1
|
Megarioti AH, Kouvelis VN. The Coevolution of Fungal Mitochondrial Introns and Their Homing Endonucleases (GIY-YIG and LAGLIDADG). Genome Biol Evol 2021; 12:1337-1354. [PMID: 32585032 PMCID: PMC7487136 DOI: 10.1093/gbe/evaa126] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Fungal mitochondrial (mt) genomes exhibit great diversity in size which is partially attributed to their variable intergenic regions and most importantly to the inclusion of introns within their genes. These introns belong to group I or II, and both of them are self-splicing. The majority of them carry genes encoding homing endonucleases, either LAGLIDADG or GIY-YIG. In this study, it was found that these intronic homing endonucleases genes (HEGs) may originate from mt free-standing open reading frames which can be found nowadays in species belonging to Early Diverging Fungi as “living fossils.” A total of 487 introns carrying HEGs which were located in the publicly available mt genomes of representative species belonging to orders from all fungal phyla was analyzed. Their distribution in the mt genes, their insertion target sequence, and the phylogenetic analyses of the HEGs showed that these introns along with their HEGs form a composite structure in which both selfish elements coevolved. The invasion of the ancestral free-standing HEGs in the introns occurred through a perpetual mechanism, called in this study as “aenaon” hypothesis. It is based on recombination, transpositions, and horizontal gene transfer events throughout evolution. HEGs phylogenetically clustered primarily according to their intron hosts and secondarily to the mt genes carrying the introns and their HEGs. The evolutionary models created revealed an “intron-early” evolution which was enriched by “intron-late” events through many different independent recombinational events which resulted from both vertical and horizontal gene transfers.
Collapse
Affiliation(s)
- Amalia H Megarioti
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Vassili N Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
2
|
The Mitochondrial Genome of the Sea Anemone Stichodactyla haddoni Reveals Catalytic Introns, Insertion-Like Element, and Unexpected Phylogeny. Life (Basel) 2021; 11:life11050402. [PMID: 33924866 PMCID: PMC8146996 DOI: 10.3390/life11050402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/15/2023] Open
Abstract
A hallmark of sea anemone mitochondrial genomes (mitogenomes) is the presence of complex catalytic group I introns. Here, we report the complete mitogenome and corresponding transcriptome of the carpet sea anemone Stichodactyla haddoni (family Stichodactylidae). The mitogenome is vertebrate-like in size, organization, and gene content. Two mitochondrial genes encoding NADH dehydrogenase subunit 5 (ND5) and cytochrome c oxidase subunit I (COI) are interrupted with complex group I introns, and one of the introns (ND5-717) harbors two conventional mitochondrial genes (ND1 and ND3) within its sequence. All the mitochondrial genes, including the group I introns, are expressed at the RNA level. Nonconventional and optional mitochondrial genes are present in the mitogenome of S. haddoni. One of these gene codes for a COI-884 intron homing endonuclease and is organized in-frame with the upstream COI exon. The insertion-like orfA is expressed as RNA and translocated in the mitogenome as compared with other sea anemones. Phylogenetic analyses based on complete nucleotide and derived protein sequences indicate that S. haddoni is embedded within the family Actiniidae, a finding that challenges current taxonomy.
Collapse
|
3
|
Chi SI, Urbarova I, Johansen SD. Expression of homing endonuclease gene and insertion-like element in sea anemone mitochondrial genomes: Lesson learned from Anemonia viridis. Gene 2018; 652:78-86. [PMID: 29366757 DOI: 10.1016/j.gene.2018.01.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/19/2017] [Accepted: 01/19/2018] [Indexed: 11/16/2022]
Abstract
The mitochondrial genomes of sea anemones are dynamic in structure. Invasion by genetic elements, such as self-catalytic group I introns or insertion-like sequences, contribute to sea anemone mitochondrial genome expansion and complexity. By using next generation sequencing we investigated the complete mtDNAs and corresponding transcriptomes of the temperate sea anemone Anemonia viridis and its closer tropical relative Anemonia majano. Two versions of fused homing endonuclease gene (HEG) organization were observed among the Actiniidae sea anemones; in-frame gene fusion and pseudo-gene fusion. We provided support for the pseudo-gene fusion organization in Anemonia species, resulting in a repressed HEG from the COI-884 group I intron. orfA, a putative protein-coding gene with insertion-like features, was present in both Anemonia species. Interestingly, orfA and COI expression were significantly up-regulated upon long-term environmental stress corresponding to low seawater pH conditions. This study provides new insights to the dynamics of sea anemone mitochondrial genome structure and function.
Collapse
Affiliation(s)
- Sylvia Ighem Chi
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ilona Urbarova
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Steinar D Johansen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway; Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| |
Collapse
|
4
|
Guha TK, Wai A, Mullineux ST, Hausner G. The intron landscape of the mtDNA cytb gene among the Ascomycota: introns and intron-encoded open reading frames. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:1015-1024. [DOI: 10.1080/24701394.2017.1404042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tuhin K. Guha
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
5
|
Emblem Å, Okkenhaug S, Weiss ES, Denver DR, Karlsen BO, Moum T, Johansen SD. Sea anemones possess dynamic mitogenome structures. Mol Phylogenet Evol 2014; 75:184-93. [DOI: 10.1016/j.ympev.2014.02.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/31/2014] [Accepted: 02/17/2014] [Indexed: 11/24/2022]
|
6
|
Moran JV. 2013 Curt Stern Award Address. Am J Hum Genet 2014; 94:340-8. [PMID: 24607386 PMCID: PMC3951928 DOI: 10.1016/j.ajhg.2014.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- John V Moran
- Departments of Human Genetics and Internal Medicine, 1241 East Catherine Street, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA; Howard Hughes Medical Institute.
