1
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
2
|
Mitchison-Field LM, Belin BJ. Bacterial lipid biophysics and membrane organization. Curr Opin Microbiol 2023; 74:102315. [PMID: 37058914 PMCID: PMC10523990 DOI: 10.1016/j.mib.2023.102315] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
The formation of lateral microdomains is emerging as a central organizing principle in bacterial membranes. These microdomains are targets of antibiotic development and have the potential to enhance natural product synthesis, but the rules governing their assembly are unclear. Previous studies have suggested that microdomain formation is promoted by lipid phase separation, particularly by cardiolipin (CL) and isoprenoid lipids, and there is strong evidence that CL biosynthesis is required for recruitment of membrane proteins to cell poles and division sites. New work demonstrates that additional bacterial lipids may mediate membrane protein localization and function, opening the field for mechanistic evaluation of lipid-driven membrane organization in vivo.
Collapse
Affiliation(s)
- Lorna My Mitchison-Field
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Brittany J Belin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Ali AA, Bagheri Y, Tian Q, You M. Advanced DNA Zipper Probes for Detecting Cell Membrane Lipid Domains. NANO LETTERS 2022; 22:7579-7587. [PMID: 36084301 PMCID: PMC10368464 DOI: 10.1021/acs.nanolett.2c02605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cell membrane is a complex mixture of lipids, proteins, and other components. By forming dynamic lipid domains, different membrane molecules can selectively interact with each other to control cell signaling. Herein, we report several new types of lipid-DNA conjugates, termed as "DNA zippers", which can be used to measure cell membrane dynamic interactions and the formation of lipid domains. Dependent on the choice of lipid moieties, cholesterol- and sphingomyelin-conjugated DNA zippers specifically locate in and detect membrane lipid-ordered domains, while in contrast, a tocopherol-DNA zipper can be applied for the selective imaging of lipid-disordered phases. These versatile and programmable probes can be further engineered into membrane competition assays to simultaneously detect multiple types of membrane dynamic interactions. These DNA zipper probes can be broadly used to study the correlation between lipid domains and various cellular processes, such as the epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Ahsan Ausaf Ali
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Yousef Bagheri
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Qian Tian
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
4
|
Hypercholesterolemia Negatively Regulates P2X7-Induced Cellular Function in CD4 + and CD8 + T-Cell Subsets from B6 Mice Fed a High-Fat Diet. Int J Mol Sci 2022; 23:ijms23126730. [PMID: 35743168 PMCID: PMC9223416 DOI: 10.3390/ijms23126730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
We have previously showed that plasma membrane cholesterol and GM1 ganglioside content are responsible for the opposite sensitivity of mouse leukemic T cells to ATP. We also reported that the sensitivity of CD4+ and CD8+ T cells to ATP depends on their stage of differentiation. Here, we show that CD4+ and CD8+ T cells from B6 mice express different levels of membrane GM1 and P2X7 but similar levels of cholesterol. Thus, in CD4+ T cells, membrane cholesterol content negatively correlated with ATP/P2X7-induced CD62L shedding but positively correlated with pore formation, phosphatidylserine externalization, and cell death. By contrast, in CD8+ T cells, cholesterol, GM1, and P2X7 levels negatively correlated with all these ATP/P2X7-induced cellular responses. The relationship between cholesterol and P2X7-induced cellular responses was confirmed by modulating cholesterol levels either ex vivo or through a high-fat diet. Membrane cholesterol enrichment ex vivo led to a significant reduction in all P2X7-induced cellular responses in T cells. Importantly, diet-induced hypercholesterolemia in B6 mice was also associated with decreased sensitivity to ATP in CD4+ and CD8+ T cells, highlighting the relationship between cholesterol intake and the amplitudes of P2X7-induced cellular responses in T cells.
Collapse
|
5
|
Abstract
Systematically dissecting the molecular basis of the cell surface as well as its related biological activities is considered as one of the most cutting-edge fields in fundamental sciences. The advent of various advanced cell imaging techniques allows us to gain a glimpse of how the cell surface is structured and coordinated with other cellular components to respond to intracellular signals and environmental stimuli. Nowadays, cell surface-related studies have entered a new era featured by a redirected aim of not just understanding but artificially manipulating/remodeling the cell surface properties. To meet this goal, biologists and chemists are intensely engaged in developing more maneuverable cell surface labeling strategies by exploiting the cell's intrinsic biosynthetic machinery or direct chemical/physical binding methods for imaging, sensing, and biomedical applications. In this review, we summarize the recent advances that focus on the visualization of various cell surface structures/dynamics and accurate monitoring of the microenvironment of the cell surface. Future challenges and opportunities in these fields are discussed, and the importance of cell surface-based studies is highlighted.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
6
|
Shinoda Y, Haga Y, Akagawa K, Fukunaga K. Wildtype σ1 receptor and the receptor agonist improve ALS-associated mutation-induced insolubility and toxicity. J Biol Chem 2020; 295:17573-17587. [PMID: 33453999 PMCID: PMC7762949 DOI: 10.1074/jbc.ra120.015012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic mutations related to ALS, a progressive neurological disease, have been discovered in the gene encoding σ-1 receptor (σ1R). We previously reported that σ1RE102Q elicits toxicity in cells. The σ1R forms oligomeric states that are regulated by ligands. Nevertheless, little is known about the effect of ALS-related mutations on oligomer formation. Here, we transfected NSC-34 cells, a motor neuronal cell line, and HEK293T cells with σ1R-mCherry (mCh), σ1RE102Q-mCh, or nontagged forms to investigate detergent solubility and subcellular distribution using immunocytochemistry and fluorescence recovery after photobleaching. The oligomeric state was determined using crosslinking procedure. σ1Rs were soluble to detergents, whereas the mutants accumulated in the insoluble fraction. Within the soluble fraction, peak distribution of mutants appeared in higher sucrose density fractions. Mutants formed intracellular aggregates that were co-stained with p62, ubiquitin, and phosphorylated pancreatic eukaryotic translation initiation factor-2-α kinase in NSC-34 cells but not in HEK293T cells. The aggregates had significantly lower recovery in fluorescence recovery after photobleaching. Acute treatment with σ1R agonist SA4503 failed to improve recovery, whereas prolonged treatment for 48 h significantly decreased σ1RE102Q-mCh insolubility and inhibited apoptosis. Whereas σ1R-mCh formed monomers and dimers, σ1RE102Q-mCh also formed trimers and tetramers. SA4503 reduced accumulation of the four types in the insoluble fraction and increased monomers in the soluble fraction. The σ1RE102Q insolubility was diminished by σ1R-mCh co-expression. These results suggest that the agonist and WT σ1R modify the detergent insolubility, toxicity, and oligomeric state of σ1RE102Q, which may lead to promising new treatments for σ1R-related ALS.
Collapse
Affiliation(s)
- Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yudai Haga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Koichiro Akagawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
7
|
Tao J, Yu X, Guo Y, Wang G, Ju H, Ding L. Proximity Enzymatic Glyco-Remodeling Enables Direct and Highly Efficient Lipid Raft Imaging on Live Cells. Anal Chem 2020; 92:7232-7239. [PMID: 32297503 DOI: 10.1021/acs.analchem.0c00810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipid rafts, highly ordered cell membrane domains mainly composed of cholesterol, sphingolipids, and protein receptors, serve as important functional platforms for regulation of lipid/protein interactions. The major predicament in lipid raft study is the lack of direct and robust visualization tools for in situ tracking raft components. To solve this issue, we herein report a proximity enzymatic glyco-remodeling strategy for direct and highly efficient lipid raft labeling and imaging on live cells. Through cofunctionalization of raft-specific recognition motif and glycan-remodeling enzyme on gold nanoparticles, the fabricated nanoprobe can be specifically guided to the raft domains to perform catalytic remodeling on neighboring glycans. Taking advantage of the abundant glycoconjugates enriched in lipid rafts, this elaborate design achieves the translation of one raft-recognition event to multiple raft-confined labeling operations, thus, significantly increasing the labeling efficiency and imaging sensitivity. The direct covalent labeling also enables in situ and long-term tracking of raft components in live cells. The method possesses broad applicability and potential expansibility, thus, will greatly facilitate the investigations on the complex composition, organization, and dynamics of lipid rafts.
Collapse
Affiliation(s)
- Jing Tao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiaofei Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, People's Republic of China
| | - Yuna Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, People's Republic of China
| | - Guyu Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, People's Republic of China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, People's Republic of China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
8
|
Derradi R, Bolean M, Simão A, Caseli L, Millán J, Bottini M, Ciancaglini P, Ramos A. Cholesterol Regulates the Incorporation and Catalytic Activity of Tissue-Nonspecific Alkaline Phosphatase in DPPC Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15232-15241. [PMID: 31702926 PMCID: PMC7105399 DOI: 10.1021/acs.langmuir.9b02590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Matrix vesicles (MVs) are a special class of extracellular vesicles that drive bone and dentin mineralization by providing the essential enzymes and ions for the nucleation and propagation of mineral crystals. Tissue-nonspecific alkaline phosphatase (TNAP) is an integral protein of MV membrane and participates in biomineralization by hydrolyzing extracellular pyrophosphate (PPi), a strong mineralization inhibitor, and forming inorganic phosphate (Pi), necessary for the growth of mineral crystals inside MVs and their propagation once released in the extracellular matrix. MV membrane is enriched in cholesterol (CHOL), which influences the incorporation and activity of integral proteins in biologic membranes; however, how CHOL controls the incorporation and activity of TNAP in MV membrane has not yet been elucidated. In the present study, Langmuir monolayers were used as a MV membrane biomimetic model to assess how CHOL affects TNAP incorporation and activity. Surface pressure-area (π-A) isotherms of binary dipalmitoilphosphatidylcholine (DPPC)/CHOL monolayers showed that TNAP incorporation increases with CHOL concentration. Infrared spectroscopy showed that CHOL influences the conformation and orientation of the enzyme. Optical-fluorescence micrographs of the monolayers revealed the tendency of TNAP to incorporate into CHOL-rich microdomains. These data suggest that TNAP penetrates more efficiently and occupies a higher surface area into monolayers with a lower CHOL concentration due to the higher membrane fluidity. However, the quantity of enzyme transferred to solid supports as well as the enzymatic activity were higher using monolayers with a higher CHOL concentration due to increased rigidity that changes the enzyme orientation at the air-solid interface. These data provide new insights regarding the interfacial behavior of TNAP and CHOL in MVs and shed light on the biochemical and biophysical processes occurring in the MV membrane during biomineralization at the molecular level.
