1
|
Rao L, Gennerich A. Structure and Function of Dynein's Non-Catalytic Subunits. Cells 2024; 13:330. [PMID: 38391943 PMCID: PMC10886578 DOI: 10.3390/cells13040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Dynein, an ancient microtubule-based motor protein, performs diverse cellular functions in nearly all eukaryotic cells, with the exception of land plants. It has evolved into three subfamilies-cytoplasmic dynein-1, cytoplasmic dynein-2, and axonemal dyneins-each differentiated by their cellular functions. These megadalton complexes consist of multiple subunits, with the heavy chain being the largest subunit that generates motion and force along microtubules by converting the chemical energy of ATP hydrolysis into mechanical work. Beyond this catalytic core, the functionality of dynein is significantly enhanced by numerous non-catalytic subunits. These subunits are integral to the complex, contributing to its stability, regulating its enzymatic activities, targeting it to specific cellular locations, and mediating its interactions with other cofactors. The diversity of non-catalytic subunits expands dynein's cellular roles, enabling it to perform critical tasks despite the conservation of its heavy chains. In this review, we discuss recent findings and insights regarding these non-catalytic subunits.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Braschi B, Omran H, Witman GB, Pazour GJ, Pfister KK, Bruford EA, King SM. Consensus nomenclature for dyneins and associated assembly factors. J Cell Biol 2022; 221:e202109014. [PMID: 35006274 PMCID: PMC8754002 DOI: 10.1083/jcb.202109014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Dyneins are highly complex, multicomponent, microtubule-based molecular motors. These enzymes are responsible for numerous motile behaviors in cytoplasm, mediate retrograde intraflagellar transport (IFT), and power ciliary and flagellar motility. Variants in multiple genes encoding dyneins, outer dynein arm (ODA) docking complex subunits, and cytoplasmic factors involved in axonemal dynein preassembly (DNAAFs) are associated with human ciliopathies and are of clinical interest. Therefore, clear communication within this field is particularly important. Standardizing gene nomenclature, and basing it on orthology where possible, facilitates discussion and genetic comparison across species. Here, we discuss how the human gene nomenclature for dyneins, ODA docking complex subunits, and DNAAFs has been updated to be more functionally informative and consistent with that of the unicellular green alga Chlamydomonas reinhardtii, a key model organism for studying dyneins and ciliary function. We also detail additional nomenclature updates for vertebrate-specific genes that encode dynein chains and other proteins involved in dynein complex assembly.
Collapse
Affiliation(s)
- Bryony Braschi
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, MA
| | - K. Kevin Pfister
- Cell Biology Department, School of Medicine University of Virginia, Charlottesville, VA
| | - Elspeth A. Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
3
|
Liu S, Zhang J, Kherraf ZE, Sun S, Zhang X, Cazin C, Coutton C, Zouari R, Zhao S, Hu F, Fourati Ben Mustapha S, Arnoult C, Ray PF, Liu M. CFAP61 is required for sperm flagellum formation and male fertility in human and mouse. Development 2021; 148:273455. [PMID: 34792097 DOI: 10.1242/dev.199805] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022]
Abstract
Defects in the structure or motility of cilia and flagella may lead to severe diseases such as primary ciliary dyskinesia (PCD), a multisystemic disorder with heterogeneous manifestations affecting primarily respiratory and reproductive functions. We report that CFAP61 is a conserved component of the calmodulin- and radial spoke-associated complex (CSC) of cilia. We find that a CFAP61 splice variant, c.143+5G>A, causes exon skipping/intron retention in human, inducing a multiple morphological abnormalities of the flagella (MMAF) phenotype. We generated Cfap61 knockout mice that recapitulate the infertility phenotype of the human CFAP61 mutation, but without other symptoms usually observed in PCD. We find that CFAP61 interacts with the CSC, radial spoke stalk and head. During early stages of Cfap61-/- spermatid development, the assembly of radial spoke components is impaired. As spermiogenesis progresses, the axoneme in Cfap61-/- cells becomes unstable and scatters, and the distribution of intraflagellar transport proteins is disrupted. This study reveals an organ-specific mechanism of axoneme stabilization that is related to male infertility.
Collapse
Affiliation(s)
- Siyu Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jintao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zine Eddine Kherraf
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, F-38000, France.,CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Shuya Sun
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Caroline Cazin
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, F-38000, France.,CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Charles Coutton
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, F-38000, France.,CHU de Grenoble, UM de Génétique Chromosomique, Grenoble, F-38000, France
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, 1003 Tunis, Tunisia
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine, Animal Core Facility of Nanjing Medical University, Nanjing 211166, China
| | - Fan Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | | | - Christophe Arnoult
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, F-38000, France
| | - Pierre F Ray
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, F-38000, France.,CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
4
|
Yamamoto R, Hwang J, Ishikawa T, Kon T, Sale WS. Composition and function of ciliary inner-dynein-arm subunits studied in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 2021; 78:77-96. [PMID: 33876572 DOI: 10.1002/cm.21662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 11/09/2022]
Abstract
Motile cilia (also interchangeably called "flagella") are conserved organelles extending from the surface of many animal cells and play essential functions in eukaryotes, including cell motility and environmental sensing. Large motor complexes, the ciliary dyneins, are present on ciliary outer-doublet microtubules and drive movement of cilia. Ciliary dyneins are classified into two general types: the outer dynein arms (ODAs) and the inner dynein arms (IDAs). While ODAs are important for generation of force and regulation of ciliary beat frequency, IDAs are essential for control of the size and shape of the bend, features collectively referred to as waveform. Also, recent studies have revealed unexpected links between IDA components and human diseases. In spite of their importance, studies on IDAs have been difficult since they are very complex and composed for several types of IDA motors, each unique in composition and location in the axoneme. Thanks in part to genetic, biochemical, and structural analysis of Chlamydomonas reinhardtii, we are beginning to understand the organization and function of the ciliary IDAs. In this review, we summarize the composition of Chlamydomonas IDAs particularly focusing on each subunit, and discuss the assembly, conservation, and functional role(s) of these IDA subunits. Furthermore, we raise several additional questions/challenges regarding IDAs, and discuss future perspectives of IDA studies.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Juyeon Hwang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Takashi Ishikawa
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Eastwood EL, Jara KA, Bornelöv S, Munafò M, Frantzis V, Kneuss E, Barbar EJ, Czech B, Hannon GJ. Dimerisation of the PICTS complex via LC8/Cut-up drives co-transcriptional transposon silencing in Drosophila. eLife 2021; 10:e65557. [PMID: 33538693 PMCID: PMC7861614 DOI: 10.7554/elife.65557] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
In animal gonads, the PIWI-interacting RNA (piRNA) pathway guards genome integrity in part through the co-transcriptional gene silencing of transposon insertions. In Drosophila ovaries, piRNA-loaded Piwi detects nascent transposon transcripts and instructs heterochromatin formation through the Panoramix-induced co-transcriptional silencing (PICTS) complex, containing Panoramix, Nxf2 and Nxt1. Here, we report that the highly conserved dynein light chain LC8/Cut-up (Ctp) is an essential component of the PICTS complex. Loss of Ctp results in transposon de-repression and a reduction in repressive chromatin marks specifically at transposon loci. In turn, Ctp can enforce transcriptional silencing when artificially recruited to RNA and DNA reporters. We show that Ctp drives dimerisation of the PICTS complex through its interaction with conserved motifs within Panoramix. Artificial dimerisation of Panoramix bypasses the necessity for its interaction with Ctp, demonstrating that conscription of a protein from a ubiquitous cellular machinery has fulfilled a fundamental requirement for a transposon silencing complex.
Collapse
Affiliation(s)
- Evelyn L Eastwood
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Kayla A Jara
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Susanne Bornelöv
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Marzia Munafò
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Vasileios Frantzis
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Emma Kneuss
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Benjamin Czech
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| |
Collapse
|
6
|
Reardon PN, Jara KA, Rolland AD, Smith DA, Hoang HTM, Prell JS, Barbar EJ. The dynein light chain 8 (LC8) binds predominantly "in-register" to a multivalent intrinsically disordered partner. J Biol Chem 2020; 295:4912-4922. [PMID: 32139510 PMCID: PMC7152752 DOI: 10.1074/jbc.ra119.011653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/03/2020] [Indexed: 01/18/2023] Open
Abstract
Dynein light chain 8 (LC8) interacts with intrinsically disordered proteins (IDPs) and influences a wide range of biological processes. It is becoming apparent that among the numerous IDPs that interact with LC8, many contain multiple LC8-binding sites. Although it is established that LC8 forms parallel IDP duplexes with some partners, such as nucleoporin Nup159 and dynein intermediate chain, the molecular details of these interactions and LC8's interactions with other diverse partners remain largely uncharacterized. LC8 dimers could bind in either a paired "in-register" or a heterogeneous off-register manner to any of the available sites on a multivalent partner. Here, using NMR chemical shift perturbation, analytical ultracentrifugation, and native electrospray ionization MS, we show that LC8 forms a predominantly in-register complex when bound to an IDP domain of the multivalent regulatory protein ASCIZ. Using saturation transfer difference NMR, we demonstrate that at substoichiometric LC8 concentrations, the IDP domain preferentially binds to one of the three LC8 recognition motifs. Further, the differential dynamic behavior for the three sites and the size of the fully bound complex confirmed an in-register complex. Dynamics measurements also revealed that coupling between sites depends on the linker length separating these sites. These results identify linker length and motif specificity as drivers of in-register binding in the multivalent LC8-IDP complex assembly and the degree of compositional and conformational heterogeneity as a promising emerging mechanism for tuning of binding and regulation.
