1
|
Nazari B, Jaquet V, Krause KH. NOX family NADPH oxidases in mammals: Evolutionary conservation and isoform-defining sequences. Redox Biol 2023; 66:102851. [PMID: 37595375 PMCID: PMC10458973 DOI: 10.1016/j.redox.2023.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023] Open
Abstract
NADPH oxidases are superoxide-producing enzymes that play a role in host defense, biosynthetic pathways, as well as cellular signaling. Humans have 7 NOX isoforms (NOX1-5, DUOX1,2), while mice and rats lack NOX5 and therefore have only 6 NOX isoforms. Whether all human NOX isoforms or their subunits (CYBA, NCF1, 2, 4, NOXO1, NOXA1, DUOXA1, 2) are present and conserved in other mammalian species is unknown. In this study, we have analyzed the conservation of the NOX family during mammalian evolution using an in-silico approach. Complete genomic sequences of 164 mammalian species were available. The possible absence of genes coding for NOX isoforms was investigated using the NCBI orthologs database followed by manual curation. Conservation of a given NOX isoform during mammalian evolution was evaluated by multiple alignment and identification of highly conserved sequences. There was no convincing evidence for the absence of NOX2, 3, 4, and DUOX1, 2 in all the available mammalian genome. However, NOX5 was absent in 27 of 31 rodent, in 2 of 3 lagomorph and in 2 out of 18 bat species. NOX1 was absent in all sequenced Afrotheria and Monotremata species, as well as in 3 of 18 bat species. NOXA1 was absent in all Afrotheria and in 3 out of 4 Eulipotyphla species. We also investigated amino acid sequence conservation among given NOX isoforms. Highly conserved sequences were observed for most isoforms except for NOX5. Interestingly, the highly conserved region of NOX2 sequence was relatively small (11 amino acids), as compared to NOX1, 3, 4. The highly conserved domains are different from one NOX isoform to the other, raising the possibility of distinct evolutionary conserved functional domains. Our results shed a new light on the essentiality of different NOX isoforms. We also identified isoform-defining sequences, i.e., hitherto undescribed conserved domains within specific NOX isoforms.
Collapse
Affiliation(s)
- Bahareh Nazari
- Department of Pathology & Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology & Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; READS Unit, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology & Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Foley S, Krehenwinkel H, Cheng DQ, Piel WH. Phylogenomic analyses reveal a Gondwanan origin and repeated out of India colonizations into Asia by tarantulas (Araneae: Theraphosidae). PeerJ 2021; 9:e11162. [PMID: 33868819 PMCID: PMC8034372 DOI: 10.7717/peerj.11162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/04/2021] [Indexed: 12/23/2022] Open
Abstract
The study of biogeography seeks taxa that share a key set of characteristics, such as timescale of diversification, dispersal ability, and ecological lability. Tarantulas are ideal organisms for studying evolution over continental-scale biogeography given their time period of diversification, their mostly long-lived sedentary lives, low dispersal rate, and their nevertheless wide circumtropical distribution. In tandem with a time-calibrated transcriptome-based phylogeny generated by PhyloBayes, we estimate the ancestral ranges of ancient tarantulas using two methods, DEC+j and BBM, in the context of their evolution. We recover two ecologically distinct tarantula lineages that evolved on the Indian Plate before it collided with Asia, emphasizing the evolutionary significance of the region, and show that both lineages diversified across Asia at different times. The most ancestral tarantulas emerge on the Americas and Africa 120 Ma-105.5 Ma. We provide support for a dual colonization of Asia by two different tarantula lineages that occur at least 20 million years apart, as well as a Gondwanan origin for the group. We determine that their current distributions are attributable to a combination of Gondwanan vicariance, continental rafting, and geographic radiation. We also discuss emergent patterns in tarantula habitat preferences through time.
Collapse
Affiliation(s)
- Saoirse Foley
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biological Science, National University of Singapore, Singapore, Singapore
- Division of Science, Yale-NUS College, Singapore, Singapore
| | | | | | - William H. Piel
- Department of Biological Science, National University of Singapore, Singapore, Singapore
- Division of Science, Yale-NUS College, Singapore, Singapore
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Murphy WJ, Foley NM, Bredemeyer KR, Gatesy J, Springer MS. Phylogenomics and the Genetic Architecture of the Placental Mammal Radiation. Annu Rev Anim Biosci 2020; 9:29-53. [PMID: 33228377 DOI: 10.1146/annurev-animal-061220-023149] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of placental mammals are being sequenced at an unprecedented rate. Alignments of hundreds, and one day thousands, of genomes spanning the rich living and extinct diversity of species offer unparalleled power to resolve phylogenetic controversies, identify genomic innovations of adaptation, and dissect the genetic architecture of reproductive isolation. We highlight outstanding questions about the earliest phases of placental mammal diversification and the promise of newer methods, as well as remaining challenges, toward using whole genome data to resolve placental mammal phylogeny. The next phase of mammalian comparative genomics will see the completion and application of finished-quality, gapless genome assemblies from many ordinal lineages and closely related species. Interspecific comparisons between the most hypervariable genomic loci will likely reveal large, but heretofore mostly underappreciated, effects on population divergence, morphological innovation, and the origin of new species.
