1
|
Fölsch H. Role of the epithelial cell-specific clathrin adaptor complex AP-1B in cell polarity. CELLULAR LOGISTICS 2015; 5:e1074331. [PMID: 27057418 DOI: 10.1080/21592799.2015.1074331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
Abstract
Epithelial cells are important for organ development and function. To this end, they polarize their plasma membrane into biochemically and physically distinct membrane domains. The apical membrane faces the luminal site of an organ and the basolateral domain is in contact with the basement membrane and neighboring cells. To establish and maintain this polarity it is important that newly synthesized and endocytic cargos are correctly sorted according to their final destinations at either membrane. Sorting takes place at one of 2 major sorting stations in the cells, the trans-Golgi network (TGN) and recycling endosomes (REs). Polarized sorting may involve epithelial cell-specific sorting adaptors like the AP-1B clathrin adaptor complex. AP-1B facilitates basolateral sorting from REs. This review will discuss various aspects of basolateral sorting in epithelial cells with a special emphasis on AP-1B.
Collapse
Affiliation(s)
- Heike Fölsch
- Department of Cell and Molecular Biology; Northwestern University; Feinberg School of Medicine ; Chicago, IL USA
| |
Collapse
|
2
|
Tam JHK, Seah C, Pasternak SH. The Amyloid Precursor Protein is rapidly transported from the Golgi apparatus to the lysosome and where it is processed into beta-amyloid. Mol Brain 2014; 7:54. [PMID: 25085554 PMCID: PMC4237969 DOI: 10.1186/s13041-014-0054-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/23/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by cerebral deposition of β-amyloid peptide (Aβ). Aβ is produced by sequential cleavage of the Amyloid Precursor Protein (APP) by β- and γ-secretases. Many studies have demonstrated that the internalization of APP from the cell surface can regulate Aβ production, although the exact organelle in which Aβ is produced remains contentious. A number of recent studies suggest that intracellular trafficking also plays a role in regulating Aβ production, but these pathways are relatively under-studied. The goal of this study was to elucidate the intracellular trafficking of APP, and to examine the site of intracellular APP processing. RESULTS We have tagged APP on its C-terminal cytoplasmic tail with photoactivatable Green Fluorescent Protein (paGFP). By photoactivating APP-paGFP in the Golgi, using the Golgi marker Galactosyltranferase fused to Cyan Fluorescent Protein (GalT-CFP) as a target, we are able to follow a population of nascent APP molecules from the Golgi to downstream compartments identified with compartment markers tagged with red fluorescent protein (mRFP or mCherry); including rab5 (early endosomes) rab9 (late endosomes) and LAMP1 (lysosomes). Because γ-cleavage of APP releases the cytoplasmic tail of APP including the photoactivated GFP, resulting in loss of fluorescence, we are able to visualize the cleavage of APP in these compartments. Using APP-paGFP, we show that APP is rapidly trafficked from the Golgi apparatus to the lysosome; where it is rapidly cleared. Chloroquine and the highly selective γ-secretase inhibitor, L685, 458, cause the accumulation of APP in lysosomes implying that APP is being cleaved by secretases in the lysosome. The Swedish mutation dramatically increases the rate of lysosomal APP processing, which is also inhibited by chloroquine and L685, 458. By knocking down adaptor protein 3 (AP-3; a heterotetrameric protein complex required for trafficking many proteins to the lysosome) using siRNA, we are able to reduce this lysosomal transport. Blocking lysosomal transport of APP reduces Aβ production by more than a third. CONCLUSION These data suggests that AP-3 mediates rapid delivery of APP to lysosomes, and that the lysosome is a likely site of Aβ production.
