1
|
Maiti BK, Maia LB, Silveira CM, Todorovic S, Carreira C, Carepo MSP, Grazina R, Moura I, Pauleta SR, Moura JJG. Incorporation of molybdenum in rubredoxin: models for mononuclear molybdenum enzymes. J Biol Inorg Chem 2015; 20:821-9. [PMID: 25948393 DOI: 10.1007/s00775-015-1268-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/29/2015] [Indexed: 12/21/2022]
Abstract
Molybdenum is found in the active site of enzymes usually coordinated by one or two pyranopterin molecules. Here, we mimic an enzyme with a mononuclear molybdenum-bis pyranopterin center by incorporating molybdenum in rubredoxin. In the molybdenum-substituted rubredoxin, the metal ion is coordinated by four sulfurs from conserved cysteine residues of the apo-rubredoxin and two other exogenous ligands, oxygen and thiol, forming a Mo((VI))-(S-Cys)4(O)(X) complex, where X represents -OH or -SR. The rubredoxin molybdenum center is stabilized in a Mo(VI) oxidation state, but can be reduced to Mo(IV) via Mo(V) by dithionite, being a suitable model for the spectroscopic properties of resting and reduced forms of molybdenum-bis pyranopterin-containing enzymes. Preliminary experiments indicate that the molybdenum site built in rubredoxin can promote oxo transfer reactions, as exemplified with the oxidation of arsenite to arsenate.
Collapse
Affiliation(s)
- Biplab K Maiti
- UCIBIO, REQUIMTE, Departamento Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Comparative electrochemical study of superoxide reductases. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 41:209-15. [PMID: 22143105 DOI: 10.1007/s00249-011-0777-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/29/2011] [Accepted: 11/21/2011] [Indexed: 10/15/2022]
Abstract
Superoxide reductases are involved in relevant biological electron transfer reactions related to protection against oxidative stress caused by reactive oxygen species. The electrochemical features of metalloproteins belonging to the three different classes of enzymes were studied by potentio-dynamic techniques (cyclic and square wave voltammetry): desulfoferrodoxin from Desulfovibrio vulgaris Hildenborough, class I superoxide reductases and neelaredoxin from Desulfovibrio gigas and Treponema pallidum, namely class II and III superoxide reductases, respectively. In addition, a small protein, designated desulforedoxin from D. gigas, which has high homology with the N-terminal domain of class I superoxide reductases, was also investigated. A comparison of the redox potentials and redox behavior of all the proteins is presented, and the results show that SOR center II is thermodynamically more stable than similar centers in different proteins, which may be related to an intramolecular electron transfer function.
Collapse
|
3
|
New spectroscopic and electrochemical insights on a class I superoxide reductase: evidence for an intramolecular electron-transfer pathway. Biochem J 2011; 438:485-94. [DOI: 10.1042/bj20110836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SORs (superoxide reductases) are enzymes involved in bacterial resistance to reactive oxygen species, catalysing the reduction of superoxide anions to hydrogen peroxide. So far three structural classes have been identified. Class I enzymes have two iron-centre-containing domains. Most studies have focused on the catalytic iron site (centre II), yet the role of centre I is poorly understood. The possible roles of this iron site were approached by an integrated study using both classical and fast kinetic measurements, as well as direct electrochemistry. A new heterometallic form of the protein with a zinc-substituted centre I, maintaining the iron active-site centre II, was obtained, resulting in a stable derivative useful for comparison with the native all-iron from. Second-order rate constants for the electron transfer between reduced rubredoxin and the different SOR forms were determined to be 2.8×107 M−1·s−1 and 1.3×106 M−1·s−1 for SORFe(IIII)-Fe(II) and for SORFe(IIII)-Fe(III) forms respectively, and 3.2×106 M−1·s−1 for the SORZn(II)-Fe(III) form. The results obtained seem to indicate that centre I transfers electrons from the putative physiological donor rubredoxin to the catalytic active iron site (intramolecular process). In addition, electrochemical results show that conformational changes are associated with the redox state of centre I, which may enable a faster catalytic response towards superoxide anion. The apparent rate constants calculated for the SOR-mediated electron transfer also support this observation.