Collapse
Affiliation(s)
- R. Derradi
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Department of Chemistry, University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, SP, Brazil, 14040-901
| | - M. Bolean
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Department of Chemistry, University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, SP, Brazil, 14040-901
| | - A.M.S. Simão
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Department of Chemistry, University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, SP, Brazil, 14040-901
| | - L. Caseli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of Sao Paulo, Rua Sao Nicolau, 210, Centro, Diadema, SP, Brazil, 09913-030
| | - J.L. Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - M. Bottini
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - P. Ciancaglini
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Department of Chemistry, University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, SP, Brazil, 14040-901
| | - A.P. Ramos
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Department of Chemistry, University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, SP, Brazil, 14040-901
| |
Collapse
|
9
|
Subramanian B, Agarwal T, Basak P, Maiti TK, Guha SK. RISUG ® based improved intrauterine contraceptive device (IIUCD) could impart protective effects against development of endometrial cancer. Med Hypotheses 2019; 124:67-71. [PMID: 30798920 DOI: 10.1016/j.mehy.2019.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/11/2018] [Accepted: 02/03/2019] [Indexed: 11/28/2022]
Abstract
Intrauterine Contraceptive Devices with multifaceted application potential is a need of an hour. Although, copper-based IUDs exert an effective contraceptive as well as anticancer effects in a long-term basis, but also results in multiple complications. In this regard, RISUG® a polymer based contraceptive device has been introduced as a suitable alternative. However, its potential to impart protective effects against development of endometrial cancer still remains unexplored. This article presents the hypothesis on this unexplored domain and provides scientific facts to support the hypothesis. The mechanism of anticancerous activity is hypothesized that RISUG® involves its lipid membrane destabilizing activity. This activity is modulated by both, the cellular microenvironment and lipid bilayer composition. Acidic environment along with the significantly higher fluidic nature of lipid bilayer of the cancerous cells make them more prone to lipid solubilisation effect of RISUG®. We here present an in-depth insight into the factors that would favour faster solubilisation of cancer cell membrane, thereby exerting an anticancer effect.
Collapse
Affiliation(s)
- Bhuvaneshwaran Subramanian
- Indian Institute of Technology, School of Medical Science and Technology, Kharagpur 721302, India; Jadavpur University, School of Bio-Science and Engineering, Kolkata, West Bengal 700098, India
| | - Tarun Agarwal
- Indian Institute of Technology, Department of Biotechnology, Kharagpur 721302, India
| | - Piyali Basak
- Jadavpur University, School of Bio-Science and Engineering, Kolkata, West Bengal 700098, India.
| | - Tapas Kumar Maiti
- Indian Institute of Technology, Department of Biotechnology, Kharagpur 721302, India
| | - Sujoy K Guha
- Indian Institute of Technology, School of Medical Science and Technology, Kharagpur 721302, India.
| |
Collapse
|
10
|
Bieberich E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chem Phys Lipids 2018; 216:114-131. [PMID: 30194926 PMCID: PMC6196108 DOI: 10.1016/j.chemphyslip.2018.08.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
About twenty years ago, the functional lipid raft model of the plasma membrane was published. It took into account decades of research showing that cellular membranes are not just homogenous mixtures of lipids and proteins. Lateral anisotropy leads to assembly of membrane domains with specific lipid and protein composition regulating vesicular traffic, cell polarity, and cell signaling pathways in a plethora of biological processes. However, what appeared to be a clearly defined entity of clustered raft lipids and proteins became increasingly fluid over the years, and many of the fundamental questions about biogenesis and structure of lipid rafts remained unanswered. Experimental obstacles in visualizing lipids and their interactions hampered progress in understanding just how big rafts are, where and when they are formed, and with which proteins raft lipids interact. In recent years, we have begun to answer some of these questions and sphingolipids may take center stage in re-defining the meaning and functional significance of lipid rafts. In addition to the archetypical cholesterol-sphingomyelin raft with liquid ordered (Lo) phase and the liquid-disordered (Ld) non-raft regions of cellular membranes, a third type of microdomains termed ceramide-rich platforms (CRPs) with gel-like structure has been identified. CRPs are "ceramide rafts" that may offer some fresh view on the membrane mesostructure and answer several critical questions for our understanding of lipid rafts.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology at the University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
11
|
Schiza C, Korbakis D, Panteleli E, Jarvi K, Drabovich AP, Diamandis EP. Discovery of a Human Testis-specific Protein Complex TEX101-DPEP3 and Selection of Its Disrupting Antibodies. Mol Cell Proteomics 2018; 17:2480-2495. [PMID: 30097533 DOI: 10.1074/mcp.ra118.000749] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/11/2018] [Indexed: 01/01/2023] Open
Abstract
TEX101 is a testis-specific protein expressed exclusively in male germ cells and is a validated biomarker of male infertility. Studies in mice suggest that TEX101 is a cell-surface chaperone which regulates, through protein-protein interactions, the maturation of proteins involved in spermatozoa transit and oocyte binding. Male TEX101-null mice are sterile. Here, we identified by co-immunoprecipitation-mass spectrometry the interactome of human TEX101 in testicular tissues and spermatozoa. The testis-specific cell-surface dipeptidase 3 (DPEP3) emerged as the top hit. We further validated the TEX101-DPEP3 complex by using hybrid immunoassays. Combinations of antibodies recognizing different epitopes of TEX101 and DPEP3 facilitated development of a simple immunoassay to screen for disruptors of TEX101-DPEP3 complex. As a proof-of-a-concept, we demonstrated that anti-TEX101 antibody T4 disrupted the native TEX101-DPEP3 complex. Disrupting antibodies may be used to study the human TEX101-DPEP3 complex, and to develop modulators for male fertility.
Collapse
Affiliation(s)
- Christina Schiza
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Dimitrios Korbakis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Efstratia Panteleli
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Keith Jarvi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Surgery, Division of Urology, Mount Sinai Hospital, Toronto, Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| |
Collapse
|
12
|
Conformation-dependent partitioning of yeast nutrient transporters into starvation-protective membrane domains. Proc Natl Acad Sci U S A 2018; 115:E3145-E3154. [PMID: 29559531 DOI: 10.1073/pnas.1719462115] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The eukaryotic plasma membrane is compartmentalized into domains enriched in specific lipids and proteins. However, our understanding of the molecular bases and biological roles of this partitioning remains incomplete. The best-studied domain in yeast is the membrane compartment containing the arginine permease Can1 (MCC) and later found to cluster additional transporters. MCCs correspond to static, furrow-like invaginations of the plasma membrane and associate with subcortical structures named "eisosomes" that include upstream regulators of the target of rapamycin complex 2 (TORC2) in the sensing of sphingolipids and membrane stress. However, how and why Can1 and other nutrient transporters preferentially segregate in MCCs remains unknown. In this study we report that the clustering of Can1 in MCCs is dictated by its conformation, requires proper sphingolipid biosynthesis, and controls its ubiquitin-dependent endocytosis. In the substrate-free outward-open conformation, Can1 accumulates in MCCs in a manner dependent on sustained biogenesis of complex sphingolipids. An arginine transport-elicited shift to an inward-facing conformation promotes its cell-surface dissipation and makes it accessible to the ubiquitylation machinery triggering its endocytosis. We further show that under starvation conditions MCCs increase in number and size, this being dependent on the BAR domain-containing Lsp1 eisosome component. This expansion of MCCs provides protection for nutrient transporters from bulk endocytosis occurring in parallel with autophagy upon TORC1 inhibition. Our study reveals nutrient-regulated protection from endocytosis as an important role for protein partitioning into membrane domains.
Collapse
|
13
|
Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 2017; 18:361-374. [PMID: 28356571 PMCID: PMC5500228 DOI: 10.1038/nrm.2017.16] [Citation(s) in RCA: 1304] [Impact Index Per Article: 186.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large number of studies have focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed (or ordered) membrane domains that selectively recruit certain lipids and proteins. Recent studies have yielded new insights into this mechanism and its relevance in vivo, owing primarily to the development of improved biochemical and biophysical technologies.
