1
|
Sutherland GA, Qian P, Hunter CN, Swainsbury DJ, Hitchcock A. Engineering purple bacterial carotenoid biosynthesis to study the roles of carotenoids in light-harvesting complexes. Methods Enzymol 2022; 674:137-184. [DOI: 10.1016/bs.mie.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Cryo-EM structure of the Rhodospirillum rubrum RC-LH1 complex at 2.5 Å. Biochem J 2021; 478:3253-3263. [PMID: 34402504 PMCID: PMC8454704 DOI: 10.1042/bcj20210511] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/03/2022]
Abstract
The reaction centre light-harvesting 1 (RC–LH1) complex is the core functional component of bacterial photosynthesis. We determined the cryo-electron microscopy (cryo-EM) structure of the RC–LH1 complex from Rhodospirillum rubrum at 2.5 Å resolution, which reveals a unique monomeric bacteriochlorophyll with a phospholipid ligand in the gap between the RC and LH1 complexes. The LH1 complex comprises a circular array of 16 αβ-polypeptide subunits that completely surrounds the RC, with a preferential binding site for a quinone, designated QP, on the inner face of the encircling LH1 complex. Quinols, initially generated at the RC QB site, are proposed to transiently occupy the QP site prior to traversing the LH1 barrier and diffusing to the cytochrome bc1 complex. Thus, the QP site, which is analogous to other such sites in recent cryo-EM structures of RC–LH1 complexes, likely reflects a general mechanism for exporting quinols from the RC–LH1 complex.
Collapse
|
3
|
Fujimoto KJ, Inoue K. Excitonic coupling effect on the circular dichroism spectrum of sodium-pumping rhodopsin KR2. J Chem Phys 2020; 153:045101. [DOI: 10.1063/5.0013642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Kazuhiro J. Fujimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8581, Japan
| |
Collapse
|
4
|
Tuning the Photophysical Features of Self-Assembling Photoactive Polypeptides for Light-Harvesting. MATERIALS 2019; 12:ma12213554. [PMID: 31671513 PMCID: PMC6862114 DOI: 10.3390/ma12213554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 01/03/2023]
Abstract
The LH1 complex is the major light-harvesting antenna of purple photosynthetic bacteria. Its role is to capture photons, and then store them and transfer the excitation energy to the photosynthetic reaction center. The structure of LH1 is modular and it cooperatively self-assembles from the subunits composed of short transmembrane polypeptides that reversibly bind the photoactive cofactors: bacteriochlorophyll and carotenoid. LH1 assembly, the intra-complex interactions and the light-harvesting features of LH1 can be controlled in micellar media by varying the surfactant concentration and by adding carotenoid and/or a co-solvent. By exploiting this approach, we can manipulate the size of the assembly, the intensity of light absorption, and the energy and lifetime of its first excited singlet state. For instance, via the introduction of Ni-substituted bacteriochlorophyll into LH1, the lifetime of this electronic state of the antenna can be shortened by almost three orders of magnitude. On the other hand, via the exchange of carotenoid, light absorption in the visible range can be tuned. These results show how in a relatively simple self-assembling pigment-polypeptide system a sophisticated functional tuning can be achieved and thus they provide guidelines for the construction of bio-inspired photoactive nanodevices.
Collapse
|
5
|
Yukihira N, Sugai Y, Fujiwara M, Kosumi D, Iha M, Sakaguchi K, Katsumura S, Gardiner AT, Cogdell RJ, Hashimoto H. Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids. Faraday Discuss 2019; 198:59-71. [PMID: 28294216 DOI: 10.1039/c6fd00211k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (∼95%) energy-transfer from fucoxanthin to chlorophyll a in the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin into a light-harvesting complex 1 from the purple photosynthetic bacterium, Rhodospirillum rubrum G9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyll a when they are bound to the light-harvesting 1 apo-proteins.
Collapse
Affiliation(s)
- Nao Yukihira
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kimura Y, Hashimoto K, Akimoto S, Takenouchi M, Suzuki K, Kishi R, Imanishi M, Takenaka S, Madigan MT, Nagashima KVP, Wang-Otomo ZY. Biochemical and Spectroscopic Characterizations of a Hybrid Light-Harvesting Reaction Center Core Complex. Biochemistry 2018; 57:4496-4503. [PMID: 29965735 DOI: 10.1021/acs.biochem.8b00644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The light-harvesting 1 reaction center (LH1-RC) complex from Thermochromatium tepidum exhibits a largely red-shifted LH1 Q y absorption at 915 nm due to binding of Ca2+, resulting in an "uphill" energy transfer from LH1 to the reaction center (RC). In a recent study, we developed a heterologous expression system (strain TS2) to construct a functional hybrid LH1-RC with LH1 from Tch. tepidum and the RC from Rhodobacter sphaeroides [Nagashima, K. V. P., et al. (2017) Proc. Natl. Acad. Sci. U. S. A. 114, 10906]. Here, we present detailed characterizations of the hybrid LH1-RC from strain TS2. Effects of metal cations on the phototrophic growth of strain TS2 revealed that Ca2+ is an indispensable element for its growth, which is also true for Tch. tepidum but not for Rba. sphaeroides. The thermal stability of the TS2 LH1-RC was strongly dependent on Ca2+ in a manner similar to that of the native Tch. tepidum, but interactions between the heterologous LH1 and RC became relatively weaker in strain TS2. A Fourier transform infrared analysis demonstrated that the Ca2+-binding site of TS2 LH1 was similar but not identical to that of Tch. tepidum. Steady-state and time-resolved fluorescence measurements revealed that the uphill energy transfer rate from LH1 to the RC was related to the energy gap in an order of Rba. sphaeroides, Tch. tepidum, and strain TS2; however, the quantum yields of LH1 fluorescence did not exhibit such a correlation. On the basis of these findings, we discuss the roles of Ca2+, interactions between LH1 and the RC from different species, and the uphill energy transfer mechanisms.
