1
|
Kumar A, Prasad A, Sedlářová M, Pospíšil P. Characterization of Protein Radicals in Arabidopsis. Front Physiol 2019; 10:958. [PMID: 31456690 PMCID: PMC6700370 DOI: 10.3389/fphys.2019.00958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/09/2019] [Indexed: 01/23/2023] Open
Abstract
Oxidative modification of proteins in photosystem II (PSII) exposed to high light has been studied for a few decades, but the characterization of protein radicals formed by protein oxidation is largely unknown. Protein oxidation is induced by the direct reaction of proteins with reactive oxygen species known to form highly reactive protein radicals comprising carbon-centered (alkyl) and oxygen-centered (peroxyl and alkoxyl) radicals. In this study, protein radicals were monitored in Arabidopsis exposed to high light by immuno-spin trapping technique based on the detection of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) nitrone adducts using the anti-DMPO antibody. Protein radicals were imaged in Arabidopsis leaves and chloroplasts by confocal laser scanning microscopy using fluorescein conjugated with the anti-DMPO antibody. Characterization of protein radicals by standard blotting techniques using PSII protein specific antibodies shows that protein radicals are formed on D1, D2, CP43, CP47, and Lhcb3 proteins. Protein oxidation reflected by the appearance/disappearance of the protein bands reveals that formation of protein radicals was associated with protein fragmentation (cleavage of the D1 peptide bonds) and aggregation (cross-linking with another PSII subunits). Characterization of protein radical formation is important for better understating of the mechanism of oxidative modification of PSII proteins under high light.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
2
|
Endo K, Kobayashi K, Wang HT, Chu HA, Shen JR, Wada H. Site-directed mutagenesis of two amino acid residues in cytochrome b 559 α subunit that interact with a phosphatidylglycerol molecule (PG772) induces quinone-dependent inhibition of photosystem II activity. PHOTOSYNTHESIS RESEARCH 2019; 139:267-279. [PMID: 30039358 DOI: 10.1007/s11120-018-0555-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
X-ray crystallographic analysis (1.9-Å resolution) of the cyanobacterial photosystem II (PSII) dimer showed the presence of five phosphatidylglycerol (PG) molecules per reaction center. One of the PG molecules, PG772, is located in the vicinity of the QB-binding site. To investigate the role of PG772 in PSII, we performed site-directed mutagenesis in the cytochrome (Cyt) b559 α subunit of Synechocystis sp. PCC 6803 to change two amino acids, Thr-5 and Ser-11, which interact with PG772. The photosynthetic activity of intact cells was slightly lower in all mutants than that of cells in the control strain; however, the oxygen-evolving PSII activity was decreased markedly in cells of mutants, as measured using artificial quinones (such as p-benzoquinone). Furthermore, electron transport from QA to QB was inhibited in mutants incubated with quinones, particularly under high-intensity light conditions. Lipid analysis of purified PSII showed approximately one PG molecule per reaction center, presumably PG772, was lost in the PSII dimer from the T5A and S11A mutants compared with that in the PSII dimer from the control strain. In addition, protein analysis of monomer and dimer showed decreased levels of PsbV and PsbU extrinsic proteins in the PSII monomer purified from T5A and S11A mutants. These results suggest that site-directed mutagenesis of Thr-5 and Ser-11, which presumably causes the loss of PG772, induces quinone-dependent inhibition of PSII activity under high-intensity light conditions and destabilizes the binding of extrinsic proteins to PSII.