Collapse
Affiliation(s)
- Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
14
|
Dominguez Pardo JJ, Dörr JM, Iyer A, Cox RC, Scheidelaar S, Koorengevel MC, Subramaniam V, Killian JA. Solubilization of lipids and lipid phases by the styrene-maleic acid copolymer. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2017; 46:91-101. [PMID: 27815573 PMCID: PMC5209432 DOI: 10.1007/s00249-016-1181-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/11/2016] [Indexed: 10/27/2022]
Abstract
A promising tool in membrane research is the use of the styrene-maleic acid (SMA) copolymer to solubilize membranes in the form of nanodiscs. Since membranes are heterogeneous in composition, it is important to know whether SMA thereby has a preference for solubilization of either specific types of lipids or specific bilayer phases. Here, we investigated this by performing partial solubilization of model membranes and analyzing the lipid composition of the solubilized fraction. We found that SMA displays no significant lipid preference in homogeneous binary lipid mixtures in the fluid phase, even when using lipids that by themselves show very different solubilization kinetics. By contrast, in heterogeneous phase-separated bilayers, SMA was found to have a strong preference for solubilization of lipids in the fluid phase as compared to those in either a gel phase or a liquid-ordered phase. Together the results suggest that (1) SMA is a reliable tool to characterize native interactions between membrane constituents, (2) any solubilization preference of SMA is not due to properties of individual lipids but rather due to properties of the membrane or membrane domains in which these lipids reside and (3) exploiting SMA resistance rather than detergent resistance may be an attractive approach for the isolation of ordered domains from biological membranes.
Collapse
Affiliation(s)
- Juan J Dominguez Pardo
- Department of Chemistry, Faculty of Science, Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Padualaan 8, 3584, Utrecht, The Netherlands.
| | - Jonas M Dörr
- Department of Chemistry, Faculty of Science, Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Padualaan 8, 3584, Utrecht, The Netherlands
| | - Aditya Iyer
- Nanoscale Biophysics Group, FOM Institute AMOLF, Science Park 104, 1098, Amsterdam, The Netherlands
| | - Ruud C Cox
- Department of Chemistry, Faculty of Science, Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Padualaan 8, 3584, Utrecht, The Netherlands
| | - Stefan Scheidelaar
- Department of Chemistry, Faculty of Science, Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Padualaan 8, 3584, Utrecht, The Netherlands
| | - Martijn C Koorengevel
- Department of Chemistry, Faculty of Science, Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Padualaan 8, 3584, Utrecht, The Netherlands
| | - Vinod Subramaniam
- Nanoscale Biophysics Group, FOM Institute AMOLF, Science Park 104, 1098, Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081, Amsterdam, The Netherlands
| | - J Antoinette Killian
- Department of Chemistry, Faculty of Science, Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Padualaan 8, 3584, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Wang Z, Schey KL. Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells. Invest Ophthalmol Vis Sci 2016; 56:8349-60. [PMID: 26747763 DOI: 10.1167/iovs.15-18273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids-key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. METHODS Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. RESULTS A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. CONCLUSIONS These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells.
Collapse
|
16
|
Morante K, Caaveiro JMM, Tanaka K, González-Mañas JM, Tsumoto K. A pore-forming toxin requires a specific residue for its activity in membranes with particular physicochemical properties. J Biol Chem 2015; 290:10850-61. [PMID: 25759390 DOI: 10.1074/jbc.m114.615211] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Indexed: 12/29/2022] Open
Abstract
The physicochemical landscape of the bilayer modulates membrane protein function. Actinoporins are a family of potent hemolytic proteins from sea anemones acting at the membrane level. This family of cytolysins preferentially binds to target membranes containing sphingomyelin, where they form lytic pores giving rise to cell death. Although the cytolytic activity of the actinoporin fragaceatoxin C (FraC) is sensitive to vesicles made of various lipid compositions, it is far from clear how this toxin adjusts its mechanism of action to a broad range of physiochemical landscapes. Herein, we show that the conserved residue Phe-16 of FraC is critical for pore formation in cholesterol-rich membranes such as those of red blood cells. The interaction of a panel of muteins of Phe-16 with model membranes composed of raft-like lipid domains is inactivated in cholesterol-rich membranes but not in cholesterol-depleted membranes. These results indicate that actinoporins recognize different membrane environments, resulting in a wider repertoire of susceptible target membranes (and preys) for sea anemones. In addition, this study has unveiled promising candidates for the development of protein-based biosensors highly sensitive to the concentration of cholesterol within the membrane.
Collapse
Affiliation(s)
- Koldo Morante
- From the Department of Bioengineering, Graduate School of Engineering and the Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain, and
| | - Jose M M Caaveiro
- From the Department of Bioengineering, Graduate School of Engineering and
| | - Koji Tanaka
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Juan Manuel González-Mañas
- the Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain, and
| | - Kouhei Tsumoto
- From the Department of Bioengineering, Graduate School of Engineering and Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan, the Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan
| |
Collapse
|
17
|
Don AS, Hsiao JHT, Bleasel JM, Couttas TA, Halliday GM, Kim WS. Altered lipid levels provide evidence for myelin dysfunction in multiple system atrophy. Acta Neuropathol Commun 2014; 2:150. [PMID: 25358962 PMCID: PMC4228091 DOI: 10.1186/s40478-014-0150-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/08/2014] [Indexed: 01/11/2023] Open
Abstract
Multiple system atrophy (MSA) is a rapidly-progressive neurodegenerative disease characterized by parkinsonism, cerebellar ataxia and autonomic failure. A pathological hallmark of MSA is the presence of α-synuclein deposits in oligodendrocytes, the myelin-producing support cells of the brain. Brain pathology and in vitro studies indicate that myelin instability may be an early event in the pathogenesis of MSA. Lipid is a major constituent (78% w/w) of myelin and has been implicated in myelin dysfunction in MSA. However, changes, if any, in lipid level/distribution in MSA brain are unknown. Here, we undertook a comprehensive analysis of MSA myelin. We quantitatively measured three groups of lipids, sphingomyelin, sulfatide and galactosylceramide, which are all important in myelin integrity and function, in affected (under the motor cortex) and unaffected (under the visual cortex) white matter regions. For all three groups of lipids, most of the species were severely decreased (40-69%) in affected but not unaffected MSA white matter. An analysis of the distribution of lipid species showed no significant shift in fatty acid chain length/content with MSA. The decrease in lipid levels was concomitant with increased α-synuclein expression. These data indicate that the absolute levels, and not distribution, of myelin lipids are altered in MSA, and provide evidence for myelin lipid dysfunction in MSA pathology. We propose that dysregulation of myelin lipids in the course of MSA pathogenesis may trigger myelin instability.
Collapse
Affiliation(s)
- Anthony S Don
- />Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052 Australia
| | - Jen-Hsiang T Hsiao
- />Neuroscience Research Australia, Barker St, Randwick, NSW 2031 Australia
| | - Jonathan M Bleasel
- />Neuroscience Research Australia, Barker St, Randwick, NSW 2031 Australia
| | - Timothy A Couttas
- />Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052 Australia
| | - Glenda M Halliday
- />Neuroscience Research Australia, Barker St, Randwick, NSW 2031 Australia
- />School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Woojin Scott Kim
- />Neuroscience Research Australia, Barker St, Randwick, NSW 2031 Australia
- />School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
18
|
Bonardi D, Papini N, Pasini M, Dileo L, Orizio F, Monti E, Caimi L, Venerando B, Bresciani R. Sialidase NEU3 dynamically associates to different membrane domains specifically modifying their ganglioside pattern and triggering Akt phosphorylation. PLoS One 2014; 9:e99405. [PMID: 24925219 PMCID: PMC4055604 DOI: 10.1371/journal.pone.0099405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/14/2014] [Indexed: 01/17/2023] Open
Abstract
Lipid rafts are known to regulate several membrane functions such as signaling, trafficking and cellular adhesion. The local enrichment in sphingolipids and cholesterol together with the low protein content allows their separation by density gradient flotation after extraction with non-ionic detergent at low temperature. These structures are also referred to as detergent resistant membranes (DRM). Among sphingolipids, gangliosides play important roles in different biological events, including signal transduction and tumorigenesis. Sialidase NEU3 shows high enzymatic specificity toward gangliosides. Moreover, the enzyme is present both at the cell surface and in endosomal structures and cofractionates with caveolin. Although changes in the expression level of NEU3 have been correlated to different tumors, little is known about the precise distribution of the protein and its ability in modifying the ganglioside composition of DRM and non-DRM, thus regulating intracellular events. By means of inducible expression cell system we found that i) newly synthesized NEU3 is initially associated to non-DRM; ii) at steady state the protein is equally distributed between the two membrane subcompartments, i.e., DRM and non-DRM; iii) NEU3 is degraded via the proteasomal pathway; iv) the enzyme specifically modifies the ganglioside composition of the membrane areas where it resides; and v) NEU3 triggers phosphorylation of Akt, even in absence of exogenously administered EGF. Taken together our data demonstrate that NEU3 regulates the DRM ganglioside content and it can be considered as a modulator of Akt phosphorylation, further supporting the role of this enzyme in cancer and tumorigenesis.