Collapse
Affiliation(s)
- Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture , Kobe University , Nada, Kobe 657-8501 , Japan
| | - Kanako Hashimoto
- Department of Agrobioscience, Graduate School of Agriculture , Kobe University , Nada, Kobe 657-8501 , Japan
| | - Seiji Akimoto
- Department of Science, Graduate School of Science , Kobe University , Nada, Kobe 657-8501 , Japan
| | - Mizuki Takenouchi
- Faculty of Science , Ibaraki University , Bunkyo, Mito 310-8512 , Japan
| | - Kengo Suzuki
- Hamamatsu Photonics K. K. , Joko-cho, Hamamatsu 431-3196 , Japan
| | - Rikako Kishi
- Department of Agrobioscience, Graduate School of Agriculture , Kobe University , Nada, Kobe 657-8501 , Japan
| | - Michie Imanishi
- Department of Agrobioscience, Graduate School of Agriculture , Kobe University , Nada, Kobe 657-8501 , Japan
| | - Shinji Takenaka
- Department of Agrobioscience, Graduate School of Agriculture , Kobe University , Nada, Kobe 657-8501 , Japan
| | - Michael T Madigan
- Department of Microbiology , Southern Illinois University , Carbondale , Illinois 62901 , United States
| | - Kenji V P Nagashima
- Research Institute for Photobiological Hydrogen Production , Kanagawa University , Tsuchiya, Hiratsuka 259-1293 , Japan
| | | |
Collapse
|
7
|
Probing structure-function relationships in early events in photosynthesis using a chimeric photocomplex. Proc Natl Acad Sci U S A 2017; 114:10906-10911. [PMID: 28935692 DOI: 10.1073/pnas.1703584114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The native core light-harvesting complex (LH1) from the thermophilic purple phototrophic bacterium Thermochromatium tepidum requires Ca2+ for its thermal stability and characteristic absorption maximum at 915 nm. To explore the role of specific amino acid residues of the LH1 polypeptides in Ca-binding behavior, we constructed a genetic system for heterologously expressing the Tch. tepidum LH1 complex in an engineered Rhodobacter sphaeroides mutant strain. This system contained a chimeric pufBALM gene cluster (pufBA from Tch. tepidum and pufLM from Rba. sphaeroides) and was subsequently deployed for introducing site-directed mutations on the LH1 polypeptides. All mutant strains were capable of phototrophic (anoxic/light) growth. The heterologously expressed Tch. tepidum wild-type LH1 complex was isolated in a reaction center (RC)-associated form and displayed the characteristic absorption properties of this thermophilic phototroph. Spheroidene (the major carotenoid in Rba. sphaeroides) was incorporated into the Tch. tepidum LH1 complex in place of its native spirilloxanthins with one carotenoid molecule present per αβ-subunit. The hybrid LH1-RC complexes expressed in Rba. sphaeroides were characterized using absorption, fluorescence excitation, and resonance Raman spectroscopy. Site-specific mutagenesis combined with spectroscopic measurements revealed that α-D49, β-L46, and a deletion at position 43 of the α-polypeptide play critical roles in Ca binding in the Tch. tepidum LH1 complex; in contrast, α-N50 does not participate in Ca2+ coordination. These findings build on recent structural data obtained from a high-resolution crystallographic structure of the membrane integrated Tch. tepidum LH1-RC complex and have unambiguously identified the location of Ca2+ within this key antenna complex.
Collapse
|
8
|
Swainsbury DJK, Martin EC, Vasilev C, Parkes-Loach PS, Loach PA, Neil Hunter C. Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:927-938. [PMID: 28826909 PMCID: PMC5604489 DOI: 10.1016/j.bbabio.2017.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/02/2017] [Accepted: 08/17/2017] [Indexed: 01/01/2023]
Abstract
The reaction centre-light harvesting 1 (RC-LH1) complex of Thermochromatium (Tch.) tepidum has a unique calcium-ion binding site that enhances thermal stability and red-shifts the absorption of LH1 from 880nm to 915nm in the presence of calcium-ions. The LH1 antenna of mesophilic species of phototrophic bacteria such as Rhodobacter (Rba.) sphaeroides does not possess such properties. We have engineered calcium-ion binding into the LH1 antenna of Rba. sphaeroides by progressively modifying the native LH1 polypeptides with sequences from Tch. tepidum. We show that acquisition of the C-terminal domains from LH1 α and β of Tch. tepidum is sufficient to activate calcium-ion binding and the extent of red-shifting increases with the proportion of Tch. tepidum sequence incorporated. However, full exchange of the LH1 polypeptides with those of Tch. tepidum results in misassembled core complexes. Isolated α and β polypeptides from our most successful mutant were reconstituted in vitro with BChl a to form an LH1-type complex, which was stabilised 3-fold by calcium-ions. Additionally, carotenoid specificity was changed from spheroidene found in Rba. sphaeroides to spirilloxanthin found in Tch. tepidum, with the latter enhancing in vitro formation of LH1. These data show that the C-terminal LH1 α/β domains of Tch. tepidum behave autonomously, and are able to transmit calcium-ion induced conformational changes to BChls bound to the rest of a foreign antenna complex. Thus, elements of foreign antenna complexes, such as calcium-ion binding and blue/red switching of absorption, can be ported into Rhodobacter sphaeroides using careful design processes.
Collapse
Affiliation(s)
- David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom.
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Cvetelin Vasilev
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Pamela S Parkes-Loach
- Department of Molecular Biosciences, Northwestern University, Hogan 2100, 2205 Tech Drive, Evanston, IL 60208, United States
| | - Paul A Loach
- Department of Molecular Biosciences, Northwestern University, Hogan 2100, 2205 Tech Drive, Evanston, IL 60208, United States
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
9
|
Light harvesting in phototrophic bacteria: structure and function. Biochem J 2017; 474:2107-2131. [DOI: 10.1042/bcj20160753] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022]
Abstract
This review serves as an introduction to the variety of light-harvesting (LH) structures present in phototrophic prokaryotes. It provides an overview of the LH complexes of purple bacteria, green sulfur bacteria (GSB), acidobacteria, filamentous anoxygenic phototrophs (FAP), and cyanobacteria. Bacteria have adapted their LH systems for efficient operation under a multitude of different habitats and light qualities, performing both oxygenic (oxygen-evolving) and anoxygenic (non-oxygen-evolving) photosynthesis. For each LH system, emphasis is placed on the overall architecture of the pigment–protein complex, as well as any relevant information on energy transfer rates and pathways. This review addresses also some of the more recent findings in the field, such as the structure of the CsmA chlorosome baseplate and the whole-cell kinetics of energy transfer in GSB, while also pointing out some areas in need of further investigation.
Collapse
|
10
|
Solov’ev AA, Ashikhmin AA, Moskalenko AA. Formation of a subunit form of the core light-harvesting complex from sulfur purple bacteria Ectothiorhodospira haloalkaliphila with different carotenoid composition. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716050179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Natural and artificial light-harvesting systems utilizing the functions of carotenoids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2015.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Mothersole DJ, Jackson PJ, Vasilev C, Tucker JD, Brindley AA, Dickman MJ, Hunter CN. PucC and LhaA direct efficient assembly of the light-harvesting complexes in Rhodobacter sphaeroides. Mol Microbiol 2015; 99:307-27. [PMID: 26419219 PMCID: PMC4949548 DOI: 10.1111/mmi.13235] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 01/21/2023]
Abstract
The mature architecture of the photosynthetic membrane of the purple phototroph Rhodobacter sphaeroides has been characterised to a level where an atomic-level membrane model is available, but the roles of the putative assembly proteins LhaA and PucC in establishing this architecture are unknown. Here we investigate the assembly of light-harvesting LH2 and reaction centre-light-harvesting1-PufX (RC-LH1-PufX) photosystem complexes using spectroscopy, pull-downs, native gel electrophoresis, quantitative mass spectrometry and fluorescence lifetime microscopy to characterise a series of lhaA and pucC mutants. LhaA and PucC are important for specific assembly of LH1 or LH2 complexes, respectively, but they are not essential; the few LH1 subunits found in ΔlhaA mutants assemble to form normal RC-LH1-PufX core complexes showing that, once initiated, LH1 assembly round the RC is cooperative and proceeds to completion. LhaA and PucC form oligomers at sites of initiation of membrane invagination; LhaA associates with RCs, bacteriochlorophyll synthase (BchG), the protein translocase subunit YajC and the YidC membrane protein insertase. These associations within membrane nanodomains likely maximise interactions between pigments newly arriving from BchG and nascent proteins within the SecYEG-SecDF-YajC-YidC assembly machinery, thereby co-ordinating pigment delivery, the co-translational insertion of LH polypeptides and their folding and assembly to form photosynthetic complexes.