Collapse
|
4
|
Pereira AS, Tavares P, Folgosa F, Almeida RM, Moura I, Moura JJG. Superoxide Reductases. Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200700008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alice S. Pereira
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - Pedro Tavares
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - Filipe Folgosa
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - Rui M. Almeida
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - Isabel Moura
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - José J. G. Moura
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| |
Collapse
|
5
|
Auchère F, Pauleta SR, Tavares P, Moura I, Moura JJG. Kinetics studies of the superoxide-mediated electron transfer reactions between rubredoxin-type proteins and superoxide reductases. J Biol Inorg Chem 2006; 11:433-44. [PMID: 16544159 DOI: 10.1007/s00775-006-0090-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 02/03/2006] [Indexed: 10/24/2022]
Abstract
In this work we present a kinetic study of the superoxide-mediated electron transfer reactions between rubredoxin-type proteins and members of the three different classes of superoxide reductases (SORs). SORs from the sulfate-reducing bacteria Desulfovibrio vulgaris (Dv) and D. gigas (Dg) were chosen as prototypes of classes I and II, respectively, while SOR from the syphilis spirochete Treponema pallidum (Tp) was representative of class III. Our results show evidence for different behaviors of SORs toward electron acceptance, with a trend to specificity for the electron donor and acceptor from the same organism. Comparison of the different kapp values, 176.9+/-25.0 min(-1) in the case of the Tp/Tp electron transfer, 31.8+/-3.6 min(-1) for the Dg/Dg electron transfer, and 6.9+/-1.3 min(-1) for Dv/Dv, could suggest an adaptation of the superoxide-mediated electron transfer efficiency to various environmental conditions. We also demonstrate that, in Dg, another iron-sulfur protein, a desulforedoxin, is able to transfer electrons to SOR more efficiently than rubredoxin, with a kapp value of 108.8+/-12.0 min(-1), and was then assigned as the potential physiological electron donor in this organism.
Collapse
Affiliation(s)
- Françoise Auchère
- REQUIMTE-Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | | | | | | | | |
Collapse
|
6
|
Iwasaki T, Kounosu A, Tao Y, Li Z, Shokes JE, Cosper NJ, Imai T, Urushiyama A, Scott RA. Rational Design of a Mononuclear Metal Site into the Archaeal Rieske-type Protein Scaffold. J Biol Chem 2005; 280:9129-34. [PMID: 15632131 DOI: 10.1074/jbc.m414051200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins containing Rieske-type [2Fe-2S] clusters play essential functions in all three domains of life. We engineered the two histidine ligands to the Rieske-type [2Fe-2S] cluster in the hyperthermophilic archaeal Rieske-type ferredoxin from Sulfolobus solfataricus to modify types and spacing of ligands and successfully converted the metal and cluster type at the redox-active site with a minimal structural change to a native Rieske-type protein scaffold. Spectroscopic analyses unambiguously established a rubredoxin-type mononuclear Fe3+/2+ center at the engineered local metal-binding site (Zn2+ occupies the iron site depending on the expression conditions). These results show the importance of types and spacing of ligands in the in vivo cluster recognition/insertion/assembly in biological metallosulfur protein scaffolds. We suggest that early ligand substitution and displacement events at the local metal-binding site(s) might have primarily allowed the metal and cluster type conversion in ancestral redox protein modules, which greatly enhanced their capabilities of conducting a wide range of unique redox chemistry in biological electron transfer conduits, using a limited number of basic protein scaffolds.
Collapse
Affiliation(s)
- Toshio Iwasaki
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Peptide deformylase (PDF) catalyses the hydrolytic removal of the N-terminal formyl group from nascent ribosome-synthesised polypeptides. Its activity is essential and it is present in all eubacteria. It is also present in the organelles of some eukaryotes. PDF represents a novel class of mononuclear iron protein, utilising an Fe(2+) ion to catalyse the hydrolysis of an amide bond. Due to its extreme lability, isolation and characterisation of PDF was not possible until very recently. This review will discuss the recent progress in the elucidation of the the structure and function of PDF, evaluating its suitability as a target for antibiotic design and summarising the current approaches to designing drugs that target PDF.