Collapse
Affiliation(s)
- Patrick N Reardon
- Oregon State University NMR Facility, Oregon State University, Corvallis, Oregon 97331
| | - Kayla A Jara
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Delaney A Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Hanh T M Hoang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Materials Science Institute, University of Oregon, Eugene, Oregon 97403
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
7
|
Dynein Light Chain DLC-1 Facilitates the Function of the Germline Cell Fate Regulator GLD-1 in Caenorhabditis elegans. Genetics 2018; 211:665-681. [PMID: 30509955 DOI: 10.1534/genetics.118.301617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022] Open
Abstract
Developmental transitions of germ cells are often regulated at the level of post-transcriptional control of gene expression. In the Caenorhabditis elegans germline, stem and progenitor cells exit the proliferative phase and enter meiotic differentiation to form gametes essential for fertility. The RNA binding protein GLD-1 is a cell fate regulator that promotes meiosis and germ cell differentiation during development by binding to and repressing translation of target messenger RNAs. Here, we discovered that some GLD-1 functions are promoted by binding to DLC-1, a small protein that functions as an allosteric regulator of multisubunit protein complexes. We found that DLC-1 is required to regulate a subset of GLD-1 target messenger RNAs and that DLC-1 binding GLD-1 prevents ectopic germ cell proliferation and facilitates gametogenesis in vivo Additionally, our results reveal a new requirement for GLD-1 in the events of oogenesis leading to ovulation. DLC-1 contributes to GLD-1 function independent of its role as a light chain component of the dynein motor. Instead, we propose that DLC-1 promotes assembly of GLD-1 with other binding partners, which facilitates formation of regulatory ribonucleoprotein complexes and may direct GLD-1 target messenger RNA selectivity.
Collapse
|
8
|
Day NJ, Ellenbecker M, Voronina E. Caenorhabditis elegans DLC-1 associates with ribonucleoprotein complexes to promote mRNA regulation. FEBS Lett 2018; 592:3683-3695. [PMID: 30264890 PMCID: PMC6263831 DOI: 10.1002/1873-3468.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022]
Abstract
Ribonucleoprotein complexes, which contain mRNAs and their regulator proteins, carry out post-transcriptional control of gene expression. The function of many RNA-binding proteins depends on their association with cofactors. Here, we use a genomic approach to identify transcripts associated with DLC-1, a protein previously identified as a cofactor of two unrelated RNA-binding proteins that act in the Caenorhabditis elegans germline. Among the 2732 potential DLC-1 targets, most are germline mRNAs associated with oogenesis. Removal of DLC-1 affects expression of its targets expressed in the oocytes, meg-1 and meg-3. We propose that DLC-1 acts as a cofactor for multiple ribonucleoprotein complexes, including the ones regulating gene expression during oogenesis.
Collapse
Affiliation(s)
- Nicholas J Day
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Mary Ellenbecker
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
9
|
King A, Li L, Wong DM, Liu R, Bamford R, Strasser A, Tarlinton DM, Heierhorst J. Dynein light chain regulates adaptive and innate B cell development by distinctive genetic mechanisms. PLoS Genet 2017; 13:e1007010. [PMID: 28922373 PMCID: PMC5619840 DOI: 10.1371/journal.pgen.1007010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/28/2017] [Accepted: 09/07/2017] [Indexed: 11/29/2022] Open
Abstract
Mechanistic differences in the development and function of adaptive, high-affinity antibody-producing B-2 cells and innate-like, “natural” antibody-producing B-1a cells remain poorly understood. Here we show that the multi-functional dynein light chain (DYNLL1/LC8) plays important roles in the establishment of B-1a cells in the peritoneal cavity and in the ongoing development of B-2 lymphoid cells in the bone marrow of mice. Epistasis analyses indicate that Dynll1 regulates B-1a and early B-2 cell development in a single, linear pathway with its direct transcriptional activator ASCIZ (ATMIN/ZNF822), and that the two genes also have complementary functions during late B-2 cell development. The B-2 cell defects caused by loss of DYNLL1 were associated with lower levels of the anti-apoptotic protein BCL-2, and could be supressed by deletion of pro-apoptotic BIM which is negatively regulated by both DYNLL1 and BCL-2. Defects in B cell development caused by loss of DYNLL1 could also be partially suppressed by a pre-arranged SWHELIgm-B cell receptor transgene. In contrast to the rescue of B-2 cell numbers, the B-1a cell deficiency in Dynll1-deleted mice could not be suppressed by the loss of Bim, and was further compounded by the SWHEL transgene. Conversely, oncogenic MYC expression, which is synthetic lethal with Dynll1 deletion in B-2 cells, did not further reduce B-1a cell numbers in Dynll1-defcient mice. Finally, we found that the ASCIZ-DYNLL1 axis was also required for the early-juvenile development of aggressive MYC-driven and p53-deficient B cell lymphomas. These results identify ASCIZ and DYNLL1 as the core of a transcriptional circuit that differentially regulates the development of the B-1a and B-2 B lymphoid cell lineages and plays a critical role in lymphomagenesis. Antibody-producing B cells can be segregated into two major populations: The better known conventional B-2 cells typically produce high-affinity and mono-specific antibodies, but only after they encounter a particular pathogen or in response to vaccines. In contrast, the B-1a cells constitutively produce lower-affinity broad-specificity “natural” antibodies that serve as a preemptive defense against a wide range of microbes. Here we reveal that the transcription factor ASCIZ and its target DYNLL1 are essential for mice to have a normally sized pool of B-1a cells in place shortly after birth. We show that these two factors function in a single linear pathway during the development of B-1a cells. This interaction represents a rare example where the activity of a transcription factor, in this case ASCIZ, can be explained by the effects of a single target gene, in this case Dynll1. While ASCIZ and DYNLL1 are also required for producing normal numbers of B-2 cells, we discovered that they regulate B-1a cells and B-2 cells by distinct genetic mechanisms. Finally, we found that ASCIZ also contributes to the early onset of B-1a B cell-derived lymphoid cancers in juvenile mice. The results provide insight into the development of an important cell population of the immune system.
Collapse
Affiliation(s)
- Ashleigh King
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), University of Melbourne, Fitzroy, Victoria, Australia
| | - Lingli Li
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), University of Melbourne, Fitzroy, Victoria, Australia
| | - David M. Wong
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Rui Liu
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Rebecca Bamford
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Andreas Strasser
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Jörg Heierhorst
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), University of Melbourne, Fitzroy, Victoria, Australia
- * E-mail:
| |
Collapse
|
10
|
Viswanadha R, Sale WS, Porter ME. Ciliary Motility: Regulation of Axonemal Dynein Motors. Cold Spring Harb Perspect Biol 2017; 9:9/8/a018325. [PMID: 28765157 DOI: 10.1101/cshperspect.a018325] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ciliary motility is crucial for the development and health of many organisms. Motility depends on the coordinated activity of multiple dynein motors arranged in a precise pattern on the outer doublet microtubules. Although significant progress has been made in elucidating the composition and organization of the dyneins, a comprehensive understanding of dynein regulation is lacking. Here, we focus on two conserved signaling complexes located at the base of the radial spokes. These include the I1/f inner dynein arm associated with radial spoke 1 and the calmodulin- and spoke-associated complex and the nexin-dynein regulatory complex associated with radial spoke 2. Current research is focused on understanding how these two axonemal hubs coordinate and regulate the dynein motors and ciliary motility.