Collapse
Affiliation(s)
- David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.,ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Cvetelin Vasilev
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Jaimey D Tucker
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Amanda A Brindley
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Mark J Dickman
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
13
|
Brotosudarmo THP, Limantara L, Heriyanto, Prihastyanti MNU. Adaptation of the Photosynthetic Unit of Purple Bacteria to Changes of Light Illumination Intensities. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proche.2015.03.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Olsen JD, Adams PG, Jackson PJ, Dickman MJ, Qian P, Hunter CN. Aberrant assembly complexes of the reaction center light-harvesting 1 PufX (RC-LH1-PufX) core complex of Rhodobacter sphaeroides imaged by atomic force microscopy. J Biol Chem 2014; 289:29927-36. [PMID: 25193660 PMCID: PMC4208002 DOI: 10.1074/jbc.m114.596585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the purple phototrophic bacterium Rhodobacter sphaeroides, many protein complexes congregate within the membrane to form operational photosynthetic units consisting of arrays of light-harvesting LH2 complexes and monomeric and dimeric reaction center (RC)-light-harvesting 1 (LH1)-PufX “core” complexes. Each half of a dimer complex consists of a RC surrounded by 14 LH1 αβ subunits, with two bacteriochlorophylls (Bchls) sandwiched between each αβ pair of transmembrane helices. We used atomic force microscopy (AFM) to investigate the assembly of single molecules of the RC-LH1-PufX complex using membranes prepared from LH2-minus mutants. When the RC and PufX components were also absent, AFM revealed a series of LH1 variants where the repeating α1β1(Bchl)2 units had formed rings of variable size, ellipses, and spirals and also arcs that could be assembly products. The spiral complexes occur when the LH1 ring has failed to close, and short arcs are suggestive of prematurely terminated LH1 complex assembly. In the absence of RCs, we occasionally observed captive proteins enclosed by the LH1 ring. When production of LH1 units was restricted by lowering the relative levels of the cognate pufBA transcript, we imaged a mixture of complete RC-LH1 core complexes, empty LH1 rings, and isolated RCs, leading us to conclude that once a RC associates with the first α1β1(Bchl)2 subunit, cooperative associations between subsequent subunits and the RC tend to drive LH1 ring assembly to completion.
Collapse
Affiliation(s)
- John D Olsen
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom and
| | - Peter G Adams
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom and
| | - Philip J Jackson
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom and the Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - Mark J Dickman
- the Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - Pu Qian
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom and
| | - C Neil Hunter
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom and
| |
Collapse
|
15
|
Structure of the LH1–RC complex from Thermochromatium tepidum at 3.0 Å. Nature 2014; 508:228-32. [DOI: 10.1038/nature13197] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/04/2014] [Indexed: 11/08/2022]
|
16
|
Sakai S, Hiro A, Sumino A, Mizuno T, Tanaka T, Hashimoto H, Dewa T, Nango M. Reconstitution and Organization of Photosynthetic Antenna Protein Complex Bearing Functional Hydrophilic Domains. CHEM LETT 2011. [DOI: 10.1246/cl.2011.1280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Ng IW, Adams PG, Mothersole DJ, Vasilev C, Martin EC, Lang HP, Tucker JD, Neil Hunter C. Carotenoids are essential for normal levels of dimerisation of the RC-LH1-PufX core complex of Rhodobacter sphaeroides: characterisation of R-26 as a crtB (phytoene synthase) mutant. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:1056-63. [PMID: 21651888 DOI: 10.1016/j.bbabio.2011.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/18/2011] [Accepted: 05/23/2011] [Indexed: 02/02/2023]
Abstract
Carotenoids play important roles in photosynthesis where they are involved in light-harvesting, in photo-protection and in the assembly and structural stability of light-harvesting and reaction centre complexes. In order to examine the effects of carotenoids on the oligomeric state of the reaction centre-light-harvesting 1 -PufX (RC-LH1-PufX) core complex of Rhodobacter sphaeroides two carotenoid-less mutants, TC70 and R-26, were studied. Detergent fractionation showed that in the absence of carotenoids LH2 complexes do not assemble, as expected, but also that core complexes are predominantly found as monomers, although levels of the PufX polypeptide appeared to be unaffected. Analysis of R-26 membranes by electron microscopy and atomic force microscopy reveals arrays of hexagonally packed monomeric RC-LH1-PufX complexes. Transfer of the crtB gene encoding phytoene synthase to TC70 and R-26 restores the normal synthesis of carotenoids demonstrating that the R-26 mutant of Rba. sphaeroides harbours a mutation in crtB, among its other defects. The transconjugant TC70 and R-26 strains containing crtB had regained their ability to assemble wild-type levels of dimeric RC-LH1-PufX core complexes and normal energy transfer pathways were restored, demonstrating that carotenoids are essential for the normal assembly and function of both the LH2 and RC-LH1-PufX complexes in this bacterial photosystem.
Collapse
Affiliation(s)
- Irene W Ng
- Department of Molecular Biology and Biochemistry, University of Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Imasheva ES, Balashov SP, Wang JM, Lanyi JK. Removal and reconstitution of the carotenoid antenna of xanthorhodopsin. J Membr Biol 2010; 239:95-104. [PMID: 21104180 PMCID: PMC3030941 DOI: 10.1007/s00232-010-9322-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/05/2010] [Indexed: 11/24/2022]
Abstract
Salinixanthin, a C40-carotenoid acyl glycoside, serves as a light-harvesting antenna in the retinal-based proton pump xanthorhodopsin of Salinibacter ruber. In the crystallographic structure of this protein, the conjugated chain of salinixanthin is located at the protein–lipid boundary and interacts with residues of helices E and F. Its ring, with a 4-keto group, is rotated relative to the plane of the π-system of the carotenoid polyene chain and immobilized in a binding site near the β-ionone retinal ring. We show here that the carotenoid can be removed by oxidation with ammonium persulfate, with little effect on the other chromophore, retinal. The characteristic CD bands attributed to bound salinixanthin are now absent. The kinetics of the photocycle is only slightly perturbed, showing a 1.5-fold decrease in the overall turnover rate. The carotenoid-free protein can be reconstituted with salinixanthin extracted from the cell membrane of S. ruber. Reconstitution is accompanied by restoration of the characteristic vibronic structure of the absorption spectrum of the antenna carotenoid, its chirality, and the excited-state energy transfer to the retinal. Minor modification of salinixanthin, by reducing the carbonyl C=O double bond in the ring to a C-OH, suppresses its binding to the protein and eliminates the antenna function. This indicates that the presence of the 4-keto group is critical for carotenoid binding and efficient energy transfer.
