1
|
Mishra B, Zhang S, Zhao H, Darzynkiewicz Z, Lee EY, Lee MY, Zhang Z. Discovery of a novel DNA polymerase inhibitor and characterization of its antiproliferative properties. Cancer Biol Ther 2018; 20:474-486. [PMID: 30427259 PMCID: PMC6422523 DOI: 10.1080/15384047.2018.1529126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/22/2018] [Indexed: 12/31/2022] Open
Abstract
Chromosomal duplication is targeted by various chemotherapeutic agents for the treatment of cancer. However, there is no specific inhibitor of DNA polymerases that is viable for cancer management. Through structure-based in silico screening of the ZINC database, we identified a specific inhibitor of DNA polymerase δ. The discovered inhibitor, Zelpolib, is projected to bind to the active site of Pol δ when it is actively engaged in DNA replication through interactions with DNA template and primer. Zelpolib shows robust inhibition of Pol δ activity in reconstituted DNA replication assays. Under cellular conditions, Zelpolib is taken up readily by cancer cells and inhibits DNA replication in assays to assess global DNA synthesis or single-molecule bases by DNA fiber fluorography. In addition, we show that Zelpolib displays superior antiproliferative properties to methotrexate, 5-flourouracil, and cisplatin in triple-negative breast cancer cell line, pancreatic cancer cell line and platinum-resistant pancreatic cancer cell line. Pol δ is not only involved in DNA replication, it is also a key component in many DNA repair pathways. Pol δ is the key enzyme responsible for D-loop extension during homologous recombination. Indeed, Zelpolib shows robust inhibition of homologous recombination repair of DNA double-strand breaks and induces "BRCAness" in HR-proficient cancer cells and enhances their sensitivity to PARP inhibitors.
Collapse
Affiliation(s)
- Bhanvi Mishra
- Department of Biochemistry and Molecular Biology, Valhalla, NY, USA
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, Valhalla, NY, USA
| | - Hong Zhao
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | | | - Ernest Y.C. Lee
- Department of Biochemistry and Molecular Biology, Valhalla, NY, USA
| | | | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, Valhalla, NY, USA
| |
Collapse
|
2
|
Stability of the human polymerase δ holoenzyme and its implications in lagging strand DNA synthesis. Proc Natl Acad Sci U S A 2016; 113:E1777-86. [PMID: 26976599 DOI: 10.1073/pnas.1523653113] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, DNA polymerase δ (pol δ) is responsible for replicating the lagging strand template and anchors to the proliferating cell nuclear antigen (PCNA) sliding clamp to form a holoenzyme. The stability of this complex is integral to every aspect of lagging strand replication. Most of our understanding comes from Saccharomyces cerevisae where the extreme stability of the pol δ holoenzyme ensures that every nucleobase within an Okazaki fragment is faithfully duplicated before dissociation but also necessitates an active displacement mechanism for polymerase recycling and exchange. However, the stability of the human pol δ holoenzyme is unknown. We designed unique kinetic assays to analyze the processivity and stability of the pol δ holoenzyme. Surprisingly, the results indicate that human pol δ maintains a loose association with PCNA while replicating DNA. Such behavior has profound implications on Okazaki fragment synthesis in humans as it limits the processivity of pol δ on undamaged DNA and promotes the rapid dissociation of pol δ from PCNA on stalling at a DNA lesion.
Collapse
|
3
|
Podust VN, Chang LS, Ott R, Dianov GL, Fanning E. Reconstitution of human DNA polymerase delta using recombinant baculoviruses: the p12 subunit potentiates DNA polymerizing activity of the four-subunit enzyme. J Biol Chem 2002; 277:3894-901. [PMID: 11711545 DOI: 10.1074/jbc.m109684200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA polymerase delta is thought to consist of three (budding yeast) or four subunits (fission yeast, mammals). Four human genes encoding polypeptides p125, p50, p66, and p12 have been assigned as subunits of DNA polymerase delta. However, rigorous purification of human or bovine DNA polymerase delta from natural sources has usually yielded two-subunit preparations containing only p125 and p50 polypeptides. To reconstitute an intact DNA polymerase delta, we have constructed recombinant baculoviruses encoding the p125, p50, p66, and p12 subunits. From insect cells infected with four baculoviruses, protein preparations containing the four polypeptides of expected sizes were isolated. The four-subunit DNA polymerase delta displayed a specific activity comparable with that of the human, bovine, and fission yeast proteins isolated from natural sources. Recombinant DNA polymerase delta efficiently replicated singly primed M13 DNA in the presence of replication protein A, proliferating cell nuclear antigen, and replication factor C and was active in the SV40 DNA replication system. A three-subunit subcomplex consisting of the p125, p50, and p66 subunits, but lacking the p12 subunit, was also isolated. The p125, p50, and p66 polypeptides formed a stable complex that displayed DNA polymerizing activity 15-fold lower than that of the four-subunit polymerase. p12, expressed and purified individually, stimulated the activity of the three-subunit complex 4-fold on poly(dA)-oligo(dT) template-primer but had no effect on the activity of the four-subunit enzyme. Therefore, the p12 subunit is required to reconstitute fully active recombinant human DNA polymerase delta.