Collapse
Affiliation(s)
- William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Mark S Springer
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
4
|
Ward D, Schmitt MH, Shrader AM. Are there phylogenetic differences in salivary tannin-binding proteins between browsers and grazers, and ruminants and hindgut fermenters? Ecol Evol 2020; 10:10426-10439. [PMID: 33072270 PMCID: PMC7548203 DOI: 10.1002/ece3.6698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/17/2023] Open
Abstract
While feeding, mammalian browsers (primarily eat woody plants) encounter secondary metabolites such as tannins. Browsers may bind these tannins using salivary proteins, whereas mammalian grazers (primarily eat grasses that generally lack tannins) likely would not. Ruminant browsers rechew their food (ruminate) to increase the effectiveness of digestion, which may make them more effective at binding tannins than nonruminants. Few studies have included a sufficient number of species to consider possible scaling with body mass or phylogenetic effects on salivary proteins. Controlling for phylogeny, we ran inhibition radial diffusion assays of the saliva of 28 species of African herbivores that varied in size, feeding strategy, and digestive system. We could not detect the presence of salivary proline-rich proteins that bind tannins in any of these species. However, using the inhibition radial diffusion assay, we found considerable abilities to cope with tannins in all species, albeit to varying degrees. We found no differences between browsers and grazers in the effectiveness of their salivary proteins to bind to and precipitate tannins, nor between ruminants and nonruminants, or scaling with body mass. Three species bound all tannins, but their feeding niches included one browser (gray duiker), one mixed feeder (bush pig), and one grazer (red hartebeest). Five closely related species of small ruminant browsers were very effective in binding tannins. Megaherbivores, considered generalists on account of their large body size, were capable of binding tannins. However, the grazing white rhinoceros was almost as effective at binding tannins as the megaherbivore browsers. We conclude, contrary to earlier predictions, that there were no differences in the relative salivary tannin-binding capability that was related to common ancestry (phylogeny) or to differences in body size.
Collapse
Affiliation(s)
- David Ward
- Department of Biological SciencesKent State UniversityKentOHUSA
| | - Melissa H. Schmitt
- South African Environmental Observation NetworkNdlovu NodePhalaborwaSouth Africa
- Department of Ecology, Evolution, and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
- School of Life SciencesUniversity of KwaZulu‐NatalScottsvilleSouth Africa
| | - Adrian M. Shrader
- School of Life SciencesUniversity of KwaZulu‐NatalScottsvilleSouth Africa
- Mammal Research InstituteDepartment of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
5
|
Rohozinski J. Lineage-independent retrotransposition of UTP14 associated with male fertility has occurred multiple times throughout mammalian evolution. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171049. [PMID: 29308242 PMCID: PMC5750009 DOI: 10.1098/rsos.171049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
In mammals, gamete production is essential for reproductive success. This is particularly true for males where large quantities of sperm are produced to fertilize a limited number of eggs released by the female. Because of this, new genes associated with increased spermatogenic efficiency have been accumulating throughout the evolution of therian mammals. Many of these new genes are testis-specific retrotransposed copies of housekeeping genes located on the X chromosome. Of particular interest are retrotransposed copies of UTP14 that are present in many distantly related eutherian mammals. Analysis of genomic data available in ENSEMBL indicates that these UTP14 retrogenes have arisen independently in the various eutherian clades. They represent an interesting aspect of evolution whereby new homologues of UTP14 have become independently fixed in multiple mammalian lineages due to the reproductive advantage that may be conferred to males. Surprisingly, these genes may also be lost, even after being present within a lineage for millions of years. This phenomenon may potentially be used to delineate evolutionary trees in closely related groups of mammals, particularly in the case of South American primates. Studying these retrogenes will yield new insights into the evolutionary history of male gamete production and the phylogeny of eutherian mammals.
Collapse
Affiliation(s)
- Jan Rohozinski
- Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Center for Reproductive Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Abstract
Summary
In this study we report on the evolution of micro-cursoriality, a unique case of cursoriality in mammals smaller than 1 kg. We obtained new running speed and limb morphology data for two species of elephant-shrews (Elephantulus spp., Macroscelidae) from Namaqualand, South Africa, which we compared with published data for other mammals. Elephantulus maximum running speeds were higher than most mammals smaller than 1 kg. Elephantulus also possess exceptionally high metatarsal:femur ratios (1.07) that are typically associated with fast unguligrade cursors. Cursoriality evolved in the Artiodactyla, Perissodactyla, and Carnivora coincident with global cooling and the replacement of forests with open landscapes in the Oligocene and Miocene. The majority of mammal species, though, remained non-cursorial, plantigrade, and small (< 1 kg). The extraordinary running speed and digitigrady of elephant-shrews was established in the Early Eocene in the earliest macroscelid Prodiacodon, but was probably inherited from Paleocene, Holarctic stem macroscelids. Micro-cursoriality in macroscelids evolved from the plesiomorphic plantigrade foot of the possum-like ancestral mammal earlier than in other mammalian crown groups. Micro-cursoriality evolved first in forests, presumably in response to selection for rapid running speeds facilitated by local knowledge, in order to avoid predators. During the Miocene, micro-cursoriality was pre-adaptive to open, arid habitats, and became more derived in the newly-evolved Elephantulus and Macroscelides elephant-shrews with trail running.