Collapse
Affiliation(s)
- Eleonora S Imasheva
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4560, USA
| | | | | | | |
Collapse
|
19
|
NAKAGAWA K, SAKAI S, KONDO M, DEWA T, HORIBE T, HASHIMOTO H, NANGO M. Structural Forming of Photosynthetic Polypeptide Supramolecule Complexes and Functional Analysis of Carotenoids in These Complexes. KOBUNSHI RONBUNSHU 2010. [DOI: 10.1295/koron.67.574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Imasheva ES, Balashov SP, Choi AR, Jung KH, Lanyi JK. Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna. Biochemistry 2009; 48:10948-55. [PMID: 19842712 DOI: 10.1021/bi901552x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We show that salinixanthin, the light-harvesting carotenoid antenna of xanthorhodopsin, can be reconstituted into the retinal protein from Gloeobacter violaceus expressed in Escherichia coli. Reconstitution of gloeobacter rhodopsin with the carotenoid is accompanied by characteristic absorption changes and the appearance of CD bands similar to those observed for xanthorhodopsin that indicate immobilization and twist of the carotenoid in the binding site. As in xanthorhodopsin, the carotenoid functions as a light-harvesting antenna. The excitation spectrum for retinal fluorescence emission shows that ca. 36% of the energy absorbed by the carotenoid is transferred to the retinal. From excitation anisotropy, we calculate the angle between the two chromophores as being ca. 50 degrees , similar to that in xanthorhodopsin. The results indicate that gloeobacter rhodopsin binds salinixanthin in a manner similar to that of xanthorhodopsin and suggest that it might bind a carotenoid also in vivo. In the crystallographic structure of xanthorhodopsin, the conjugated chain of the carotenoid lies on the surface of helices E and F, and the 4-keto ring is immersed in the protein at van der Waals distance from the ionone ring of the retinal. The 4-keto ring is in the space occupied by a tryptophan in bacteriorhodopsin, which is replaced by the smaller glycine in xanthorhodopsin and gloeobacter rhodopsin. Specific binding of the carotenoid and its light-harvesting function are eliminated by a single mutation of the gloeobacter protein that replaces this glycine with a tryptophan. This indicates that the 4-keto ring is critically involved in carotenoid binding and suggests that a number of other recently identified retinal proteins, from a diverse group of organisms, could also contain carotenoid antenna since they carry the homologous glycine near the retinal.
Collapse
Affiliation(s)
- Eleonora S Imasheva
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
21
|
Fiedor J, Pilch M, Fiedor L. Tuning the Thermodynamics of Association of Transmembrane Helices. J Phys Chem B 2009; 113:12831-8. [DOI: 10.1021/jp903789y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joanna Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Gronostajowa 7, Poland, Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Kraków, Reymonta 19, Poland, and Higher Vocational School, 33-100 Tarnów, Mickiewicza 8, Poland
| | - Mariusz Pilch
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Gronostajowa 7, Poland, Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Kraków, Reymonta 19, Poland, and Higher Vocational School, 33-100 Tarnów, Mickiewicza 8, Poland
| | - Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Gronostajowa 7, Poland, Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Kraków, Reymonta 19, Poland, and Higher Vocational School, 33-100 Tarnów, Mickiewicza 8, Poland
| |
Collapse
|
22
|
|
23
|
Nakagawa K, Suzuki S, Fujii R, Gardiner AT, Cogdell RJ, Nango M, Hashimoto H. Probing the effect of the binding site on the electrostatic behavior of a series of carotenoids reconstituted into the light-harvesting 1 complex from purple photosynthetic bacterium Rhodospirillum rubrum detected by stark spectroscopy. J Phys Chem B 2008; 112:9467-75. [PMID: 18613723 DOI: 10.1021/jp801773j] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reconstitutions of the LH1 complexes from the purple photosynthetic bacterium Rhodospirillum rubrum S1 were performed with a range of carotenoid molecules having different numbers of C=C conjugated double bonds. Since, as we showed previously, some of the added carotenoids tended to aggregate and then to remain with the reconstituted LH1 complexes (Nakagawa, K.; Suzuki, S.; Fujii, R.; Gardiner, A.T.; Cogdell, R.J.; Nango, M.; Hashimoto, H. Photosynth. Res. 2008, 95, 339-344), a further purification step using a sucrose density gradient centrifugation was introduced to improve purity of the final reconstituted sample. The measured absorption, fluorescence-excitation, and Stark spectra of the LH1 complex reconstituted with spirilloxanthin were identical with those obtained with the native, spirilloxanthin-containing, LH1 complex of Rs. rubrum S1. This shows that the electrostatic environments surrounding the carotenoid and bacteriochlorophyll a (BChl a) molecules in both of these LH1 complexes were essentially the same. In the LH1 complexes reconstituted with either rhodopin or spheroidene, however, the wavelength maximum at the BChl a Qy absorption band was slightly different to that of the native LH1 complexes. These differences in the transition energy of the BChl a Qy absorption band can be explained using the values of the nonlinear optical parameters of this absorption band, i.e., the polarizability change Tr(Deltaalpha) and the static dipole-moment change |Deltamu| upon photoexcitation, as determined using Stark spectroscopy. The local electric field around the BChl a in the native LH1 complex (ES) was determined to be approximately 3.0x10(6) V/cm. Furthermore, on the basis of the values of the nonlinear optical parameters of the carotenoids in the reconstituted LH1 complexes, it is possible to suggest that the conformations of carotenoids, anhydrorhodovibrin and spheroidene, in the LH1 complex were similar to that of rhodopin glucoside in crystal structure of the LH2 complex from Rhodopseudomonas acidophila 10050.
Collapse
Affiliation(s)
- Katsunori Nakagawa
- Department of Life and Materials Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Excitation dynamics of two spectral forms of the core complexes from photosynthetic bacterium Thermochromatium tepidum. Biophys J 2008; 95:3349-57. [PMID: 18502793 DOI: 10.1529/biophysj.108.133835] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intact core antenna-reaction center (LH1-RC) core complex of thermophilic photosynthetic bacterium Thermochromatium (Tch.) tepidum is peculiar in its long-wavelength LH1-Q(y) absorption (915 nm). We have attempted comparative studies on the excitation dynamics of bacteriochlorophyll (BChl) and carotenoid (Car) between the intact core complex and the EDTA-treated one with the Q(y) absorption at 889 nm. For both spectral forms, the overall Car-to-BChl excitation energy transfer efficiency is determined to be approximately 20%, which is considerably lower than the reported values, e.g., approximately 35%, for other photosynthetic purple bacteria containing the same kind of Car (spirilloxanthin). The RC trapping time constants are found to be 50 approximately 60 ps (170 approximately 200 ps) for RC in open (closed) state irrespective to the spectral forms and the wavelengths of Q(y) excitation. Despite the low-energy LH1-Q(y) absorption, the RC trapping time are comparable to those reported for other photosynthetic bacteria with normal LH1-Q(y) absorption at 880 nm. Selective excitation to Car results in distinct differences in the Q(y)-bleaching dynamics between the two different spectral forms. This, together with the Car band-shift signals in response to Q(y) excitation, reveals the presence of two major groups of BChls in the LH1 of Tch. tepidum with a spectral heterogeneity of approximately 240 cm(-1), as well as an alteration in BChl-Car geometry in the 889-nm preparation with respect to the native one.