Collapse
Affiliation(s)
- Kaichiro Endo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Koichi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hsing-Ting Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan, Republic of China
| | - Hsiu-An Chu
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan, Republic of China
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama, 700-8530, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
3
|
Yamamoto Y. Quality Control of Photosystem II: The Mechanisms for Avoidance and Tolerance of Light and Heat Stresses are Closely Linked to Membrane Fluidity of the Thylakoids. FRONTIERS IN PLANT SCIENCE 2016; 7:1136. [PMID: 27532009 PMCID: PMC4969305 DOI: 10.3389/fpls.2016.01136] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/18/2016] [Indexed: 05/22/2023]
Abstract
When oxygenic photosynthetic organisms are exposed to excessive light and/or heat, Photosystem II is damaged and electron transport is blocked. In these events, reactive oxygen species, endogenous radicals and lipid peroxidation products generated by photochemical reaction and/or heat cause the damage. Regarding light stress, plants first dissipate excessive light energy captured by light-harvesting chlorophyll protein complexes as heat to avoid the hazards, but once light stress is unavoidable, they tolerate the stress by concentrating damage in a particular protein in photosystem II, i.e., the reaction-center binding D1 protein of Photosystem II. The damaged D1 is removed by specific proteases and replaced with a new copy produced through de novo synthesis (reversible photoinhibition). When light intensity becomes extremely high, irreversible aggregation of D1 occurs and thereby D1 turnover is prevented. Once the aggregated products accumulate in Photosystem II complexes, removal of them by proteases is difficult, and irreversible inhibition of Photosystem II takes place (irreversible photoinhibition). Important is that various aspects of both the reversible and irreversible photoinhibition are highly dependent on the membrane fluidity of the thylakoids. Heat stress-induced inactivation of photosystem II is an irreversible process, which may be also affected by the fluidity of the thylakoid membranes. Here I describe why the membrane fluidity is a key to regulate the avoidance and tolerance of Photosystem II on environmental stresses.
Collapse
|
4
|
Yamamoto Y, Kai S, Ohnishi A, Tsumura N, Ishikawa T, Hori H, Morita N, Ishikawa Y. Quality control of PSII: behavior of PSII in the highly crowded grana thylakoids under excessive light. PLANT & CELL PHYSIOLOGY 2014; 55:1206-15. [PMID: 24610582 PMCID: PMC4080270 DOI: 10.1093/pcp/pcu043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/22/2014] [Indexed: 05/19/2023]
Abstract
The grana thylakoids of higher plant chloroplasts are crowded with PSII and the associated light-harvesting complexes (LHCIIs). They constitute supercomplexes, and often form semi-crystalline arrays in the grana. The crowded condition of the grana may be necessary for efficient trapping of excitation energy by LHCII under weak light, but it might hinder proper movement of LHCII necessary for reversible aggregation of LHCII in the energy-dependent quenching of Chl fluorescence under moderate high light. When the thylakoids are illuminated with extreme high light, the reaction center-binding D1 protein of PSII is photodamaged, and the damaged protein migrates to the grana margins for degradation and subsequent repair. In both moderate and extreme high-light conditions, fluidity of the thylakoid membrane is crucial. In this review, we first provide an overview of photoprotective processes, then discuss changes in membrane fluidity and mobility of the protein complexes in the grana under excessive light, which are closely associated with photoprotection of PSII. We hypothesize that reversible aggregation of LHCII, which is necessary to avoid light stress under moderate high light, and swift turnover of the photodamaged D1 protein under extreme high light are threatened by irreversible protein aggregation induced by reactive oxygen species in photochemical reactions.
Collapse
Affiliation(s)
- Yasusi Yamamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Suguru Kai
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Atsuki Ohnishi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Nodoka Tsumura
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Tomomi Ishikawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Haruka Hori
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Noriko Morita
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Yasuo Ishikawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| |
Collapse
|
5
|
Yamamoto Y, Hori H, Kai S, Ishikawa T, Ohnishi A, Tsumura N, Morita N. Quality control of Photosystem II: reversible and irreversible protein aggregation decides the fate of Photosystem II under excessive illumination. FRONTIERS IN PLANT SCIENCE 2013; 4:433. [PMID: 24194743 PMCID: PMC3810940 DOI: 10.3389/fpls.2013.00433] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/11/2013] [Indexed: 05/20/2023]
Abstract
In response to excessive light, the thylakoid membranes of higher plant chloroplasts show dynamic changes including the degradation and reassembly of proteins, a change in the distribution of proteins, and large-scale structural changes such as unstacking of the grana. Here, we examined the aggregation of light-harvesting chlorophyll-protein complexes and Photosystem II core subunits of spinach thylakoid membranes under light stress with 77K chlorophyll fluorescence; aggregation of these proteins was found to proceed with increasing light intensity. Measurement of changes in the fluidity of thylakoid membranes with fluorescence polarization of diphenylhexatriene showed that membrane fluidity increased at a light intensity of 500-1,000 μmol photons m(-) (2) s(-) (1), and decreased at very high light intensity (1,500 μmol photons m(-) (2) s(-) (1)). The aggregation of light-harvesting complexes at moderately high light intensity is known to be reversible, while that of Photosystem II core subunits at extremely high light intensity is irreversible. It is likely that the reversibility of protein aggregation is closely related to membrane fluidity: increases in fluidity should stimulate reversible protein aggregation, whereas irreversible protein aggregation might decrease membrane fluidity. When spinach leaves were pre-illuminated with moderately high light intensity, the qE component of non-photochemical quenching and the optimum quantum yield of Photosystem II increased, indicating that Photosystem II/light-harvesting complexes rearranged in the thylakoid membranes to optimize Photosystem II activity. Transmission electron microscopy revealed that the thylakoids underwent partial unstacking under these light stress conditions. Thus, protein aggregation is involved in thylakoid dynamics and regulates photochemical reactions, thereby deciding the fate of Photosystem II.
