional evaluation involved analysis of in vitro growth behavior, colony forming unit like fibroblasts (CFU-f) and cryopreservation response. Further transduction with Green Fluorescent Protein (GFP) was also performed. RESULTS The OSCs showed mesenchymal features, as positive response to CD34, CD73 and CD90 antibodies and plasticity. Additionally, these cells have high proliferated rate, and they could be cultured through many passages and kept the ability to proliferate and differentiate after cryopreservation. The positive response to the transduction signalizes the possibility of cellular tracking in vivo. This is a desirable feature in case those cells are used for pre-clinical trials. CONCLUSION The cells harvested were mesenchymal stem cells and the technique described is therefore efficient for rabbit olfactory stem cells isolation.
Collapse
Affiliation(s)
- Anna Carolina Mazeto Ercolin
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, Universidade de Sao Paulo, Pirassununga, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
King CM, Barbara C, Prentice A, Brenton JD, Charnock-Jones DS. Models of endometriosis and their utility in studying progression to ovarian clear cell carcinoma. J Pathol 2016; 238:185-96. [PMID: 26456077 PMCID: PMC4855629 DOI: 10.1002/path.4657] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 12/16/2022]
Abstract
Endometriosis is a common benign gynaecological condition affecting at least 10% of women of childbearing age and is characterized by pain--frequently debilitating. Although the exact prevalence is unknown, the economic burden is substantial (∼$50 billion a year in the USA alone) and it is associated with considerable morbidity. The development of endometriosis is inextricably linked to the process of menstruation and thus the models that best recapitulate the human disease are in menstruating non-human primates. However, the use of these animals is ethically challenging and very expensive. A variety of models in laboratory animals have been developed and the most recent are based on generating menstrual-like endometrial tissue that can be transferred to a recipient animal. These models are genetically manipulable and facilitate precise mechanistic studies. In addition, these models can be used to study malignant transformation in epithelial ovarian carcinoma. Epidemiological and molecular evidence indicates that endometriosis is the most plausible precursor of both clear cell and endometrioid ovarian cancer (OCCA and OEA, respectively). While this progression is rare, understanding the underlying mechanisms of transformation may offer new strategies for prevention and therapy. Our ability to pursue this is highly dependent on improved animal models but the current transgenic models, which genetically modify the ovarian surface epithelium and oviduct, are poor models of ectopic endometrial tissue. In this review we describe the various models of endometriosis and discuss how they may be applicable to developing our mechanistic understanding of OCCA and OEA.
Collapse
Affiliation(s)
- Claire M King
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, Cambridge, UK
| | - Cynthia Barbara
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, Cambridge, UK
| | - Andrew Prentice
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, Cambridge, UK
| | - James D Brenton
- Functional Genomics of Ovarian Cancer Laboratory, CR-UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK.,National Institute for Health Research, Cambridge Comprehensive Biomedical Research Centre, Cambridge, UK
| | - D Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, Cambridge, UK.,National Institute for Health Research, Cambridge Comprehensive Biomedical Research Centre, Cambridge, UK
| |
Collapse
|
49
|
Miwa S, Toneri M, Igarashi K, Yano S, Kimura H, Hayashi K, Yamamoto N, Tsuchiya H, Hoffman RM. Real-Time In Vivo Confocal Fluorescence Imaging of Prostate Cancer Bone-Marrow Micrometastasis Development at the Cellular Level in Nude Mice. J Cell Biochem 2016; 117:2533-7. [PMID: 26990763 DOI: 10.1002/jcb.25545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/14/2022]
Abstract
In the present report, we demonstrate in vivo fluorescence imaging of bone-marrow micrometastasis of prostate cancer at the cellular level in nude mice. PC-3 human prostate cancer cells labeled with green fluorescent protein (GFP) or red fluorescent protein (RFP) were injected into the left ventricle or intratibial bone marrow of nude mice. PC-3-GFP, as well as selected high metastatic variants of PC-3-GFP, PC-3-GFP-BM6 or PC-3-RFP were visualized by real-time fluorescence imaging, to traffic and grow in the bone marrow. Formation of bone marrow micrometastasis could be imaged at the single-cell level in live mice, using confocal microscopy. The ability to track bone marrow micrometastasis in real time at the cellular level provides a visual target for evaluating new therapeutics for this recalcitrant disease. J. Cell. Biochem. 117: 2533-2537, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shinji Miwa
- AntiCancer, Inc., San Diego, California.,Department of Surgery, University of California, San Diego, San Diego, California.,Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical, Kanazawa, Japan
| | - Makoto Toneri
- AntiCancer, Inc., San Diego, California.,Department of Surgery, University of California, San Diego, San Diego, California
| | - Kentaro Igarashi
- AntiCancer, Inc., San Diego, California.,Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical, Kanazawa, Japan
| | - Shuya Yano
- AntiCancer, Inc., San Diego, California.,Department of Surgery, University of California, San Diego, San Diego, California
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical, Kanazawa, Japan
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical, Kanazawa, Japan
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, California. .,Department of Surgery, University of California, San Diego, San Diego, California.
| |
Collapse
|
50
|
Okigami M, Tanaka K, Inoue Y, Saigusa S, Okugawa Y, Toiyama Y, Mohri Y, Kusunoki M. Intravital imaging of the effects of 5-fluorouracil on the murine liver microenvironment using 2-photon laser scanning microscopy. Oncol Lett 2016; 11:2433-2439. [PMID: 27073493 DOI: 10.3892/ol.2016.4258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/18/2016] [Indexed: 11/05/2022] Open
Abstract
5-fluorouracil (5FU) is often used in the treatment of colorectal cancer. 5FU improves the median overall and disease-free survival rates and reduces recurrence rates in patients who have undergone curative surgical resection. However, in the adjuvant setting, whether 5FU eradicates clinically undetectable micrometastases in target organs such as the liver, or whether 5-FU inhibits the adhesion of circulating tumor cells has not yet been established. In the present study, 5FU was administered following the inoculation of red fluorescent protein-expressing HT29 cells into green fluorescent protein (GFP)-transgenic nude mice to examine its inhibitory effect. 2-photon laser scanning microscopy was performed at selected time points for time-series imaging of liver metastasis of GFP-transgenic mice. The cell number in vessels was quantified to evaluate the response of the tumor microenvironment to chemotherapy. HT29 cells were visualized in hepatic sinusoids at the single-cell level. A total of 2 hours after the injection (early stage), time-series imaging revealed that the number of caught tumor cells gradually reduced over time. In the 5FU treatment group, no significant difference was observed in the cell number in the early stage. One week after the injection (late stage), a difference in morphology was observed. The results of the present study indicated that 5FU eradicated clinically undetectable micrometastases in liver tissues by acting as a cytotoxic agent opposed to preventing adhesion. The present study indicated that time-series intravital 2-photon laser scanning microscopic imaging of metastatic tumor xenografts may facilitate the screening and evaluation of novel chemotherapeutic agents with less interindividual variability.
Collapse
Affiliation(s)
- Masato Okigami
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Koji Tanaka
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Susumu Saigusa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yasuhiko Mohri
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|