Collapse
Affiliation(s)
- Vladimir N Podust
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | | | |
Collapse
|
4
|
Stucki M, Stagljar I, Jónsson ZO, Hübscher U. A coordinated interplay: proteins with multiple functions in DNA replication, DNA repair, cell cycle/checkpoint control, and transcription. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:261-98. [PMID: 11008490 DOI: 10.1016/s0079-6603(00)65007-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In eukaryotic cells, DNA transactions such as replication, repair, and transcription require a large set of proteins. In all of these events, complexes of more than 30 polypetides appear to function in highly organized and structurally well-defined machines. We have learned in the past few years that the three essential macromolecular events, replication, repair, and transcription, have common functional entities and are coordinated by complex regulatory mechanisms. This can be documented for replication and repair, for replication and checkpoint control, and for replication and cell cycle control, as well as for replication and transcription. In this review we cover the three different protein classes: DNA polymerases, DNA polymerase accessory proteins, and selected transcription factors. The "common enzyme-different pathway strategy" is fascinating from several points of view: first, it might guarantee that these events are coordinated; second, it can be viewed from an evolutionary angle; and third, this strategy might provide cells with backup mechanisms for essential physiological tasks.
Collapse
Affiliation(s)
- M Stucki
- Department of Veterinary Biochemistry, University of Zürich-Irchel, Switzerland
| | | | | | | |
Collapse
|
5
|
Liu L, Mo J, Rodriguez-Belmonte EM, Lee MY. Identification of a fourth subunit of mammalian DNA polymerase delta. J Biol Chem 2000; 275:18739-44. [PMID: 10751307 DOI: 10.1074/jbc.m001217200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 12-kDa and two 25-kDa polypeptides were isolated with highly purified calf thymus DNA polymerase delta by conventional chromatography. A 16-mer peptide sequence was obtained from the 12-kDa polypeptide which matched a new open reading frame from a human EST () encoding a hypothetical protein of unknown function. The protein was designated as p12. Human EST was identified as the putative human homologue of Schizosaccharomyces pombe Cdm1 by a tBlastn search of the EST data base using S. pombe Cdm1. The open reading frame of human EST encoded a polypeptide of 107 amino acids with a predicted molecular mass of 12.4 kDa, consistent with the experimental findings. p12 is 25% identical to S pombe Cdm1. Both of the 25-kDa polypeptide sequences matched the hypothetical KIAA0039 protein sequence, recently identified as the third subunit of pol delta. Western blotting of immunoaffinity purified calf thymus pol delta revealed the presence of p125, p50, p68 (the KIAA0039 product), and p12. With the identification of p12 mammalian pol delta can now be shown to consist of four subunits. These studies pave the way for more detailed analysis of the possible functions of the mammalian subunits of pol delta.
Collapse
Affiliation(s)
- L Liu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | |
Collapse
|
6
|
Schumacher SB, Stucki M, Hübscher U. The N-terminal region of DNA polymerase delta catalytic subunit is necessary for holoenzyme function. Nucleic Acids Res 2000; 28:620-5. [PMID: 10606663 PMCID: PMC102512 DOI: 10.1093/nar/28.2.620] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic and biochemical studies have shown that DNA polymerase delta (Poldelta) is the major replicative Pol in the eukaryotic cell. Its functional form is the holoenzyme composed of Poldelta, proliferating cell nuclear antigen (PCNA) and replication factor C (RF-C). In this paper, we describe an N-terminal truncated form of DNA polymerase delta (DeltaN Poldelta) from calf thymus. The DeltaN Poldelta was stimulated as the full-length Poldelta by PCNA in a RF-C-independent Poldelta assay. However, when tested for holoenzyme function in a RF-C-dependent Poldelta assay in the presence of RF-C, ATP and replication protein A (RP-A), the DeltaN Poldelta behaved differently. First, the DeltaN Poldelta lacked holoenzyme functions to a great extent. Second, product size analysis and kinetic experiments showed that the holoenzyme containing DeltaN Poldelta was much less efficient and synthesized DNA at a much slower rate than the holoenzyme containing full-length Poldelta. The present study provides the first evidence that the N-terminal part of the large subunit of Poldelta is involved in holo-enzyme function.