Collapse
|
7
|
Lueders I, Niemuller C, Rich P, Gray C, Hermes R, Goeritz F, Hildebrandt TB. Gestating for 22 months: luteal development and pregnancy maintenance in elephants. Proc Biol Sci 2012; 279:3687-96. [PMID: 22719030 DOI: 10.1098/rspb.2012.1038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The corpus luteum, a temporally established endocrine gland, formed on the ovary from remaining cells of the ovulated follicle, plays a key role in maintaining the early mammalian pregnancy by secreting progesterone. Despite being a monovular species, 2-12 corpora lutea (CLs) were found on the elephant ovaries during their long pregnancy lasting on average 640 days. However, the function and the formation of the additional CLs and their meaning remain unexplained. Here, we show from the example of the elephant, the close relationship between the maternally determined luteal phase length, the formation of multiple luteal structures and their progestagen secretion, the timespan of early embryonic development until implantation and maternal recognition. Through three-dimensional and Colour Flow ultrasonography of the ovaries and the uterus, we conclude that pregnant elephants maintain active CL throughout gestation that appear as main source of progestagens. Two LH peaks during the follicular phase ensure the development of a set of 5.4 ± 2.7 CLs. Accessory CLs (acCLs) form prior to ovulation after the first luteinizing hormone (LH) peak, while the ovulatory CL (ovCL) forms after the second LH peak. After five to six weeks (the normal luteal phase lifespan), all existing CLs begin to regress. However, they resume growing as soon as an embryo becomes ultrasonographically apparent on day 49 ± 2. After this time, all pregnancy CLs grow significantly larger than in a non-conceptive luteal phase and are maintained until after parturition. The long luteal phase is congruent with a slow early embryonic development and luteal rescue only starts 'last minute', with presumed implantation of the embryo. Our findings demonstrate a highly successful reproductive solution, different from currently described mammalian models.
Collapse
Affiliation(s)
- Imke Lueders
- Leibniz-Institute of Zoo- und Wildlife Research, Reproduction Management, 10315 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Dumbacher JP, Rathbun GB, Smit HA, Eiseb SJ. Phylogeny and taxonomy of the round-eared sengis or elephant-shrews, genus Macroscelides (Mammalia, Afrotheria, Macroscelidea). PLoS One 2012; 7:e32410. [PMID: 22479325 PMCID: PMC3314003 DOI: 10.1371/journal.pone.0032410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/30/2012] [Indexed: 11/24/2022] Open
Abstract
The round-eared sengis or elephant-shrews (genus Macroscelides) exhibit striking pelage variation throughout their ranges. Over ten taxonomic names have been proposed to describe this variation, but currently only two taxa are recognized (M. proboscideus proboscideus and M. p. flavicaudatus). Here, we review the taxonomic history of Macroscelides, and we use data on the geographic distribution, morphology, and mitochondrial DNA sequence to evaluate the current taxonomy. Our data support only two taxa that correspond to the currently recognized subspecies M. p. proboscideus and M. p. flavicaudatus. Mitochondrial haplotypes of these two taxa are reciprocally monophyletic with over 13% uncorrected sequence divergence between them. PCA analysis of 14 morphological characters (mostly cranial) grouped the two taxa into non-overlapping clusters, and body mass alone is a relatively reliable distinguishing character throughout much of Macroscelides range. Although fieldworkers were unable to find sympatric populations, the two taxa were found within 50 km of each other, and genetic analysis showed no evidence of gene flow. Based upon corroborating genetic data, morphological data, near sympatry with no evidence of gene flow, and differences in habitat use, we elevate these two forms to full species.
Collapse
Affiliation(s)
- John P Dumbacher
- Department of Vertebrate Zoology and Anthropology, California Academy of Sciences, San Francisco, California, United States of America.
| | | | | | | |
Collapse
|
9
|
Ultra sensitive affinity chromatography on avidin-functionalized PMMA microchip for low abundant post-translational modified protein enrichment. Biomed Microdevices 2011; 14:67-81. [DOI: 10.1007/s10544-011-9586-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Iida K, Kawaguchi S, Kobayashi N, Yoshida Y, Ishii M, Harada E, Hanada K, Matsui A, Okamoto M, Ishida J, Tanaka M, Morosawa T, Seki M, Toyoda T. ARTADE2DB: improved statistical inferences for Arabidopsis gene functions and structure predictions by dynamic structure-based dynamic expression (DSDE) analyses. PLANT & CELL PHYSIOLOGY 2011; 52:254-64. [PMID: 21227933 PMCID: PMC3037080 DOI: 10.1093/pcp/pcq202] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/20/2010] [Indexed: 05/19/2023]
Abstract
Recent advances in technologies for observing high-resolution genomic activities, such as whole-genome tiling arrays and high-throughput sequencers, provide detailed information for understanding genome functions. However, the functions of 50% of known Arabidopsis thaliana genes remain unknown or are annotated only on the basis of static analyses such as protein motifs or similarities. In this paper, we describe dynamic structure-based dynamic expression (DSDE) analysis, which sequentially predicts both structural and functional features of transcripts. We show that DSDE analysis inferred gene functions 12% more precisely than static structure-based dynamic expression (SSDE) analysis or conventional co-expression analysis based on previously determined gene structures of A. thaliana. This result suggests that more precise structural information than the fixed conventional annotated structures is crucial for co-expression analysis in systems biology of transcriptional regulation and dynamics. Our DSDE method, ARabidopsis Tiling-Array-based Detection of Exons version 2 and over-representation analysis (ARTADE2-ORA), precisely predicts each gene structure by combining two statistical analyses: a probe-wise co-expression analysis of multiple transcriptome measurements and a Markov model analysis of genome sequences. ARTADE2-ORA successfully identified the true functions of about 90% of functionally annotated genes, inferred the functions of 98% of functionally unknown genes and predicted 1,489 new gene structures and functions. We developed a database ARTADE2DB that integrates not only the information predicted by ARTADE2-ORA but also annotations and other functional information, such as phenotypes and literature citations, and is expected to contribute to the study of the functional genomics of A. thaliana. URL: http://artade.org.
