1
|
Dutkiewicz Z, Varrot A, Breese KJ, Stubbs KA, Nuschy L, Adduci I, Paschinger K, Wilson IBH. Bioinformatic, Enzymatic, and Structural Characterization of Trichuris suis Hexosaminidase HEX-2. Biochemistry 2024; 63:1941-1954. [PMID: 39058279 PMCID: PMC11308363 DOI: 10.1021/acs.biochem.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Hexosaminidases are key enzymes in glycoconjugate metabolism and occur in all kingdoms of life. Here, we have investigated the phylogeny of the GH20 glycosyl hydrolase family in nematodes and identified a β-hexosaminidase subclade present only in the Dorylaimia. We have expressed one of these, HEX-2 from Trichuris suis, a porcine parasite, and shown that it prefers an aryl β-N-acetylgalactosaminide in vitro. HEX-2 has an almost neutral pH optimum and is best inhibited by GalNAc-isofagomine. Toward N-glycan substrates, it displays a preference for the removal of GalNAc residues from LacdiNAc motifs as well as the GlcNAc attached to the α1,3-linked core mannose. Therefore, it has a broader specificity than insect fused lobe (FDL) hexosaminidases but one narrower than distant homologues from plants. Its X-ray crystal structure, the first of any subfamily 1 GH20 hexosaminidase to be determined, is closest to Streptococcus pneumoniae GH20C and the active site is predicted to be compatible with accommodating both GalNAc and GlcNAc. The new structure extends our knowledge about this large enzyme family, particularly as T. suis HEX-2 also possesses the key glutamate residue found in human hexosaminidases of either GH20 subfamily, including HEXD whose biological function remains elusive.
Collapse
Affiliation(s)
- Zuzanna Dutkiewicz
- Institut
für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, Wien 1190, Austria
| | | | - Karen J. Breese
- School
of Molecular Sciences, University of Western
Australia, Crawley, WA 6009, Australia
| | - Keith A. Stubbs
- School
of Molecular Sciences, University of Western
Australia, Crawley, WA 6009, Australia
- ARC
Training Centre for Next-Gen Technologies in Biomedical Analysis,
School of Molecular Sciences, University
of Western Australia, Crawley, WA 6009, Australia
| | - Lena Nuschy
- Institut
für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, Wien 1190, Austria
| | - Isabella Adduci
- Institut
für Parasitologie, Department für Pathobiologie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Wien A-1210, Austria
| | - Katharina Paschinger
- Institut
für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, Wien 1190, Austria
| | - Iain B. H. Wilson
- Institut
für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, Wien 1190, Austria
| |
Collapse
|
2
|
Ge SS, Chen B, Wu YY, Long QS, Zhao YL, Wang PY, Yang S. Current advances of carbene-mediated photoaffinity labeling in medicinal chemistry. RSC Adv 2018; 8:29428-29454. [PMID: 35547988 PMCID: PMC9084484 DOI: 10.1039/c8ra03538e] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/07/2018] [Indexed: 12/21/2022] Open
Abstract
Photoaffinity labeling (PAL) in combination with a chemical probe to covalently bind its target upon UV irradiation has demonstrated considerable promise in drug discovery for identifying new drug targets and binding sites. In particular, carbene-mediated photoaffinity labeling (cmPAL) has been widely used in drug target identification owing to its excellent photolabeling efficiency, minimal steric interference and longer excitation wavelength. Specifically, diazirines, which are among the precursors of carbenes and have higher carbene yields and greater chemical stability than diazo compounds, have proved to be valuable photolabile reagents in a diverse range of biological systems. This review highlights current advances of cmPAL in medicinal chemistry, with a focus on structures and applications for identifying small molecule-protein and macromolecule-protein interactions and ligand-gated ion channels, coupled with advances in the discovery of targets and inhibitors using carbene precursor-based biological probes developed in recent decades.
Collapse
Affiliation(s)
- Sha-Sha Ge
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Biao Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Yuan-Yuan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Qing-Su Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Yong-Liang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
- College of Pharmacy, East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
3
|
Labeled chemical biology tools for investigating sphingolipid metabolism, trafficking and interaction with lipids and proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:1161-73. [PMID: 24389251 DOI: 10.1016/j.bbalip.2013.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/10/2013] [Accepted: 12/17/2013] [Indexed: 12/17/2022]
Abstract
The unraveling of sphingolipid metabolism and function in the last 40 years relied on the extensive study of inherited human disease and specifically-tailored mouse models. However, only few of the achievements made so far would have been possible without chemical biology tools, such as fluorescent and/or radio-labeled and other artificial substrates, (mechanism-based) enzyme inhibitors, cross-linking probes or artificial membrane models. In this review we provide an overview over chemical biology tools that have been used to gain more insight into the molecular basis of sphingolipid-related biology. Many of these tools are still of high relevance for the investigation of current sphingolipid-related questions, others may stimulate the tailoring of novel probes suitable to address recent and future issues in the field. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
|
4
|
Das J. Aliphatic diazirines as photoaffinity probes for proteins: recent developments. Chem Rev 2011; 111:4405-17. [PMID: 21466226 DOI: 10.1021/cr1002722] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, USA.