Collapse
Affiliation(s)
- S B Schumacher
- Institute of Veterinary Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
7
|
Cann IK, Ishino S, Hayashi I, Komori K, Toh H, Morikawa K, Ishino Y. Functional interactions of a homolog of proliferating cell nuclear antigen with DNA polymerases in Archaea. J Bacteriol 1999; 181:6591-9. [PMID: 10542158 PMCID: PMC94121 DOI: 10.1128/jb.181.21.6591-6599.1999] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential component of the DNA replication and repair machinery in the domain Eucarya. We cloned the gene encoding a PCNA homolog (PfuPCNA) from an euryarchaeote, Pyrococcus furiosus, expressed it in Escherichia coli, and characterized the biochemical properties of the gene product. The protein PfuPCNA stimulated the in vitro primer extension abilities of polymerase (Pol) I and Pol II, which are the two DNA polymerases identified in this organism to date. An immunological experiment showed that PfuPCNA interacts with both Pol I and Pol II. Pol I is a single polypeptide with a sequence similar to that of family B (alpha-like) DNA polymerases, while Pol II is a heterodimer. PfuPCNA interacted with DP2, the catalytic subunit of the heterodimeric complex. These results strongly support the idea that the PCNA homolog works as a sliding clamp of DNA polymerases in P. furiosus, and the basic mechanism for the processive DNA synthesis is conserved in the domains Bacteria, Eucarya, and Archaea. The stimulatory effect of PfuPCNA on the DNA synthesis was observed by using a circular DNA template without the clamp loader (replication factor C [RFC]) in both Pol I and Pol II reactions in contrast to the case of eukaryotic organisms, which are known to require the RFC to open the ring structure of PCNA prior to loading onto a circular DNA. Because RFC homologs have been found in the archaeal genomes, they may permit more efficient stimulation of DNA synthesis by archaeal DNA polymerases in the presence of PCNA. This is the first stage in elucidating the archaeal DNA replication mechanism.
Collapse
Affiliation(s)
- I K Cann
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhang P, Mo JY, Perez A, Leon A, Liu L, Mazloum N, Xu H, Lee MY. Direct interaction of proliferating cell nuclear antigen with the p125 catalytic subunit of mammalian DNA polymerase delta. J Biol Chem 1999; 274:26647-53. [PMID: 10480866 DOI: 10.1074/jbc.274.38.26647] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of a complex between DNA polymerase delta (pol delta) and its sliding clamp, proliferating cell nuclear antigen (PCNA), is responsible for the maintenance of processive DNA synthesis at the leading strand of the replication fork. In this study, the ability of the p125 catalytic subunit of DNA polymerase delta to engage in protein-protein interactions with PCNA was established by biochemical and genetic methods. p125 and PCNA were shown to co-immunoprecipitate from either calf thymus or HeLa extracts, or when they were ectopically co-expressed in Cos 7 cells. Because pol delta is a multimeric protein, this interaction could be indirect. Thus, rigorous evidence was sought for a direct interaction of the p125 catalytic subunit and PCNA. To do this, the ability of recombinant p125 to interact with PCNA was established by biochemical means. p125 co-expressed with PCNA in Sf9 cells was shown to form a physical complex that can be detected on gel filtration and that can be cross-linked with the bifunctional cross-linking agent Sulfo-EGS (ethylene glycol bis (sulfosuccinimidylsuccinate)). An interaction between p125 and PCNA could also be demonstrated in the yeast two hybrid system. Overlay experiments using biotinylated PCNA showed that the free p125 subunit interacts with PCNA. The PCNA overlay blotting method was also used to demonstrate the binding of synthetic peptides corresponding to the N2 region of pol delta and provides evidence for a site on pol delta that is involved in the protein-protein interactions between PCNA and pol delta. This region contains a sequence that is a potential member of the PCNA binding motif found in other PCNA-binding proteins. These studies provide an unequivocal demonstration that the p125 subunit of pol delta interacts with PCNA.