Collapse
Affiliation(s)
- Dario Bonardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Nadia Papini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Mario Pasini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Loredana Dileo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Flavia Orizio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luigi Caimi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Bruno Venerando
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- * E-mail:
| |
Collapse
|
19
|
Bleasel JM, Wong JH, Halliday GM, Kim WS. Lipid dysfunction and pathogenesis of multiple system atrophy. Acta Neuropathol Commun 2014; 2:15. [PMID: 24502382 PMCID: PMC3922275 DOI: 10.1186/2051-5960-2-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 12/24/2022] Open
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disease characterized by the accumulation of α-synuclein protein in the cytoplasm of oligodendrocytes, the myelin-producing support cells of the central nervous system (CNS). The brain is the most lipid-rich organ in the body and disordered metabolism of various lipid constituents is increasingly recognized as an important factor in the pathogenesis of several neurodegenerative diseases. α-Synuclein is a 17 kDa protein with a close association to lipid membranes and biosynthetic processes in the CNS, yet its precise function is a matter of speculation, particularly in oligodendrocytes. α-Synuclein aggregation in neurons is a well-characterized feature of Parkinson’s disease and dementia with Lewy bodies. Epidemiological evidence and in vitro studies of α-synuclein molecular dynamics suggest that disordered lipid homeostasis may play a role in the pathogenesis of α-synuclein aggregation. However, MSA is distinct from other α-synucleinopathies in a number of respects, not least the disparate cellular focus of α-synuclein pathology. The recent identification of causal mutations and polymorphisms in COQ2, a gene encoding a biosynthetic enzyme for the production of the lipid-soluble electron carrier coenzyme Q10 (ubiquinone), puts membrane transporters as central to MSA pathogenesis, although how such transporters are involved in the early myelin degeneration observed in MSA remains unclear. The purpose of this review is to bring together available evidence to explore the potential role of membrane transporters and lipid dyshomeostasis in the pathogenesis of α-synuclein aggregation in MSA. We hypothesize that dysregulation of the specialized lipid metabolism involved in myelin synthesis and maintenance by oligodendrocytes underlies the unique neuropathology of MSA.
Collapse
|
20
|
Krishnan G, Chatterjee N. Detergent resistant membrane fractions are involved in calcium signaling in Müller glial cells of retina. Int J Biochem Cell Biol 2013; 45:1758-66. [PMID: 23732110 DOI: 10.1016/j.biocel.2013.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 12/23/2022]
Abstract
Compartmentalization of the plasma membrane into lipid microdomains promotes efficient cellular processes by increasing local molecular concentrations. Calcium signaling, either as transients or propagating waves require integration of complex macromolecular machinery. Calcium waves represent a form of intercellular signaling in the central nervous system and the retina. We hypothesized that the mechanism for calcium waves would require effector proteins to aggregate at the plasma membrane in lipid microdomains. The current study shows that in Müller glia of the retina, proteins involved in calcium signaling aggregate in detergent resistant membranes identifying rafts and respond by redistributing on stimulation. We have investigated Purinoreceptor-1 (P2Y1), Ryanodine receptor (RyR), and Phospholipase C (PLC-β1). P2Y1, RyR and PLC-β1, redistribute from caveolin-1 and flotillin-1 positive fractions on stimulation with the agonists, ATP, 2MeS-ATP and Thapsigargin, an inhibitor of sarcoplasmic-endoplasmic reticulum Ca-ATPase (SERCA). Redistribution is absent on treatment with cyclopiazonic acid, another SERCA inhibitor. Disruption of rafts by removing cholesterol cause proteins involved in this machinery to redistribute and change agonist-induced calcium signaling. Cholesterol depletion from raft lead to increase in time to peak of calcium levels in agonist-evoked calcium signals in all instances, as seen by live imaging. This study emphasizes the necessity of a sub-population of proteins to cluster in specialized lipid domains. The requirement for such an organization at the raft-like microdomains may have implications on intercellular communication in the retina. Such concerted interaction at the rafts can regulate calcium dynamics and could add another layer of complexity to calcium signaling in cells.
Collapse
Affiliation(s)
- Gopinath Krishnan
- Department of L & T Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai 600006, India
| | | |
Collapse
|
21
|
The Role of Cholesterol in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Loizides-Mangold U, David FPA, Nesatyy VJ, Kinoshita T, Riezman H. Glycosylphosphatidylinositol anchors regulate glycosphingolipid levels. J Lipid Res 2012; 53:1522-34. [PMID: 22628614 DOI: 10.1194/jlr.m025692] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchor biosynthesis takes place in the endoplasmic reticulum (ER). After protein attachment, the GPI anchor is transported to the Golgi where it undergoes fatty acid remodeling. The ER exit of GPI-anchored proteins is controlled by glycan remodeling and p24 complexes act as cargo receptors for GPI anchor sorting into COPII vesicles. In this study, we have characterized the lipid profile of mammalian cell lines that have a defect in GPI anchor biosynthesis. Depending on which step of GPI anchor biosynthesis the cells were defective, we observed sphingolipid changes predominantly for very long chain monoglycosylated ceramides (HexCer). We found that the structure of the GPI anchor plays an important role in the control of HexCer levels. GPI anchor-deficient cells that generate short truncated GPI anchor intermediates showed a decrease in very long chain HexCer levels. Cells that synthesize GPI anchors but have a defect in GPI anchor remodeling in the ER have a general increase in HexCer levels. GPI-transamidase-deficient cells that produce no GPI-anchored proteins but generate complete free GPI anchors had unchanged levels of HexCer. In contrast, sphingomyelin levels were mostly unaffected. We therefore propose a model in which the transport of very long chain ceramide from the ER to Golgi is regulated by the transport of GPI anchor molecules.
Collapse
Affiliation(s)
- Ursula Loizides-Mangold
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Caveolae optimize tissue factor-Factor VIIa inhibitory activity of cell-surface-associated tissue factor pathway inhibitor. Biochem J 2012; 443:259-66. [PMID: 22239091 DOI: 10.1042/bj20111994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TFPI (tissue factor pathway inhibitor) is an anticoagulant protein that prevents intravascular coagulation through inhibition of fXa (Factor Xa) and the TF (tissue factor)-fVIIa (Factor VIIa) complex. Localization of TFPI within caveolae enhances its anticoagulant activity. To define further how caveolae contribute to TFPI anticoagulant activity, CHO (Chinese-hamster ovary) cells were co-transfected with TF and membrane-associated TFPI targeted to either caveolae [TFPI-GPI (TFPI-glycosylphosphatidylinositol anchor chimaera)] or to bulk plasma membrane [TFPI-TM (TFPI-transmembrane anchor chimaera)]. Stable clones had equal expression of surface TF and TFPI. TX-114 cellular lysis confirmed localization of TFPI-GPI to detergent-insoluble membrane fractions, whereas TFPI-TM localized to the aqueous phase. TFPI-GPI and TFPI-TM were equally effective direct inhibitors of fXa in amidolytic assays. However, TFPI-GPI was a significantly better inhibitor of TF-fVIIa than TFPI-TM, as measured in both amidolytic and plasma-clotting assays. Disrupting caveolae by removing membrane cholesterol from EA.hy926 cells, which make TFPIα, CHO cells transfected with TFPIβ and HUVECs (human umbilical vein endothelial cells) did not affect their fXa inhibition, but significantly decreased their inhibition of TF-fVIIa. These studies confirm and quantify the enhanced anticoagulant activity of TFPI localized within caveolae, demonstrate that caveolae enhance the inhibitory activity of both TFPI isoforms and define the effect of caveolae as specifically enhancing the anti-TF activity of TFPI.
Collapse
|
24
|
Akamatsu Y. Reminiscence of our research on membrane phospholipids in mammalian cells by using the novel technology. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:536-53. [PMID: 23229749 PMCID: PMC3552046 DOI: 10.2183/pjab.88.536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 10/02/2012] [Indexed: 06/01/2023]
Abstract
By using "our devised up-to-the-second technique" over 30 years ago, we succeeded in the first isolation in the world of the three different kinds of mammalian cell mutants defective in the biosynthesis on each of phosphatidylserine (PS), cardiolipin (CL) and sphingomyelin (SM) from the parental CHO cells. As the results, we found that during the biosyntheses of PS and SM, the biosynthetic precursor or the final lipids are transported from their synthesized intracellular organelles to the plasma membranes via the other intracellular organelles. We further clarified the presence of the reversed routes for PS and SM from the plasma membranes to their synthesized organelles too. Our first epoch-making finding is not only the cycling inter-conversion reactions between PS and PE catalyzed by PSS-II and PSD but also their simultaneous transferring between MAM and Mit (found by O. Kuge). Our second finding is "the ceramide-trafficking protein (CERT)" working as the specific transfer protein of ceramide from the ER to the Golgi apparatus, during the SM biosynthesis (by K. Hanada). As for their new biological roles, we clarified possible contribution of PS and/or PE to the fusion process between viral envelope and endosomal membrane, releasing the genetic information of the virus to the host cytoplasm. CL is contributing to the functional NADH-ubiquinone reductase activity by keeping the right structure of Coenzyme Q9 for its functioning. SM and cholesterol form the microdomain within the plasma membrane, so-called "the raft structure" where the GPI-anchored proteins are specifically located for their functioning.
Collapse
Affiliation(s)
- Yuzuru Akamatsu
- National Institute of Infectious Diseases of Japan, Tokyo, Japan.
| |
Collapse
|
25
|
Chapin C, Bailey NA, Gonzales LW, Lee JW, Gonzalez RF, Ballard PL. Distribution and surfactant association of carcinoembryonic cell adhesion molecule 6 in human lung. Am J Physiol Lung Cell Mol Physiol 2011; 302:L216-25. [PMID: 22037359 DOI: 10.1152/ajplung.00055.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carcinoembryonic cell adhesion molecule 6 (CEACAM6) is a glycosylated, glycophosphatidylinositol-anchored protein expressed in epithelial cells of various primate tissues. It binds gram-negative bacteria and is overexpressed in human cancers. CEACAM6 is associated with lamellar bodies of cultured type II cells of human fetal lung and protects surfactant function in vitro. In this study, we characterized CEACAM6 expression in vivo in human lung. CEACAM6 was present in lung lavage of premature infants at birth and increased progressively in intubated infants with lung disease. Of surfactant-associated CEACAM6, ∼80% was the fully glycosylated, 90-kDa form that contains the glycophosphatidylinositol anchor, and the concentration (3.9% of phospholipid for adult lung) was comparable to that for surfactant proteins (SP)-A/B/C. We examined the affinity of CEACAM6 by purification of surfactant on density gradient centrifugation; concentrations of CEACAM6 and SP-B per phospholipid were unchanged, whereas levels of total protein and SP-A decreased by 60%. CEACAM6 mRNA content decreased progressively from upper trachea to peripheral fetal lung, whereas protein levels were similar in all regions of adult lung, suggesting proximal-to-distal developmental expression in lung epithelium. In adult lung, most type I cells and ∼50% of type II cells were immunopositive. We conclude that CEACAM6 is expressed by alveolar and airway epithelial cells of human lung and is secreted into lung-lining fluid, where fully glycosylated protein binds to surfactant. Production appears to be upregulated during neonatal lung disease, perhaps related to roles of CEACAM6 in surfactant function, cell proliferation, and innate immune defense.