| |
Collapse
|
5
|
Witte MD, van der Marel GA, Aerts JMFG, Overkleeft HS. Irreversible inhibitors and activity-based probes as research tools in chemical glycobiology. Org Biomol Chem 2011; 9:5908-26. [DOI: 10.1039/c1ob05531c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Rempel BP, Withers SG. Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiology 2008; 18:570-86. [PMID: 18499865 DOI: 10.1093/glycob/cwn041] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glycoside hydrolases are important enzymes in a number of essential biological processes. Irreversible inhibitors of this class of enzyme have attracted interest as probes of both structure and function. In this review we discuss some of the compounds used to covalently modify glycosidases, their use in residue identification, structural and mechanistic investigations, and finally their applications, both in vitro and in vivo, to complex biological systems.
Collapse
Affiliation(s)
- Brian P Rempel
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
7
|
Borzym-Kluczyk M, Olszewska E, Radziejewska I, Lewszuk A, Zwierz K. Isoenzymes of N-acetyl-β-hexosaminidase in human pleomorphic adenoma and healthy salivary glands: a preliminary study. Clin Chem Lab Med 2008; 46:131-6. [DOI: 10.1515/cclm.2008.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Blencowe A, Hayes W. Development and application of diazirines in biological and synthetic macromolecular systems. SOFT MATTER 2005; 1:178-205. [PMID: 32646075 DOI: 10.1039/b501989c] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many different reagents and methodologies have been utilised for the modification of synthetic and biological macromolecular systems. In addition, an area of intense research at present is the construction of hybrid biosynthetic polymers, comprised of biologically active species immobilised or complexed with synthetic polymers. One of the most useful and widely applicable techniques available for functionalisation of macromolecular systems involves indiscriminate carbene insertion processes. The highly reactive and non-specific nature of carbenes has enabled a multitude of macromolecular structures to be functionalised without the need for specialised reagents or additives. The use of diazirines as stable carbene precursors has increased dramatically over the past twenty years and these reagents are fast becoming the most popular photophors for photoaffinity labelling and biological applications in which covalent modification of macromolecular structures is the basis to understanding structure-activity relationships. This review reports the synthesis and application of a diverse range of diazirines in macromolecular systems.
Collapse
Affiliation(s)
- Anton Blencowe
- School of Chemistry, The University of Reading, Whiteknights, Reading, Berkshire, UKRG6 6AD.
| | - Wayne Hayes
- School of Chemistry, The University of Reading, Whiteknights, Reading, Berkshire, UKRG6 6AD.
| |
Collapse
|
9
|
Martin DR, Krum BK, Varadarajan GS, Hathcock TL, Smith BF, Baker HJ. An inversion of 25 base pairs causes feline GM2 gangliosidosis variant. Exp Neurol 2004; 187:30-7. [PMID: 15081585 DOI: 10.1016/j.expneurol.2004.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 12/19/2003] [Accepted: 01/13/2004] [Indexed: 10/26/2022]
Abstract
In G(M2) gangliosidosis variant 0, a defect in the beta-subunit of lysosomal beta-N-acetylhexosaminidase (EC 3.2.1.52) causes abnormal accumulation of G(M2) ganglioside and severe neurodegeneration. Distinct feline models of G(M2) gangliosidosis variant 0 have been described in both domestic shorthair and Korat cats. In this study, we determined that the causative mutation of G(M2) gangliosidosis in the domestic shorthair cat is a 25-base-pair inversion at the extreme 3' end of the beta-subunit (HEXB) coding sequence, which introduces three amino acid substitutions at the carboxyl terminus of the protein and a translational stop that is eight amino acids premature. Cats homozygous for the 25-base-pair inversion express levels of beta-subunit mRNA approximately 190% of normal and protein levels only 10-20% of normal. Because the 25-base-pair inversion is similar to mutations in the terminal exon of human HEXB, the domestic shorthair cat should serve as an appropriate model to study the molecular pathogenesis of human G(M2) gangliosidosis variant 0 (Sandhoff disease).