Collapse
Affiliation(s)
- Yasusi Yamamoto
- *Correspondence: Yasusi Yamamoto, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan e-mail:
| | | | | | | | | | | | | |
Collapse
|
6
|
Pobeguts OV, Smolova TN, Klimov VV. Bicarbonate stabilizes isolated D1/D2/cytochrome b559 complex of photosystem 2 against thermoinactivation. BIOCHEMISTRY. BIOKHIMIIA 2012; 77:171-9. [PMID: 22348477 DOI: 10.1134/s0006297912020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
It has been shown that thermoinactivation of the isolated D1/D2/cytochrome b(559) complex (RC) of photosystem 2 (PS-2) from pea under anaerobic conditions at 35°C in 20 mM Tris-HCl buffer (pH 7.2) depleted of HCO(3)(-), with 35 mM NaCl and 0.05% n-dodecyl-β-maltoside, results in a decrease in photochemical activity measured by photoreduction of the PS-2 primary electron acceptor, pheophytin (by 50% after 3 min of heating), which is accompanied by aggregation of the D1 and D2 proteins. Bicarbonate, formate, and acetate anions added to the sample under these conditions differently influence the maintenance of photochemical activity: a 50% loss of photochemical activity occurs in 11.5 min of heating in the presence of bicarbonate and in 4 and 4.6 min in the presence of formate and acetate, respectively. The addition of bicarbonate completely prevents aggregation of the D1 and D2 proteins as opposed to formate and acetate (their presence has no effect on the aggregation during thermoinactivation). Since the isolated RCs have neither inorganic Mn/Ca-containing core of the water-oxidizing complex nor nonheme Fe(2+), it is supposed that bicarbonate specifically interacts with the hydrophilic domains of the D1 and D2 proteins, which prevents their structural modification that is a signal for aggregation of these proteins and the loss of photochemical activity.
Collapse
Affiliation(s)
- O V Pobeguts
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
7
|
Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N, Sasaki T, Yamamoto Y. Quality control of photosystem II: impact of light and heat stresses. PHOTOSYNTHESIS RESEARCH 2008; 98:589-608. [PMID: 18937045 DOI: 10.1007/s11120-008-9372-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 09/15/2008] [Indexed: 05/19/2023]
Abstract
Photosystem II is vulnerable to various abiotic stresses such as strong visible light and heat. Under both stresses, the damage seems to be triggered by reactive oxygen species, and the most critical damage occurs in the reaction center-binding D1 protein. Recent progress has been made in identifying the protease involved in the degradation of the photo- or heat-damaged D1 protein, the ATP-dependent metalloprotease FtsH. Another important result has been the discovery that the damaged D1 protein aggregates with nearby polypeptides such as the D2 protein and the antenna chlorophyll-binding protein CP43. The degradation and aggregation of the D1 protein occur simultaneously, but the relationship between the two is not known. We suggest that phosphorylation and dephosphorylation of the D1 protein, as well as the binding of the extrinsic PsbO protein to Photosystem II, play regulatory roles in directing the damaged D1 protein to the two alternative pathways.