Collapse
Affiliation(s)
- Cheryl Chapin
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
26
|
Sheikh KH, Jarvis SP. Crystalline hydration structure at the membrane-fluid interface of model lipid rafts indicates a highly reactive boundary region. J Am Chem Soc 2011; 133:18296-303. [PMID: 21991934 DOI: 10.1021/ja2068142] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fluid mosaic model of biological membranes is that of a two-dimensional lipid bilayer in which both lipids and associated membrane proteins diffuse freely. More recently, the raft hypothesis proposed that membranes contain small, dynamic, functional domains (rafts), which act as platforms for membrane protein attachment and interaction. Although experimental evidence supporting the raft hypothesis is growing, very little is known of the structure of the membrane-fluid interface of lipid raft systems. Here, we report the direct submolecular-scale imaging of model raft membranes using ultrahigh resolution atomic force microscopy. We characterize the heterogeneous nature of crystalline hydration layers at the membrane-fluid interface. The association of crystalline hydration layers with raft membranes would significantly affect the mechanism and kinetics of both inter-raft interactions and those between rafts and external biomolecules, and therefore this finding has important implications for membrane biology.
Collapse
Affiliation(s)
- Khizar H Sheikh
- Nanoscale Function Group, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
27
|
Grimm MOW, Grösgen S, Rothhaar TL, Burg VK, Hundsdörfer B, Haupenthal VJ, Friess P, Müller U, Fassbender K, Riemenschneider M, Grimm HS, Hartmann T. Intracellular APP Domain Regulates Serine-Palmitoyl-CoA Transferase Expression and Is Affected in Alzheimer's Disease. Int J Alzheimers Dis 2011; 2011:695413. [PMID: 21660213 PMCID: PMC3109855 DOI: 10.4061/2011/695413] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/16/2011] [Accepted: 01/20/2011] [Indexed: 12/27/2022] Open
Abstract
Lipids play an important role as risk or protective factors in Alzheimer's disease (AD), a disease biochemically characterized by the accumulation of amyloid beta peptides (Aβ), released by proteolytic processing of the amyloid precursor protein (APP). Changes in sphingolipid metabolism have been associated to the development of AD. The key enzyme in sphingolipid de novo synthesis is serine-palmitoyl-CoA transferase (SPT). In the present study we identified a new physiological function of APP in sphingolipid synthesis. The APP intracellular domain (AICD) was found to decrease the expression of the SPT subunit SPTLC2, the catalytic subunit of the SPT heterodimer, resulting in that decreased SPT activity. AICD function was dependent on Fe65 and SPTLC2 levels are increased in APP knock-in mice missing a functional AICD domain. SPTLC2 levels are also increased in familial and sporadic AD postmortem brains, suggesting that SPT is involved in AD pathology.
Collapse
Affiliation(s)
- Marcus O. W. Grimm
- Neurodegeneration and Neurobiology, Deutsches Institut für Demenzprävention (DIDP), Kirrbergerstraße, 66421 Homburg, Germany
| | - Sven Grösgen
- Neurodegeneration and Neurobiology, Deutsches Institut für Demenzprävention (DIDP), Kirrbergerstraße, 66421 Homburg, Germany
| | - Tatjana L. Rothhaar
- Neurodegeneration and Neurobiology, Deutsches Institut für Demenzprävention (DIDP), Kirrbergerstraße, 66421 Homburg, Germany
| | - Verena K. Burg
- Neurodegeneration and Neurobiology, Deutsches Institut für Demenzprävention (DIDP), Kirrbergerstraße, 66421 Homburg, Germany
| | - Benjamin Hundsdörfer
- Neurodegeneration and Neurobiology, Deutsches Institut für Demenzprävention (DIDP), Kirrbergerstraße, 66421 Homburg, Germany
| | - Viola J. Haupenthal
- Neurodegeneration and Neurobiology, Deutsches Institut für Demenzprävention (DIDP), Kirrbergerstraße, 66421 Homburg, Germany
| | - Petra Friess
- Neurodegeneration and Neurobiology, Deutsches Institut für Demenzprävention (DIDP), Kirrbergerstraße, 66421 Homburg, Germany
| | - Ulrike Müller
- Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Klaus Fassbender
- Neurodegeneration and Neurobiology, Deutsches Institut für Demenzprävention (DIDP), Kirrbergerstraße, 66421 Homburg, Germany
- Department of Neurology, Saarland University, Kirrbergerstraße, 66421 Homburg/Saar, Germany
| | - Matthias Riemenschneider
- Neurodegeneration and Neurobiology, Deutsches Institut für Demenzprävention (DIDP), Kirrbergerstraße, 66421 Homburg, Germany
- Department of Psychiatry, Saarland University, Kirrbergerstraße, 66421 Homburg/Saar, Germany
| | - Heike S. Grimm
- Neurodegeneration and Neurobiology, Deutsches Institut für Demenzprävention (DIDP), Kirrbergerstraße, 66421 Homburg, Germany
| | - Tobias Hartmann
- Neurodegeneration and Neurobiology, Deutsches Institut für Demenzprävention (DIDP), Kirrbergerstraße, 66421 Homburg, Germany
- Department of Psychiatry, Saarland University, Kirrbergerstraße, 66421 Homburg/Saar, Germany
| |
Collapse
|
28
|
Riquelme G, Vallejos C, de Gregorio N, Morales B, Godoy V, Berrios M, Bastías N, Rodríguez C. Lipid rafts and cytoskeletal proteins in placental microvilli membranes from preeclamptic and IUGR pregnancies. J Membr Biol 2011; 241:127-40. [PMID: 21573936 DOI: 10.1007/s00232-011-9369-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/27/2011] [Indexed: 12/17/2022]
Abstract
Intrauterine growth restriction (IUGR) and preeclampsia (PE) are leading causes of perinatal and maternal morbidity and mortality. Previously we reported the expression of lipid rafts in classical microvillous membrane (MVM) and light microvillous membrane (LMVM), two subdomains in apical membrane from the human placental syncytiotrophoblast (hSTB), which constitute the epithelium responsible for maternal-fetal transport. Here the aim was to study the raft and cytoskeletal proteins from PE and IUGR. Microdomains from MVM and LMVM were tested with raft markers (placental alkaline phosphatase, lipid ganglioside, and annexin 2) and a nonraft marker (hTf-R). No changes were detected with those markers in whole purified apical membranes in normal, PE, and IUGR pregnancies; however, their patterns of distribution in lipid rafts were different in PE and IUGR. Cholesterol depletion modified their segregation, confirming their presence in lipid rafts, although unlike normal placenta, in these pathologies there is only one type of microdomain. Additionally, the cytoskeleton proteins actin, ezrin, and cytokeratin-7 showed clear differences between normal and pathological membranes. Cytokeratin-7 expression decreased to 50% in PE, and the distribution between LMVM and MVM (~43 and 57%, respectively) changed in both PE and IUGR, in contrast with the asymmetrical enrichment obtained in normal LMVM (~62%). In conclusion, lipid rafts from IUGR and PE have different features compared to rafts from normal placentae, and this is associated with alterations in the expression and distribution of cytoskeletal proteins.
Collapse
Affiliation(s)
- Gloria Riquelme
- Depto. de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Casilla 70005, Santiago 7, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Levental I, Grzybek M, Simons K. Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 2010; 49:6305-16. [PMID: 20583817 DOI: 10.1021/bi100882y] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that biological membranes can be laterally subdivided into domains enriched in specific lipid and protein components and that these domains may be involved in the regulation of a number of vital cellular processes. An example is membrane rafts, which are lipid-mediated domains dependent on preferential association between sterols and sphingolipids and inclusive of a specific subset of membrane proteins. While the lipid and protein composition of rafts has been extensively characterized, the structural details determining protein partitioning to these domains remain unresolved. Here, we review evidence suggesting that post-translation modification by saturated lipids recruits both peripheral and transmembrane proteins to rafts, while short, unsaturated, and/or branched hydrocarbon chains prevent raft association. The most widely studied group of raft-associated proteins are glycophosphatidylinositol-anchored proteins (GPI-AP), and we review a variety of evidence supporting raft-association of these saturated lipid-anchored extracellular peripheral proteins. For transmembrane and intracellular peripheral proteins, S-acylation with saturated fatty acids mediates raft partitioning, and the dynamic nature of this modification presents an exciting possibility of enzymatically regulated raft association. The other common lipid modifications, that is, prenylation and myristoylation, are discussed in light of their likely role in targeting proteins to nonraft membrane regions. Finally, although the association between raft affinity and lipid modification is well-characterized, we discuss several open questions regarding regulation and remodeling of these post-translational modifications as well as their role in transbilayer coupling of membrane domains.