Collapse
Affiliation(s)
- Kei Iida
- RIKEN BASE (Bioinformatics And Systems Engineering) Division, Yokohama, Kanagawa, 230-0045 Japan
- These authors contributed equally to this work
| | - Shuji Kawaguchi
- RIKEN BASE (Bioinformatics And Systems Engineering) Division, Yokohama, Kanagawa, 230-0045 Japan
- These authors contributed equally to this work
| | - Norio Kobayashi
- RIKEN BASE (Bioinformatics And Systems Engineering) Division, Yokohama, Kanagawa, 230-0045 Japan
| | - Yuko Yoshida
- RIKEN BASE (Bioinformatics And Systems Engineering) Division, Yokohama, Kanagawa, 230-0045 Japan
| | - Manabu Ishii
- RIKEN BASE (Bioinformatics And Systems Engineering) Division, Yokohama, Kanagawa, 230-0045 Japan
| | - Erimi Harada
- RIKEN BASE (Bioinformatics And Systems Engineering) Division, Yokohama, Kanagawa, 230-0045 Japan
| | - Kousuke Hanada
- RIKEN BASE (Bioinformatics And Systems Engineering) Division, Yokohama, Kanagawa, 230-0045 Japan
- RIKEN Plant Science Center, Yokohama, Kanagawa, 230-0045 Japan
| | - Akihiro Matsui
- RIKEN Plant Science Center, Yokohama, Kanagawa, 230-0045 Japan
| | - Masanori Okamoto
- RIKEN Plant Science Center, Yokohama, Kanagawa, 230-0045 Japan
- Present address: Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Junko Ishida
- RIKEN Plant Science Center, Yokohama, Kanagawa, 230-0045 Japan
| | - Maho Tanaka
- RIKEN Plant Science Center, Yokohama, Kanagawa, 230-0045 Japan
| | - Taeko Morosawa
- RIKEN Plant Science Center, Yokohama, Kanagawa, 230-0045 Japan
| | - Motoaki Seki
- RIKEN Plant Science Center, Yokohama, Kanagawa, 230-0045 Japan
| | - Tetsuro Toyoda
- RIKEN BASE (Bioinformatics And Systems Engineering) Division, Yokohama, Kanagawa, 230-0045 Japan
- *Corresponding author: E-mail, ; Fax, +81-45-503-9553
| |
Collapse
|
11
|
Kuntner M, May-Collado LJ, Agnarsson I. Phylogeny and conservation priorities of afrotherian mammals (Afrotheria, Mammalia). ZOOL SCR 2010. [DOI: 10.1111/j.1463-6409.2010.00452.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Poulakakis N, Stamatakis A. Recapitulating the evolution of Afrotheria: 57 genes and rare genomic changes (RGCs) consolidate their history. SYST BIODIVERS 2010. [DOI: 10.1080/14772000.2010.484436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals. Proc Natl Acad Sci U S A 2009; 106:5235-40. [PMID: 19286970 DOI: 10.1073/pnas.0809297106] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As a consequence of recent developments in molecular phylogenomics, all extant orders of placental mammals have been grouped into 3 lineages: Afrotheria, Xenarthra, and Boreotheria, which originated in Africa, South America, and Laurasia, respectively. Despite this advancement, the order of divergence of these 3 lineages remains unresolved. Here, we performed extensive retroposon analysis with mammalian genomic data. Surprisingly, we identified a similar number of informative retroposon loci that support each of 3 possible phylogenetic hypotheses: the basal position for Afrotheria (22 loci), Xenarthra (25 loci), and Boreotheria (21 loci). This result indicates that the divergence of the placental common ancestor into the 3 lineages occurred nearly simultaneously. Thus, we examined whether these molecular data could be integrated into the geological context by incorporating recent geological data. We obtained firm evidence that complete separation of Gondwana into Africa and South America occurred 120 +/- 10 Ma. Accordingly, the previous reported time frame (division of Pangea into Gondwana and Laurasia at 148-138 Ma and division of Gondwana at 105 Ma) cannot be used to validate mammalian divergence order. Instead, we use our retroposon results and the recent geological data to propose that near-simultaneous divisions of continents leading to isolated Africa, South America, and Laurasia caused nearly concomitant divergence of the ancient placental ancestor into 3 lineages, Afrotheria, Xenarthra, and Boreotheria, approximately 120 Ma.