Collapse
|
25
|
Nakagawa K, Suzuki S, Fujii R, Gardiner AT, Cogdell RJ, Nango M, Hashimoto H. Probing binding site of bacteriochlorophyll a and carotenoid in the reconstituted LH1 complex from Rhodospirillum rubrum S1 by Stark spectroscopy. PHOTOSYNTHESIS RESEARCH 2008; 95:339-44. [PMID: 17912603 DOI: 10.1007/s11120-007-9261-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 09/10/2007] [Indexed: 05/17/2023]
Abstract
Stark spectroscopy is a powerful technique to investigate the electrostatic interactions between pigments as well as between the pigments and the proteins in photosynthetic pigment-protein complexes. In this study, Stark spectroscopy has been used to determine two nonlinear optical parameters (polarizability change Tr(Deltaalpha) and static dipole-moment change |Deltamu| upon photoexcitation) of isolated and of reconstituted LH1 complexes from the purple photosynthetic bacterium, Rhodospirillum (Rs.) rubrum. The integral LH1 complex was prepared from Rs. rubrum S1, while the reconstituted complex was assembled by addition of purified carotenoid (all-trans-spirilloxanthin) to the monomeric subunit of LH1 from Rs. rubrum S1. The reconstituted LH1 complex has its Q(y) absorption maximum at 878 nm. This is shifted to the blue by 3 nm in comparison to the isolated LH1 complex. The energy transfer efficiency from carotenoid to bacteriochlorophyll a (BChl a), which was determined by fluorescence excitation spectroscopy of the reconstituted LH1 complex, is increased to 40%, while the efficiency in the isolated LH1 complex is only 28%. Based on the differences in the values of Tr(Deltaalpha) and |Deltamu|, between these two preparations, we can calculate the change in the electric field around the BChl a molecules in the two situations to be E (Delta) approximately 3.4 x 10(5) [V/cm]. This change can explain the 3 nm wavelength shift of the Q(y) absorption band in the reconstituted LH1 complex.
Collapse
Affiliation(s)
- Katsunori Nakagawa
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Nagoya, 466-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Richter MF, Baier J, Cogdell RJ, Köhler J, Oellerich S. Single-molecule spectroscopic characterization of light-harvesting 2 complexes reconstituted into model membranes. Biophys J 2007; 93:183-91. [PMID: 17416626 PMCID: PMC1914413 DOI: 10.1529/biophysj.106.103606] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spectroscopic properties of the light-harvesting 2 complexes (LH2) from the purple bacterium Rhodopseudomonas acidophila (strain 10050) in detergent micelles and reconstituted into lipid membranes have been studied by single-molecule spectroscopy. When LH2 complexes are solubilized from their host biological membranes by nondenaturing detergents, such as LDAO, there is a small 2-nm spectral shift of the B850 absorption band in the ensemble spectrum. This is reversed when the LH2 complexes are put back into phospholipid vesicles, i.e., into a more native-like environment. The spectroscopic properties on the single-molecule level of the detergent-solubilized LH2 complexes were compared with those reconstituted into the lipid membranes to see if their detailed spectroscopic behavior was influenced by these small changes in the position of the B850 absorption band. A detailed analysis of the low-temperature single-molecule fluorescence-excitation spectra of the LH2 complexes in these two different conditions showed no significant differences. In particular, the distribution of the spectral splitting between the circular k = +/-1 exciton states of the B850 absorption band and the distribution of the mutual angle between the k = +/-1 exciton states are identical in both cases. It can be concluded, therefore, that the LH2 complexes from Rps. acidophila are equally stable when solubilized in detergent micelles as they are when membrane reconstituted. Moreover, when they are solubilized in a suitable detergent and spin coated onto a surface for the single-molecule experiments they do not display any more structural disorder than when in a phospholipid membrane.
Collapse
Affiliation(s)
- Martin F Richter
- Lehrstuhl für Experimentalphysik IV and Bayreuther Institut für Makromolekülforschung, Universität Bayreuth, Bayreuth, Germany
| | | | | | | | | |
Collapse
|
27
|
Tunnicliffe RB, Ratcliffe EC, Hunter CN, Williamson MP. The solution structure of the PufX polypeptide from Rhodobacter sphaeroides. FEBS Lett 2006; 580:6967-71. [PMID: 17161397 DOI: 10.1016/j.febslet.2006.11.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 11/16/2006] [Accepted: 11/24/2006] [Indexed: 11/29/2022]
Abstract
PufX organizes the photosynthetic reaction centre-light harvesting complex 1 (RC-LH1) core complex of Rhodobacter sphaeroides and facilitates quinol/quinone exchange between the RC and cytochrome bc(1) complexes. The structure of PufX in organic solvent reveals two hydrophobic helices flanked by unstructured termini and connected by a helical bend. The proposed location of basic residues and tryptophans at the membrane interface orients the C-terminal helix along the membrane normal, with the GXXXG motifs in positions unsuitable as direct drivers of dimerisation of the RC-LH1 complex. The N-terminal helix is predicted to extend approximately 40 Anggstrom along the membrane interface.
Collapse
Affiliation(s)
- Richard B Tunnicliffe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|
28
|
Balashov SP, Imasheva ES, Lanyi JK. Induced chirality of the light-harvesting carotenoid salinixanthin and its interaction with the retinal of xanthorhodopsin. Biochemistry 2006; 45:10998-1004. [PMID: 16953586 PMCID: PMC2528006 DOI: 10.1021/bi061098i] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In xanthorhodopsin, a retinal protein-carotenoid complex of Salinibacter ruber, the carotenoid salinixanthin functions as a light-harvesting antenna in supplying additional excitation energy for retinal isomerization and proton transport. Another retinal protein, archaerhodopsin, has been shown to contain a carotenoid, bacterioruberin, but without an antenna function. We report here that the binding site confers a chiral geometry on salinixanthin in xanthorhodopsin and confirm that the same is true for bacterioruberin in archaerhodopsin. Cell membranes containing these rhodopsins exhibit CD spectra with sharp positive bands in the visible region where the carotenoids absorb, and in the case of xanthorhodopsin a negative band at 536 nm, as well as bands in the UV region. The carotenoid in ethanol has very weak optical activity in the visible region of the spectrum. Denaturation of the opsin upon deprotonation of the Schiff base at pH 12.5 eliminates the induced CD bands in both proteins. In one of these proteins, but not in the other, the carotenoid binding site depends entirely on the retinal. Hydrolysis of the retinal Schiff base of xanthorhodopsin with hydroxylamine eliminates the induced CD bands of salinixanthin. In contrast, hydrolysis of the Schiff base in archaerhodopsin does not abolish the CD bands of bacterioruberin. Thus, consistent with its antenna function, the carotenoid binding site interacts closely with the retinal only in xanthorhodopsin, and this interaction is the major source of the CD bands. In this protein, protonation of the counterion with a decrease in pH from 8 to 5 causes significant changes in the CD spectrum. The observed spectral features suggest that binding of salinixanthin in xanthorhodopsin involves the cyclohexenone ring of the carotenoid and its conformational heterogeneity is restricted.