Collapse
Affiliation(s)
- Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5525, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Koyanagi R, Honegger TG. Molecular cloning and sequence analysis of an ascidian egg beta-N-acetylhexosaminidase with a potential role in fertilization. Dev Growth Differ 2003; 45:209-18. [PMID: 12828682 DOI: 10.1046/j.1524-4725.2003.689.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Beta-N-acetylhexosaminidase, which is found almost ubiquitously in sperm of invertebrates and vertebrates, supposedly mediates a carbohydrate-based transient sperm-egg coat binding. In ascidians and mammals, beta-hexosaminidase released at fertilization from eggs has been proposed to modify sperm receptor glycoproteins of the egg envelope, thus setting up a block to polyspermy. Previously, it was shown that in potential sperm receptor glycoproteins of the ascidian Phallusia mammillata, N-acetylglucosamine is the prevailing glycoside residue and that the egg harbors three active molecular forms of beta-hexosaminidase. In the present study, P. mammillata beta-hexosaminidase cDNA was isolated from an ovarian cDNA library and characterized. The deduced amino acid sequence showed a high similarity with other known beta-hexosaminidases; however, P. mammillata beta-hexosaminidase had a unique potential N-glycosylation site. A phylogenetic analysis suggested that P. mammillata beta-hexosaminidase developed independently after having branched off from the common ancestor gene of the chordate enzyme before two isoforms of the mammalian enzyme appeared. In situ hybridization revealed stage-specific expression of beta-hexosaminidase mRNA during oogenesis in the oocyte and in the accessory test and follicle cells. This suggests that the three egg beta-hexosaminidase forms are specific for the oocyte, test cells and follicle cells.
Collapse
Affiliation(s)
- Ryo Koyanagi
- Zoological Institute, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
11
|
Bito R, Shikano T, Kawabata H. Isolation and characterization of denatured serum albumin from rats with endotoxicosis. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1646:100-11. [PMID: 12637016 DOI: 10.1016/s1570-9639(03)00002-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Due to its rapid breakdown in the body, denatured serum albumin has not been identified in biological samples. In this study we attempted to determine whether denatured albumin could be identified in rats with endotoxicosis. Male Wistar rats were injected with lipopolysaccharide (LPS; 5 mg/kg body weight). Plasma albumin concentration decreased to one-third the normal level at 2 days after the injection. By using the purified IgG against the specific epitope of chemically denatured albumin, two immunoreactive plasma proteins (bands D2 and D3) were identified by native PAGE followed by Western blot analysis. The plasma concentration of these two proteins increased significantly at 1 and 1.5 days after LPS injection. Peptide mass fingerprinting using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI/TOF-MS) identified these two proteins as serum albumin. In order to characterize their conformational nature, ion-exchange chromatography was used to isolate D2 and D3 albumins from rats injected with LPS. Far- and near-UV circular dichroism (CD), tryptophan and 1-anilino-8-naphthalenesulfonate (ANS) fluorescence, and proteolytic susceptibility showed conformational alterations in the D2 and D3 albumins as compared with native albumin. These data indicate the presence of denatured albumin in circulating rat plasma, and this fact may contribute to a further understanding of the molecular mechanisms of albumin breakdown in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Ryuji Bito
- Laboratory for Nutritional Biochemistry, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki City, Kanagawa 214-8571, Japan
| | | | | |
Collapse
|
12
|
Addona GH, Husain SS, Stehle T, Miller KW. Geometric isomers of a photoactivable general anesthetic delineate a binding site on adenylate kinase. J Biol Chem 2002; 277:25685-91. [PMID: 11976328 DOI: 10.1074/jbc.m201303200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
General anesthetics are a class of drugs whose mode of action is poorly understood. Here, two photoactivable general anesthetics, n-octan-1-ol geometric isomers bearing a diazirine group on either the third or seventh carbon (3- and 7-azioctanol, respectively), were used to locate and delineate an anesthetic site on adenylate kinase. Each photoincorporated at a mole ratio of 1:1 as determined by mass spectrometry. The photolabeled kinase was subjected to tryptic digest, and the fragments were separated by chromatography and sequenced by mass spectrometry. 3-Azioctanol photolabeled His-36, whereas its isomer, 7-azioctanol, photolabeled Asp-41. Inspection of the known structure of adenylate kinase shows that the side chains of these residues are within approximately 5 A of each other. This distance matches the separation of the 3- and 7-positions of an extended aliphatic chain. The alkanol site so-defined spans two domains of adenylate kinase. His-36 is part of the CORE domain, and Asp-41 belongs to the nucleotide monophosphate binding domain. Upon ligand binding the nucleotide monophosphate binding domain rotates relative to the CORE domain, causing a conformational change that might be expected to affect alkanol binding. Indeed, the substrate-mimicking inhibitor adenosine-(5')-pentaphospho-(5')-adenosine (Ap5A) reduced the photoincorporation of 3-[(3)H]azioctanol by 75%.