Collapse
Affiliation(s)
- D Pei
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio StateUniversity, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Auchère F, Sikkink R, Cordas C, Raleiras P, Tavares P, Moura I, Moura JJG. Overexpression and purification of Treponema pallidum rubredoxin; kinetic evidence for a superoxide-mediated electron transfer with the superoxide reductase neelaredoxin. J Biol Inorg Chem 2004; 9:839-49. [PMID: 15328557 DOI: 10.1007/s00775-004-0584-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022]
Abstract
Superoxide reductases are a class of non-haem iron enzymes which catalyse the monovalent reduction of the superoxide anion O2- into hydrogen peroxide and water. Treponema pallidum (Tp), the syphilis spirochete, expresses the gene for a superoxide reductase called neelaredoxin, having the iron protein rubredoxin as the putative electron donor necessary to complete the catalytic cycle. In this work, we present the first cloning, overexpression in Escherichia coli and purification of the Tp rubredoxin. Spectroscopic characterization of this 6 kDa protein allowed us to calculate the molar absorption coefficient of the 490 nm feature of ferric iron, epsilon=6.9+/-0.4 mM(-1) cm(-1). Moreover, the midpoint potential of Tp rubredoxin, determined using a glassy carbon electrode, was -76+/-5 mV. Reduced rubredoxin can be efficiently reoxidized upon addition of Na(2)IrCl(6)-oxidized neelaredoxin, in agreement with a direct electron transfer between the two proteins, with a stoichiometry of the electron transfer reaction of one molecule of oxidized rubredoxin per one molecule of neelaredoxin. In addition, in presence of a steady-state concentration of superoxide anion, the physiological substrate of neelaredoxin, reoxidation of rubredoxin was also observed in presence of catalytic amounts of superoxide reductase, and the rate of rubredoxin reoxidation was shown to be proportional to the concentration of neelaredoxin, in agreement with a bimolecular reaction, with a calculated k(app)=180 min(-1). Interestingly, similar experiments performed with a rubredoxin from the sulfate-reducing bacteria Desulfovibrio vulgaris resulted in a much lower value of k(app)=4.5 min(-1). Altogether, these results demonstrated the existence for a superoxide-mediated electron transfer between rubredoxin and neelaredoxin and confirmed the physiological character of this electron transfer reaction.
Collapse
Affiliation(s)
- Françoise Auchère
- REQUIMTE-Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhu J, Dizin E, Hu X, Wavreille AS, Park J, Pei D. S-Ribosylhomocysteinase (LuxS) is a mononuclear iron protein. Biochemistry 2003; 42:4717-26. [PMID: 12705835 DOI: 10.1021/bi034289j] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
S-Ribosylhomocysteinase (LuxS) catalyzes the cleavage of the thioether linkage of S-ribosylhomocysteine (SRH) to produce L-homocysteine and 4,5-dihydroxy-2,3-pentanedione (DHPD). This is a key step in the biosynthetic pathway of the type II autoinducer (AI-2) in both Gram-positive and Gram-negative bacteria. Previous studies demonstrated that LuxS contains a divalent metal cofactor, which has been proposed to be a Zn(2+) ion. To gain insight into the catalytic mechanism of this unusual reaction and the function of the metal cofactor, we developed an efficient expression and purification system to produce LuxS enriched in either Fe(2+), Co(2+), or Zn(2+). Comparison of the catalytic properties and stability of the metal-substituted LuxS with those of the native enzyme revealed that the native metal ion is Fe(2+). The electronic absorption spectrum of the Co(II)-substituted LuxS underwent dramatic catalysis-dependent changes, suggesting the direct involvement of the metal ion in catalysis. Site-directed mutagenesis studies showed that Glu-57 and Cys-84 are essential for catalysis, most likely acting as general acids/bases. Reaction in D(2)O resulted in the incorporation of deuterium at the C-1, C-2, and C-5 positions of the diketone product. These data suggest a catalytic mechanism in which the metal ion catalyzes an intramolecular redox reaction, shifting the carbonyl group from the C-1 position to the C-3 position of the ribose. Subsequent beta-elimination at the C-4 and C-5 positions releases homocysteine as a free thiol.