Collapse
Affiliation(s)
- Sergei P Balashov
- Department of Physiology and Biophysics, University of California, D340 Medical Science I, Irvine, California 92697, USA.
| | | | | |
Collapse
|
29
|
Moskalenko AA, Makhneva ZK, Fiedor L, Scheer H. Effects of carotenoid inhibition on the photosynthetic RC-LH1 complex in purple sulphur bacterium Thiorhodospira sibirica. PHOTOSYNTHESIS RESEARCH 2005; 86:71-80. [PMID: 16172927 DOI: 10.1007/s11120-005-4473-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 03/23/2005] [Indexed: 05/04/2023]
Abstract
Core complexes (LH1-RC) were isolated using preparative gel electrophoresis from photosynthetic membranes of the purple bacterium, Thiorhodospira sibirica, grown in the absence or presence of the carotenoid biosynthesis inhibitor, diphenylamine. The biosynthesis of carotenoids is affected by diphenylamine both quantitavely and qualitatively: after inhibition, the level of carotenoids in core complexes reaches only 10% of the normal content, as analyzed by HPLC and absorption spectroscopy. The normally grown bacterium biosynthesizes spirilloxanthin, rhodopin, anhydrorhodovibrin and lycopene, whereas after inhibition only neurosporene, zeta-carotene and their derivatives are found in the complexes. There is no concomitant accumulation of appreciable amounts of colorless carotenoid precursors. Interestingly, the main absorption band of the core light harvesting complex isolated from carotenoid-inhibited cells, shows a red shift to 889 nm, instead of a blue shift observed in many carotenoid-deficient species of purple photosynthetic bacteria. The stability of isolated core complexes against n-octyl-beta-D: -glucopyranoside clearly depends on the presence of carotenoids. Subcomplexes resulting from the detergent treatment, were characterized by non-denaturating gel electrophoresis combined with in situ absorption spectroscopy. Core complexes with the native carotenoid complement dissociate into three subcomplexes: (a) LH1 complexes partially depleted of carotenoids, with an unusual spectrum in the NIR region (lambdamax = 791, 818, 847 and 875 nm), (b) reaction centers associated with fragments of LH1, (c) small amounts of a carotenoidless B820 subcomplex. The core complex from the carotenoid-deficient bacterium is much less stable and yields only the two sub-complexes (b) and (c). We conclude that carotenoids contribute critically to stability and interactions of the core complexes with detergents.
Collapse
Affiliation(s)
- A A Moskalenko
- Institute of Basic Biological Problems, Russian Academy of Science, 142290, Pushchino, Russia. andrey-mos@ ibbp.psn.ru
| | | | | | | |
Collapse
|
30
|
Aklujkar M, Beatty JT. The PufX protein of Rhodobacter capsulatus affects the properties of bacteriochlorophyll a and carotenoid pigments of light-harvesting complex 1. Arch Biochem Biophys 2005; 443:21-32. [PMID: 16212932 DOI: 10.1016/j.abb.2005.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 08/29/2005] [Accepted: 08/29/2005] [Indexed: 11/24/2022]
Abstract
A pufX gene deletion in the purple bacterium Rhodobacter capsulatus causes a severe photosynthetic defect and increases core light-harvesting complex (LH1) protein and bacteriochlorophyll a (BChl) levels. It was suggested that PufX interrupts the LH1 alpha/beta ring around the reaction centre, allowing quinone/quinol exchange. However, naturally PufX(-) purple bacteria grow photosynthetically with an uninterrupted LH1. We discovered that substitutions of the Rhodobacter-specific LH1 alpha seryl-2 decrease carotenoid levels in PufX(-)R. capsulatus. An LH1 alphaS2F mutation improved the photosynthetic growth of a PufX(-) strain lacking the peripheral LH2 antenna, although LH1 BChl absorption remained above wild-type, suggesting that Rhodobacter-specific carotenoid binding is involved in the PufX(-) photosynthetic defect and LH1 expansion is not. Furthermore, PufX overexpression increased LH1-like BChl absorption without inhibiting photosynthetic growth. PufX(+) LH1 alphaS2-substituted mutant strains had wild-type carotenoid levels, indicating that PufX modulates LH1 carotenoid binding, inducing a conformational change that favours quinone/quinol exchange.
Collapse
Affiliation(s)
- Muktak Aklujkar
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Blvd. Vancouver, BC, Canada V6T 1Z3.
| | | |
Collapse
|
31
|
Zsila F, Molnár P, Deli J. Analysis of Binding Interaction between the Natural Apocarotenoid Bixin and Human Serum Albumin by Circular Dichroism and Fluorescence Spectroscopy. Chem Biodivers 2005; 2:758-72. [PMID: 17192019 DOI: 10.1002/cbdv.200590053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bixin is an important, pharmacologically active dietary cis-carotenoid, but its interaction with potential macromolecular targets is completely unexplored. This work was aimed to study the binding of bixin to human serum albumin (HSA), the most abundant protein in blood plasma. Circular dichroism (CD) spectroscopy in combination with UV/VIS absorption spectroscopy and fluorescence quenching techniques were applied. Appearance of induced CD bands in the UV- and VIS-absorption spectral regions indicated the formation of non-covalent carotenoid-albumin complexes. Shape and spectral position of the extrinsic Cotton effects suggested the binding of a single bixin molecule to HSA in chiral conformation. Scatchard and non-linear regression analyses of CD titration data resulted in similar values for the association constant (Ka = 6.6 and 4.6x10(5) M(-1), resp.) and for the number of binding sites (n = 1). The binding interaction was independently confirmed by fluorescence-quenching experiment from which the binding parameters were also calculated. CD Displacement measurements performed with marker ligands established that the main drug binding sites of HSA are not involved in binding of bixin. Palmitic acid decreased the amplitude of the induced CD bands suggesting a common albumin binding site for bixin and long-chain fatty acids. The above data indicate that HSA plays a significant role in the plasma transportation of bixin and related dietary carboxylic acid carotenoids.