Collapse
Affiliation(s)
- George H Addona
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|
13
|
Mahuran DJ, Gravel RA. The beta-hexosaminidase story in Toronto: from enzyme structure to gene mutation. ADVANCES IN GENETICS 2002; 44:145-63. [PMID: 11596980 DOI: 10.1016/s0065-2660(01)44077-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- D J Mahuran
- The Research Institute, The Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology University of Toronto, Ontario, Canada.
| | | |
Collapse
|
14
|
Sandhoff K. The GM2-gangliosidoses and the elucidation of the beta-hexosaminidase system. ADVANCES IN GENETICS 2002; 44:67-91. [PMID: 11597000 DOI: 10.1016/s0065-2660(01)44072-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- K Sandhoff
- Institut für Organische Chemie und Biochemie der Universität Bonn, Germany
| |
Collapse
|
15
|
Hepbildikler ST, Sandhoff R, Kolzer M, Proia RL, Sandhoff K. Physiological substrates for human lysosomal beta -hexosaminidase S. J Biol Chem 2002; 277:2562-72. [PMID: 11707436 DOI: 10.1074/jbc.m105457200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human lysosomal beta-hexosaminidases remove terminal beta-glycosidically bound N-acetylhexosamine residues from a number of glycoconjugates. Three different isozymes composed of two noncovalently linked subunits alpha and beta exist: Hex A (alphabeta), Hex B (betabeta), and Hex S (alphaalpha). While the role of Hex A and B for the degradation of several anionic and neutral glycoconjugates has been well established, the physiological significance of labile Hex S has remained unclear. However, the striking accumulation of anionic oligosaccharides in double knockout mice totally deficient in hexosaminidase activity but not in mice expressing Hex S (Sango, K., McDonald, M. P., Crawley, J. N., Mack, M. L., Tifft, C.J., Skop, E., Starr, C. M., Hoffmann, A., Sandhoff, K., Suzuki, K., and Proia, R. L., (1996) Nat. Genet. 14, 348-352) prompted us to reinvestigate the substrate specificity of Hex S. To identify physiological substrates of Hex S, anionic and neutral oligosaccharides excreted in the urine of the double knockout mice were isolated and analyzed. Using ESI-MS/MS and glycosidase digestion the anionic glycans were identified as products of incomplete dermatan sulfate degradation whereas the neutral storage oligosaccharides were found to be fragments of N-glycan degradation. In vitro, recombinant Hex S was highly active on water-soluble and amphiphilic glycoconjugates including artificial substrates, sulfated GAG fragments, and the sulfated glycosphingolipid SM2. Hydrolysis of membrane-bound SM2 by the recombinant Hex S was synergistically stimulated by the GM2 activator protein and the lysosomal anionic phospholipid bis(monoacylglycero)phosphate.
Collapse
Affiliation(s)
- Stefan T Hepbildikler
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | | | | | | | | |
Collapse
|
16
|
Ichikawa M, Ichikawa Y. A mechanism-based affinity-labeling agent for possible use in isolating N-acetylglucosaminidase. Bioorg Med Chem Lett 2001; 11:1769-73. [PMID: 11425557 DOI: 10.1016/s0960-894x(01)00300-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have prepared several mechanism-based affinity-labeling agents for possible use in isolating N-acetylglucosaminidase, in which an N-acetylglucosamine is linked to an o-monofluoro- or difluoro-methyl phenoxy glycoside with or without a cleavable disulfide group in the tether to biotin.
Collapse
Affiliation(s)
- M Ichikawa
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA
| | | |
Collapse
|
17
|
Schuette CG, Weisgerber J, Sandhoff K. Complete analysis of the glycosylation and disulfide bond pattern of human beta-hexosaminidase B by MALDI-MS. Glycobiology 2001; 11:549-56. [PMID: 11447134 DOI: 10.1093/glycob/11.7.549] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
beta-hexosaminidase B is an enzyme that is involved in the degradation of glycolipids and glycans in the lysosome. Mutation in the HEXB gene lead to Sandhoff disease, a glycolipid storage disorder characterized by severe neurodegeneration. So far, little structural information on the protein is available. Here, the complete analysis of the disulfide bond pattern of the protein is described for the first time. Additionally, the structures of the N-glycans are analyzed for the native human protein and for recombinant protein expressed in SF21 cells. For the analysis of the disulfide bond structure, the protein was proteolytically digested and the resulting peptides were analyzed by MALDI-MS. The analysis revealed three disulfide bonds (C91-C137; C309-C360; C534-C551) and a free cysteine (C487). The analysis of the N-glycosylation was performed by tryptic digestion of the protein, isolation of glycopeptides by lectin chromatography and mass measurement before and after enzymatic deglycosylation. Carbohydrate structures were calculated from the mass difference between glycosylated and deglycosylated peptide. For beta-hexosaminidase B from human placenta, four N-glycans were identified and analyzed, whereas the recombinant protein expressed in SF21 cells carried only three glycans. In both cases the glycosylation belongs to the mannose-core- or high-mannose-type, and some carbohydrate structures are fucosylated.