| |
Collapse
|
7
|
Edgell DR, Chalamcharla VR, Belfort M. Learning to live together: mutualism between self-splicing introns and their hosts. BMC Biol 2011; 9:22. [PMID: 21481283 PMCID: PMC3073962 DOI: 10.1186/1741-7007-9-22] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/11/2011] [Indexed: 12/22/2022] Open
Abstract
Group I and II introns can be considered as molecular parasites that interrupt protein-coding and structural RNA genes in all domains of life. They function as self-splicing ribozymes and thereby limit the phenotypic costs associated with disruption of a host gene while they act as mobile DNA elements to promote their spread within and between genomes. Once considered purely selfish DNA elements, they now seem, in the light of recent work on the molecular mechanisms regulating bacterial and phage group I and II intron dynamics, to show evidence of co-evolution with their hosts. These previously underappreciated relationships serve the co-evolving entities particularly well in times of environmental stress.
Collapse
Affiliation(s)
- David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1.
| | | | | |
Collapse
|
8
|
Barros MH, Myers AM, Van Driesche S, Tzagoloff A. COX24 codes for a mitochondrial protein required for processing of the COX1 transcript. J Biol Chem 2005; 281:3743-51. [PMID: 16339141 DOI: 10.1074/jbc.m510778200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most strains of Saccharomyces cerevisiae the mitochondrial gene COX1, for subunit 1 of cytochrome oxidase, contains multiple exons and introns. Processing of COX1 primary transcript requires accessory proteins factors, some of which are encoded by nuclear genes and others by reading frames residing in some of the introns of the COX1 and COB genes. Here we show that the low molecular weight protein product of open reading frame YLR204W, for which we propose the name COX24, is also involved in processing of COX1 RNA intermediates. The growth defect of cox24 mutants is partially rescued in strains harboring mitochondrial DNA lacking introns. Northern blot analyses of mitochondrial transcripts indicate cox24 null mutants to be blocked in processing of introns aI2 and aI3. The dependence of intron aI3 excision on Cox24p is also supported by the growth properties of the cox24 mutant harboring mitochondrial DNA with different intron compositions. The intermediate phenotype of the cox24 mutant in the background of intronless mitochondrial DNA, however, suggests that in addition to its role in splicing of the COX1 pre-mRNA, Cox24p still has another function. Based on the analysis of a cox14-cox24 double mutant, we propose that the other function of Cox24p is related to translation of the COX1 mRNA.
Collapse
Affiliation(s)
- Mario H Barros
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
9
|
Lin J, Vogt VM. I-PpoI, the endonuclease encoded by the group I intron PpLSU3, is expressed from an RNA polymerase I transcript. Mol Cell Biol 1998; 18:5809-17. [PMID: 9742098 PMCID: PMC109167 DOI: 10.1128/mcb.18.10.5809] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PpLSU3, a mobile group I intron in the rRNA genes of Physarum polycephalum, also can home into yeast chromosomal ribosomal DNA (rDNA) (D. E. Muscarella and V. M. Vogt, Mol. Cell. Biol. 13:1023-1033, 1993). By integrating PpLSU3 into the rDNA copies of a yeast strain temperature sensitive for RNA polymerase I, we have shown that the I-PpoI homing endonuclease encoded by PpLSU3 is expressed from an RNA polymerase I transcript. We have also developed a method to integrate mutant forms of PpLSU3 as well as the Tetrahymena intron TtLSU1 into rDNA, by expressing I-PpoI in trans. Analysis of I-PpoI expression levels in these mutants, along with subcellular fractionation of intron RNA, strongly suggests that the full-length excised intron RNA, but not RNAs that are further cleaved, serves as or gives rise to the mRNA.
Collapse
Affiliation(s)
- J Lin
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
10
|
Wernette CM. Structure and activity of the mitochondrial intron-encoded endonuclease, I-SceIV. Biochem Biophys Res Commun 1998; 248:127-33. [PMID: 9675098 DOI: 10.1006/bbrc.1998.8921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Starting with crude yeast mitochondria, the intron homing endonuclease, I-SecIV, was purified to near homogeneity. This highly purified enzyme differs from some other well-characterized yeast mitochondrial intron-encoded endonucleases in terms of its structure and DNA cleavage specificity. The enzyme is a heterodimer with a native molecular mass of 92 kDa. A small catalytic subunit (32 kDa) is probably encoded largely or entirely by intron 5 alpha of the cytochrome oxidase subunit I gene. A larger polypeptide subunit (60 kDa) may be a nuclear factor necessary for intron mobility. I-SceIV exhibits a low DNA sequence specificity as it cleaves a variety of DNA substrates. Analysis of kinetic parameters shows that the purified enzyme has a very high affinity for DNA and exhibits low turnover which may have implications for subsequent steps in the intron homing process.
Collapse
Affiliation(s)
- C M Wernette
- Department of Chemistry, Auburn University, Alabama 36849-5312, USA.
| |
Collapse
|
11
|
Group I introns in biotechnology: prospects of application of ribozymes and rare-cutting homing endonucleases. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1387-2656(08)70031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
Affiliation(s)
- M Belfort
- Molecular Genetics Program, Wadsworth Center, State University of New York, New York State Department of Health, Albany 12201-2002, USA
| | | |
Collapse
|