Collapse
Affiliation(s)
- Ferenc Zsila
- Department of Bioorganic Chemistry, Institute of Biomolecular Chemistry, Chemical Research Center, P.O. Box 17, H-1525 Budapest.
| | | | | |
Collapse
|
32
|
Fiedor L, Scheer H. Trapping of an assembly intermediate of photosynthetic LH1 antenna beyond B820 subunit. Significance for the assembly of photosynthetic LH1 antenna. J Biol Chem 2005; 280:20921-6. [PMID: 15788392 DOI: 10.1074/jbc.m501212200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most photosynthetic LH1 antennae undergo dissociation into B820 subunits, suggesting their universal character as structural modules. However, dissociation into subunits seems to occur reversibly only in the absence of carotenoids and the subunits were never found to bind carotenoids. The interactions of carotenoids with B820 have been studied in a newly developed reconstitution assay of the LH1 antenna from Rhodospirillum rubrum (Fiedor, L., Akahane, J., and Koyama, Y. (2004) Biochemistry 43, 16487-16496). These model studies show that B820 subunits strongly interact with carotenoids and spontaneously form stable LH1-like complexes with substoichiometric carotenoid content. This is the first experimental evidence that B820 may occur as a short-lived intermediate in the assembly of LH1 in vivo. The resulting complex of B820 subunits with carotenoid, termed iB873, is homogeneous, according to ion exchange chromatography and reproducible pigment composition. The iB873-bound carotenoid is as efficient in energy transfer to bacteriochlorophyll as the one in native antenna. To our knowledge, iB873 is the first complex binding functional carotenoid, with the spectral and biochemical properties intermediate between that of B820 and the fully assembled LH1.
Collapse
Affiliation(s)
- Leszek Fiedor
- Faculty of Biotechnology, Jagiellonian University, PL-30387 Cracow, Poland.
| | | |
Collapse
|
33
|
Tandori J, Tokaji Z, Misurda K, Maróti P. Thermodynamics of Light-induced and Thermal Degradation of Bacteriochlorins in Reaction Center Protein of Photosynthetic Bacteria. Photochem Photobiol 2005; 81:1518-25. [PMID: 16164369 DOI: 10.1562/2005-05-31-ra-556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The rate constants of thermal (irreversible) damage of bacteriochlorin pigments (bacteriochlorophyll monomer [B], bacteriochlorophyll dimer [P] and bacteriopheophytine [H]) in reaction center [RC] protein from the photosynthetic bacterium Rhodobacter sphaeroides were studied in the dark and during intense (400 mW x cm(-2)) laser light excitation (wavelengths 488 and 515 nm) under deoxygenated conditions. While the kinetics of degradation of P and B were monoexponential, the decay kinetics of H were overlapped by an initial lag phase at elevated (>40 degrees C) temperature. This is explained by removal of the central metal ion from the bacteriochlorophylls as part of their degradation processes. At all temperatures, the rates of damage were very similar for all bacteriochlorin pigments and were larger in the light than in the dark. The logarithm of the rate constant of pigment degradation and loss of photochemistry as a function of reciprocal (absolute) temperature (Arrhenius/Eyring plot) showed single phase in the light and double phases in the dark. Below 20 degrees C, the rate of pigment degradation in the RC decreased so dramatically in the dark that it became limited by the natural degradation process of bacteriochlorophyll measured in solution. The function of loss of photochemistry in the dark was also biphasic and had a break point at 40 degrees C. The damage in the dark required high enthalpy change (DeltaH(++) = 64 kcal/mol for P and DeltaH(++) = 60 kcal/mol for B) and entropy increase (T x DeltaS(++) = 38 kcal/mol for P and T x DeltaS(++) = 34 kcal/mol for B at T = 300 K), whereas significantly smaller enthalpy change (DeltaH(++) = 21 kcal/mol for P and B and DeltaH(++) = 13 kcal/mol for H) and practically no (T x DeltaS(++) = -1 kcal/mol for P and B at T = 300 K) or small (T x DeltaS(++) = -9 kcal/mol for H at T = 300 K) entropy change was needed in the light. The thermodynamic parameters of activation reveal major steps common in the degradation of all bacteriochlorin pigments: ring opening reactions at C5 or C20 meso-bridges (or both) and breaking/removal of the phytyl chain. Their contribution in the degradation is probably reflected in the observed enthalpy/entropy compensation at an almost constant (DeltaG(++) = 22-26 kcal/mol at T = 300 K) free energy change of activation.
Collapse
Affiliation(s)
- Júlia Tandori
- Department of Biophysics, University of Szeged, Hungary
| | | | | | | |
Collapse
|
34
|
Kwa LG, García-Martín A, Végh AP, Strohmann B, Robert B, Braun P. Hydrogen bonding in a model bacteriochlorophyll-binding site drives assembly of light harvesting complex. J Biol Chem 2004; 279:15067-75. [PMID: 14742420 DOI: 10.1074/jbc.m312429200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, the contribution of intramembrane hydrogen bonding at the interface between polypeptide and cofactor is explored in the native lipid environment by use of model bacteriochlorophyll proteins. In the peripheral antenna complex, LH2, large portions of the transmembrane helices, which make up the dimeric bacteriochlorophyll-binding site, are replaced by simplified, alternating alanine-leucine stretches. Replacement of either one of the two helices with the helices containing the model sequence at a time results in the assembly of complexes with nearly native light harvesting properties. In contrast, replacement of both helices results in the loss of antenna complexes from the membrane. The assembly of such doubly modified complexes is restored by a single intramembrane serine residue at position -4 relative to the liganding histidine of the alpha-subunit. In situ analysis of the spectral properties in a series of site-directed mutants reveals a critical dependence of the model complex assembly on the side chain of the residue at this position in the helix. A hydrogen bond between the hydroxy group of the serine and the 13(1) keto group of one of the central bacteriochlorophylls of the complexes is identified by Raman spectroscopy in the model antenna complex containing one of the alanine-leucine helices. The additional OH group of the serine residue, which participates in hydrogen bonding, increases the thermal stability of the model complexes in the native membrane. Intramembrane hydrogen bonding is thus shown to be a key factor for the binding of bacteriochlorophyll and assembly of this model cofactor-polypeptide site.
Collapse
Affiliation(s)
- Lee G Kwa
- Department Biologie I der Universität München, Botanik, 80638 München, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Braun P, Végh AP, von Jan M, Strohmann B, Hunter CN, Robert B, Scheer H. Identification of intramembrane hydrogen bonding between 131 keto group of bacteriochlorophyll and serine residue α27 in the LH2 light-harvesting complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1607:19-26. [PMID: 14556909 DOI: 10.1016/j.bbabio.2003.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intramembrane hydrogen bonding and its effect on the structural integrity of purple bacterial light-harvesting complex 2, LH2, have been assessed in the native membrane environment. A novel hydrogen bond has been identified by Raman resonance spectroscopy between a serine residue of the membrane-spanning region of LH2 alpha-subunit, and the C-13(1) keto carbonyl of bacteriochlorophyll (BChl) B850 bound to the beta-subunit. Replacement of the serine by alanine disrupts this strong hydrogen bond, but this neither alters the strongly red-shifted absorption nor the structural arrangement of the BChls, as judged from circular dichroism. It also decreases only slightly the thermal stability of the mutated LH2 in the native membrane environment. The possibility is discussed that weak H-bonding between the C-13(1) keto carbonyl and a methyl hydrogen of the alanine replacing serine(-4) or the imidazole group of the nearby histidine maintains structural integrity in this very stable bacterial light-harvesting complex. A more widespread occurrence of H-bonding to C-13(1) not only in BChl, but also in chlorophyll proteins, is indicated by a theoretical analysis of chlorophyll/polypeptide contacts at <3.5 A in the high-resolution structure of Photosystem I. Nearly half of the 96 chlorophylls have aa residues suitable as hydrogen bond donors to their keto groups.