Collapse
Affiliation(s)
- Yasusi Yamamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
The presence of phosphorylation form of D1 protein in its cross-linked aggregates in high light treated spinach leaves in vivo. CHINESE SCIENCE BULLETIN-CHINESE 2006. [DOI: 10.1007/s11434-005-1529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Mizusawa N, Tomo T, Satoh K, Miyao M. Degradation of the D1 protein of photosystem II under illumination in vivo: two different pathways involving cleavage or intermolecular cross-linking. Biochemistry 2003; 42:10034-44. [PMID: 12924952 DOI: 10.1021/bi0300534] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The D1 protein of the photosystem II reaction center turns over the most rapidly of all the proteins of the thylakoid membrane under illumination in vivo. In vitro, the D1 protein sustained cleavage in a surface-exposed loop (DE loop) or cross-linking with another reaction center protein, the D2 protein or cytochrome b(559), under illumination. We found that the D1 protein was damaged in essentially the same way in vivo, although the resultant fragments and cross-linked adducts barely accumulated due to digestion by proteases. In vitro studies detected a novel stromal protease(s) that digested the adducts but not the monomeric D1 protein. These observations suggest that, in addition to cleavage, the cross-linking reactions themselves are processes involved in complete degradation of the D1 protein in vivo. Peptide mapping experiments located the cross-linking sites with the D2 protein among residues 226-244, which includes the cross-linking site with cytochrome b(559) [Barbato, R., et al. (1995) J. Biol. Chem. 270, 24032-24037], in the N-terminal part of the DE loop, while N-terminal amino acid sequencing of the fragment located the cleavage site around residue 260 in the C-terminal part of the loop. We propose a model explaining the occurrence of simultaneous cleavage and cross-linking and discuss the mechanisms of complete degradation of the D1 protein in vivo.
Collapse
Affiliation(s)
- Naoki Mizusawa
- Photosynthesis Laboratory, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | | | | | | |
Collapse
|
10
|
Lupínková L, Metz JG, Diner BA, Vass I, Komenda J. Histidine residue 252 of the Photosystem II D1 polypeptide is involved in a light-induced cross-linking of the polypeptide with the alpha subunit of cytochrome b-559: study of a site-directed mutant of Synechocystis PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1554:192-201. [PMID: 12160992 DOI: 10.1016/s0005-2728(02)00243-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Properties of the Photosystem II (PSII) complex were examined in the wild-type (control) strain of the cyanobacterium Synechocystis PCC 6803 and its site-directed mutant D1-His252Leu in which the histidine residue 252 of the D1 polypeptide was replaced by leucine. This mutation caused a severe blockage of electron transfer between the PSII electron acceptors Q(A) and Q(B) and largely inhibited PSII oxygen evolving activity. Strong illumination induced formation of a D1-cytochrome b-559 adduct in isolated, detergent-solubilized thylakoid membranes from the control but not the mutant strain. The light-induced generation of the adduct was suppressed after prior modification of thylakoid proteins either with the histidine modifier platinum-terpyridine-chloride or with primary amino group modifiers. Anaerobic conditions and the presence of radical scavengers also inhibited the appearance of the adduct. The data suggest that the D1-cytochrome adduct is the product of a reaction between the oxidized residue His(252) of the D1 polypeptide and the N-terminal amino group of the cytochrome alpha subunit. As the rate of the D1 degradation in the control and mutant strains is similar, formation of the adduct does not seem to represent a required intermediary step in the D1 degradation pathway.
Collapse
Affiliation(s)
- Lenka Lupínková
- Faculty of Biological Sciences, University of South Bohemia, 370 05, Ceské Budejovice, Czech Republic
| | | | | | | | | |
Collapse
|
11
|
Rhee KH. Photosystem II: the solid structural era. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:307-28. [PMID: 11340062 DOI: 10.1146/annurev.biophys.30.1.307] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the precise role of photosystem II as an element of oxygenic photosynthesis requires knowledge of the molecular structure of this membrane protein complex. The past few years have been particularly exciting because the structural era of the plant photosystem II has begun. Although the atomic structure has yet to be determined, the map obtained at 6 A resolution by electron crystallography allows assignment of the key reaction center subunits with their associated pigment molecules. In the following, we first review the structural details that have recently emerged and then discuss the primary and secondary photochemical reaction pathways. Finally, in an attempt to establish the evolutionary link between the oxygenic and the anoxygenic photosynthesis, a framework structure common to all photosynthetic reaction centers has been defined, and the implications have been described.