Collapse
Affiliation(s)
- Rasagnya Viswanadha
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
11
|
Rengaraj D, Lee BR, Han JY, Pang MG. Comprehensive analysis on the homology, interaction, and miRNA regulators of human deleted in azoospermia proteins: updated evolutionary relationships with primates. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0598-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Cao J, Li X, Lv Y. Dynein light chain family genes in 15 plant species: Identification, evolution and expression profiles. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 254:70-81. [PMID: 27964786 DOI: 10.1016/j.plantsci.2016.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/02/2016] [Accepted: 10/31/2016] [Indexed: 05/27/2023]
Abstract
Dynein light chain (DLC) is one important component of the dynein complexes, which have been proved involving in a variety of cellular functions. However, higher plants lack all other components of the complexes except DLCs, suggesting that in plants, the DLC protein does not carry out the same function as it in animals. Therefore, the function of this family in plants is mysterious. In this study, we investigated the DLC gene family in 15 plant species and analyzed their expression profiles. In total, 128 DLC genes were identified from the 15 studied plant species and were divided into eight groups by their phylogenetic relation. Highly conserved gene structure and motif arrangement was discovered within each group, indicating their functional correlation. Genetic variation and recombination events were also detected in DLC genes. Through selection analyses, we also identified some significant site-specific constraints in most of the DLC paralogs. In addition, DLC genes presented various expression profiles in different development stages, or under different abiotic stresses or phytohormone treatments. This may be associated with a variety of cis-elements responding to stress and phytohormone in the upstream sequences of the DLC genes. Functional network analysis exhibited 123 physical or functional interactions. The results provide a foundation for exploring the characterization of the DLC genes in plants and offer insights for additional functional studies.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Sciences, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China.
| | - Xiangyang Li
- Industrial Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, PR China
| | - Yueqing Lv
- Institute of Life Sciences, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
13
|
Abstract
Axonemal dyneins form the inner and outer rows of arms associated with the doublet microtubules of motile cilia. These enzymes convert the chemical energy released from adenosine triphosphate (ATP) hydrolysis into mechanical work by causing the doublets to slide with respect to each other. Dyneins form two major groups based on the number of heavy-chain motors within each complex. In addition, these enzymes contain other components that are required for assembly of the complete particles and/or for the regulation of motor function in response to phosphorylations status, ligands such as Ca2+, changes in cellular redox state and which also apparently monitor and respond to the mechanical state or curvature in which any given motor finds itself. It is this latter property, which is thought to result in waves of motor function propagating along the axoneme length. Here, I briefly describe our current understanding of axonemal dynein structure, assembly, and organization.
Collapse
Affiliation(s)
- Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030-3305
| |
Collapse
|
14
|
Parhad SS, Jaiswal D, Ray K, Mazumdar S. The protein inhibitor of nNOS (PIN/DLC1/LC8) binding does not inhibit the NADPH-dependent heme reduction in nNOS, a key step in NO synthesis. Biochem Biophys Res Commun 2016; 472:189-93. [PMID: 26923072 DOI: 10.1016/j.bbrc.2016.02.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 12/01/2022]
Abstract
The neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear. nNOS has a heme-bearing, Cytochrome P450 core, and the functional enzyme is a dimer. The electron flow from NADPH to Flavin, and finally to the heme of the paired nNOS subunit within a dimer, is facilitated upon calmodulin (CaM) binding. Here, we show that DLC1 binding to nNOS-CaM complex does not affect the electron transport from the reductase to the oxygenase domain. Therefore, it cannot inhibit the rate of NADPH-dependent heme reduction in nNOS, which results in l-Arginine oxidation. Also, the NO release activity does not decrease with increasing DLC1 concentration in the reaction mix, which further confirmed that DLC1 does not inhibit nNOS activity. These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell.
Collapse
Affiliation(s)
- Swapnil S Parhad
- Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005, India
| | - Deepa Jaiswal
- Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005, India; TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India
| | - Krishanu Ray
- Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005, India.
| | - Shyamalava Mazumdar
- Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005, India.
| |
Collapse
|
15
|
Dynein Light Chain LC8 Is Required for RNA Polymerase I-Mediated Transcription in Trypanosoma brucei, Facilitating Assembly and Promoter Binding of Class I Transcription Factor A. Mol Cell Biol 2015; 36:95-107. [PMID: 26459761 DOI: 10.1128/mcb.00705-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022] Open
Abstract
Dynein light chain LC8 is highly conserved among eukaryotes and has both dynein-dependent and dynein-independent functions. Interestingly, LC8 was identified as a subunit of the class I transcription factor A (CITFA), which is essential for transcription by RNA polymerase I (Pol I) in the parasite Trypanosoma brucei. Given that LC8 has never been identified with a basal transcription factor and that T. brucei relies on RNA Pol I for expressing the variant surface glycoprotein (VSG), the key protein in antigenic variation, we investigated the CITFA-specific role of LC8. Depletion of LC8 from mammalian-infective bloodstream trypanosomes affected cell cycle progression, reduced the abundances of rRNA and VSG mRNA, and resulted in rapid cell death. Sedimentation analysis, coimmunoprecipitation of recombinant proteins, and bioinformatic analysis revealed an LC8 binding site near the N terminus of the subunit CITFA2. Mutation of this site prevented the formation of a CITFA2-LC8 heterotetramer and, in vivo, was lethal, affecting assembly of a functional CITFA complex. Gel shift assays and UV cross-linking experiments identified CITFA2 as a promoter-binding CITFA subunit. Accordingly, silencing of LC8 or CITFA2 resulted in a loss of CITFA from RNA Pol I promoters. Hence, we discovered an LC8 interaction that, unprecedentedly, has a basal function in transcription.
Collapse
|
16
|
Affiliation(s)
- Yuqing Hou
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, United States.
| |
Collapse
|
17
|
Goggolidou P, Stevens JL, Agueci F, Keynton J, Wheway G, Grimes DT, Patel SH, Hilton H, Morthorst SK, DiPaolo A, Williams DJ, Sanderson J, Khoronenkova SV, Powles-Glover N, Ermakov A, Esapa CT, Romero R, Dianov GL, Briscoe J, Johnson CA, Pedersen LB, Norris DP. ATMIN is a transcriptional regulator of both lung morphogenesis and ciliogenesis. Development 2014; 141:3966-77. [PMID: 25294941 PMCID: PMC4197704 DOI: 10.1242/dev.107755] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Initially identified in DNA damage repair, ATM-interactor (ATMIN) further functions as a transcriptional regulator of lung morphogenesis. Here we analyse three mouse mutants, Atmingpg6/gpg6, AtminH210Q/H210Q and Dynll1GT/GT, revealing how ATMIN and its transcriptional target dynein light chain LC8-type 1 (DYNLL1) are required for normal lung morphogenesis and ciliogenesis. Expression screening of ciliogenic genes confirmed Dynll1 to be controlled by ATMIN and further revealed moderately altered expression of known intraflagellar transport (IFT) protein-encoding loci in Atmin mutant embryos. Significantly, Dynll1GT/GT embryonic cilia exhibited shortening and bulging, highly similar to the characterised retrograde IFT phenotype of Dync2h1. Depletion of ATMIN or DYNLL1 in cultured cells recapitulated the in vivo ciliogenesis phenotypes and expression of DYNLL1 or the related DYNLL2 rescued the effects of loss of ATMIN, demonstrating that ATMIN primarily promotes ciliogenesis by regulating Dynll1 expression. Furthermore, DYNLL1 as well as DYNLL2 localised to cilia in puncta, consistent with IFT particles, and physically interacted with WDR34, a mammalian homologue of the Chlamydomonas cytoplasmic dynein 2 intermediate chain that also localised to the cilium. This study extends the established Atmin-Dynll1 relationship into a developmental and a ciliary context, uncovering a novel series of interactions between DYNLL1, WDR34 and ATMIN. This identifies potential novel components of cytoplasmic dynein 2 and furthermore provides fresh insights into the molecular pathogenesis of human skeletal ciliopathies.
Collapse
Affiliation(s)
- Paraskevi Goggolidou
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Jonathan L Stevens
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Francesco Agueci
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Jennifer Keynton
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Gabrielle Wheway
- Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Daniel T Grimes
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Saloni H Patel
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Helen Hilton
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Stine K Morthorst
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, OE DK-2100, Denmark
| | - Antonella DiPaolo
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Debbie J Williams
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Jeremy Sanderson
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Svetlana V Khoronenkova
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-11, Moscow 119991, Russia
| | - Nicola Powles-Glover
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Alexander Ermakov
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Chris T Esapa
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Rosario Romero
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Grigory L Dianov
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - James Briscoe
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Colin A Johnson
- Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, OE DK-2100, Denmark
| | - Dominic P Norris
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| |
Collapse
|
18
|
Bodor A, Radnai L, Hetényi C, Rapali P, Láng A, Kövér KE, Perczel A, Wahlgren WY, Katona G, Nyitray L. DYNLL2 dynein light chain binds to an extended linear motif of myosin 5a tail that has structural plasticity. Biochemistry 2014; 53:7107-22. [PMID: 25312846 DOI: 10.1021/bi500574z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
LC8 dynein light chains (DYNLL) are conserved homodimeric eukaryotic hub proteins that participate in diverse cellular processes. Among the binding partners of DYNLL2, myosin 5a (myo5a) is a motor protein involved in cargo transport. Here we provide a profound characterization of the DYNLL2 binding motif of myo5a in free and DYNLL2-bound form by using nuclear magnetic resonance spectroscopy, X-ray crystallography, and molecular dynamics simulations. In the free form, the DYNLL2 binding region, located in an intrinsically disordered domain of the myo5a tail, has a nascent helical character. The motif becomes structured and folds into a β-strand upon binding to DYNLL2. Despite differences of the myo5a sequence from the consensus binding motif, one peptide is accommodated in each of the parallel DYNLL2 binding grooves, as for all other known partners. Interestingly, while the core motif shows a similar interaction pattern in the binding groove as seen in other complexes, the flanking residues make several additional contacts, thereby lengthening the binding motif. The N-terminal extension folds back and partially blocks the free edge of the β-sheet formed by the binding motif itself. The C-terminal extension contacts the dimer interface and interacts with symmetry-related residues of the second myo5a peptide. The involvement of flanking residues of the core binding site of myo5a could modify the quaternary structure of the full-length myo5a and affect its biological functions. Our results deepen the knowledge of the diverse partner recognition of DYNLL proteins and provide an example of a Janus-faced linear motif.