Collapse
Affiliation(s)
- C G Schuette
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | | | | |
Collapse
|
18
|
Schwarzmann G, von Coburg A, Möbius W. Using biotinylated gangliosides to study their distribution and traffic in cells by immunoelectron microscopy. Methods Enzymol 2001; 312:534-62. [PMID: 11070901 DOI: 10.1016/s0076-6879(00)12938-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- G Schwarzmann
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Germany
| | | | | |
Collapse
|
19
|
Hou Y, Vocadlo DJ, Leung A, Withers SG, Mahuran D. Characterization of the Glu and Asp residues in the active site of human beta-hexosaminidase B. Biochemistry 2001; 40:2201-9. [PMID: 11329289 PMCID: PMC2910085 DOI: 10.1021/bi002018s] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human beta-hexosaminidase A (alpha beta) and B (beta beta) are composed of subunits (alpha and beta) that are 60% identical and have been grouped with other evolutionarily related glycosidases into "Family 20". The three-dimensional structure of only one Family 20 member has been elucidated, a bacterial chitobiase. This enzyme shares primary structure homology with both the human subunits only in its active-site region, and even in this restricted area, the level of identity is only 26%. Thus, the validity of the molecular model for the active site of the human enzyme based on chitobiase must be determined experimentally. In this report, we analyze highly purified mutant forms of human hexosaminidase B that have had conservative substitutions made at Glu and Asp residues predicted by the chitobiase model to be part of its active site. Mutation of beta Glu(355) to Gln reduces k(cat) 5000-fold with only a small effect on K(m), while also shifting the pH optimum. These effects are consistent with assignment of this residue as the acid/base catalytic residue. Similarly, mutation of beta Asp(354) to Asn reduced k(cat) 2000-fold while leaving K(m) essentially unaltered, consistent with assignment of this residue as the residue that interacts with the substrate acetamide group to promote its attack on the anomeric center. These data in conjunction with the mutagenesis studies of Asp(241) and Glu(491) indicate that the molecular model is substantially accurate in its identification of catalytically important residues.
Collapse
Affiliation(s)
| | | | | | | | - Don Mahuran
- To whom correspondence should be addressed. Phone: (416) 813-6161. Fax: (416) 813-8700.
| |
Collapse
|
20
|
Pratt MB, Husain SS, Miller KW, Cohen JB. Identification of sites of incorporation in the nicotinic acetylcholine receptor of a photoactivatible general anesthetic. J Biol Chem 2000; 275:29441-51. [PMID: 10859324 DOI: 10.1074/jbc.m004710200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Most general anesthetics including long chain aliphatic alcohols act as noncompetitive antagonists of the nicotinic acetylcholine receptor (nAChR). To locate the sites of interaction of a long chain alcohol with the Torpedo nAChR, we have used the photoactivatible alcohol 3-[(3)H]azioctanol, which inhibits the nAChR and photoincorporates into nAChR subunits. At 1 and 275 microm, 3-[(3)H]azioctanol photoincorporated into nAChR subunits with increased incorporation in the alpha-subunit in the desensitized state. The incorporation into the alpha-subunit was mapped to two large proteolytic fragments. One fragment of approximately 20 kDa (alpha V8-20), containing the M1, M2, and M3 transmembrane segments, showed enhanced incorporation in the presence of agonist whereas the other of approximately 10 kDa (alpha V8-10), containing the M4 transmembrane segment, did not show agonist-induced incorporation of label. Within alpha V8-20, the primary site of incorporation was alpha Glu-262 at the C-terminal end of alpha M2, labeled preferentially in the desensitized state. The incorporation at alpha Glu-262 approached saturation between 1 microm, with approximately 6% labeled, and 275 microm, with approximately 30% labeled. Low level incorporation was seen in residues at the agonist binding site and the protein-lipid interface at approximately 1% of the levels in alpha Glu-262. Therefore, the primary binding site of 3-azioctanol is within the ion channel with additional lower affinity interactions within the agonist binding site and at the protein-lipid interface.