Collapse
Affiliation(s)
- Jinge Zhu
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
10
|
Goodfellow BJ, Nunes SG, Rusnak F, Moura I, Ascenso C, Moura JJG, Volkman BF, Markley JL. Zinc-substituted Desulfovibrio gigas desulforedoxins: resolving subunit degeneracy with nonsymmetric pseudocontact shifts. Protein Sci 2002; 11:2464-70. [PMID: 12237467 PMCID: PMC2373705 DOI: 10.1110/ps.0208802] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2002] [Revised: 07/09/2002] [Accepted: 07/17/2002] [Indexed: 10/27/2022]
Abstract
Desulfovibrio gigas desulforedoxin (Dx) consists of two identical peptides, each containing one [Fe-4S] center per monomer. Variants with different iron and zinc metal compositions arise when desulforedoxin is produced recombinantly from Escherichia coli. The three forms of the protein, the two homodimers [Fe(III)/Fe(III)]Dx and [Zn(II)/Zn(II)]Dx, and the heterodimer [Fe(III)/Zn(II)]Dx, can be separated by ion exchange chromatography on the basis of their charge differences. Once separated, the desulforedoxins containing iron can be reduced with added dithionite. For NMR studies, different protein samples were prepared labeled with (15)N or (15)N + (13)C. Spectral assignments were determined for [Fe(II)/Fe(II)]Dx and [Fe(II)/Zn(II)]Dx from 3D (15)N TOCSY-HSQC and NOESY-HSQC data, and compared with those reported previously for [Zn(II)/Zn(II)]Dx. Assignments for the (13)C(alpha) shifts were obtained from an HNCA experiment. Comparison of (1)H-(15)N HSQC spectra of [Zn(II)/Zn(II)]Dx, [Fe(II)/Fe(II)]Dx and [Fe(II)/Zn(II)]Dx revealed that the pseudocontact shifts in [Fe(II)/Zn(II)]Dx can be decomposed into inter- and intramonomer components, which, when summed, accurately predict the observed pseudocontact shifts observed for [Fe(II)/Fe(II)]Dx. The degree of linearity observed in the pseudocontact shifts for residues >/=8.5 A from the metal center indicates that the replacement of Fe(II) by Zn(II) produces little or no change in the structure of Dx. The results suggest a general strategy for the analysis of NMR spectra of homo-oligomeric proteins in which a paramagnetic center introduced into a single subunit is used to break the magnetic symmetry and make it possible to obtain distance constraints (both pseudocontact and NOE) between subunits.
Collapse
|
11
|
Rusnak F, Ascenso C, Moura I, Moura JJG. Superoxide reductase activities of neelaredoxin and desulfoferrodoxin metalloproteins. Methods Enzymol 2002; 349:243-58. [PMID: 11912914 DOI: 10.1016/s0076-6879(02)49339-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Superoxide reductases have now been well characterized from several organisms. Unique biochemical features include the ability of the reduced enzyme to react with O2- but not dioxygen (reduced SORs are stable in an aerobic atmosphere for hours). Future biochemical assays that measure the reaction of SOR with O2- should take into account the difficulties of assaying O2- directly and the myriad of redox reactions that can take place between components in the assay, for example, direct electron transfer between cytochrome c and Dfx. Future prospects include further delineation of the reaction mechanisms, characterization of the putative (hydro)peroxo intermediate, and studies that uncover the components between reduced pyridine nucleotides and SOR in the metabolic pathway responsible for O2- detoxification.
Collapse
Affiliation(s)
- Frank Rusnak
- Section of Hematology Research, Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
12
|
Jovanović T, Ascenso C, Hazlett KR, Sikkink R, Krebs C, Litwiller R, Benson LM, Moura I, Moura JJ, Radolf JD, Huynh BH, Naylor S, Rusnak F. Neelaredoxin, an iron-binding protein from the syphilis spirochete, Treponema pallidum, is a superoxide reductase. J Biol Chem 2000; 275:28439-48. [PMID: 10874033 DOI: 10.1074/jbc.m003314200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Treponema pallidum, the causative agent of venereal syphilis, is a microaerophilic obligate pathogen of humans. As it disseminates hematogenously and invades a wide range of tissues, T. pallidum presumably must tolerate substantial oxidative stress. Analysis of the T. pallidum genome indicates that the syphilis spirochete lacks most of the iron-binding proteins present in many other bacterial pathogens, including the oxidative defense enzymes superoxide dismutase, catalase, and peroxidase, but does possess an orthologue (TP0823) for neelaredoxin, an enzyme of hyperthermophilic and sulfate-reducing anaerobes shown to possess superoxide reductase activity. To analyze the potential role of neelaredoxin in treponemal oxidative defense, we examined the biochemical, spectroscopic, and antioxidant properties of recombinant T. pallidum neelaredoxin. Neelaredoxin was shown to be expressed in T. pallidum by reverse transcriptase-polymerase chain reaction and Western blot analysis. Recombinant neelaredoxin is a 26-kDa alpha(2) homodimer containing, on average, 0.7 iron atoms/subunit. Mössbauer and EPR analysis of the purified protein indicates that the iron atom exists as a mononuclear center in a mixture of high spin ferrous and ferric oxidation states. The fully oxidized form, obtained by the addition of K(3)(Fe(CN)(6)), exhibits an optical spectrum with absorbances at 280, 320, and 656 nm; the last feature is responsible for the protein's blue color, which disappears upon ascorbate reduction. The fully oxidized protein has a A(280)/A(656) ratio of 10.3. Enzymatic studies revealed that T. pallidum neelaredoxin is able to catalyze a redox equilibrium between superoxide and hydrogen peroxide, a result consistent with it being a superoxide reductase. This finding, the first description of a T. pallidum iron-binding protein, indicates that the syphilis spirochete copes with oxidative stress via a primitive mechanism, which, thus far, has not been described in pathogenic bacteria.