Collapse
|
14
|
Rathbun GB. Why is there discordant diversity in sengi (Mammalia: Afrotheria: Macroscelidea) taxonomy and ecology? Afr J Ecol 2009. [DOI: 10.1111/j.1365-2028.2009.01102.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Yamanoue Y, Miya M, Matsuura K, Katoh M, Sakai H, Nishida M. A new perspective on phylogeny and evolution of tetraodontiform fishes (Pisces: Acanthopterygii) based on whole mitochondrial genome sequences: basal ecological diversification? BMC Evol Biol 2008; 8:212. [PMID: 18638411 PMCID: PMC2500030 DOI: 10.1186/1471-2148-8-212] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 07/19/2008] [Indexed: 11/24/2022] Open
Abstract
Background The order Tetraodontiformes consists of approximately 429 species of fishes in nine families. Members of the order exhibit striking morphological diversity and radiated into various habitats such as freshwater, brackish and coastal waters, open seas, and deep waters along continental shelves and slopes. Despite extensive studies based on both morphology and molecules, there has been no clear resolution except for monophyly of each family and sister-group relationships of Diodontidae + Tetraodontidae and Balistidae + Monacanthidae. To address phylogenetic questions of tetraodontiform fishes, we used whole mitochondrial genome (mitogenome) sequences from 27 selected species (data for 11 species were newly determined during this study) that fully represent all families and subfamilies of Tetraodontiformes (except for Hollardinae of the Triacanthodidae). Partitioned maximum likelihood (ML) and Bayesian analyses were performed on two data sets comprising concatenated nucleotide sequences from 13 protein-coding genes (all positions included; third codon positions converted into purine [R] and pyrimidine [Y]), 22 transfer RNA and two ribosomal RNA genes (total positions = 15,084). Results The resultant tree topologies from the two data sets were congruent, with many internal branches showing high support values. The mitogenomic data strongly supported monophyly of all families and subfamilies (except the Tetraodontinae) and sister-group relationships of Balistidae + Monacanthidae and Tetraodontidae + Diodontidae, confirming the results of previous studies. However, we also found two unexpected basal splits into Tetraodontoidei (Triacanthidae + Balistidae + Monacanthidae + Tetraodontidae + Diodontidae + Molidae) and Triacanthodoidei (Ostraciidae + Triodontidae + Triacanthodidae). Conclusion This basal split into the two clades has never been reported and challenges previously proposed hypotheses based on both morphology and nuclear gene sequences. It is likely that the basal split had involved ecological diversification, because most members of Tetraodontoidei exclusively occur in shallow waters (freshwater, brackish and coastal waters, and open seas), while those of Triacanthodoidei occur mainly in relatively deep waters along continental shelves and slopes except for more derived ostraciids. This suggests that the basal split between the two clades led to subsequent radiation into the two different habitats.
Collapse
Affiliation(s)
- Yusuke Yamanoue
- Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano-ku, Tokyo 164-8639, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Lovegrove BG, Génin F. Torpor and hibernation in a basal placental mammal, the Lesser Hedgehog Tenrec Echinops telfairi. J Comp Physiol B 2008; 178:691-8. [DOI: 10.1007/s00360-008-0257-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/10/2008] [Accepted: 03/12/2008] [Indexed: 11/28/2022]
|
17
|
|
18
|
Redi CA, Garagna S, Zuccotti M, Capanna E. Genome size: a novel genomic signature in support of Afrotheria. J Mol Evol 2007; 64:484-7. [PMID: 17479346 DOI: 10.1007/s00239-006-0237-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 01/08/2007] [Indexed: 11/26/2022]
Abstract
Molecular phylogenetic analyses suggest an emerging phylogeny for the extant Placentalia (eutherian) that radically departs from morphologically based constructions of the past. Placental mammals are partitioned into four supraordinal clades: Afrotheria, Xenarthra, Laurasiatheria, and Euarchontoglires. Afrotheria form an endemic African clade that includes elephant shrews, golden moles, tenrecs, aardvarks, hyraxes, elephants, dugongs, and manatees. Datamining databases of genome size (GS) shows that till today just one afrotherian GS has been evaluated, that of the aardvark Orycteropus afer. We show that the GSs of six selected representatives across the Afrotheria supraordinal group are among the highest for the extant Placentalia, providing a novel genomic signature of this enigmatic group. The mean GS value of Afrotheria, 5.3 +/- 0.7 pg, is the highest reported for the extant Placentalia. This should assist in planning new genome sequencing initiatives.
Collapse
|
19
|
Cote S, Werdelin L, Seiffert ER, Barry JC. Additional material of the enigmatic Early Miocene mammal Kelba and its relationship to the order Ptolemaiida. Proc Natl Acad Sci U S A 2007; 104:5510-5. [PMID: 17372202 PMCID: PMC1838468 DOI: 10.1073/pnas.0700441104] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kelba quadeemae, a fossil mammal from the Early Miocene of East Africa, was originally named on the basis of three isolated upper molars. Kelba has previously been interpreted as a creodont, a pantolestid, an insectivoran, and a hemigaline viverrid. The true affinities of this taxon have remained unclear because of the limited material and its unique morphology relative to other Miocene African mammals. New material of Kelba from several East African Miocene localities, most notably a skull from the Early Miocene locality of Songhor in Western Kenya, permits analysis of the affinities of Kelba and documents the lower dentition of this taxon. Morphological comparison of this new material clearly demonstrates that Kelba is a member of the order Ptolemaiida, a poorly understood group whose fossil record was previously restricted to the Oligocene Fayum deposits of northern Egypt. Phylogenetic analysis supports the monophyly of the Ptolemaiida, including Kelba, and recovers two monophyletic clades within the order. We provide new family names for these groups and an emended diagnosis for the order. The discovery of ptolemaiidans from the Miocene of East Africa is significant because it extends the known temporal range of the order by >10 million years and the geographic range by >3,200 km. Although the higher-level affinities of the Ptolemaiida remain obscure, their unique morphology and distribution through a larger area of Africa (and exclusively Africa) lend support to the idea that Ptolemaiida may have an ancient African origin.