Collapse
Affiliation(s)
- P Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Perderiset M, Maga G, Piard K, Francesconi S, Tratner I, Hübscher U, Baldacci G. Mutant DNA polymerase delta from thermosensitive Schizosaccharomyces pombe strains display reduced stimulation by proliferating cell nuclear antigen. Biochem J 1998; 335 ( Pt 3):581-8. [PMID: 9794798 PMCID: PMC1219819 DOI: 10.1042/bj3350581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have isolated and characterized DNA polymerase delta (pol delta) from two thermosensitive Schizosaccharomyces pombe strains, poldeltats1 and poldeltats3, mutated in two different evolutionarily conserved domains of the catalytic subunit. At the restrictive temperature of 37 degreesC poldeltats1 and poldeltats3 mutant strains arrest growth in the S phase of the cell cycle. We show that at low levels of primer ends, in vitro stimulation by proliferating cell nuclear antigen (PCNA) of mutant enzymes is lower than stimulation of wild-type pol delta. Affinity for primer (3'-OH) ends and processivity of mutant enzymes do not appear different from wild-type pol delta. In contrast, Vmax values are lower than the wild-type value. The major in vitro defect appears to be decreased stimulation of mutant enzymes by PCNA, resulting in reduced velocity of DNA synthesis. In addition, ts1 pol delta is not stimulated by low PCNA concentration at 37 degreesC, although low concentrations stimulate activity at 25 degreesC, suggesting that this thermolability at low levels of primer ends could be its critical defect in vivo. Thus, both ts1 and ts3 pol delta mutations are located in regions of the catalytic subunit that seem necessary, directly or indirectly, for its efficient interaction with PCNA.
Collapse
Affiliation(s)
- M Perderiset
- CNRS-IFC1, Institut de Recherche sur le Cancer, UPR 9044, 7 Rue Guy Moquet BP8, 94801 Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Wu SM, Zhang P, Zeng XR, Zhang SJ, Mo J, Li BQ, Lee MY. Characterization of the p125 subunit of human DNA polymerase delta and its deletion mutants. Interaction with cyclin-dependent kinase-cyclins. J Biol Chem 1998; 273:9561-9. [PMID: 9545286 DOI: 10.1074/jbc.273.16.9561] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic subunit of human DNA polymerase (pol) delta was overexpressed in an active, soluble form by the use of a baculovirus system in insect cells. The recombinant enzyme was separated from endogenous DNA polymerases by phosphocellulose, Mono Q-Sepharose, and single-stranded DNA-cellulose chromatography. Recombinant DNA pol delta was also purified by immunoaffinity chromatography. The enzymatic properties of the purified catalytic subunit were characterized. The enzyme was active and possessed both DNA polymerase and associated 3' to 5' exonuclease activities. NH2-terminal deletion mutants retained polymerase activity, whereas the core and COOH-terminal deletion mutants were devoid of any measurable activities. Coinfection of Sf9 cells with recombinant baculovirus vectors for pol delta and cyclin-dependent kinase (cdk)-cyclins followed by metabolic labeling with 32Pi showed that the recombinant catalytic subunit of pol delta could be hyperphosphorylated by G1 phase-specific cdk-cyclins. When cdk2 was coexpressed with pol delta in Sf9 cells, pol delta was found to coimmunoprecipitate with antibodies against cdk2. Experiments with deletion mutants of pol delta showed that the NH2-terminal region was essential for this interaction. Coimmunoprecipitation and Western blot experiments in Molt 4 cells confirmed the interaction in vivo. Preliminary experiments showed that phosphorylation of the catalytic subunit of pol delta by cdk2-cyclins had little or no effect on the specific activity of the enzyme.
Collapse
Affiliation(s)
- S M Wu
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida 33101, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhang P, Sun Y, Hsu H, Zhang L, Zhang Y, Lee MY. The interdomain connector loop of human PCNA is involved in a direct interaction with human polymerase delta. J Biol Chem 1998; 273:713-9. [PMID: 9422722 DOI: 10.1074/jbc.273.2.713] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is required for processive DNA synthesis catalyzed by DNA polymerase delta (pol delta) and polymerase epsilon. We have shown that the epitope of a human PCNA inhibitory monoclonal antibody (74B1), which inhibits the PCNA stimulation of DNA synthesis catalyzed by pol delta, maps to residues 121-135, which overlap the interdomain connector loop of PCNA (residues 119-133). We have mutagenized residues 122-133 of human PCNA. The mutant proteins were expressed in Escherichia coli and purified to near-homogeneity. The interactions of the mutants with antibody 74B1 were examined; mutation of Gly-127 abolished the recognition by antibody 74B1 in a Western blot analysis, confirming the epitope assignment of 74B1. Mutations of Val-123, Leu-126, Gly-127, and Ile-128 affected the ability of PCNA to stimulate DNA synthesis by pol delta in several different assays. These mutations affected the interactions between PCNA and pol delta as determined by enzyme-linked immunosorbent assays. These mutants were also affected in their abilities to form a ternary complex with a DNA template-primer, as determined by electrophoretic mobility gel shift assays. The findings show that the interdomain connector loop region is involved in binding of pol delta. This same region is involved in the binding of p21, and our findings support the view that the mechanism of inhibition of DNA synthesis by p21 is due to a competition for PCNA binding to pol delta.