Collapse
Affiliation(s)
- Andrea Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, and ‡Department of Biochemistry, Eötvös Loránd University , Budapest, 1117 Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jin M, Yamada M, Arai Y, Nagai T, Hirotsune S. Arl3 and LC8 regulate dissociation of dynactin from dynein. Nat Commun 2014; 5:5295. [PMID: 25342295 DOI: 10.1038/ncomms6295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022] Open
Abstract
Cytoplasmic dynein acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. However, the regulatory mechanism underlying release of dynactin bound cargoes from dynein motor remains largely unknown. Here we report that ADP-ribosylation factor-like 3 (Arl3) and dynein light chain LC8 induce dissociation of dynactin from dynein. Immunoprecipitation and microtubule pull-down assays revealed that Arl3(Q71L) and LC8 facilitated detachment of dynactin from dynein. We also demonstrated Arl3(Q71L) or LC8-mediated dynactin release from a dynein-dynactin complex through trace experiments using quantum dot (Qdot)-conjugated proteins. Furthermore, we disclosed interactions of Arl3 and LC8 with dynactin and dynein, respectively, by live-cell imaging. Finally, knockdown (KD) of Arl3 and LC8 by siRNA induced abnormal localizations of dynein, dynactin and related organelles. Our findings uncovered the surprising functional relevance of GTP-bound Arl3 and LC8 for the unloading regulation of dynactin-bound cargo from dynein motor.
Collapse
Affiliation(s)
- Mingyue Jin
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Masami Yamada
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Yoshiyuki Arai
- Department of Biomolecular Science and Engineering, Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka 8-1, Osaka 567-0047, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka 8-1, Osaka 567-0047, Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| |
Collapse
|
20
|
Liu J, Zhang Q, Chang Q, Wang Q, Han L, Liu J, Li M, Zhuang H, Kang Z. Cloning and characterization of a dynein light chain gene from Puccinia striiformis f. sp. tritici. J Basic Microbiol 2014; 54 Suppl 1:S32-41. [PMID: 24470306 DOI: 10.1002/jobm.201300645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/27/2013] [Indexed: 11/10/2022]
Abstract
Stripe rust is one of the most serious wheat diseases worldwide. The fungus Puccinia striiformis f. sp. tritici (Pst), the causal agent of this disease, is an obligate biotrophic basidiomycete fungus. Numerous studies have shown that dyneins play important roles during fungal growth and propagation. However, knowledge is limited regarding the function of dyneins in Pst. In this study, we cloned the dynein light chain gene PsDLC1 from Pst and characterized its expression. The function of PsDLC1 was determined by heterologous mutant complementation. Expression of PsDLC1 in Aspergillus nidulans partially complemented the defects of the ΔnudG mutant, indicating that PsDLC1 belongs to the dynein light chain LC8 family. In addition, PsDLC1 was identified in Pst using virus-induced gene silencing (VIGS). Knockdown of PsDLC1 produces no significant effect on Pst growth and development, indicating that PsDLC1 is unnecessary for Pst infection of wheat.
Collapse
Affiliation(s)
- Jie Liu
- College of Life Sciences, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The novel zinc finger protein dASCIZ regulates mitosis in Drosophila via an essential role in dynein light-chain expression. Genetics 2013; 196:443-53. [PMID: 24336747 DOI: 10.1534/genetics.113.159541] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The essential zinc finger protein ASCIZ (also known as ATMIN, ZNF822) plays critical roles during lung organogenesis and B cell development in mice, where it regulates the expression of dynein light chain (DYNLL1/LC8), but its functions in other species including invertebrates are largely unknown. Here we report the identification of the Drosophila ortholog of ASCIZ (dASCIZ) and show that loss of dASCIZ function leads to pronounced mitotic delays with centrosome and spindle positioning defects during development, reminiscent of impaired dynein motor functions. Interestingly, similar mitotic and developmental defects were observed upon knockdown of the DYNLL/LC8-type dynein light chain Cutup (Ctp), and dASCIZ loss-of-function phenotypes could be suppressed by ectopic Ctp expression. Consistent with a genetic function of dASCIZ upstream of Ctp, we show that loss of dASCIZ led to reduced endogenous Ctp mRNA and protein levels and dramatically reduced Ctp-LacZ reporter gene activity in vivo, indicating that dASCIZ regulates development and mitosis as a Ctp transcription factor. We speculate that the more severe mitotic defects in the absence of ASCIZ in flies compared to mice may be due to redundancy with a second, ASCIZ-independent, Dynll2 gene in mammals in contrast to a single Ctp gene in Drosophila. Altogether, our data demonstrate that ASCIZ is an evolutionary highly conserved transcriptional regulator of dynein light-chain levels and a novel regulator of mitosis in flies.
Collapse
|
22
|
Patel-King RS, Gilberti RM, Hom EFY, King SM. WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia. Mol Biol Cell 2013; 24:2668-77. [PMID: 23864713 PMCID: PMC3756919 DOI: 10.1091/mbc.e13-05-0266] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Retrograde intraflagellar transport (IFT) is required for assembly of cilia. We identify a Chlamydomonas flagellar protein (flagellar-associated protein 163 [FAP163]) as being closely related to the D1bIC(FAP133) intermediate chain (IC) of the dynein that powers this movement. Biochemical analysis revealed that FAP163 is present in the flagellar matrix and is actively trafficked by IFT. Furthermore, FAP163 copurified with D1bIC(FAP133) and the LC8 dynein light chain, indicating that it is an integral component of the retrograde IFT dynein. To assess the functional role of FAP163, we generated an RNA interference knockdown of the orthologous protein (WD60) in planaria. The Smed-wd60(RNAi) animals had a severe ciliary assembly defect that dramatically compromised whole-organism motility. Most cilia were present as short stubs that had accumulated large quantities of IFT particle-like material between the doublet microtubules and the membrane. The few remaining approximately full-length cilia had a chaotic beat with a frequency reduced from 24 to ∼10 Hz. Thus WD60/FAP163 is a dynein IC that is absolutely required for retrograde IFT and ciliary assembly.
Collapse
Affiliation(s)
- Ramila S Patel-King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
23
|
Gallego P, Velazquez-Campoy A, Regué L, Roig J, Reverter D. Structural analysis of the regulation of the DYNLL/LC8 binding to Nek9 by phosphorylation. J Biol Chem 2013; 288:12283-94. [PMID: 23482567 DOI: 10.1074/jbc.m113.459149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NIMA family protein kinases Nek9/Nercc1, Nek6, and Nek7 constitute a signaling module activated in early mitosis involved in the control of spindle organization. DYNLL/LC8 (dynein light chain 8) was originally described as a component of the dynein complex, but the recent discovery of multiple interaction partners for LC8 has suggested that it has a general role as a dimerization hub that organizes different protein partners. Recent experiments suggested that LC8 binding to Nek9 was regulated by Nek9 autophosphorylation on Ser(944), a residue immediately located N-terminal to the LC8 conserved (K/R)xTQT binding motif, and that this was crucial for the control of signal transduction through the Nek/Nek6/7 module. In the present work, we present two crystal structures of LC8 with a peptide corresponding to the Nek9 binding region with and without a phosphorylation on Ser(944). Structural analysis of LC8 with both Nek9 peptides, together with different biophysical experiments, explains the observed diminished binding affinity of Nek9 to LC8 upon phosphorylation on Ser(944) within the Nek9 sequence, thus shedding light into a novel phosphorylation regulatory mechanism that interferes with LC8 protein · protein complex formation.
Collapse
Affiliation(s)
- Pablo Gallego
- Structural Biology Unit, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | |
Collapse
|
24
|
Asthana J, Kuchibhatla A, Jana SC, Ray K, Panda D. Dynein light chain 1 (LC8) association enhances microtubule stability and promotes microtubule bundling. J Biol Chem 2012; 287:40793-805. [PMID: 23038268 DOI: 10.1074/jbc.m112.394353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Dynein Light Chain 1 (LC8) has been shown to pull down tubulin subunits, suggesting that it interacts with microtubules. RESULTS LC8 decorates microtubules in vitro and in Drosophila embryos, promotes microtubule assembly, and stabilizes microtubules both in vitro and in tissue-cultured cells. CONCLUSION LC8 stabilizes microtubules. SIGNIFICANCE Data provide the first evidence of a novel MAP-like function of LC8. Dynein light chain 1 (LC8), a highly conserved protein, is known to bind to a variety of different polypeptides. It functions as a dimer, which is inactivated through phosphorylation at the Ser-88 residue. A loss of LC8 function causes apoptosis in Drosophila embryos, and its overexpression induces malignant transformation of breast cancer cells. Here we show that LC8 binds to tubulin, promotes microtubule assembly, and induces the bundling of reconstituted microtubules in vitro. Furthermore, LC8 decorates microtubules both in Drosophila embryos and in HeLa cells, increases the microtubule stability, and promotes microtubule bundling in these cells. Microtubule stability influences a number of different cellular functions including mitosis and cell differentiation. The LC8 overexpression reduces the susceptibility of microtubules to cold and nocodazole-induced depolymerization in tissue-cultured cells and increases microtubule acetylation, suggesting that LC8 stabilizes microtubules. We also show that LC8 knockdown or transfection with inhibitory peptides destabilizes microtubules and inhibits bipolar spindle assembly in HeLa cells. In addition, LC8 knockdown leads to the mitotic block in HeLa cells. Furthermore, molecular docking analysis using the crystal structures of tubulin and LC8 dimer indicated that the latter may bind at α-β tubulin junction in a protofilament at sites distinct from the kinesin and dynein binding sites. Together, we provide the first evidence of a novel microtubule-associated protein-like function of LC8 that could explain its reported roles in cellular metastasis and differentiation.