Collapse
Affiliation(s)
- K H Rhee
- Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge, CB2 2QH, United Kingdom.
| |
Collapse
|
12
|
Abstract
Photosystem II is particularly vulnerable to excess light. When illuminated with strong visible light, the reaction center D1 protein is damaged by reactive oxygen molecules or by endogenous cationic radicals generated by photochemical reactions, which is followed by proteolytic degradation of the damaged D1 protein. Homologs of prokaryotic proteases, such as ClpP, FtsH and DegP, have been identified in chloroplasts, and participation of the thylakoid-bound FtsH in the secondary degradation steps of the photodamaged D1 protein has been suggested. We found that cross-linking of the D1 protein with the D2 protein, the alpha-subunit of cytochrome b(559), and the antenna chlorophyll-binding protein CP43, occurs in parallel with the degradation of the D1 protein during the illumination of intact chloroplasts, thylakoids and photosystem II-enriched membranes. The cross-linked products are then digested by a stromal protease(s). These results indicate that the degradation of the photodamaged D1 protein proceeds through membrane-bound proteases and stromal proteases. Moreover, a 33-kDa subunit of oxygen-evolving complex (OEC), bound to the lumen side of photosystem II, regulates the formation of the cross-linked products of the D1 protein in donor-side photoinhibition of photosystem II. Thus, various proteases and protein components in different compartments in chloroplasts are implicated in the efficient turnover of the D1 protein, thus contributing to the control of the quality of photosystem II under light stress conditions.
Collapse
Affiliation(s)
- Y Yamamoto
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan.
| |
Collapse
|
13
|
Ferjani A, Abe S, Ishikawa Y, Henmi T, Nishi Y, Tamura N, Yamamoto Y. Characterization of the stromal protease(s) degrading the cross-linked products of the D1 protein generated by photoinhibition of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:385-95. [PMID: 11115650 DOI: 10.1016/s0005-2728(00)00233-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When photosystem (PS) II-enriched membranes are exposed to strong light, cross-linking of the intrinsic D1 protein with the surrounding polypeptides and degradation of the D1 protein take place. The cross-linking of the D1 protein with the alpha-subunit of cytochrome b(559) is suggested to be an early event of photoinduced damage to the D1 protein (Barbato et al., FEBS Lett. 309 (1992) 165-169). The relationship between the cross-linking and the degradation of the D1 protein, however, is not yet clear. In the present study, we show that the addition of stromal extract from chloroplasts degrades the 41 kDa cross-linked product of D1/cytochrome b(559) alpha-subunit and enhances the degradation of the D1 protein. Incubation of the preilluminated PS II-enriched membranes with the stromal extract at 25 degrees C causes the degradation of the cross-linked product by more than 70%. The activity of the stromal extract showed a pH optimum at 8.0, and was enhanced by the addition of ATP or GTP. Consistent with the nucleotide effect, this stromal activity was eliminated by the preincubation of the stromal extract with apyrase, which hydrolyzes nucleotides. Also, the stromal activity was nearly fully inhibited by a serine-type protease inhibitor, 3,4-dichloroisocoumarin, which suggests participation of a serine-type protease(s).
Collapse
Affiliation(s)
- A Ferjani
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Ishikawa Y, Nakatani E, Henmi T, Ferjani A, Harada Y, Tamura N, Yamamoto Y. Turnover of the aggregates and cross-linked products of the D1 protein generated by acceptor-side photoinhibition of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1413:147-58. [PMID: 10556627 DOI: 10.1016/s0005-2728(99)00093-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is known that the reaction-center binding protein D1 in photosystem (PS) II is degraded significantly during photoinhibition. The D1 protein also cross-links covalently or aggregates non-covalently with the nearby polypeptides in PS II complexes by illumination. In the present study, we detected the adducts between the D1 protein and the other reaction-center binding protein D2 (D1/D2), the alpha-subunit of cyt b(559) (D1/cyt b(559)), and the antenna chlorophyll-binding protein CP43 (D1/CP43) by SDS/urea-polyacrylamide gel electrophoresis and Western blotting with specific antibodies. The adducts were observed by weak and strong illumination (light intensity: 50-5000 microE m(-2) s(-1)) of PS II membranes, thylakoids and intact chloroplasts from spinach, under aerobic conditions. These results indicate that the cross-linking or aggregation of the D1 protein is a general phenomenon which occurs in vivo as well as in vitro with photodamaged D1 proteins. We found that the formation of the D1/D2, D1/cyt b(559) and D1/CP43 adducts is differently dependent on the light intensity; the D1/D2 heterodimers and D1/cyt b(559) were formed even by illumination with weak light, whereas generation of the D1/CP43 aggregates required strong illumination. We also detected that these D1 adducts were efficiently removed by the addition of stromal components, which may contain proteases, molecular chaperones and the associated proteins. By two-dimensional SDS/urea-polyacrylamide gel electrophoresis, we found that several stromal proteins, including a 15-kDa protein are effective in removing the D1/CP43 aggregates, and that their activity is resistant to SDS.