Collapse
Affiliation(s)
- Susanne Cote
- Department of Anthropology and Peabody Museum, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
20
|
|
21
|
Lynn DJ, Bradley DG. Discovery of alpha-defensins in basal mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:963-7. [PMID: 17367857 DOI: 10.1016/j.dci.2007.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 05/14/2023]
Abstract
Alpha-defensins are essential molecules of the innate immune system that have broad spectrum antimicrobial activity against a range of bacteria and viruses. To date, alpha-defensins have only been identified in the Euarchontoglires branch of the mammals. This has led to speculation that alpha-defensins may be specific to this group, a somewhat surprising finding, given their importance in the immune system. The mammalian genome project provided us with the opportunity to search for alpha-defensins in previously unexamined mammalian superorders. Using hidden Markov model (HMM) profile searching, we report the discovery of alpha-defensins in the African savanna elephant, the lesser hedgehog tenrec, and the nine-banded armadillo genomes representing two of the most basal mammalian superorders, Afrotheria and Xenarthra. Furthermore, we identify an alpha-defensin-like gene in the gray short-tailed opossum, suggesting that alpha-defensins may have evolved much earlier than previously thought, before the divergence of placental mammals and marsupials approximately 130 mya.
Collapse
Affiliation(s)
- David J Lynn
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
22
|
Beck RMD, Bininda-Emonds ORP, Cardillo M, Liu FGR, Purvis A. A higher-level MRP supertree of placental mammals. BMC Evol Biol 2006; 6:93. [PMID: 17101039 PMCID: PMC1654192 DOI: 10.1186/1471-2148-6-93] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 11/13/2006] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The higher-level phylogeny of placental mammals has long been a phylogenetic Gordian knot, with disagreement about both the precise contents of, and relationships between, the extant orders. A recent MRP supertree that favoured 'outdated' hypotheses (notably, monophyly of both Artiodactyla and Lipotyphla) has been heavily criticised for including low-quality and redundant data. We apply a stringent data selection protocol designed to minimise these problems to a much-expanded data set of morphological, molecular and combined source trees, to produce a supertree that includes every family of extant placental mammals. RESULTS The supertree is well-resolved and supports both polyphyly of Lipotyphla and paraphyly of Artiodactyla with respect to Cetacea. The existence of four 'superorders'--Afrotheria, Xenarthra, Laurasiatheria and Euarchontoglires--is also supported. The topology is highly congruent with recent (molecular) phylogenetic analyses of placental mammals, but is considerably more comprehensive, being the first phylogeny to include all 113 extant families without making a priori assumptions of suprafamilial monophyly. Subsidiary analyses reveal that the data selection protocol played a key role in the major changes relative to a previously published higher-level supertree of placentals. CONCLUSION The supertree should provide a useful framework for hypothesis testing in phylogenetic comparative biology, and supports the idea that biogeography has played a crucial role in the evolution of placental mammals. Our results demonstrate the importance of minimising poor and redundant data when constructing supertrees.
Collapse
Affiliation(s)
- Robin MD Beck
- Division of Biology, Imperial College London, Silwood Park campus, Ascot SL5 7PY, UK
- Natural History Museum, Cromwell Road, London SW7 5BD, UK
- School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW 2052, Australia
| | - Olaf RP Bininda-Emonds
- Lehrstuhl für Tierzucht, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Marcel Cardillo
- Division of Biology, Imperial College London, Silwood Park campus, Ascot SL5 7PY, UK
| | - Fu-Guo Robert Liu
- Department of Zoology, Box 118525, University of Florida, Gainesville, Florida 32611-8552, USA
| | - Andy Purvis
- Division of Biology, Imperial College London, Silwood Park campus, Ascot SL5 7PY, UK
| |
Collapse
|
23
|
Bossuyt F, Brown RM, Hillis DM, Cannatella DC, Milinkovitch MC. Phylogeny and Biogeography of a Cosmopolitan Frog Radiation: Late Cretaceous Diversification Resulted in Continent-Scale Endemism in the Family Ranidae. Syst Biol 2006; 55:579-94. [PMID: 16857652 DOI: 10.1080/10635150600812551] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Ranidae is a large anuran group with a nearly cosmopolitan distribution. We investigated the phylogenetic relationships and early biogeographic history of ranid frogs, using 104 representatives of all subfamilies and families, sampled from throughout their distribution. Analyses of approximately 1570 bp of nuclear gene fragments (Rag-1, rhod, Tyr) and approximately 2100 bp of the mitochondrial genome (12S rRNA, tRNAVAL, 16S rRNA) indicate that the monophyly of several taxa can be rejected with high confidence. Our tree is characterized by a clear historical association of each major clade with one Gondwanan plate. This prevalence of continent-scale endemism suggests that plate tectonics has played a major role in the distribution of ranid frogs. We performed dispersal-vicariance analyses, as well as analyses constrained by paleogeographic data, to estimate ancestral distributions during early ranid diversification. Additionally, we used molecular clock analyses to evaluate whether these scenarios fit the temporal framework of continental breakup. Our analyses suggest that a scenario in which the ancestors of several clades (Rhacophorinae, Dicroglossinae, Raninae) reached Eurasia via the Indian subcontinent, and the ancestor of Ceratobatrachinae entered via the Australia-New Guinea plate, best fits the paleogeographic models and requires the fewest number of dispersal/vicariance events. However, several alternatives, in which part of the ranid fauna colonized Laurasia from Africa, are not significantly worse. Most importantly, all hypotheses make clear predictions as to where to expect key fossils and where to sample other living ranids, and thus constitute a strong basis for further research.