Collapse
Affiliation(s)
- T Jovanović
- Section of Hematology Research, Department of Biochemistry and Molecular Biology, and Biomedical Mass Spectrometry and Functional Proteomics Facility, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Archer M, Carvalho AL, Teixeira S, Moura I, Moura JJ, Rusnak F, Romão MJ. Structural studies by X-ray diffraction on metal substituted desulforedoxin, a rubredoxin-type protein. Protein Sci 1999; 8:1536-45. [PMID: 10422844 PMCID: PMC2144384 DOI: 10.1110/ps.8.7.1536] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Desulforedoxin (Dx), isolated from the sulfate reducing bacterium Desulfovibrio gigas, is a small homodimeric (2 x 36 amino acids) protein. Each subunit contains a high-spin iron atom tetrahedrally bound to four cysteinyl sulfur atoms, a metal center similar to that found in rubredoxin (Rd) type proteins. The simplicity of the active center in Dx and the possibility of replacing the iron by other metals make this protein an attractive case for the crystallographic analysis of metal-substituted derivatives. This study extends the relevance of Dx to the bioinorganic chemistry field and is important to obtain model compounds that can mimic the four sulfur coordination of metals in biology. Metal replacement experiments were carried out by reconstituting the apoprotein with In3+, Ga3+, Cd2+, Hg2+, and Ni2+ salts. The In3+ and Ga3+ derivatives are isomorphous with the iron native protein; whereas Cd2+, Hg2+, and Ni2+ substituted Dx crystallized under different experimental conditions, yielding two additional crystal morphologies; their structures were determined by the molecular replacement method. A comparison of the three-dimensional structures for all metal derivatives shows that the overall secondary and tertiary structures are maintained, while some differences in metal coordination geometry occur, namely, bond lengths and angles of the metal with the sulfur ligands. These data are discussed in terms of the entatic state theory.
Collapse
Affiliation(s)
- M Archer
- Departamento de Química, Centro de Química Fina e Biotechnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | | | | | | | | | | |
Collapse
|
14
|
Pereira AS, Tavares P, Krebs C, Huynh BH, Rusnak F, Moura I, Moura JJ. Biochemical and spectroscopic characterization of overexpressed fuscoredoxin from Escherichia coli. Biochem Biophys Res Commun 1999; 260:209-15. [PMID: 10381368 DOI: 10.1006/bbrc.1999.0748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fuscoredoxin is a unique iron containing protein of yet unknown function originally discovered in the sulfate reducers of the genus Desulfovibrio. It contains two iron-sulfur clusters: a cubane [4Fe-4S] and a mixed oxo- and sulfido-bridged 4Fe cluster of unprecedented structure. The recent determination of the genomic sequence of Escherichia coli (E. coli) has revealed a homologue of fuscoredoxin in this facultative microbe. The presence of this gene in E. coli raises interesting questions regarding the function of fuscoredoxin and whether this gene represents a structural homologue of the better-characterized Desulfovibrio proteins. In order to explore the latter, an overexpression system for the E. coli fuscoredoxin gene was devised. The gene was cloned from genomic DNA by use of the polymerase chain reaction into the expression vector pT7-7 and overexpressed in E. coli BL21(DE3) cells. After two chromatographic steps a good yield of recombinant protein was obtained (approximately 4 mg of pure protein per liter of culture). The purified protein exhibits an optical spectrum characteristic of the homologue from D. desulfuricans, indicating that cofactor assembly was accomplished. Iron analysis indicated that the protein contains circa 8 iron atoms/molecule which were shown by EPR and Mössbauer spectroscopies to be present as two multinuclear clusters, albeit with slightly altered spectroscopic features. A comparison of the primary sequences of fuscoredoxins is presented and differences on cluster coordination modes are discussed on the light of the spectroscopic data.