Collapse
Affiliation(s)
- Ilya Levental
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, Germany
| | | | | |
Collapse
|
30
|
Membrane rafting: From apical sorting to phase segregation. FEBS Lett 2009; 584:1685-93. [DOI: 10.1016/j.febslet.2009.12.043] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 12/10/2009] [Indexed: 11/23/2022]
|
31
|
Tong J, Briggs MM, Mlaver D, Vidal A, McIntosh TJ. Sorting of lens aquaporins and connexins into raft and nonraft bilayers: role of protein homo-oligomerization. Biophys J 2009; 97:2493-502. [PMID: 19883592 PMCID: PMC2770620 DOI: 10.1016/j.bpj.2009.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/17/2009] [Accepted: 08/21/2009] [Indexed: 11/16/2022] Open
Abstract
Two classes of channel-forming proteins in the eye lens, the water channel aquaporin-0 (AQP-0) and the connexins Cx46 and Cx50, are preferentially located in different regions of lens plasma membranes (1,2). Because these membranes contain high concentrations of cholesterol and sphingomyelin, as well as phospholipids such as phosphatidylcholine with unsaturated hydrocarbon chains, microdomains (rafts) form in these membranes. Here we test the hypothesis that sorting into lipid microdomains can play a role in the disposition of AQP-0 and the connexins in the plane of the membrane. For both crude membrane fractions and proteoliposomes composed of lens proteins in phosphatidylcholine/sphingomyelin/cholesterol lipid bilayers, detergent extraction experiments showed that the connexins were located primarily in detergent soluble membrane (DSM) fractions, whereas AQP-0 was found in both detergent resistant membrane and DSM fractions. Analysis of purified AQP-0 reconstituted in raft-containing bilayers showed that the microdomain location of AQP-0 depended on protein/lipid ratio. AQP-0 was located almost exclusively in DSMs at a 1:1200 AQP-0/lipid ratio, whereas approximately 50% of the protein was sequestered into detergent resistant membranes at a 1:100 ratio, where freeze-fracture experiments show that AQP-0 oligomerizes (3). Consistent with these detergent extraction results, confocal microscopy images showed that AQP-0 was sequestered into raft microdomains in the 1:100 protein/lipid membranes. Taken together these results indicate that AQP-0 and connexins can be segregated in the membrane by protein-lipid interactions as modified by AQP-0 homo-oligomerization.
Collapse
Affiliation(s)
| | | | | | | | - Thomas J. McIntosh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
32
|
Wong SW, Kwon MJ, Choi AMK, Kim HP, Nakahira K, Hwang DH. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem 2009; 284:27384-92. [PMID: 19648648 DOI: 10.1074/jbc.m109.044065] [Citation(s) in RCA: 402] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The saturated fatty acids acylated on Lipid A of lipopolysaccharide (LPS) or bacterial lipoproteins play critical roles in ligand recognition and receptor activation for Toll-like Receptor 4 (TLR4) and TLR2. The results from our previous studies demonstrated that saturated and polyunsaturated fatty acids reciprocally modulate the activation of TLR4. However, the underlying mechanism has not been understood. Here, we report for the first time that the saturated fatty acid lauric acid induced dimerization and recruitment of TLR4 into lipid rafts, however, dimerization was not observed in non-lipid raft fractions. Similarly, LPS and lauric acid enhanced the association of TLR4 with MD-2 and downstream adaptor molecules, TRIF and MyD88, into lipid rafts leading to the activation of downstream signaling pathways and target gene expression. However, docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, inhibited LPS- or lauric acid-induced dimerization and recruitment of TLR4 into lipid raft fractions. Together, these results demonstrate that lauric acid and DHA reciprocally modulate TLR4 activation by regulation of the dimerization and recruitment of TLR4 into lipid rafts. In addition, we showed that TLR4 recruitment to lipid rafts and dimerization were coupled events mediated at least in part by NADPH oxidase-dependent reactive oxygen species generation. These results provide a new insight in understanding the mechanism by which fatty acids differentially modulate TLR4-mediated signaling pathway and consequent inflammatory responses which are implicated in the development and progression of many chronic diseases.
Collapse
Affiliation(s)
- Scott W Wong
- Western Human Nutrition Research Center, the Agricultural Research Service (ARS)-United States Department of Agriculture, and Department of Nutrition, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
33
|
Nayak DP, Balogun RA, Yamada H, Zhou ZH, Barman S. Influenza virus morphogenesis and budding. Virus Res 2009; 143:147-61. [PMID: 19481124 PMCID: PMC2730999 DOI: 10.1016/j.virusres.2009.05.010] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/19/2009] [Indexed: 12/11/2022]
Abstract
Influenza viruses are enveloped, negative stranded, segmented RNA viruses belonging to Orthomyxoviridae family. Each virion consists of three major sub-viral components, namely (i) a viral envelope decorated with three transmembrane proteins hemagglutinin (HA), neuraminidase (NA) and M2, (ii) an intermediate layer of matrix protein (M1), and (iii) an innermost helical viral ribonucleocapsid [vRNP] core formed by nucleoprotein (NP) and negative strand viral RNA (vRNA). Since complete virus particles are not found inside the cell, the processes of assembly, morphogenesis, budding and release of progeny virus particles at the plasma membrane of the infected cells are critically important for the production of infectious virions and pathogenesis of influenza viruses as well. Morphogenesis and budding require that all virus components must be brought to the budding site which is the apical plasma membrane in polarized epithelial cells whether in vitro cultured cells or in vivo infected animals. HA and NA forming the outer spikes on the viral envelope possess apical sorting signals and use exocytic pathways and lipid rafts for cell surface transport and apical sorting. NP also has apical determinant(s) and is probably transported to the apical budding site similarly via lipid rafts and/or through cortical actin microfilaments. M1 binds the NP and the exposed RNAs of vRNPs, as well as to the cytoplasmic tails (CT) and transmembrane (TM) domains of HA, NA and M2, and is likely brought to the budding site on the piggy-back of vRNP and transmembrane proteins. Budding processes involve bud initiation, bud growth and bud release. The presence of lipid rafts and assembly of viral components at the budding site can cause asymmetry of lipid bilayers and outward membrane bending leading to bud initiation and bud growth. Bud release requires fusion of the apposing viral and cellular membranes and scission of the virus buds from the infected cellular membrane. The processes involved in bud initiation, bud growth and bud scission/release require involvement both viral and host components and can affect bud closing and virus release in both positive and negative ways. Among the viral components, M1, M2 and NA play important roles in bud release and M1, M2 and NA mutations all affect the morphology of buds and released viruses. Disassembly of host cortical actin microfilaments at the pinching-off site appears to facilitate bud fission and release. Bud scission is energy dependent and only a small fraction of virus buds present on the cell surface is released. Discontinuity of M1 layer underneath the lipid bilayer, absence of outer membrane spikes, absence of lipid rafts in the lipid bilayer, as well as possible presence of M2 and disassembly of cortical actin microfilaments at the pinching-off site appear to facilitate bud fission and bud release. We provide our current understanding of these important processes leading to the production of infectious influenza virus particles.
Collapse
Affiliation(s)
- Debi P Nayak
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
34
|
Pinaud F, Michalet X, Iyer G, Margeat E, Moore HP, Weiss S. Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 2009; 10:691-712. [PMID: 19416475 DOI: 10.1111/j.1600-0854.2009.00902.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent experimental developments have led to a revision of the classical fluid mosaic model proposed by Singer and Nicholson more than 35 years ago. In particular, it is now well established that lipids and proteins diffuse heterogeneously in cell plasma membranes. Their complex motion patterns reflect the dynamic structure and composition of the membrane itself, as well as the presence of the underlying cytoskeleton scaffold and that of the extracellular matrix. How the structural organization of plasma membranes influences the diffusion of individual proteins remains a challenging, yet central, question for cell signaling and its regulation. Here we have developed a raft-associated glycosyl-phosphatidyl-inositol-anchored avidin test probe (Av-GPI), whose diffusion patterns indirectly report on the structure and dynamics of putative raft microdomains in the membrane of HeLa cells. Labeling with quantum dots (qdots) allowed high-resolution and long-term tracking of individual Av-GPI and the classification of their various diffusive behaviors. Using dual-color total internal reflection fluorescence (TIRF) microscopy, we studied the correlation between the diffusion of individual Av-GPI and the location of glycosphingolipid GM1-rich microdomains and caveolae. We show that Av-GPI exhibit a fast and a slow diffusion regime in different membrane regions, and that slowing down of their diffusion is correlated with entry in GM1-rich microdomains located in close proximity to, but distinct, from caveolae. We further show that Av-GPI dynamically partition in and out of these microdomains in a cholesterol-dependent manner. Our results provide direct evidence that cholesterol-/sphingolipid-rich microdomains can compartmentalize the diffusion of GPI-anchored proteins in living cells and that the dynamic partitioning raft model appropriately describes the diffusive behavior of some raft-associated proteins across the plasma membrane.