Collapse
Affiliation(s)
- Jayant Asthana
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | | | | | |
Collapse
|
25
|
Jurado S, Gleeson K, O'Donnell K, Izon DJ, Walkley CR, Strasser A, Tarlinton DM, Heierhorst J. The Zinc-finger protein ASCIZ regulates B cell development via DYNLL1 and Bim. ACTA ACUST UNITED AC 2012; 209:1629-39. [PMID: 22891272 PMCID: PMC3428950 DOI: 10.1084/jem.20120785] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Developing B lymphocytes expressing defective or autoreactive pre-B or B cell receptors (BCRs) are eliminated by programmed cell death, but how the balance between death and survival signals is regulated to prevent immunodeficiency and autoimmunity remains incompletely understood. In this study, we show that absence of the essential ATM (ataxia telangiectasia mutated) substrate Chk2-interacting Zn(2+)-finger protein (ASCIZ; also known as ATMIN/ZNF822), a protein with dual functions in the DNA damage response and as a transcription factor, leads to progressive cell loss from the pre-B stage onwards and severely diminished splenic B cell numbers in mice. This lymphopenia cannot be suppressed by deletion of p53 or complementation with a prearranged BCR, indicating that it is not caused by impaired DNA damage responses or defective V(D)J recombination. Instead, ASCIZ-deficient B cell precursors contain highly reduced levels of DYNLL1 (dynein light chain 1; LC8), a recently identified transcriptional target of ASCIZ, and normal B cell development can be restored by ectopic Dynll1 expression. Remarkably, the B cell lymphopenia in the absence of ASCIZ can also be fully suppressed by deletion of the proapoptotic DYNLL1 target Bim. Our findings demonstrate a key role for ASCIZ in regulating the survival of developing B cells by activating DYNLL1 expression, which may then modulate Bim-dependent apoptosis.
Collapse
Affiliation(s)
- Sabine Jurado
- St. Vincent's Institute of Medical Research, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gupta A, Diener DR, Sivadas P, Rosenbaum JL, Yang P. The versatile molecular complex component LC8 promotes several distinct steps of flagellar assembly. ACTA ACUST UNITED AC 2012; 198:115-26. [PMID: 22753897 PMCID: PMC3392930 DOI: 10.1083/jcb.201111041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
LC8 is present in various molecular complexes. However, its role in these complexes remains unclear. We discovered that although LC8 is a subunit of the radial spoke (RS) complex in Chlamydomonas flagella, it was undetectable in the RS precursor that is converted into the mature RS at the tip of elongating axonemes. Interestingly, LC8 dimers bound in tandem to the N-terminal region of a spoke phosphoprotein, RS protein 3 (RSP3), that docks RSs to axonemes. LC8 enhanced the binding of RSP3 N-terminal fragments to purified axonemes. Likewise, the N-terminal fragments extracted from axonemes contained LC8 and putative spoke-docking proteins. Lastly, perturbations of RSP3's LC8-binding sites resulted in asynchronous flagella with hypophosphorylated RSP3 and defective associations between LC8, RSs, and axonemes. We propose that at the tip of flagella, an array of LC8 dimers binds to RSP3 in RS precursors, triggering phosphorylation, stalk base formation, and axoneme targeting. These multiple effects shed new light on fundamental questions about LC8-containing complexes and axoneme assembly.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | | | | | | | | |
Collapse
|
27
|
Nyarko A, Song Y, Barbar E. Intrinsic disorder in dynein intermediate chain modulates its interactions with NudE and dynactin. J Biol Chem 2012; 287:24884-93. [PMID: 22669947 DOI: 10.1074/jbc.m112.376038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional diversity of cytoplasmic dynein is in part attributed to multiple interactions between noncatalytic dynein subunits and an array of regulatory proteins. This study focuses on the interaction between the dynein intermediate chain subunit (IC) and a dynein regulator protein (NudE). We use isothermal titration calorimetry and NMR spectroscopy to map their interacting sections to their respective N-terminal domains, which are predicted to form dimeric coiled-coils. Interestingly, the specific residues within IC that interact with NudE are a subset of the bi-segmental binding region reported for p150(Glued), a subunit of the dynein activator protein dynactin. Although the IC binding domains of both NudE and p150(Glued) form dimeric coiled-coils and bind IC at a common site, we observe distinct binding modes for each regulatory protein: 1) NudE binds region 1 of the bi-segmental binding footprint of p150(Glued), whereas p150(Glued) requires regions 1 and 2 to match the binding affinity of NudE with region 1 alone. 2) Compared with unbound IC, NudE-bound IC shows a slight increase in flexibility in region 2, in contrast to the increase in ordered structure observed for p150(Glued)-bound IC (Morgan, J. L., Song, Y., and Barbar, E. (2011) J. Biol. Chem. 286, 39349-39359). 3) Although NudE has a higher affinity for the common binding segment on IC, when all three proteins are in solution, IC preferentially binds p150(Glued). These results underscore the importance of a bi-segmental binding region of IC and disorder in region 2 and flanking linkers in selecting which regulatory protein binds IC.
Collapse
Affiliation(s)
- Afua Nyarko
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
28
|
O'Toole ET, Giddings TH, Porter ME, Ostrowski LE. Computer-assisted image analysis of human cilia and Chlamydomonas flagella reveals both similarities and differences in axoneme structure. Cytoskeleton (Hoboken) 2012; 69:577-90. [PMID: 22573610 DOI: 10.1002/cm.21035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 01/11/2023]
Abstract
In the past decade, investigations from several different fields have revealed the critical role of cilia in human health and disease. Because of the highly conserved nature of the basic axonemal structure, many different model systems have proven useful for the study of ciliopathies, especially the unicellular, biflagellate green alga Chlamydomonas reinhardtii. Although the basic axonemal structure of cilia and flagella is highly conserved, these organelles often perform specialized functions unique to the cell or tissue in which they are found. These differences in function are likely reflected in differences in structural organization. In this work, we directly compare the structure of isolated axonemes from human cilia and Chlamydomonas flagella to identify similarities and differences that potentially play key roles in determining their functionality. Using transmission electron microscopy and 2D image averaging techniques, our analysis has confirmed the overall structural similarity between these two species, but also revealed clear differences in the structure of the outer dynein arms, the central pair projections, and the radial spokes. We also show how the application of 2D image averaging can clarify the underlying structural defects associated with primary ciliary dyskinesia (PCD). Overall, our results document the remarkable similarity between these two structures separated evolutionarily by over a billion years, while highlighting several significant differences, and demonstrate the potential of 2D image averaging to improve the diagnosis and understanding of PCD.
Collapse
Affiliation(s)
- Eileen T O'Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, Department of MCD Biology, University of Colorado, Boulder, Colorado, USA
| | | | | | | |
Collapse
|
29
|
Chakraborty S, Krishna Mohan P, Hosur RV. Residual structure and dynamics in DMSO-d6 denatured Dynein Light Chain protein. Biochimie 2012; 94:231-41. [DOI: 10.1016/j.biochi.2011.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
|
30
|
Moutin E, Raynaud F, Fagni L, Perroy J. GKAP-DLC2 interaction organizes postsynaptic scaffold complex to enhance synaptic NMDA receptor activity. J Cell Sci 2012; 125:2030-40. [DOI: 10.1242/jcs.098160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
At glutamatergic brain synapses, scaffolding proteins regulate receptor location and function. The targeting and organization of scaffolding proteins in the postsynaptic density (PSD) is poorly understood. A core protein of the glutamatergic receptor postsynaptic scaffold complex, GKAP, interacts with DLC2, a protein associated with molecular motors. In the present study, we combined BRET imaging, immuno-staining and electrophysiological recording to assess the role of GKAP-DLC2 interaction in the functional organization of the glutamatergic synapse. We found that GKAP-DLC2 interaction in dendritic spine stabilizes scaffolding protein expression at the PSD and enhances synaptic NMDA receptor activity. Moreover, the GKAP-DLC2 functional interaction is favored by sustained synaptic activity. These data provide a novel regulatory pathway of synaptic transmission that depends on activity-induced remodeling of the postsynaptic scaffold protein complex.