Collapse
Affiliation(s)
- A S Pereira
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica, 2825-114, Portugal
| | | | | | | | | | | | | |
Collapse
|
15
|
Johnson KL, Veenstra TD, Londowski JM, Tomlinson AJ, Kumar R, Naylor S. On-line sample clean-up and chromatography coupled with electrospray ionization mass spectrometry to characterize the primary sequence and disulfide bond content of recombinant calcium binding proteins. Biomed Chromatogr 1999; 13:37-45. [PMID: 10191942 DOI: 10.1002/(sici)1099-0801(199902)13:1<37::aid-bmc810>3.0.co;2-p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have used on-line sample clean-up, concentration, and chromatography with electrospray ionization mass spectrometry (ESI-MS), to characterize and determine the presence of disulfide bonds in recombinant full-length rat brain calbindin D28K and two deletion mutants of the protein, one lacking EF-hand 2 (calbindin delta 2) and the other lacking EF-hands 2 and 6 (calbindin delta 2,6). The molecular weights of the expressed proteins dissolved in biological buffers were determined with high accuracy using a low-flow, pressurized chamber infusion system, that allows on-line protein clean-up by removing buffers/salts incompatible with ESI-MS. The molecular weight determinations showed that the amino-terminal methionine residues had been cleaved during the expression and isolation of the recombinant proteins. Approximately 85-90% of the protein sequences were confirmed by on-line HPLC-ESI-MS analysis of peptides generated by a lysyl endoproteinase C digestion. Comparisons of ESI-MS spectra of native and reduced calbindin D28K and delta 2 show that the full length- and delta 2 mutant-protein contain one disulfide bond. Molecular mass determinations of calbindin delta 2,6 showed that this protein contains a highly active cysteine residue that covalently binds a mercaptoethanol group, or forms a homodimer via a disulfide bond. The results show surprising differences amongst the deletion mutants of calbindin D28K with respect to the formation of disulfide bonds. These differences are not readily detected by other techniques and show that ESI-MS is a powerful, rapid method by which to detect disulfide linkages for intact proteins.
Collapse
Affiliation(s)
- K L Johnson
- Biomedical Mass Spectrometry Facility, Mayo Clinic/Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
16
|
Goodfellow BJ, Lima MJ, Ascenso C, Kennedy M, Sikkink R, Rusnak F, Moura I, Moura JJ. The use of 113Cd NMR chemical shifts as a structural probe in tetrathiolate metalloproteins. Inorganica Chim Acta 1998. [DOI: 10.1016/s0020-1693(97)06074-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Xiao Z, Lavery MJ, Ayhan M, Scrofani SDB, Wilce MCJ, Guss JM, Tregloan PA, George GN, Wedd AG. The Rubredoxin from Clostridium pasteurianum: Mutation of the Iron Cysteinyl Ligands to Serine. Crystal and Molecular Structures of Oxidized and Dithionite-Treated Forms of the Cys42Ser Mutant. J Am Chem Soc 1998. [DOI: 10.1021/ja973162c] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiguang Xiao
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| | - Megan J. Lavery
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| | - Mustafa Ayhan
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| | - Sergio D. B. Scrofani
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| | - Matthew C. J. Wilce
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| | - J. Mitchell Guss
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| | - Peter A. Tregloan
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| | - Graham N. George
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| | - Anthony G. Wedd
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| |
Collapse
|
18
|
Goodfellow BJ, Rusnak F, Moura I, Domke T, Moura JJ. NMR determination of the global structure of the 113Cd derivative of desulforedoxin: investigation of the hydrogen bonding pattern at the metal center. Protein Sci 1998; 7:928-37. [PMID: 9568899 PMCID: PMC2143978 DOI: 10.1002/pro.5560070410] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Desulforedoxin (Dx) is a simple homodimeric protein isolated from Desulfovibrio gigas (Dg) containing a distorted rubredoxin-like center with one iron coordinated by four cysteinyl residues (7.9 kDa with 36 amino acids per monomer). In order to probe the geometry and the H-bonding at the active site of Dx, the protein was reconstituted with 113Cd and the solution structure determined using 2D NMR methods. The structure of this derivative was initially compared with the NMR solution structure of the Zn form (Goodfellow BJ et al., 1996, J Biol Inorg Chem 1:341-353). Backbone amide protons for