Collapse
Affiliation(s)
- P Braun
- Department Biologie 1, Section Botanik, Universität München, Menzinger Str. 67, D-80638 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Cannizzaro C, Rhiel M, Marison I, von Stockar U. On-line monitoring of Phaffia rhodozyma fed-batch process with in situ dispersive Raman spectroscopy. Biotechnol Bioeng 2003; 83:668-80. [PMID: 12889031 DOI: 10.1002/bit.10698] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Since the yeast Phaffia rhodozyma was first described some 35 years ago, there has been significant interest in the development of commercial processes to exploit its ability to produce carotenoids (approximately 80% astaxanthin). However, the optimal conditions for carotenoid production are not well understood. A key limitation has been the lack of an appropriate sensor for on-line carotenoid quantification. In this study, an in situ Raman spectroscopy probe was used to monitor intracellular carotenoid production for three consecutive P. rhodozyma fed-batch experiments. Raman spectroscopy is particularly well suited to the study of carotenoids due to a resonance effect, which greatly enhances the intensity of the three fundamental carotenoid bands, nu(1) (1513 cm(-1), C(-) (-)C stretch), nu(2) (1154 cm(-1), C-C stretch), and nu(3) (1003 cm(-1), CH(3) rock). For all three cultures, the peak height of these bands was linearly correlated with intracellular carotenoid content (1 to 45 mg/L) to a precision of better than 5%, and the correlation from one experiment was directly applicable to others.
Collapse
Affiliation(s)
- Christopher Cannizzaro
- Laboratory of Chemical and Biochemical Engineering, Department of Chemistry, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
37
|
Abstract
The newest results in the application of various liquid chromatographic techniques for the analysis of natural pigments in pure state and in complicated matrices are compiled. The methods employed for the separation and quantitative determination of the different pigment classes (flavonoids, coumarins, chlorophylls, etc.) are described and critically evaluated. The future trends are briefly discussed.
Collapse
Affiliation(s)
- T Cserháti
- Central Research Institute for Chemistry, Hungarian Academy of Sciences, PO Box 17, 1525 Budapest, Hungary
| | | | | | | |
Collapse
|
38
|
Conroy MJ, Westerhuis WH, Parkes-Loach PS, Loach PA, Hunter CN, Williamson MP. The solution structure of Rhodobacter sphaeroides LH1beta reveals two helical domains separated by a more flexible region: structural consequences for the LH1 complex. J Mol Biol 2000; 298:83-94. [PMID: 10756106 DOI: 10.1006/jmbi.2000.3649] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here, the solution structure of the Rhodobacter sphaeroides core light-harvesting complex beta polypeptide solubilised in chloroform:methanol is presented. The structure, determined by homonuclear NMR spectroscopy and distance geometry, comprises two alpha helical regions (residue -34 to -15 and -11 to +6, using the numbering system in which the conserved histidine residue is numbered zero) joined by a more flexible four amino acid residue linker. The C-terminal helix forms the membrane spanning region in the intact LH1 complex, whilst the N-terminal helix must lie in the lipid head groups or in the cytoplasm, and form the basis of interaction with the alpha polypeptide. The structure of a mutant beta polypeptide W(+9)F was also determined. This mutant, which is deficient in a hydrogen bond donor to the bacteriochlorophyll, showed an identical structure to the wild-type, implying that observed differences in interaction with other LH1 polypeptides must arise from cofactor binding. Using these structures we propose a modification to existing models of the intact LH1 complex by replacing the continuous helix of the beta polypeptide with two helices, one of which lies at an acute angle to the membrane plane. We suggest that a key difference between LH1 and LH2 is that the beta subunit is more bent in LH1. This modification puts the N terminus of LH1beta close to the reaction centre H subunit, and provides a rationale for the different ring sizes of LH1 and LH2 complexes.
Collapse
Affiliation(s)
- M J Conroy
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | | | | | | | | | |
Collapse
|
39
|
Yeliseev AA, Eraso JM, Kaplan S. Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability. J Bacteriol 1996; 178:5877-83. [PMID: 8830681 PMCID: PMC178441 DOI: 10.1128/jb.178.20.5877-5883.1996] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rhodobacter sphaeroides 2.4.1 is a member of the nonsulfur purple facultative photosynthetic proteobacteria, capable of growth under a variety of cultivation conditions. In addition to the structural polypeptides and bacteriochlorophyll, the two major antenna complexes, B875 and B800-850, contain a variety of carotenoids which are an important structural and functional component of the membrane-bound photosynthetic complexes of this bacterium. Two major carotenoids, spheroidene and its keto derivative, spheroidenone, are differentially synthesized by R. sphaeroides, depending on the growth conditions. Spheroidene prevails during growth under anaerobic conditions and low light intensities, whereas spheroidenone is predominant in semiaerobically grown cells or during anaerobic growth at high light intensities. In this study, we demonstrate that in wild-type cells, spheroidene is predominantly associated with the B800-850 photosynthetic antenna complex and spheroidenone is more abundant in the B875 complex. Exploiting mutants defective in the biosynthesis of either the B875 or B800-850 light-harvesting complex, we demonstrate an association between the formation of either the B875 or B800-850 complex, on the one hand, and the accumulation of spheroidenone or spheroidene, on the other. The possible involvement of the conversion of spheroidene to spheroidenone as a significant control mechanism involved in the adaptation of R. sphaeroides to changes in light intensity and oxygen tension is discussed.
Collapse
Affiliation(s)
- A A Yeliseev
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Medical School, Houston 77030, USA
| | | | | |
Collapse
|
40
|
Isaacs NW, Cogdell RJ, Freer AA, Prince SM. Light-harvesting mechanisms in purple photosynthetic bacteria. Curr Opin Struct Biol 1995; 5:794-7. [PMID: 8749368 DOI: 10.1016/0959-440x(95)80013-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The processes by which photosynthetic bacteria capture light and transfer the energy to the reaction centre continue to be studied using an array of methodologies, both physical and biological. With the publication this year of the crystal structure of the LH2 complex from Rhodopseudomonas acidophila and the projection structure of the LH1 complex from Rhodospirillum rubrum, structural models now exist for all the components in the bacterial photosynthetic apparatus.
Collapse
|