Collapse
Affiliation(s)
- Fabien Pinaud
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Yuan J, Kiss A, Pramudya YH, Nguyen LT, Hirst LS. Solution synchrotron x-ray diffraction reveals structural details of lipid domains in ternary mixtures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:031924. [PMID: 19391988 DOI: 10.1103/physreve.79.031924] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 12/22/2008] [Indexed: 05/27/2023]
Abstract
The influence of cholesterol on lipid bilayer structure is significant and the effect of cholesterol on lipid sorting and phase separation in lipid-raft-forming model membrane systems has been well investigated by microscopy methods on giant vesicles. An important consideration however is the influence of fluorescence illumination on the phase state of these lipids and this effect must be carefully minimized. In this paper, we show that synchrotron x-ray scattering on solution lipid mixtures is an effective alternative technique for the identification and characterization of the l_{o} (liquid ordered) and l_{d} (liquid disordered) phases. The high intensity of synchrotron x rays allows the observation of up to 5 orders of diffraction from the l_{o} phase, whereas only two are clearly visible when the l_{d} phase alone is present. This data can be collected in approximately 1 min/sample , allowing rapid generation of phase data. In this paper, we measure the lamellar spacing in both the liquid-ordered and liquid-disordered phases simultaneously, as a function of cholesterol concentration in two different ternary mixtures. We also observe evidence of a third gel-phaselike population at 10-12 mol % cholesterol and determine the thickness of the bilayer for this phase. Importantly we are able to look at phase coexistence in the membrane independent of photoeffects.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Physics and MARTECH, Florida State University, Tallahassee, Florida 32306, USA
| | | | | | | | | |
Collapse
|
36
|
Distinct Lipid Rafts in Subdomains from Human Placental Apical Syncytiotrophoblast Membranes. J Membr Biol 2008; 224:21-31. [DOI: 10.1007/s00232-008-9125-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 08/19/2008] [Indexed: 12/13/2022]
|
37
|
Hichem, D. G, Konrad S. Principles of microdomain formation in biological membranes— Are there lipid liquid ordered domains in living cellular membranes? TRENDS GLYCOSCI GLYC 2008. [DOI: 10.4052/tigg.20.277] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Abstract
Biological rafts were identified and isolated at 37 degrees C and neutral pH. The strategy for isolating rafts utilized membrane tension to generate large domains. For lipid compositions that led only to microscropically unresolvable rafts in lipid bilayers, membrane tension led to the appearance of large, observable rafts. The large rafts converted back to small ones when tension was relieved. Thus, tension reversibly controls raft enlargement. For cells, application of membrane tension resulted in several types of large domains; one class of the domains was identified as rafts. Tension was generated in several ways, and all yielded raft fractions that had essentially the same composition, validating the principle of tension as a means to merge small rafts into large rafts. It was demonstrated that sphingomyelin-rich vesicles do not rise during centrifugation in sucrose gradients because they resist lysis, necessitating that, contrary to current experimental practice, membrane material be placed toward the top of a gradient for raft fractionation. Isolated raft fractions were enriched in a GPI-linked protein, alkaline phosphatase, and were poor in Na(+)-K(+) ATPase. Sphingomyelin and gangliosides were concentrated in rafts, the expected lipid raft composition. Cholesterol, however, was distributed equally between raft and nonraft fractions, contrary to the conventional view.
Collapse
|
39
|
Barman S, Nayak DP. Lipid raft disruption by cholesterol depletion enhances influenza A virus budding from MDCK cells. J Virol 2007; 81:12169-78. [PMID: 17855515 PMCID: PMC2169012 DOI: 10.1128/jvi.00835-07] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 09/06/2007] [Indexed: 01/08/2023] Open
Abstract
Lipid rafts play critical roles in many aspects of the influenza A virus life cycle. Cholesterol is a critical structural component of lipid rafts, and depletion of cholesterol leads to disorganization of lipid raft microdomains. In this study, we have investigated the effect of cholesterol depletion by methyl-beta-cyclodextrin (MbetaCD) treatment on influenza virus budding. When virus-infected Madin-Darby canine kidney cells were treated with MbetaCD at the late phase of infection for a short duration, budding of virus particles, as determined by protein analysis and electron microscopy, increased with increasing concentrations and lengths of treatment. However, infectious virus yield varied, depending on the concentration and duration of MbetaCD treatment. Low concentrations of MbetaCD increased infectious virus yield throughout the treatment period, but higher concentrations caused an initial increase of infectious virus titer followed by a decrease with a longer duration. Relative infectivity of the released virus particles, on the other hand, decreased with increasing concentrations and durations of MbetaCD treatment. Loss of infectivity of virus particles is due to multiple effects of MbetaCD-mediated cholesterol depletion causing disruption of lipid rafts, changes in structural integrity of the viral membrane, leakage of viral proteins, a nick or hole on the viral envelope, and disruption of the virus structure. Exogenous cholesterol increased lipid raft integrity, inhibited particle release, and partially restored the infectivity of the released virus particles. These data show that disruption of lipid rafts by cholesterol depletion caused an enhancement of virus particle release from infected cells and a decrease in the infectivity of virus particles.
Collapse
Affiliation(s)
- Subrata Barman
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1747, USA
| | | |
Collapse
|
40
|
de Laurentiis A, Donovan L, Arcaro A. Lipid rafts and caveolae in signaling by growth factor receptors. Open Biochem J 2007; 1:12-32. [PMID: 18949068 PMCID: PMC2570545 DOI: 10.2174/1874091x00701010012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 12/29/2022] Open
Abstract
Lipid rafts and caveolae are microdomains of the plasma membrane enriched in sphingolipids and cholesterol, and hence are less fluid than the remainder of the membrane. Caveolae have an invaginated structure, while lipid rafts are flat regions of the membrane. The two types of microdomains have different protein compositions (growth factor receptors and their downstream molecules) suggesting that lipid rafts and caveolae have a role in the regulation of signaling by these receptors. The purpose of this review is to discuss this model, and the implications that it might have regarding a potential role for lipid rafts and caveolae in human cancer. Particular attention will be paid to the epidermal growth factor receptor, for which the largest amount of information is available. It has been proposed that caveolins act as tumor suppressors. The role of lipid rafts is less clear, but they seem to be capable of acting as 'signaling platforms', in which signal initiation and propagation can occur efficiently.
Collapse
Affiliation(s)
- Angela de Laurentiis
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Lorna Donovan
- Division of Medicine, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | - Alexandre Arcaro
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
- Division of Medicine, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| |
Collapse
|
41
|
Tong J, Nguyen L, Vidal A, Simon SA, Skene JHP, McIntosh TJ. Role of GAP-43 in sequestering phosphatidylinositol 4,5-bisphosphate to Raft bilayers. Biophys J 2007; 94:125-33. [PMID: 17827240 PMCID: PMC2134862 DOI: 10.1529/biophysj.107.110536] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) is critical for a number of physiological functions, and its presence in membrane microdomains (rafts) appears to be important for several of these spatially localized events. However, lipids like PIP(2) that contain polyunsaturated hydrocarbon chains are usually excluded from rafts, which are enriched in phospholipids (such as sphingomyelin) containing saturated or monounsaturated chains. Here we tested a mechanism by which multivalent PIP(2) molecules could be transferred into rafts through electrostatic interactions with polybasic cytoplasmic proteins, such as GAP-43, which bind to rafts via their acylated N-termini. We analyzed the interactions between lipid membranes containing raft microdomains and a peptide (GAP-43P) containing the linked N-terminus and the basic effector domain of GAP-43. In the absence or presence of nonacylated GAP-43P, PIP(2) was found primarily in detergent-soluble membranes thought to correspond to nonraft microdomains. However, when GAP-43P was acylated by palmitoyl coenzyme A, both the peptide and PIP(2) were greatly enriched in detergent-resistant membranes that correspond to rafts; acylation of GAP-43P changed the free energy of transfer of PIP(2) from detergent-soluble membranes to detergent-resistant membranes by -1.3 kcal/mol. Confocal microscopy of intact giant unilamellar vesicles verified that in the absence of GAP-43P PIP(2) was in nonraft microdomains, whereas acylated GAP-43P laterally sequestered PIP(2) into rafts. These data indicate that sequestration of PIP(2) to raft microdomains could involve interactions with acylated basic proteins such as GAP-43.
Collapse
Affiliation(s)
- Jihong Tong
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
42
|
Baier CJ, Barrantes FJ. Sphingolipids are necessary for nicotinic acetylcholine receptor export in the early secretory pathway. J Neurochem 2007; 101:1072-84. [PMID: 17437537 DOI: 10.1111/j.1471-4159.2007.04561.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The nicotinic acetylcholine receptor (AChR) is the prototype ligand-gated ion channel, and its function is dependent on its lipid environment. In order to study the involvement of sphingolipids (SL) in AChR trafficking, we used pharmacological approaches to dissect the SL biosynthetic pathway in CHO-K1/A5 cells heterologously expressing the muscle-type AChR. When SL biosynthesis was impaired, the cell surface targeting of AChR diminished with a concomitant increase in the intracellular receptor pool. The SL-inhibiting drugs increased unassembled AChR forms, which were retained at the endoplasmic reticulum (ER). These effects on AChR biogenesis and trafficking could be reversed by the addition of exogenous SL, such as sphingomyelin. On the basis of these effects we propose a 'chaperone-like' SL intervention at early stages of the AChR biosynthetic pathway, affecting both the efficiency of the assembly process and subsequent receptor trafficking to the cell surface.