Collapse
Affiliation(s)
- P Zhang
- Department of Biochemistry, University of Miami, School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | | | |
Collapse
|
12
|
Zuo S, Gibbs E, Kelman Z, Wang TS, O'Donnell M, MacNeill SA, Hurwitz J. DNA polymerase delta isolated from Schizosaccharomyces pombe contains five subunits. Proc Natl Acad Sci U S A 1997; 94:11244-9. [PMID: 9326594 PMCID: PMC23429 DOI: 10.1073/pnas.94.21.11244] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
DNA polymerase delta (pol delta) plays an essential role in DNA replication, repair, and recombination. We have purified pol delta from Schizosaccharomyces pombe more than 10(3)-fold and demonstrated that the polymerase activity of purified S. pombe pol delta is completely dependent on proliferating cell nuclear antigen and replication factor C. SDS/PAGE analysis of the purified fraction indicated that the pol delta complex consists of five subunits that migrate with apparent molecular masses of 125, 55, 54, 42, and 22 kDa. Western blot analysis indicated that the 125, 55, and 54 kDa proteins are the large catalytic subunit (Pol3), Cdc1, and Cdc27, respectively. The identity of the other two subunits, p42 and p22, was determined following proteolytic digestion and sequence analysis of the resulting peptides. The peptide sequences derived from the p22 subunit indicated that this subunit is identical to Cdm1, previously identified as a multicopy suppressor of the temperature-sensitive cdc1-P13 mutant, whereas peptide sequences derived from the p42 subunit were identical to a previously uncharacterized ORF located on S. pombe chromosome 1.
Collapse
Affiliation(s)
- S Zuo
- Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Sun Y, Jiang Y, Zhang P, Zhang SJ, Zhou Y, Li BQ, Toomey NL, Lee MY. Expression and characterization of the small subunit of human DNA polymerase delta. J Biol Chem 1997; 272:13013-8. [PMID: 9148910 DOI: 10.1074/jbc.272.20.13013] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DNA polymerase delta is a heterodimer consisting of a catalytic subunit of 125 kDa and a small subunit of 50 kDa (p50). We have overexpressed p50 in Escherichia coli and have characterized the recombinant protein. p50 was readily overexpressed using the pET vector as an insoluble protein. A procedure was developed for its purification and renaturation. Examination of the physicochemical properties of renatured p50 showed that it is a monomeric protein with an apparent molecular weight of 60,000, a Stokes radius of 34 A, and a sedimentation coefficient of 4.1 S. Its physical properties were indistinguishable from p50 expressed as a soluble protein using the pTACTAC vector. Examination of the effects of recombinant p50 on the activity of DNA polymerase delta showed that p50 is able to slightly stimulate (about 2-fold) the activity of the recombinant 125-kDa catalytic subunit using poly(dA).oligo(dT) as a template in the absence of proliferating cell nuclear antigen. In the presence of proliferating cell nulear antigen, activity is stimulated about 5-fold. Seven stable hybridoma cell lines were established that produced monoclonal antibodies against p50. One of these antibodies (13D5) inhibited the activity of calf thymus DNA polymerase delta. This antibody, when coupled to a solid support, also was found to provide a method for the immunoafffinity purification of recombinant p50 and of DNA polymerase delta from calf thymus or HeLa extracts. Immunoprecipitation and enzyme-linked immunosorbent assays also confirmed that p50 interacts with the catalytic subunit of DNA polymerase delta.