Collapse
Affiliation(s)
- Franky Bossuyt
- Biology Department, Unit of Ecology & Systematics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
24
|
Mcnab BK. The evolution of energetics in eutherian “insectivorans”: an alternate approach. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/bf03192663] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Abstract
During the past four decades, the molecular-clock hypothesis has provided an invaluable tool for building evolutionary timescales, and has served as a null model for testing evolutionary and mutation rates in different species. Molecular clocks have also influenced the development of theories of molecular evolution. As DNA-sequencing technologies have progressed, the use of molecular clocks has increased, with a profound effect on our understanding of the temporal diversification of species and genomes.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Evolutionary Functional Genomics, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe 85287-5301, USA.
| |
Collapse
|
26
|
Rázga F, Spackova N, Réblova K, Koca J, Leontis NB, Sponer J. Ribosomal RNA kink-turn motif--a flexible molecular hinge. J Biomol Struct Dyn 2005; 22:183-94. [PMID: 15317479 DOI: 10.1080/07391102.2004.10506994] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Ribosomal RNA K-turn motifs are asymmetric internal loops characterized by a sharp bend in the phosphodiester backbone resulting in "V" shaped structures, recurrently observed in ribosomes and showing a high degree of sequence conservation. We have carried out extended explicit solvent molecular dynamics simulations of selected K-turns, in order to investigate their intrinsic structural and dynamical properties. The simulations reveal an unprecedented dynamical flexibility of the K-turns around their X-ray geometries. The K-turns sample, on the nanosecond timescale, different conformational substates. The overall behavior of the simulations suggests that the sampled geometries are essentially isoenergetic and separated by minimal energy barriers. The nanosecond dynamics of isolated K-turns can be qualitatively considered as motion of two rigid helix stems controlled by a very flexible internal loop which then leads to substantial hinge-like motions between the two stems. This internal dynamics of K-turns is strikingly different for example from the bacterial 5S rRNA Loop E motif or BWYV frameshifting pseudoknot which appear to be rigid in the same type of simulations. Bistability and flexibility of K-turns was also suggested by several recent biochemical studies. Although the results of MD simulations should be considered as a qualitative picture of the K-turn dynamics due to force field and sampling limitations, the main advantage of the MD technique is its ability to investigate the region close to K-turn ribosomal-like geometries. This part of the conformational space is not well characterized by the solution experiments due to large-scale conformational changes seen in the experiments. We suggest that K-turns are well suited to act as flexible structural elements of ribosomal RNA. They can for example be involved in mediation of large-scale motions or they can allow a smooth assembling of the other parts of the ribosome.
Collapse
Affiliation(s)
- Filip Rázga
- National Centre for Biomolecular Research, Kotlarska 2, 61137 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
27
|
Miller ER, Gunnell GF, Martin RD. Deep Time and the Search for Anthropoid Origins. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2005; Suppl 41:60-95. [PMID: 16369958 DOI: 10.1002/ajpa.20352] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent fossil discoveries, phylogenetic analyses, revised reconstructions of continental drift, and accumulating molecular evidence have all yielded new information relating to anthropoid origins within the broader context of primate evolution. There is an emerging consensus among molecular studies that four superorders of eutherian mammals can be recognized: Afrotheria, Euarchontoglires (to which primates belong), Laurasiatheria, and Xenarthra. Overall, molecular phylogenies for mammals agree with some statistical analyses of the primate fossil record in indicating an early origin for primates around 85 Ma ago, and the divergence of haplorhines and strepsirrhines at ca. 77 Ma. Such an ancient date for the origin of haplorhines is some 17 Ma prior to the first known possible primate, and some 22 Ma before the earliest fossil evidence of undoubted euprimates. Because anthropoid fossils date back at least to the late Eocene and perhaps to the middle Eocene, and given indications of an early origin for primates, it is unlikely that ancestral anthropoids arose within any other currently known clade of fossil primates (adapiforms, omomyiforms, strepsirrhines, or tarsiiforms). Implications of new molecular, morphological, and biogeographic lines of evidence are explored with respect to the likely time and place of the origin of anthropoids. Four competing, testable hypotheses are reviewed in detail: 1) the Paratethyan hypothesis, 2) the continental Asian hypothesis, 3) the Indo-Madagascar hypothesis, and 4) the African hypothesis. A case is made that current evidence best supports a relatively ancient Gondwanan origin for primates, as well as a Gondwanan (African or Indo-Madagascan) origin for anthropoids at least as old as that of any other currently documented major primate clade. Available fossil evidence at present seems to be most compatible with the African hypothesis, but it is noteworthy that primates are included not in Afrotheria but in Euarchontoglires.
Collapse
Affiliation(s)
- Ellen R Miller
- Department of Anthropology, Wake Forest University, Winston-Salem, North Carolina 27109-7807, USA.
| | | | | |
Collapse
|
28
|
Robinson TJ, Seiffert ER. Afrotherian origins and interrelationships: new views and future prospects. Curr Top Dev Biol 2004; 63:37-60. [PMID: 15536013 DOI: 10.1016/s0070-2153(04)63002-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Terence J Robinson
- Evolutionary Genomics Group, Department of Zoology, University of Stellenbosch, Matieland 7602, South Africa
| | | |
Collapse
|
29
|
Helgen K. Major mammalian clades: a review under consideration of molecular and palaeontological evidence. Mamm Biol 2003. [DOI: 10.1078/1616-5047-1610057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Benner SA, Caraco MD, Thomson JM, Gaucher EA. Planetary biology--paleontological, geological, and molecular histories of life. Science 2002; 296:864-8. [PMID: 11988562 DOI: 10.1126/science.1069863] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The history of life on Earth is chronicled in the geological strata, the fossil record, and the genomes of contemporary organisms. When examined together, these records help identify metabolic and regulatory pathways, annotate protein sequences, and identify animal models to develop new drugs, among other features of scientific and biomedical interest. Together, planetary analysis of genome and proteome databases is providing an enhanced understanding of how life interacts with the biosphere and adapts to global change.