G4, D5, G13, L11 NH, and the Q14 NH side-chain protons, H-bonded in the X-ray structure, were readily exchanged with solvent. Chemical shift differences observed for amide protons near the metal center confirm the H-bonding pattern seen in the X-ray model (Archer M et al., 1995, J Mol Biol 251:690-702) and also suggest that H-bond lengths may vary between the Fe, Zn, and 113Cd forms. The H-bonding pattern was further probed using a heteronuclear spin echo difference (HSED) experiment; the results confirm the presence of NH-S H-bonds inferred from D2O exchange data and observed in the NMR family of structures. The presence of "H-bond mediated" coupling in Dx indicates that the NH-S H-bonds at the metal center have significant covalent character. The HSED experiment also identified an intermonomer "through space" coupling for one of the L26 methyl groups, indicating its proximity to the 113Cd center in the opposing monomer. This is the first example of an intermonomer "through space" coupling. Initial structure calculations produced subsets of NMR families with the S of C28 pointing away from or toward the L26 methyl: only the subset with the C28 sulfur pointing toward the L26 methyl could result in a "through space" coupling. The HSED result was therefore included in the structure calculations. Comparison of the Fe, Zn, and 113Cd forms of Dx suggests that the geometry of the metal center and the global fold of the protein does not vary to any great extent, although the H-bond network varies slightly when Cd is introduced. The similarity between the H-bonding pattern seen at the metal center in Dx, Rd (including H-bonded and through space-mediated coupling), and many zinc-finger proteins suggests that these H-bonds are structurally vital for stabilization of the metal centers in these proteins.
Collapse
Affiliation(s)
- B J Goodfellow
- Departamento de Química (and Centro de Química Fina e Biotecnologia), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica, Portugal
| | | | | | | | | |
Collapse
|
19
|
Kitamura M, Koshino Y, Kamikawa Y, Kohno K, Kojima S, Miura K, Sagara T, Akutsu H, Kumagai I, Nakaya T. Cloning and expression of the rubredoxin gene from Desulfovibrio vulgaris (Miyazaki F)--comparison of the primary structure of desulfoferrodoxin. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1351:239-47. [PMID: 9116039 DOI: 10.1016/s0167-4781(96)00203-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A gene encoding rubredoxin from Desulfovibrio vulgaris (Miyazaki F) was cloned and overexpressed in Escherichia coli. A 1.1-kilobase pair DNA fragment, isolated from D. vulgaris (Miyazaki F) by double digestion with SmaI and SalI, contained two genes, the rubredoxin gene (rub) and the desulfoferrodoxin gene (rbo) which was situated upstream of rub. The deduced amino acid sequence of desulfoferrodoxin was homologous to those from other strains and Cys residues that are responsible to bind irons were also conserved. The expression system for rub was constructed under the control of the T7 promoter in E. coli. The purified protein was soluble and had a characteristic visible absorption spectrum. Inductively coupled plasma-atomic emission analysis and electron paramagnetic resonance analysis of the recombinant rubredoxin revealed the presence of an iron ion in a distorted tetrahedral geometry that was the same as native D. vulgaris rubredoxin. In vitro NADH reduction analysis indicated that recombinant rubredoxin was active, and its redox potential was determined as -5 mV.
Collapse
Affiliation(s)
- M Kitamura
- Department of Bioapplied Chemistry, Faculty of Engineering, Osaka City University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yu L, Kennedy M, Czaja C, Tavares P, Moura JJ, Moura I, Rusnak F. Conversion of desulforedoxin into a rubredoxin center. Biochem Biophys Res Commun 1997; 231:679-82. [PMID: 9070870 DOI: 10.1006/bbrc.1997.6171] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rubredoxin and desulforedoxin both contain an Fe(S-Cys)4 center. However, the spectroscopic properties of the center in desulforedoxin differ from rubredoxin. These differences arise from a distortion of the metal site hypothesized to result from adjacent cysteine residues in the primary sequence of desulforedoxin. Two desulforedoxin mutants were generated in which either a G or P-V were inserted between adjacent cysteines. Both mutants exhibited optical spectra with maxima at 278, 345, 380, 480, and 560 nm while the low temperature X-band EPR spectra indicated highspin Fe3+ ions with large rhombic distortions (E/D = 0.21-0.23). These spectroscopic properties are distinct from wild type desulforedoxin and virtually identical to rubredoxin.