Collapse
Affiliation(s)
- Y Sun
- Department of Biochemistry, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhou JQ, He H, Tan CK, Downey KM, So AG. The small subunit is required for functional interaction of DNA polymerase delta with the proliferating cell nuclear antigen. Nucleic Acids Res 1997; 25:1094-9. [PMID: 9092615 PMCID: PMC146557 DOI: 10.1093/nar/25.6.1094] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DNA polymerase delta is usually isolated as a heterodimer composed of a 125 kDa catalytic subunit and a 50 kDa small subunit of unknown function. The enzyme is distributive by itself and requires an accessory protein, the proliferating cell nuclear antigen (PCNA), for highly processive DNA synthesis. We have recently demonstrated that the catalytic subunit of human DNA polymerase delta (p125) expressed in baculovirus-infected insect cells, in contrast to the native heterodimeric calf thymus DNA polymerase delta, is not responsive to stimulation by PCNA. To determine whether the lack of response to PCNA of the recombinant catalytic subunit is due to the absence of the small subunit or to differences in post-translational modification in insect cells versus mammalian cells, we have co-expressed the two subunits of human DNA polymerase delta in insect cells. We have demonstrated that co-expression of the catalytic and small subunits of human DNA polymerase delta results in formation of a stable, fully functional heterodimer, that the recombinant heterodimer, similar to native heterodimer, is markedly stimulated (40- to 50-fold) by PCNA and that the increase in activity seen in the presence of PCNA is the result of an increase in processivity. These data establish that the 50 kDa subunit is essential for functional interaction of DNA polymerase delta with PCNA and for highly processive DNA synthesis.
Collapse
Affiliation(s)
- J Q Zhou
- Department of Biochemistry, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | | | |
Collapse
|
15
|
Tratner I, Piard K, Grenon M, Perderiset M, Baldacci G. PCNA and DNA polymerase delta catalytic subunit from Schizosaccharomyces pombe do not interact directly. Biochem Biophys Res Commun 1997; 231:321-8. [PMID: 9070271 DOI: 10.1006/bbrc.1997.6082] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA polymerase delta (pol delta) is constituted of at least two subunits: the catalytic subunit of about 125 kDa (p125), and a subunit of approximately 50 kDa (p50) of unknown function. Processivity of pol delta is dependent on its auxiliary protein PCNA (proliferating cell nuclear antigen). Contradictory data were reported regarding a direct interaction between p125 and PCNA. We investigated this matter further using the baculovirus system to overexpress p125 and PCNA from S. pombe. We show that the recombinant p125 is active for basal DNA polymerase activity and for 3'-->5' exonuclease activity but is not stimulated by PCNA. Interaction between p125 and PCNA was tested by: (i) co-immunoprecipitation assay using antibodies specific for one or other polypeptides after co-expression in insect cells, and (ii) a two-hybrid assay. In both cases, no direct interaction between the two proteins was detected. Taken together, our data show that p125 and PCNA do not interact directly.
Collapse
Affiliation(s)
- I Tratner
- IFC1, CNRS, UPR 9044, Nillejuif, France.
| | | | | | | | | |
Collapse
|
16
|
Zhou JQ, Tan CK, So AG, Downey KM. Purification and characterization of the catalytic subunit of human DNA polymerase delta expressed in baculovirus-infected insect cells. J Biol Chem 1996; 271:29740-5. [PMID: 8939909 DOI: 10.1074/jbc.271.47.29740] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The catalytic subunit of human DNA polymerase delta has been overexpressed in insect cells by a recombinant baculovirus. The recombinant protein has a Mr = approximately 125,000 and is recognized by polyclonal antisera against N-terminal and C-terminal peptides of the catalytic subunit of human DNA polymerase delta. The recombinant protein was purified to near homogeneity (approximately 1200-fold) from insect cells by chromatography on DEAE-cellulose, phosphocellulose, heparin-agarose, and single-stranded DNA-cellulose. The purified protein had both DNA polymerase and 3'-5' exonuclease activities. The properties of the recombinant catalytic subunit were compared with those of the native heterodimeric DNA polymerase delta isolated from fetal calf thymus, and the enzymes were found to differ in several respects. Although the native heterodimer is equally active with either Mn2+ or Mg2+ as divalent cation activator, the recombinant catalytic subunit is approximately 5-fold more active in Mn2+ than in Mg2+. The most striking difference between the two proteins is the response to the proliferating cell nuclear antigen (PCNA). The activity and processivity of native DNA polymerase delta are markedly stimulated by PCNA whereas it has no effect on the recombinant catalytic subunit. These results suggest that the small subunit of DNA polymerase delta is essential for functional interaction with PCNA.
Collapse
Affiliation(s)
- J Q Zhou
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|