Collapse
Affiliation(s)
- Steven A Benner
- Department of Chemistry, University of Florida, Gainesville FL, 32611-7200, USA.
| | | | | | | |
Collapse
|
31
|
Künzle H, Radtke-Schuller S, von Stebut B. Parabrachio-cortical connections with the lateral hemisphere in the madagascan hedgehog tenrec: prominent projections to layer 1, weak projections from layer 6. Brain Res Bull 2002; 57:705-19. [PMID: 11927376 DOI: 10.1016/s0361-9230(01)00784-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present study was undertaken to further characterize and subdivide the rhinal cortex (insular and perirhinal areas) in the hedgehog tenrec (Echinops telfairi), a placental mammal with a rather low encephalisation index. Injections of wheat germ agglutinin-horseradish peroxidase into the dorsolateral pontine tegmentum revealed a prominent layer 1 projection to several rhinal target areas, while the rhinal cortex only stained weakly for the calcitonin gene-related peptide. Among the regions retrogradely labeled following tracer injections into the rhinal cortex, the parabrachial nucleus was considered the main origin of the tegmento-cortical projection. This conclusion was based on the circumscribed pattern of termination, as well as the differences noted between the pattern of anterograde labeling and the pattern obtained by thyrosine hydroxylase immunohistochemistry. The tracer injections into the dorsolateral tegmentum also revealed numerous retrogradely labeled cells in the layer 5 of the dorsomedial frontal cortex. In contrast, the rhinal cortex only showed few labeled cells and most of these cells were located in the layer 6/7. A comparison with other species indicates that the tenrec's parabrachial nucleus gives rise to the most extensive cortical projections but receives the least prominent input from the lateral cerebral hemisphere. The layer 6/7 projection may be a common mammalian feature but it is overshadowed by the layer 5 projection in higher mammals.
Collapse
Affiliation(s)
- Heinz Künzle
- Institute of Anatomy, Ludwig Maximilians University, Pettenkoferstrasse 11, D-80336 Munich, Germany.
| | | | | |
Collapse
|
32
|
|
33
|
Künzle H, Radtke-Schuller S. Hippocampal fields in the hedgehog tenrec. Their architecture and major intrinsic connections. Neurosci Res 2001; 41:267-91. [PMID: 11672840 DOI: 10.1016/s0168-0102(01)00288-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Madagascan lesser hedgehog tenrec was investigated to get insight into the areal evolution of the hippocampal formation in mammals with poorly differentiated brains. The hippocampal subdivisions were analyzed using cyto- and chemoarchitectural criteria; long associational and commissural connections were demonstrated with tracer techniques. The hedgehog tenrec shows a well differentiated dentate gyrus, CA3 and CA1. Their major intrinsic connections lie within the band of variations known from other species. The dentate hilar region shows calretinin-positive mossy cells with extensive projections to the molecular layer. The calbindin- and enkephalin-positive granule mossy fibers form a distinct endbulb and do not invade the CA1 as reported in the erinaceous hedgehog. Isolated granule cells with basal dendrites were also noted. A CA2 region is hard to identify architecturally; its presence is suggested due to its contralateral connections. Subicular and perisubicular regions are clearly present along the dorsal aspects of the hemisphere, but we failed to identify them unequivocally along the caudal and ventral tip of the hippocampus. A temporal portion of the subiculum, if present, differs in its chemoarchitecture from its dorsal counterpart. The perisubicular region, located medially adjacent to the dorsal subiculum may be equivalent to the rat's presubiculum; evidence for the presence of a parasubiculum was rather weak.
Collapse
Affiliation(s)
- H Künzle
- Institute of Anatomy, University of Munich, Pettenkoferstrasse 11, D-80336, Munich, Germany.
| | | |
Collapse
|
34
|
Gerlach G, Hoeck HN. Islands on the plains: metapopulation dynamics and female biased dispersal in hyraxes (Hyracoidea) in the Serengeti National Park. Mol Ecol 2001; 10:2307-17. [PMID: 11555272 DOI: 10.1046/j.0962-1083.2001.01369.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two species of hyrax, Heterohyrax brucei and Procavia johnstoni, inhabit rock outcrops, or kopjes, in the Serengeti National Park, Tanzania. Such distinct 'island' habitats provide an excellent model to investigate natural metapopulation dynamics with distinct small populations with extinction and colonization events, as well as migration between populations. Allele frequencies, genetic variability and genetic distances between populations were calculated based on DNA microsatellite markers. The genetic diversity in both species of hyrax, especially P. johnstoni, was surprisingly low: allelic diversity ranged from 2 to 7 alleles per locus. This may have been induced by colonization by a small number of individuals from single source populations. F-statistics, assignment tests and calculations of pairwise relatedness all indicated female-biased dispersal in H. brucei but not P. johnstoni. Values of FIS in P. johnstoni showed an excess of homozygotes indicative of high rates of inbreeding; evidence for inbreeding could not be detected in H. brucei. Although female dispersal patterns in H. brucei seem to prevent inbreeding and consequently reduce risk of local extinction, this seems not to be the case in P. johnstoni.
Collapse
Affiliation(s)
- G Gerlach
- Fakultät für Biologie, Postfach 5560 M657, Universität Konstanz, D-78434 Konstanz, Germany.
| | | |
Collapse
|
35
|
Affiliation(s)
- M S Springer
- Department of Biology, University of California, Riverside, CA 92521 USA.
| | | |
Collapse
|