Collapse
Affiliation(s)
- Y Ishikawa
- Department of Biology, Faculty of Science, Okayama University, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Mizusawa N, Yamamoto N, Miyao M. Characterization of damage to the D1 protein of photosystem II under photoinhibitory illumination in non-phosphorylated and phosphorylated thylakoid membranes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1999. [DOI: 10.1016/s1011-1344(99)00023-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Dalla Chiesa M, Friso G, Deák Z, Vass I, Barber J, Nixon PJ. Reduced turnover of the D1 polypeptide and photoactivation of electron transfer in novel herbicide resistant mutants of Synechocystis sp. PCC 6803. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:731-40. [PMID: 9342224 DOI: 10.1111/j.1432-1033.1997.00731.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two missense mutants, A263P and S264P, and a deletion mutant des-Ala263, Ser264, have been constructed in the D1 protein of the cyanobacterium Synechocystis sp PCC 6803. All were expected to induce a significant conformational change in the QB-binding region of photosystem II (PSII). Although the des-Ala263, Ser264-D1 mutant accumulated some D1 protein in the thylakoid membrane it was unable to grow photoautotrophically or evolve oxygen. Thermoluminescence and chlorophyll fluorescence studies confirmed that this deletion mutant did not show any functional PSII activity. In contrast, [S264P]D1 was able to grow photoautotrophically and give light-saturated rates of oxygen evolution at 60% of the rate of the wild-type control strain, TC31. The A263P missense mutant was also able to evolve oxygen at 50% of TC31 rates although it did not readily grow photoautotrophically. Thermoluminescence, flash oxygen yield and chlorophyll fluorescence measurements indicated that in both missense mutants electron transfer from QA to QB was significantly impaired in dark adapted cells. However, QA to QB electron transfer could be photoactivated in the mutants by background illumination. Both the A263P and S264P mutants also showed an increase in resistance to the s-triazine family of herbicides although this feature did not hold for the phenolic herbicide, ioxynil. Of particular interest was that the two missense mutants, especially S264P, possessed a slower rate of turnover of the D1 protein compared with TC31 and in vivo contained detectable levels of a 41-kDa adduct consisting of D1 and the alpha subunit of cytochrome b559. When protein synthesis was blocked by the addition of lincomycin, D1 degradation was again slower in S264P than TC31. The results are discussed in terms of structural changes in the QB-binding region which affect herbicide and plastoquinone binding and perturb the normal regulatory factors that control the degradation of the D1 protein and its synchronisation with the synthesis of a replacement D1 protein.
Collapse
Affiliation(s)
- M Dalla Chiesa
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | | | | | |
Collapse
|
17
|
Hankamer B, Barber J, Boekema EJ. STRUCTURE AND MEMBRANE ORGANIZATION OF PHOTOSYSTEM II IN GREEN PLANTS. ACTA ACUST UNITED AC 1997; 48:641-671. [PMID: 15012277 DOI: 10.1146/annurev.arplant.48.1.641] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photosystem II (PSII) is the pigment protein complex embedded in the thylakoid membrane of higher plants, algae, and cyanobacteria that uses solar energy to drive the photosynthetic water-splitting reaction. This chapter reviews the primary, secondary, tertiary, and quaternary structures of PSII as well as the function of its constituent subunits. The understanding of in vivo organization of PSII is based in part on freeze-etched and freeze-fracture images of thylakoid membranes. These images show a resolution of about 40-50 A and so provide information mainly on the localization, heterogeneity, dimensions, and shapes of membrane-embedded PSII complexes. Higher resolution of about 15-40 A has been obtained from single particle images of isolated PSII complexes of defined and differing subunit composition and from electron crystallography of 2-D crystals. Observations are discussed in terms of the oligomeric state and subunit organization of PSII and its antenna components.