Collapse
|
31
|
Jurado S, Conlan LA, Baker EK, Ng JL, Tenis N, Hoch NC, Gleeson K, Smeets M, Izon D, Heierhorst J. ATM substrate Chk2-interacting Zn2+ finger (ASCIZ) Is a bi-functional transcriptional activator and feedback sensor in the regulation of dynein light chain (DYNLL1) expression. J Biol Chem 2011; 287:3156-64. [PMID: 22167198 DOI: 10.1074/jbc.m111.306019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly conserved DYNLL1 (LC8) protein was originally discovered as a light chain of the dynein motor complex, but is increasingly emerging as a sequence-specific regulator of protein dimerization with hundreds of targets and wide-ranging cellular functions. Despite its important roles, DYNLL1's own regulation remains poorly understood. Here we identify ASCIZ (ATMIN/ZNF822), an essential Zn(2+) finger protein with dual roles in the DNA base damage response and as a developmental transcription factor, as a conserved regulator of Dynll1 gene expression. DYNLL1 levels are reduced by ∼10-fold in the absence of ASCIZ in human, mouse and chicken cells. ASCIZ binds directly to the Dynll1 promoter and regulates its activity in a Zn(2+) finger-dependent manner. DYNLL1 protein in turn interacts with ten binding sites in the ASCIZ transcription activation domain, and high DYNLL1 levels inhibit the transcriptional activity of ASCIZ. In addition, DYNLL1 was also required for DNA damage-induced ASCIZ focus formation. The dual ability of ASCIZ to activate Dynll1 gene expression and to sense free DYNLL1 protein levels enables a simple dynamic feedback loop to adjust DYNLL1 levels to cellular needs. The ASCIZ-DYNLL1 feedback loop represents a novel mechanism for auto-regulation of gene expression, where the gene product directly inhibits the transcriptional activator while bound at its own promoter.
Collapse
Affiliation(s)
- Sabine Jurado
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dynein light chain 1 functions in somatic cyst cells regulate spermatogonial divisions in Drosophila. Sci Rep 2011; 1:173. [PMID: 22355688 PMCID: PMC3240984 DOI: 10.1038/srep00173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 11/10/2011] [Indexed: 11/26/2022] Open
Abstract
Stem cell progeny often undergo transit amplifying divisions before differentiation. In Drosophila, a spermatogonial precursor divides four times within an enclosure formed by two somatic-origin cyst cells, before differentiating into spermatocytes. Although germline and cyst cell-intrinsic factors are known to regulate these divisions, the mechanistic details are unclear. Here, we show that loss of dynein-light-chain-1 (DDLC1/LC8) in the cyst cells eliminates bag-of-marbles (bam) expression in spermatogonia, causing gonial cell hyperplasia in Drosophila testis. The phenotype is dominantly enhanced by Dhc64C (cytoplasmic Dynein) and didum (Myosin V) loss-of-function alleles. Loss of DDLC1 or Myosin V in the cyst cells also affects their differentiation. Furthermore, cyst cell-specific loss of ddlc1 disrupts Armadillo, DE-cadherin and Integrin-βPS localizations in the cyst. Together, these results suggest that Dynein and Myosin V activities, and independent DDLC1 functions in the cyst cells organize the somatic microenvironment that regulates spermatogonial proliferation and differentiation.
Collapse
|
33
|
Calábria LK, Peixoto PMV, Passos Lima AB, Peixoto LG, de Moraes VRA, Teixeira RR, Dos Santos CT, E Silva LO, da Silva MDFR, dos Santos AAD, Garcia-Cairasco N, Martins AR, Espreafico EM, Espindola FS. Myosins and DYNLL1/LC8 in the honey bee (Apis mellifera L.) brain. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1300-1311. [PMID: 21718700 DOI: 10.1016/j.jinsphys.2011.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 05/31/2023]
Abstract
Honey bees have brain structures with specialized and developed systems of communication that account for memory, learning capacity and behavioral organization with a set of genes homologous to vertebrate genes. Many microtubule- and actin-based molecular motors are involved in axonal/dendritic transport. Myosin-Va is present in the honey bee Apis mellifera nervous system of the larvae and adult castes and subcastes. DYNLL1/LC8 and myosin-IIb, -VI and -IXb have also been detected in the adult brain. SNARE proteins, such as CaMKII, clathrin, syntaxin, SNAP25, munc18, synaptophysin and synaptotagmin, are also expressed in the honey bee brain. Honey bee myosin-Va displayed ATP-dependent solubility and was associated with DYNLL1/LC8 and SNARE proteins in the membrane vesicle-enriched fraction. Myosin-Va expression was also decreased after the intracerebral injection of melittin and NMDA. The immunolocalization of myosin-Va and -IV, DYNLL1/LC8, and synaptophysin in mushroom bodies, and optical and antennal lobes was compared with the brain morphology based on Neo-Timm histochemistry and revealed a distinct and punctate distribution. This result suggested that the pattern of localization is associated with neuron function. Therefore, our data indicated that the roles of myosins, DYNLL1/LC8, and SNARE proteins in the nervous and visual systems of honey bees should be further studied under different developmental, caste and behavioral conditions.
Collapse
Affiliation(s)
- Luciana Karen Calábria
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sun S, Butterworth AH, Paramasivam S, Yan S, Lightcap CM, Williams JC, Polenova T. Resonance Assignments and Secondary Structure Analysis of Dynein Light Chain 8 by Magic Angle Spinning NMR Spectroscopy. CAN J CHEM 2011; 89:909-918. [PMID: 23243318 DOI: 10.1139/v11-030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dynein light chain LC8 is the smallest subunit of the dynein motor complex and has been shown to play important roles in both dynein dependent and dynein independent physiological functions via its interaction with a number of its binding partners. It has also been linked to pathogenesis including roles in viral infections and tumorigenesis. Structural information for LC8-target proteins is critical to understanding the underlying function of LC8 in these complexes. However, some LC8-target interactions are not amenable for structural characterization by conventional structural biology techniques due to their large size, low solubility and crystallization difficulties. Here, we report magic angle spinning (MAS) NMR studies of the homodimeric apo-LC8 protein as a first effort in addressing more complex, multi-partner LC8-based protein assemblies. We have established site-specific backbone and side chain resonance assignments for the majority of the residues of LC8, and show TALOS+ predicted torsion angles ϕ and ψ in close agreement with most residues in the published LC8 crystal structure. Data obtained through these studies will provide the first step toward using MAS NMR to examine the LC8 structure, which will eventually be used to investigate protein-protein interactions in larger systems, which cannot be determined by conventional structural studies.
Collapse
Affiliation(s)
- Shangjin Sun
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | | | | | | | | | | | | |
Collapse
|
35
|
Radnai L, Rapali P, Hódi Z, Süveges D, Molnár T, Kiss B, Bécsi B, Erdödi F, Buday L, Kardos J, Kovács M, Nyitray L. Affinity, avidity, and kinetics of target sequence binding to LC8 dynein light chain isoforms. J Biol Chem 2010; 285:38649-57. [PMID: 20889982 PMCID: PMC2992297 DOI: 10.1074/jbc.m110.165894] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/24/2010] [Indexed: 01/22/2023] Open
Abstract
LC8 dynein light chain (DYNLL) is a highly conserved eukaryotic hub protein with dozens of binding partners and various functions beyond being a subunit of dynein and myosin Va motor proteins. Here, we compared the kinetic and thermodynamic parameters of binding of both mammalian isoforms, DYNLL1 and DYNLL2, to two putative consensus binding motifs (KXTQTX and XG(I/V)QVD) and report only subtle differences. Peptides containing either of the above motifs bind to DYNLL2 with micromolar affinity, whereas a myosin Va peptide (lacking the conserved Gln) and the noncanonical Pak1 peptide bind with K(d) values of 9 and 40 μM, respectively. Binding of the KXTQTX motif is enthalpy-driven, although that of all other peptides is both enthalpy- and entropy-driven. Moreover, the KXTQTX motif shows strikingly slower off-rate constant than the other motifs. As most DYNLL partners are homodimeric, we also assessed the binding of bivalent ligands to DYNLL2. Compared with monovalent ligands, a significant avidity effect was found as follows: K(d) values of 37 and 3.5 nM for a dimeric myosin Va fragment and a Leu zipper dimerized KXTQTX motif, respectively. Ligand binding kinetics of DYNLL can best be described by a conformational selection model consisting of a slow isomerization and a rapid binding step. We also studied the binding of the phosphomimetic S88E mutant of DYNLL2 to the dimeric myosin Va fragment, and we found a significantly lower apparent K(d) value (3 μM). We conclude that the thermodynamic and kinetic fine-tuning of binding of various ligands to DYNLL could have physiological relevance in its interaction network.