Collapse
Affiliation(s)
- M B Pratt
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Enzymatic hydrolysis of glycosides can occur by one of two elementary mechanisms identified by the stereochemical outcome of the reaction, inversion or retention. The key active-site residues involved are a pair of carboxylic acids in each case, and strategies for their identification and for probing the details of their roles in catalysis have been developed through detailed kinetic analysis of mutants. Similarly the roles of other active-site residues have also been probed this way, and mutants have been developed that trap intermediates in catalysis, allowing the determination of the three-dimensional structures of several such key species. By manipulating the locations or even the presence of these carboxyl side chains in the active site, the mechanisms of several glycosidases have been completely changed, and this has allowed the development of "glycosynthases," mutant glycosidases that are capable of synthesizing oligosaccharides but unable to degrade them. Surprisingly little progress has been made on altering specificities through mutagenesis, although recent results suggest that gene shuffling coupled with effective screens will provide the most effective approach.
Collapse
Affiliation(s)
- H D Ly
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
22
|
Affiliation(s)
- F Knoll
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Germany
| | | | | |
Collapse
|
23
|
Husain SS, Forman SA, Kloczewiak MA, Addona GH, Olsen RW, Pratt MB, Cohen JB, Miller KW. Synthesis and properties of 3-(2-hydroxyethyl)-3-n-pentyldiazirine, a photoactivable general anesthetic. J Med Chem 1999; 42:3300-7. [PMID: 10464016 DOI: 10.1021/jm9806300] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To overcome the difficulties of locating the molecular sites of general anesthetic action, we synthesized a novel photoactivable general anesthetic, 3-(2-hydroxyethyl)-3-n-pentyldiazirine (3-diazirinyloctanol), which anesthetized tadpoles with an ED(50) of 160 microM. Subanesthetic concentrations of 3-diazirinyloctanol enhanced GABA-induced currents in GABA(A) receptors, an effect that has been implicated in general anesthetic action. It also enhanced [(3)H]muscimol binding to this receptor. In muscle nicotinic acetylcholine receptors (nAcChoR), it inhibited the response to acetylcholine with an IC(50) of 33 microM. 3-Diazirinyloctanol's pharmacological actions were comparable to those of octanol. 3-(2-Hydroxyethyl)-3-[4,5-(3)H(2)]-n-pentyldiazirine photoincorporated into Torpedo nAcChoR-rich membranes mainly in the alpha subunit with 70% being in a proteolytic fragment containing the M4 transmembrane segment. Agonist enhanced the photolabeling 10-fold in a fragment containing the M1, M2, and M3 transmembrane segments. Thus, 3-diazirinyloctanol is a novel general anesthetic that acts on, and can be photoincorporated into, postsynaptic receptors.
Collapse
Affiliation(s)
- S S Husain
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Pennybacker M, Schuette CG, Liessem B, Hepbildikler ST, Kopetka JA, Ellis MR, Myerowitz R, Sandhoff K, Proia RL. Evidence for the involvement of Glu-355 in the catalytic action of human beta-hexosaminidase B. J Biol Chem 1997; 272:8002-6. [PMID: 9065471 DOI: 10.1074/jbc.272.12.8002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In a previous study the photoactivable affinity probe, 3-azi-1-[([6-3H]2-acetamido-2-deoxy-1-beta-D-galactopyranosyl)thio ]-b utane, was used to identify the active site of beta-hexosaminidase B, a beta-subunit dimer (Liessem, B., Glombitza, G. J., Knoll, F., Lehmann, J., Kellermann, J., Lottspeich, F., and Sandhoff, K. (1995) J. Biol. Chem. 270, 23693-23699). The probe predominately labeled Glu-355, a highly conserved residue among hexosaminidases. To determine if Glu-355 has a role in catalysis, beta-subunit mutants were prepared with the Glu-355 codon altered to either Ala, Gln, Asp, or Trp. After expression of mutant proteins using recombinant baculovirus, the enzyme activity associated with the beta-subunits was found to be reduced to background levels. Although catalytic activity was lost, the mutations did not otherwise affect the folding or assembly of the subunits. The mutant beta-subunits could be isolated using substrate affinity chromatography, indicating they contained intact substrate binding sites. As shown by cross-linking with disuccinimidyl suberate, the mutant beta-subunits were properly assembled. They could also participate in the formation of functional beta-hexosaminidase A activity as indicated by activator-dependent GM2 ganglioside degradation activity produced by co-expression of the mutant beta-subunits with the alpha-subunit. Finally, the mutant subunits showed normal lysosomal processing in COS-1 cells, demonstrating that a transport-competent protein conformation had been attained. Collectively the results provide strong support for the intimate involvement of Glu-355 in beta-hexosaminidase B-mediated catalysis.