Collapse
Affiliation(s)
- C J Baier
- UNESCO Chair of Biophysics and Molecular Neurobiology and Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca, Argentina
| | | |
Collapse
|
43
|
|
44
|
Grimmer S, Spilsberg B, Hanada K, Sandvig K. Depletion of sphingolipids facilitates endosome to Golgi transport of ricin. Traffic 2007; 7:1243-53. [PMID: 16919154 DOI: 10.1111/j.1600-0854.2006.00456.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It has been previously demonstrated that depletion of cholesterol inhibits endosome to Golgi transport. Whether this inhibition is due to disruption of sphingolipid- and cholesterol-containing lipid rafts that are selected for Golgi transport or whether there is a physical requirement of cholesterol for either membrane deformations, facilitating formation of transport vesicles, or for recruitment of cytosolic constituents is not obvious. To investigate this in more detail, we have studied endosome to Golgi transport of ricin in sphingolipid-deficient cells using either a mutant cell line that does not express serine palmitoyltransferase, the first enzyme in sphingolipid biosynthesis, or a specific inhibitor, myriocin, of the same enzyme. Depletion of sphingolipids gave an increased sensitivity to ricin, and this increased sensitivity was inhibited by addition of sphingolipids. Importantly, endosome to Golgi transport of ricin, measured as sulfation of a modified ricin molecule, was increased in sphingolipid-deficient cells. No effect was seen on other pathways taken by ricin. Interestingly, cholesterol depletion inhibited endosome to Golgi transport even in cells with reduced levels of sphingolipids, suggesting that cholesterol as such is required for formation of transport vesicles. Our results indicate that the presence of sphingolipids actually limits and may function to control endosome to Golgi transport of ricin.
Collapse
Affiliation(s)
- Stine Grimmer
- Institute for Cancer Research, Department of Biochemistry, The Norwegian Radium Hospital, University of Oslo, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
45
|
Abstract
The 'lipid raft' hypothesis has been a contentious topic over the past 5 years, with much of the immunology community divided into 'believers' and 'nonbelievers'. The disagreement is due mainly to the inability to observe these membrane domains directly and to the widespread use of experimental approaches of dubious utility. As a lipid raft 'dilettante' who has dabbled in the area over the years, I view the lipid raft model with some skepticism and disinterest because of that confusion. Although progress in the field has helped clarify some of the issues, more work is still needed to formally confirm the lipid raft hypothesis and to reestablish the scientific credibility of this area.
Collapse
Affiliation(s)
- Andrey S Shaw
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
46
|
Lichtenberg D, Goñi FM, Heerklotz H. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem Sci 2005; 30:430-6. [PMID: 15996869 DOI: 10.1016/j.tibs.2005.06.004] [Citation(s) in RCA: 392] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/18/2005] [Accepted: 06/22/2005] [Indexed: 11/29/2022]
Abstract
Three originally distinct concepts - lipid rafts, detergent-resistant membranes (DRMs) and liquid-ordered (lo) lipid phases - are often confused in current literature; many researchers have assumed that all three names refer to the same chemico-biological entity. In fact, theoretical and experimental findings provide strong evidence against identifying DRMs with rafts and lo domains. Because much of what we think we know about lipid rafts is based on their unjustified identification as DRMs, functional domains in biological membranes might differ markedly from the generally accepted picture.
Collapse
Affiliation(s)
- Dov Lichtenberg
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | | | |
Collapse
|
47
|
Vidal A, McIntosh TJ. Transbilayer peptide sorting between raft and nonraft bilayers: comparisons of detergent extraction and confocal microscopy. Biophys J 2005; 89:1102-8. [PMID: 15908585 PMCID: PMC1366595 DOI: 10.1529/biophysj.105.062380] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane microdomains ("rafts") that sequester specific proteins and lipids are often characterized by their resistance to detergent extraction. Because rafts are enriched in sphingomyelin and cholesterol, raft bilayers are thicker and have larger area compressibility moduli than nonraft bilayers. It has been postulated that rafts concentrate proteins with long transmembrane domains (TMDs) because of "hydrophobic matching" between the TMDs and the thick raft bilayers. However, previous detergent extraction experiments with bilayers containing raft and nonraft domains have shown that the peptides P-23 and P-29, designed to have single TMDs matching the hydrocarbon thicknesses of detergent soluble membranes and detergent resistant membranes, respectively, are both localized to detergent soluble membranes. Those results imply that both peptides are preferentially located in nonraft domains. However, because the detergent solubilizes part of the bilayer, it has been unclear whether or not detergent extraction experiments provide an accurate indication of the location of peptides in intact bilayers. Here we use confocal microscopy to examine the distribution of these same peptides in intact bilayers containing both raft and nonraft domains. At 20 degrees C and 37 degrees C, P-23 and P-29 were both primarily localized in fluorescently labeled nonraft domains. These confocal results validate the previous detergent extraction experiments and demonstrate the importance of bilayer cohesive properties, compared to hydrophobic mismatch, in the sorting of these peptides that contain a single TMD.
Collapse
Affiliation(s)
- Adriana Vidal
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
48
|
Carrasco M, Amorim MJ, Digard P. Lipid raft-dependent targeting of the influenza A virus nucleoprotein to the apical plasma membrane. Traffic 2005; 5:979-92. [PMID: 15522099 DOI: 10.1111/j.1600-0854.2004.00237.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Influenza virus acquires a lipid raft-containing envelope by budding from the apical surface of epithelial cells. Polarised budding involves specific sorting of the viral membrane proteins, but little is known about trafficking of the internal virion components. We show that during the later stages of virus infection, influenza nucleoprotein (NP) and polymerase (the protein components of genomic ribonucleoproteins) localised to apical but not lateral or basolateral membranes, even in cell types where haemagglutinin was found on all external membranes. Other cytosolic components of the virion either distributed throughout the cytoplasm (NEP/NS2) or did not localise solely to the apical plasma membrane in all cell types (M1). NP localised specifically to the apical surface even when expressed alone, indicating intrinsic targeting. A similar proportion of NP associated with membrane fractions in flotation assays from virus-infected and plasmid-transfected cells. Detergent-resistant flotation at 4 degrees C suggested that these membranes were lipid raft microdomains. Confirming this, cholesterol depletion rendered NP detergent-soluble and furthermore, resulted in its partial redistribution throughout the cell. We conclude that NP is independently targeted to the apical plasma membrane through a mechanism involving lipid rafts and propose that this helps determine the polarity of influenza virus budding.
Collapse
Affiliation(s)
- Marlene Carrasco
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|
49
|
Stoffel W, Jenke B, Blöck B, Zumbansen M, Koebke J. Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc Natl Acad Sci U S A 2005; 102:4554-9. [PMID: 15764706 PMCID: PMC555473 DOI: 10.1073/pnas.0406380102] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neutral sphingomyelinases sphingomyelin phosphodiesterase (SMPD)2 and -3 hydrolyze sphingomyelin to phosphocholine and ceramide. smpd2 is expressed ubiquitously, and smpd3 is expressed predominantly in neurons of the CNS. Their activation and the functions of the released ceramides have been associated with signaling pathways in cell growth, differentiation, and apoptosis. However, these cellular responses remain poorly understood. Here we describe the generation and characterization of the smpd3(-/-) and smpd2(-/-)smpd3(-/-) double mutant mouse, which proved to be devoid of neutral sphingomyelinase activity. SMPD3 plays a pivotal role in the control of late embryonic and postnatal development: the smpd3-null mouse develops a novel form of dwarfism and delayed puberty as part of a hypothalamus-induced combined pituitary hormone deficiency. Our studies suggest that SMPD3 is segregated into detergent-resistant subdomains of Golgi membranes of hypothalamic neurosecretory neurons, where its transient activation modifies the lipid bilayer, an essential step in the Golgi secretory pathway. The smpd3(-/-) mouse might mimic a form of human combined pituitary hormone deficiency.
Collapse
Affiliation(s)
- Wilhelm Stoffel
- Laboratory of Molecular Neurosciences, Center of Molecular Medicine, Center of Biochemistry, Faculty of Medicine, University of Cologne, D-50931 Cologne, Germany.
| | | | | | | | | |
Collapse
|
50
|
Spina M, Ortolani F, El Messlemani A, Gandaglia A, Bujan J, Garcia-Honduvilla N, Vesely I, Gerosa G, Casarotto D, Petrelli L, Marchini M. Isolation of intact aortic valve scaffolds for heart-valve bioprostheses: extracellular matrix structure, prevention from calcification, and cell repopulation features. J Biomed Mater Res A 2004; 67:1338-50. [PMID: 14624521 DOI: 10.1002/jbm.a.20025] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Extracellular matrix (ECM) scaffolds isolated from valvulated conduits can be useful in developing durable bioprostheses by tissue engineering provided that anatomical shape, architecture, and mechanical properties are preserved. As evidenced by SEM, intact scaffolds were derived from porcine aortic valves by the combined use of Triton X-100 and cholate (TRI-COL) or N-cetylpyridinium (CPC) and subsequent nucleic acid removal by nuclease. Both treatments were effective in removing most cells and all the cytomembranes, with preservation of (1) endothelium basal membranes, (2) ECM texture, including the D-periodical interaction of small proteoglycans with normally D-banded collagen fibrils, and (3) mechanical properties of the treated valves. Ultrastructural features agreed with DNA, hexosamine, and uronic acid biochemical estimations. Calcification potential, assessed by a 6-week rat subdermal model, was significantly reduced by TRI-COL/nuclease treatment. This was not true for CPC only, despite better proteoglycan preservation, suggesting that nucleic acids also are involved in calcification onset. Human fibroblasts, used to repopulate TRI-COL samples, formed mono- or multilayers on surfaces, and groups of cells also were scattered within the valve leaflet framework. A biocompatible scaffolds of this kind holds promise for production of durable valve bioprostheses that will be able to undergo probable turnover and/or remodeling by repopulating recipient cells.
Collapse
Affiliation(s)
- M Spina
- Department of Experimental Biomedical Sciences, University of Padova, Viale G, Colombo 3, I - 35121 Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|