Collapse
Affiliation(s)
- László Radnai
- From the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest
| | - Péter Rapali
- From the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest
| | - Zsuzsa Hódi
- From the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest
| | - Dániel Süveges
- From the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest
| | - Tamás Molnár
- From the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest
| | - Bence Kiss
- From the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest
| | - Bálint Bécsi
- the Department of Medical Chemistry, University of Debrecen, Medical and Health Science Center, H-4032 Debrecen
| | - Ferenc Erdödi
- the Department of Medical Chemistry, University of Debrecen, Medical and Health Science Center, H-4032 Debrecen
| | - László Buday
- the Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1113 Budapest, and
- the Department of Medical Chemistry, Semmelweis University Medical School, H-1094 Budapest, Hungary
| | - József Kardos
- From the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest
| | - Mihály Kovács
- From the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest
| | - László Nyitray
- From the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest
| |
Collapse
|
36
|
Mohan PK, Chakraborty S, Hosur RV. Hierarchy of local structural and dynamics perturbations due to subdenaturing urea in the native state ensemble of DLC8 dimer. Biophys Chem 2010; 153:17-26. [DOI: 10.1016/j.bpc.2010.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/28/2010] [Accepted: 09/29/2010] [Indexed: 11/28/2022]
|
37
|
Xiao F, Weng J, Fan K, Wang W. Mechanism of Ser88 phosphorylation-induced dimer dissociation in dynein light chain LC8. J Phys Chem B 2010; 114:15663-72. [PMID: 21062069 DOI: 10.1021/jp1048869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dynein light chain LC8 is a highly conserved, dimeric protein involved in a variety of essential cellular events. Phosphorylation at Ser88 was found to promote mammalian cell survival and regulate the dimer to monomer transition at physiological pH. Combining molecular dynamics (MD) simulation and free energy calculation methods, we explored the atomistic mechanism of the phosphorylation-induced dimer dissociation. The MD simulation revealed that phosphorylation/phosphomimetic mutation at Ser88 opens an entrance into the dimer interface for water molecules, which disturb the hydrogen bond network around His55 and is expected to raise the pK(a) value and protonation ratio of His55 as well. The free energy calculations showed that the S88E mutation destabilized the dimer by 6.6 kcal/mol, in good agreement with the experimental value of 8.1 kcal/mol. The calculated destabilization upon phosphorylation is 50.8 kcal/mol, showing that phosphorylation definitely prevents dimer formation under physiological conditions. Further analysis of the calculated free energy changes demonstrated that the electrostatic contribution dominates the impact of phosphorylation on dimer dissociation.
Collapse
Affiliation(s)
- Fei Xiao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | |
Collapse
|
38
|
Rompolas P, Patel-King RS, King SM. An outer arm Dynein conformational switch is required for metachronal synchrony of motile cilia in planaria. Mol Biol Cell 2010; 21:3669-79. [PMID: 20844081 PMCID: PMC2965684 DOI: 10.1091/mbc.e10-04-0373] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Here we use the motile ventral cilia of the planarian S. mediterranea to examine the role of outer arm dynein in the generation and maintenance of metachronal synchrony. We demonstrate that a single dynein light chain plays a mechanosensory role necessary to entrain and maintain the metachronal synchrony of motile cilia. Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony.
Collapse
Affiliation(s)
- Panteleimon Rompolas
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | | | | |
Collapse
|
39
|
Krishna Mohan PM, Hosur RV. Structure-function-folding relationships and native energy landscape of dynein light chain protein: nuclear magnetic resonance insights. J Biosci 2009; 34:465-79. [DOI: 10.1007/s12038-009-0052-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Abstract
Mitochondria in the cell bodies of neurons are transported down neuronal processes in response to changes in local energy and metabolic states. Because of their extreme polarity, neurons require specialized mechanisms to regulate mitochondrial transport and retention in axons. Our previous studies using syntaphilin (snph) knock-out mice provided evidence that SNPH targets to axonal mitochondria and controls their mobility through its static interaction with microtubules (MTs). However, the mechanisms regulating SNPH-mediated mitochondrial docking remain elusive. Here, we report an unexpected role for dynein light chain LC8. Using proteomic biochemical and cell biological assays combined with time-lapse imaging in live snph wild-type and mutant neurons, we reveal that LC8 regulates axonal mitochondrial mobility by binding to SNPH, thus enhancing the SNPH-MT docking interaction. Using mutagenesis assays, we mapped a seven-residue LC8-binding motif. Through this specific interaction, SNPH recruits LC8 to axonal mitochondria; such colocalization is abolished when neurons express SNPH mutants lacking the LC8-binding motif. Transient LC8 expression reduces mitochondrial mobility in snph (+/+) but not (-/-) neurons, suggesting that the observed effect of LC8 depends on the SNPH-mediated docking mechanism. In contrast, deleting the LC8-binding motif impairs the ability of SNPH to immobilize axonal mitochondria. Furthermore, circular dichroism spectrum analysis shows that LC8 stabilizes an alpha-helical coiled-coil within the MT-binding domain of SNPH against thermal unfolding. Thus, our study provides new mechanistic insights into controlling mitochondrial mobility through a dynamic interaction between the mitochondrial docking receptor and axonal cytoskeleton.
Collapse
|
41
|
Yang P, Yang C, Wirschell M, Davis S. Novel LC8 mutations have disparate effects on the assembly and stability of flagellar complexes. J Biol Chem 2009; 284:31412-21. [PMID: 19696030 DOI: 10.1074/jbc.m109.050666] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LC8 functions as a dimer crucial for a variety of molecular motors and non-motor complexes. Emerging models, founded on structural studies, suggest that the LC8 dimer promotes the stability and refolding of dimeric target proteins in molecular complexes, and its interactions with selective target proteins, including dynein subunits, is regulated by LC8 phosphorylation, which is proposed to prevent LC8 dimerization. To test these hypotheses in vivo, we determine the impacts of two new LC8 mutations on the assembly and stability of defined LC8-containing complexes in Chlamydomonas flagella. The three types of dyneins and the radial spoke are disparately affected by dimeric LC8 with a C-terminal extension. The defects include the absence of specific subunits, complex instability, and reduced incorporation into the axonemal super complex. Surprisingly, a phosphomimetic LC8 mutation, which is largely monomeric in vitro, is still dimeric in vivo and does not significantly change flagellar generation and motility. The differential defects in these flagellar complexes support the structural model and indicate that modulation of target proteins by LC8 leads to the proper assembly of complexes and ultimately higher level complexes. Furthermore, the ability of flagellar complexes to incorporate the phosphomimetic LC8 protein and the modest defects observed in the phosphomimetic LC8 mutant suggest that LC8 phosphorylation is not an effective mechanism for regulating molecular complexes.
Collapse
Affiliation(s)
- Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA.
| | | | | | | |
Collapse
|
42
|
Patel-King RS, King SM. An outer arm dynein light chain acts in a conformational switch for flagellar motility. J Cell Biol 2009; 186:283-95. [PMID: 19620633 PMCID: PMC2717645 DOI: 10.1083/jcb.200905083] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 06/25/2009] [Indexed: 12/28/2022] Open
Abstract
A system distinct from the central pair-radial spoke complex was proposed to control outer arm dynein function in response to alterations in the mechanical state of the flagellum. In this study, we examine the role of a Chlamydomonas reinhardtii outer arm dynein light chain that associates with the motor domain of the gamma heavy chain (HC). We demonstrate that expression of mutant forms of LC1 yield dominant-negative effects on swimming velocity, as the flagella continually beat out of phase and stall near or at the power/recovery stroke switchpoint. Furthermore, we observed that LC1 interacts directly with tubulin in a nucleotide-independent manner and tethers this motor unit to the A-tubule of the outer doublet microtubules within the axoneme. Therefore, this dynein HC is attached to the same microtubule by two sites: via both the N-terminal region and the motor domain. We propose that this gamma HC-LC1-microtubule ternary complex functions as a conformational switch to control outer arm activity.
Collapse
Affiliation(s)
- Ramila S Patel-King
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
43
|
Wirschell M, Yang C, Yang P, Fox L, Yanagisawa HA, Kamiya R, Witman GB, Porter ME, Sale WS. IC97 is a novel intermediate chain of I1 dynein that interacts with tubulin and regulates interdoublet sliding. Mol Biol Cell 2009; 20:3044-54. [PMID: 19420136 DOI: 10.1091/mbc.e09-04-0276] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Our goal is to understand the assembly and regulation of flagellar dyneins, particularly the Chlamydomonas inner arm dynein called I1 dynein. Here, we focus on the uncharacterized I1-dynein IC IC97. The IC97 gene encodes a novel IC without notable structural domains. IC97 shares homology with the murine lung adenoma susceptibility 1 (Las1) protein--a candidate tumor suppressor gene implicated in lung tumorigenesis. Multiple, independent biochemical assays determined that IC97 interacts with both alpha- and beta-tubulin subunits within the axoneme. I1-dynein assembly mutants suggest that IC97 interacts with both the IC138 and IC140 subunits within the I1-dynein motor complex and that IC97 is part of a regulatory complex that contains IC138. Microtubule sliding assays, using axonemes containing I1 dynein but devoid of IC97, show reduced microtubule sliding velocities that are not rescued by kinase inhibitors, revealing a critical role for IC97 in I1-dynein function and control of dynein-driven motility.