Collapse
Affiliation(s)
- M Pennybacker
- Section on Biochemical Genetics, Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fernandes MJ, Yew S, Leclerc D, Henrissat B, Vorgias CE, Gravel RA, Hechtman P, Kaplan F. Identification of candidate active site residues in lysosomal beta-hexosaminidase A. J Biol Chem 1997; 272:814-20. [PMID: 8995368 DOI: 10.1074/jbc.272.2.814] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The beta-hexosaminidases (Hex) catalyze the cleavage of terminal amino sugars on a broad spectrum of glycoconjugates. The major Hex isozymes in humans, Hex A, a heterodimer of alpha and beta subunits (alphabeta), and Hex B, a homodimer of beta subunits (betabeta), have different substrate specificities. The beta subunit (HEXB gene product), hydrolyzes neutral substrates. The alpha subunit (HEXA gene product), hydrolyzes both neutral and charged substrates. Only Hex A is able to hydrolyze the most important natural substrate, the acidic glycolipid GM2 ganglioside. Mutations in the HEXA gene cause Tay-Sachs disease (TSD), a GM2 ganglioside storage disorder. We investigated the role of putative active site residues Asp-alpha258, Glu-alpha307, Glu-alpha323, and Glu-alpha462 in the alpha subunit of Hex A. A mutation at codon 258 which we described was associated with the TSD B1 phenotype, characterized by the presence of normal amounts of mature but catalytically inactive enzyme. TSD-B1 mutations are believed to involve substitutions of residues at the enzyme active site. Glu-alpha307, Glu-alpha323, and Glu-alpha462 were predicted to be active site residues by homology studies and hydrophobic cluster analysis. We used site-directed mutagenesis and expression in a novel transformed human fetal TSD neuroglial (TSD-NG) cell line (with very low levels of endogenous Hex A activity), to study the effects of mutation at candidate active site residues. Mutant HEXA cDNAs carrying conservative or isofunctional substitutions at these positions were expressed in TSD-NG cells. alphaE323D, alphaE462D, and alphaD258N cDNAs produced normally processed peptide chains with drastically reduced activity toward the alpha subunit-specific substrate 4MUGS. The alphaE307D cDNA produced a precursor peptide with significant catalytic activity. Kinetic analysis of enzymes carrying mutations at Glu-alpha323 and Asp-alpha258 (reported earlier by Bayleran, J., Hechtman, P., Kolodny, E., and Kaback, M. (1987) Am. J. Hum. Genet. 41,532-548) indicated no significant change in substrate binding properties. Our data, viewed in the context of homology studies and modeling, and studies with suicide substrates, suggest that Glu-alpha323 and Asp-alpha258 are active site residues and that Glu-alpha323 is involved in catalysis.
Collapse
Affiliation(s)
- M J Fernandes
- McGill University-Montreal Children's Hospital Research Institute, Canada
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tse R, Wu YJ, Vavougios G, Hou Y, Hinek A, Mahuran DJ. Identification of functional domains within the alpha and beta subunits of beta-hexosaminidase A through the expression of alpha-beta fusion proteins. Biochemistry 1996; 35:10894-903. [PMID: 8718882 DOI: 10.1021/bi960503a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There are three human beta-hexosaminidase isozymes which are composed of all possible dimeric combinations of an alpha and/or a beta subunit; A (alpha beta), and B (beta beta), and S (alpha alpha). The amino acid sequences of the two subunits are 60% identical. The homology between the two chains varies with the middle > the carboxy-terminal > > the amino-terminal portions. Although dimerization is required for activity, each subunit contains its own active site and differs in its substrate specificity and thermal stability. The presence of the beta subunit in hexosaminidase A also influences the substrate specificity of the alpha subunit; e.g., in vivo only the A heterodimer can hydrolyze GM2 ganglioside. In this report, we localize functional regions in the two subunits by cellular expression of alpha/beta fusion proteins joined at adjacently aligned residues. First, a chimeric alpha/beta chain was made by replacing the least well-conserved amino-terminal section of the beta chain with the corresponding alpha section. The biochemical characteristics of this protein were nearly identical to hexosaminidase B. Therefore, the most dissimilar regions in the subunits are not responsible for their dissimilar biochemical properties. A second fusion protein was made that also included the more homologous middle section of the alpha chain. This protein expressed the substrate specificity unique to isozymes containing an alpha subunit (A and S). We conclude that the region responsible for the ability of the alpha subunit to bind negatively charged substrates is located within residues alpha 132-283. Interestingly, the remaining carboxy-terminal section from the beta chain, beta 316-556, was sufficient to allow this chimera to hydrolyze GM2 ganglioside with 10% the specific activity of heterodimeric hexosaminidase A. Thus, the carboxy-terminal section of each subunit is likely involved in subunit-subunit interactions.