Collapse
Affiliation(s)
- Ben Hankamer
- Wolfson Laboratories, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, United Kingdom, Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, NL-9747 AG The Netherlands
| | | | | |
Collapse
|
18
|
Sharma J, Panico M, Barber J, Morris HR. Characterization of the low molecular weight photosystem II reaction center subunits and their light-induced modifications by mass spectrometry. J Biol Chem 1997; 272:3935-43. [PMID: 9020097 DOI: 10.1074/jbc.272.7.3935] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A sensitive and simple reverse phase HPLC purification scheme was developed for the rapid separation of the small protein subunits from photosystem II reaction center preparations. The precise molecular masses of the alpha- and beta-subunits of cytochrome b559 and the psbI gene product from pea plants, found to be 4394.6 +/- 0. 6, 9283.6 +/- 0.7, and 4209.5 +/- 0.5 Da, respectively, were then successfully determined for the first time by electrospray- and fast atom bombardment-mass spectrometry. Discrepancies between the molecular weights assigned and those calculated from the respective DNA sequences were observed for alpha- and beta-subunits of cytochrome b559. Currently, the nucleotide sequence of the psbI gene product from pea plants is not available. Application of novel mapping and sequencing strategies has assured the elucidation of full primary structures of all of the purified subunits. The modifications identified here include the post-translational processing of the initiating methionine on both subunits of cytochrome b559, NH2-terminal acetylation and an mRNA editing site at residue 26 (Ser --> Phe) on the beta-subunit, and retention of the NH2-terminal formyl-Met on the psbI gene product. In addition, specific oxidation of a single amino acid residue was identified on the psbI gene product and the beta-subunit purified from light-treated reaction center preparations. Overall, these studies provide the first detailed primary structural characterization of the small subunits of the reaction center complex and their associated light-induced modifications.
Collapse
Affiliation(s)
- J Sharma
- Wolfson Laboratories, Department of Biochemistry, Imperial College, London SW7 2AY, United Kingdom
| | | | | | | |
Collapse
|
19
|
Lardans A, Gillham NW, Boynton JE. Site-directed mutations at residue 251 of the photosystem II D1 protein of Chlamydomonas that result in a nonphotosynthetic phenotype and impair D1 synthesis and accumulation. J Biol Chem 1997; 272:210-6. [PMID: 8995249 DOI: 10.1074/jbc.272.1.210] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In Cyanobacteria and Chlamydomonas reinhardtii, substitution of valine for alanine at position 251 of the photosystem II D1 protein in the loop between transmembrane helices IV and V confers resistance to herbicides that reduce photosystem II function and increases sensitivity to photoinhibition. Using site-directed mutagenesis and chloroplast transformation in Chlamydomonas we have examined further the role of residue 251 in relation to D1 structure, function, and photosynthetic performance. Of the 12 different amino acid substitutions for Ala251 introduced at this position, five (Arg, Asp, Gln, Glu, and His) resulted in a nonphotosynthetic phenotype. Transformants with the Arg251 substitution synthesize a normal sized 32-kDa D1 protein with greatly reduced stability. The Gln, Glu, His, and Asp transformants make a 33-34-kDa form of the D1 protein of varying stability as well as an immunologically related polypeptide of 24-25 kDa corresponding to the N-terminal portion of D1 that is unstable and appears to be an aborted D1 translation product. All mutant forms of the D1 protein are intrinsic to the thylakoids. In contrast to previous studies in Cyanobacteria showing that residues in the IV-V loop can be mutated or deleted without loss of photosynthetic competence, our results suggest that Ala251 has a key role in the structure and function of the IV-V loop region.
Collapse
Affiliation(s)
- A Lardans
- Department of Botany, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | |
Collapse
|