Collapse
Affiliation(s)
- L Yu
- Section of Hematology Research, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Electrospray ionization mass spectrometry has been used to study protein interactions driven by noncovalent forces. The gentleness of the electrospray ionization process allows intact protein complexes to be directly detected by mass spectrometry. Evidence from the growing body of literature suggests that the ESI-MS observations for these weakly bound systems reflect, to some extent, the nature of the interaction found in the condensed phase. Stoichiometry of the complex can be easily obtained from the resulting mass spectrum because the molecular weight of the complex is directly measured. For the study of protein interactions, ESI-MS is complementary to other biophysical methods, such as NMR and analytical ultracentrifugation. However, mass spectrometry offers advantages in speed and sensitivity. The experimental variables that play a role in the outcome of ESI-MS studies of noncovalently bound complexes are reviewed. Several applications of ESI-MS are discussed, including protein interactions with metal ions and nucleic acids and subunit protein structures (quaternary structure).
Collapse
Affiliation(s)
- J A Loo
- Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
22
|
Moura JJG, Goodfellow BJ, Romão MJ, Rusnak F, Moura I. Analysis, Design and Engineering of Simple Iron-Sulfur Proteins: Tales from Rubredoxin and Desulforedoxin. COMMENT INORG CHEM 1996. [DOI: 10.1080/02603599608032727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Tomlinson AJ, Benson LM, Jameson S, Naylor S. Rapid loading of large sample volumes, analyte cleanup, and modified moving boundary transient isotachophoresis conditions for membrane preconcentration-capillary electrophoresis in small diameter capillaries. Electrophoresis 1996; 17:1801-7. [PMID: 9034760 DOI: 10.1002/elps.1150171203] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Using a removable membrane preconcentration (mPC) cartridge, large sample volumes can be loaded prior to final assembly of the mPC capillary electrophoresis (CE) capillary. For narrow-bore (< or = 25 microns ID) uncoated mPC-CE capillaries, applied to peptide analysis, efficient moving boundary transient isotachphoresis (tITP) conditions at the onset of electrophoresis are described. The enhancement of mPC-CE-mass spectrometry (MS) technology afforded by rapid sample loading and modified moving boundary tITP conditions are demonstrated by analysis of major histocompatibility complex (MHC) class I peptides that were derived from a Kb precipitation of mouse EL-4 cells. Furthermore, we demonstrate the structural characterization of these immunologically significant molecules by mPC-CE-tandem mass spectrometry (mPC-CE-MS/MS).
Collapse
Affiliation(s)
- A J Tomlinson
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
24
|
Ayhan M, Xiao Z, Lavery MJ, Hamer AM, Nugent KW, Scrofani SDB, Guss M, Wedd AG. The Rubredoxin from Clostridium pasteurianum: Mutation of the Conserved Glycine Residues 10 and 43 to Alanine and Valine. Inorg Chem 1996. [DOI: 10.1021/ic951653x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mustafa Ayhan
- Schools of Chemistry and Physics, University of Melbourne, Parkville, Victoria 3052, Australia, and Department of Biochemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Zhiguang Xiao
- Schools of Chemistry and Physics, University of Melbourne, Parkville, Victoria 3052, Australia, and Department of Biochemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Megan J. Lavery
- Schools of Chemistry and Physics, University of Melbourne, Parkville, Victoria 3052, Australia, and Department of Biochemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Amanda M. Hamer
- Schools of Chemistry and Physics, University of Melbourne, Parkville, Victoria 3052, Australia, and Department of Biochemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Kerry W. Nugent
- Schools of Chemistry and Physics, University of Melbourne, Parkville, Victoria 3052, Australia, and Department of Biochemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Sergio D. B. Scrofani
- Schools of Chemistry and Physics, University of Melbourne, Parkville, Victoria 3052, Australia, and Department of Biochemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Mitchell Guss
- Schools of Chemistry and Physics, University of Melbourne, Parkville, Victoria 3052, Australia, and Department of Biochemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Anthony G. Wedd
- Schools of Chemistry and Physics, University of Melbourne, Parkville, Victoria 3052, Australia, and Department of Biochemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|