Collapse
Affiliation(s)
- R Tse
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Pennybacker M, Liessem B, Moczall H, Tifft CJ, Sandhoff K, Proia RL. Identification of domains in human beta-hexosaminidase that determine substrate specificity. J Biol Chem 1996; 271:17377-82. [PMID: 8663217 DOI: 10.1074/jbc.271.29.17377] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The lysosomal beta-hexosaminidases are dimers composed of alpha and beta subunits. beta-Hexosaminidase A (alphabeta) is a heterodimer, whereas hexosaminidase B (betabeta) and S (alphaalpha) are homodimers. Although containing a high degree of amino acid identity, each subunit expresses a unique active site that can be distinguished by a differential ability to hydrolyze charged substrates. The site on the beta-subunit primarily degrades neutral substrates, whereas the alpha-subunit site is, in addition, active against sulfated substrates. Isozyme specificity is also exhibited with glycolipid substrates. Among human isozymes, only beta-hexosaminidase A together with the GM2 activator protein can degrade the natural substrate, GM2 ganglioside, at physiologically significant rates. To identify the domains of the human beta-hexosaminidase subunits that determine substrate specificity, we have generated chimeric subunits containing both alpha- and beta-subunit sequences. The chimeric constructs were expressed in HeLa cells to screen for activity and then selected constructs were produced in the baculovirus expression system to assess their ability to degrade GM2 ganglioside in the presence of GM2 activator protein. Generation of activity against the sulfated substrate required the substitution of two noncontinuous alpha-subunit sequences (amino acids 1-191 and 403-529) into analogous positions of the beta-subunit. Chimeric constructs containing only one of these regions linked to the beta-subunit sequence showed either neutral substrate activity only (amino acids 1-191) or lacked enzyme activity entirely (amino acids 403-529). Neither the chimeras nor the wild-type subunits displayed activator-dependent GM2-hydrolyzing activity when expressed alone. However, one chimeric subunit containing alpha amino acids 1-191 fused with beta amino acids 225 to 556, when co-expressed with the wild-type alpha-subunit, showed activity comparable with that of recombinant beta-hexosaminidase A formed by the co-expression of the alpha- and beta-subunits. This result indicates that the beta-subunit amino acids 225-556 contribute an essential function in the GM2-hydrolyzing activity of beta-hexosaminidase A.
Collapse
Affiliation(s)
- M Pennybacker
- Section on Biochemical Genetics, Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
29
|
Tse R, Vavougios G, Hou Y, Mahuran DJ. Identification of an active acidic residue in the catalytic site of beta-hexosaminidase. Biochemistry 1996; 35:7599-607. [PMID: 8652542 DOI: 10.1021/bi960246+] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Human beta-hexosaminidases A and B (EC 3.2.1.52) are dimeric lysosomal glycosidases composed of evolutionarily related alpha and/or beta subunits. Both isozymes hydrolyze terminal beta-linked GalNAc or GlcNAc residues from numerous artificial and natural substrates; however, in vivo GM2 ganglioside is a substrate for only the heterodimeric A isozyme. Thus, mutations in either gene encoding its alpha or beta subunits can result in GM2 ganglioside storage and Tay-Sachs or Sandhoff disease, respectively. All glycosyl hydrolases ae believed to have one or more acidic residues in their catalytic site. We demonstrate that incubation of hexosaminidase with a chemical modifier specific for carboxyl side chains produces a time-dependent loss of activity, and that this effect can be blocked by the inclusion of a strong competitive inhibitor in the reaction mix. We hypothesized that the catalytic acid residue(s) should be located in a region of overall homology and be invariant within the aligned deduced primary sequences of the human alpha and beta subunits, as well as hexosaminidases from other species, including bacteria. Such a region is encoded by exons 5-6 of the HEXA and HEXB genes. This region includes beta Arg211 (invariant in 15 sequences), which we have previously shown to be an active residue. This region also contains two invariant and one conserved acidic residues. A fourth acidic residue, Asp alpha 258, beta 290, in exon 7 was also investigated because of its association with the B1 variant of Tay-Sachs disease. Conservative substitutions were made at each candidate residue by in vitro mutagenesis of a beta cDNA, followed by cellular expression. Of these, only the beta Asp196Asn substitution decreased the kcat (350-910-fold) without any noticeable effect on the K(m). Mutagenesis of either beta Asp240 or beta Asp290 to Asn decreased kcat by 10- or 1.4-fold but also raised the K(m) of the enzyme 11- of 3-fold, respectively. The above results strongly suggest that beta Asp196 is a catalytic acid residue in beta-hexosaminidase.
Collapse
Affiliation(s)
- R Tse
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|