Collapse
Affiliation(s)
- Maureen Wirschell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
King SM. Dynein-independent functions of DYNLL1/LC8: redox state sensing and transcriptional control. Sci Signal 2008; 1:pe51. [PMID: 19036713 DOI: 10.1126/scisignal.147pe51] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The highly conserved DYNLL/LC8 proteins promote dimerization of a broad range of targets and are essential for the integrity, activity, or both, of many subcellular systems, such as dyneins, myosin V, and apoptotic factors. Defects in DYNLL/LC8 function lead to severe cellular and developmental phenotypes in multicellular organisms, whereas loss-of-function alleles are lethal. DYNLL/LC8 dimer formation may be controlled by various signaling inputs (including pH changes and phosphorylation), and dimerization has been linked to alterations in the enzymatic activity of neuronal nitric oxide synthase and apoptotic control. A recent report now proposes that DYNLL/LC8-driven interactions are also regulated by changes in cellular redox state, which lead to intermonomer disulfide bond formation and ultimately activation of the transcription factor NF-kappaB.
Collapse
Affiliation(s)
- Stephen M King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-3305, USA.
| |
Collapse
|
45
|
Jung Y, Kim H, Min SH, Rhee SG, Jeong W. Dynein light chain LC8 negatively regulates NF-kappaB through the redox-dependent interaction with IkappaBalpha. J Biol Chem 2008; 283:23863-71. [PMID: 18579519 DOI: 10.1074/jbc.m803072200] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Redox regulation of nuclear factor kappaB (NF-kappaB) has been described, but the molecular mechanism underlying such regulation has remained unclear. We recently showed that a novel disulfide reductase, TRP14, inhibits tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation, and we identified the dynein light chain LC8, which interacts with the NF-kappaB inhibitor IkappaBalpha, as a potential substrate of TRP14. We now show the molecular mechanism by which NF-kappaB activation is redox-dependently regulated through LC8. LC8 inhibited TNFalpha-induced NF-kappaB activation in HeLa cells by interacting with IkappaBalpha and thereby preventing its phosphorylation by IkappaB kinase (IKK), without affecting the activity of IKK itself. TNFalpha induced the production of reactive oxygen species, which oxidized LC8 to a homodimer linked by the reversible formation of a disulfide bond between the Cys(2) residues of each subunit and thereby resulted in its dissociation from IkappaBalpha. Butylated hydroxyanisol, an antioxidant, and diphenyleneiodonium, an inhibitor of NADPH oxidase, attenuated the phosphorylation and degradation of IkappaBalpha by TNFalpha stimulation. In addition LC8 inhibited NF-kappaB activation by other stimuli including interleukin-1beta and lipopolysaccharide, both of which generated reactive oxygen species. Furthermore, TRP14 catalyzed reduction of oxidized LC8. Together, our results indicate that LC8 binds IkappaBalpha in a redox-dependent manner and thereby prevents its phosphorylation by IKK. TRP14 contributes to this inhibitory activity by maintaining LC8 in a reduced state.
Collapse
Affiliation(s)
- Yuyeon Jung
- Department of Life Science, Division of Life and Pharmaceutical Sciences, and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
46
|
Tanner CA, Rompolas P, Patel-King RS, Gorbatyuk O, Wakabayashi KI, Pazour GJ, King SM. Three members of the LC8/DYNLL family are required for outer arm dynein motor function. Mol Biol Cell 2008; 19:3724-34. [PMID: 18579685 DOI: 10.1091/mbc.e08-04-0362] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The highly conserved LC8/DYNLL family proteins were originally identified in axonemal dyneins and subsequently found to function in multiple enzyme systems. Genomic analysis uncovered a third member (LC10) of this protein class in Chlamydomonas. The LC10 protein is extracted from flagellar axonemes with 0.6 M NaCl and cofractionates with the outer dynein arm in sucrose density gradients. Furthermore, LC10 is specifically missing only from axonemes of those strains that fail to assemble outer dynein arms. Previously, the oda12-1 insertional allele was shown to lack the Tctex2-related dynein light chain LC2. The LC10 gene is located approximately 2 kb from that of LC2 and is also completely missing from this mutant but not from oda12-2, which lacks only the 3' end of the LC2 gene. Although oda12-1 cells assemble outer arms that lack only LC2 and LC10, this strain exhibits a flagellar beat frequency that is consistently less than that observed for strains that fail to assemble the entire outer arm and docking complex (e.g., oda1). These results support a key regulatory role for the intermediate chain/light chain complex that is an integral and highly conserved feature of all oligomeric dynein motors.
Collapse
Affiliation(s)
- Christopher A Tanner
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Krishna Mohan P, Barve M, Chatterjee A, Ghosh-Roy A, Hosur RV. NMR comparison of the native energy landscapes of DLC8 dimer and monomer. Biophys Chem 2008; 134:10-9. [DOI: 10.1016/j.bpc.2007.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 12/24/2007] [Accepted: 12/24/2007] [Indexed: 10/22/2022]
|
48
|
Song C, Wen W, Rayala SK, Chen M, Ma J, Zhang M, Kumar R. Serine 88 phosphorylation of the 8-kDa dynein light chain 1 is a molecular switch for its dimerization status and functions. J Biol Chem 2007; 283:4004-13. [PMID: 18084006 DOI: 10.1074/jbc.m704512200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dynein light chain 1 (DLC1, also known as DYNLL1, LC8, and PIN), a ubiquitously expressed and highly conserved protein, participates in a variety of essential intracellular events. Transition of DLC1 between dimer and monomer forms might play a crucial role in its function. However, the molecular mechanism(s) that control the transition remain unknown. DLC1 phosphorylation on Ser(88) by p21-activated kinase 1 (Pak1), a signaling nodule, promotes mammalian cell survival by regulating its interaction with Bim and the stability of Bim. Here we discovered that phosphorylation of Ser(88), which juxtapose each other at the interface of the DLC dimer, disrupts DLC1 dimer formation and consequently impairs its interaction with Bim. Overexpression of a Ser(88) phosphorylation-inactive DLC1 mutant in mammary epithelium cells and in a transgenic animal model caused apoptosis and accelerated mammary gland involution, respectively, with increased Bim levels. Structural and biophysical studies suggested that phosphorylation-mimicking mutation leads to dissociation of the DLC1 dimer to a pure folded monomer. The phosphorylation-induced DLC1 monomer is incapable of binding to its substrate Bim. These findings reveal a previously unrecognized regulatory mechanism of DLC1 in which the Ser(88) phosphorylation acts as a molecular switch for the transition of DLC1 from dimer to monomer, thereby modulating its interaction with substrates and consequently regulating the functions of DLC1.
Collapse
Affiliation(s)
- Chunying Song
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Dyneins are large minus-end-directed microtubule motors. Each dynein contains at least one dynein heavy chain (DHC) and a variable number of intermediate chains (IC), light intermediate chains (LIC) and light chains (LC). Here, we used genome sequence data from 24 diverse eukaryotes to assess the distribution of DHCs, ICs, LICs and LCs across Eukaryota. Phylogenetic inference identified nine DHC families (two cytoplasmic and seven axonemal) and six IC families (one cytoplasmic). We confirm that dyneins have been lost from higher plants and show that this is most likely because of a single loss of cytoplasmic dynein 1 from the ancestor of Rhodophyta and Viridiplantae, followed by lineage-specific losses of other families. Independent losses in Entamoeba mean that at least three extant eukaryotic lineages are entirely devoid of dyneins. Cytoplasmic dynein 2 is associated with intraflagellar transport (IFT), but in two chromalveolate organisms, we find an IFT footprint without the retrograde motor. The distribution of one family of outer-arm dyneins accounts for 2-headed or 3-headed outer-arm ultrastructures observed in different organisms. One diatom species builds motile axonemes without any inner-arm dyneins (IAD), and the unexpected conservation of IAD I1 in non-flagellate algae and LC8 (DYNLL1/2) in all lineages reveals a surprising fluidity to dynein function.
Collapse
|
50
|
Rompolas P, Pedersen LB, Patel-King RS, King SM. Chlamydomonas FAP133 is a dynein intermediate chain associated with the retrograde intraflagellar transport motor. J Cell Sci 2007; 120:3653-65. [PMID: 17895364 DOI: 10.1242/jcs.012773] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intraflagellar transport (IFT) is the bi-directional movement of particles along the length of axonemal outer doublet microtubules and is needed for the assembly and maintenance of eukaryotic cilia and flagella. Retrograde IFT requires cytoplasmic dynein 1b, a motor complex whose organization, structural composition and regulation is poorly understood. We have characterized the product of the Chlamydomonas FAP133 gene that encodes a new WD-repeat protein similar to dynein intermediate chains and homologous to the uncharacterized vertebrate protein WD34. FAP133 is located at the peri-basal body region as well as in punctate structures along the flagella. This protein is associated with the IFT machinery because it is specifically depleted from the flagella of cells with defects in anterograde IFT. Fractionation of flagellar matrix proteins indicates that FAP133 associates with both the LC8 dynein light chain and the IFT dynein heavy chain and light intermediate chain (DHC1b-D1bLIC) motor complex. In the absence of DHC1b or D1bLIC, FAP133 fails to localize at the peri-basal body region but, rather, is concentrated in a region of the cytoplasm near the cell center. Furthermore, we found that FAP133, LC8, DHC1b, D1bLIC, the FLA10 kinesin-2 necessary for anterograde IFT and other IFT scaffold components associate to form a large macromolecular assembly.
Collapse
Affiliation(s)
- Panteleimon Rompolas
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|