Collapse
Affiliation(s)
- Joshua HK Tam
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, 100 Perth Drive, London N6A 5K8, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London N6A 5K8, Ontario, Canada
| | - Claudia Seah
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, 100 Perth Drive, London N6A 5K8, Ontario, Canada
| | - Stephen H Pasternak
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, 100 Perth Drive, London N6A 5K8, Ontario, Canada
- Department of Clinical Neurological Sciences, London N6A 5K8, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London N6A 5K8, Ontario, Canada
| |
Collapse
|
3
|
Cuartero Y, Mellado M, Capell A, Álvarez-Dolado M, Verges M. Retromer Regulates Postendocytic Sorting of β-Secretase in Polarized Madin-Darby Canine Kidney Cells. Traffic 2012; 13:1393-410. [DOI: 10.1111/j.1600-0854.2012.01392.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 01/24/2023]
Affiliation(s)
- Yasmina Cuartero
- Laboratory of Epithelial Cell Biology; Centro de Investigación Príncipe Felipe; Valencia; Spain
| | - Maravillas Mellado
- Laboratory of Epithelial Cell Biology; Centro de Investigación Príncipe Felipe; Valencia; Spain
| | - Anja Capell
- German Center for Neurodegenerative Diseases & Adolf Butenandt Institute - Biochemistry; Ludwig Maximilians University; Munich; Germany
| | - Manuel Álvarez-Dolado
- Department of Cell Therapy and Regenerative Medicine; Andalusian Center for Molecular Biology and Regenerative Medicine; Seville; Spain
| | | |
Collapse
|
4
|
Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2012; 2:a006270. [PMID: 22553493 PMCID: PMC3331683 DOI: 10.1101/cshperspect.a006270] [Citation(s) in RCA: 745] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accumulations of insoluble deposits of amyloid β-peptide are major pathological hallmarks of Alzheimer disease. Amyloid β-peptide is derived by sequential proteolytic processing from a large type I trans-membrane protein, the β-amyloid precursor protein. The proteolytic enzymes involved in its processing are named secretases. β- and γ-secretase liberate by sequential cleavage the neurotoxic amyloid β-peptide, whereas α-secretase prevents its generation by cleaving within the middle of the amyloid domain. In this chapter we describe the cell biological and biochemical characteristics of the three secretase activities involved in the proteolytic processing of the precursor protein. In addition we outline how the precursor protein maturates and traffics through the secretory pathway to reach the subcellular locations where the individual secretases are preferentially active. Furthermore, we illuminate how neuronal activity and mutations which cause familial Alzheimer disease affect amyloid β-peptide generation and therefore disease onset and progression.
Collapse
Affiliation(s)
- Christian Haass
- DZNE-German Center for Neurodegenerative Diseases, 80336 Munich, Germany; Adolf Butenandt-Institute, Biochemistry, Ludwig-Maximilians University, 80336 Munich, Germany.
| | | | | | | |
Collapse
|
5
|
Lorenzen A, Samosh J, Vandewark K, Anborgh PH, Seah C, Magalhaes AC, Cregan SP, Ferguson SSG, Pasternak SH. Rapid and direct transport of cell surface APP to the lysosome defines a novel selective pathway. Mol Brain 2010; 3:11. [PMID: 20409323 PMCID: PMC2868040 DOI: 10.1186/1756-6606-3-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/21/2010] [Indexed: 12/03/2022] Open
Abstract
Background A central feature of Alzheimer's disease is the cleavage of the amyloid precursor protein (APP) to form beta-amyloid peptide (Aβ) by the β-secretase and γ-secretase enzymes. Although this has been shown to occur after endocytosis of APP from the cell surface, the exact compartments of APP processing are not well defined. We have previously demonstrated that APP and γ-secretase proteins and activity are highly enriched in purified rat liver lysosomes. In order to examine the lysosomal distribution and trafficking of APP in cultured cells, we generated constructs containing APP fused to a C-terminal fluorescent protein tag and N-terminal HA-epitope tag. These were co-transfected with a panel of fluorescent-protein tagged compartment markers. Results Here we demonstrate using laser-scanning confocal microscopy that although APP is present throughout the endosomal/lysosomal system in transfected Cos7 and neuronal SN56 cell lines as well as in immunostained cultured mouse neurons, it is enriched in the lysosome. We also show that the Swedish and London mutations reduce the amount of APP in the lysosome. Surprisingly, in addition to its expected trafficking from the cell surface to the early and then late endosomes, we find that cell-surface labelled APP is transported rapidly and directly from the cell surface to lysosomes in both Cos7 and SN56 cells. This rapid transit to the lysosome is blocked by the presence of either the London or Swedish mutations. Conclusions These results demonstrate the presence of a novel, rapid and specific transport pathway from the cell surface to the lysosomes. This suggests that regulation of lysosomal traffic could regulate APP processing and that the lysosome could play a central role in the pathophysiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Angela Lorenzen
- J, Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, Schulich School of Medicine, the University of Western Ontario, London, Ontario, N6A 5K8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Venugopal C, Demos CM, Rao KSJ, Pappolla MA, Sambamurti K. Beta-secretase: structure, function, and evolution. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:278-94. [PMID: 18673212 PMCID: PMC2921875 DOI: 10.2174/187152708784936626] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The most popular current hypothesis is that Alzheimer's disease (AD) is caused by aggregates of the amyloid peptide (Abeta), which is generated by cleavage of the Abeta protein precursor (APP) by beta-secretase (BACE-1) followed by gamma-secretase. BACE-1 cleavage is limiting for the production of Abeta, making it a particularly good drug target for the generation of inhibitors that lower Abeta. A landmark discovery in AD was the identification of BACE-1 (a.k.a. Memapsin-2) as a novel class of type I transmembrane aspartic protease. Although BACE-2, a homologue of BACE-1, was quickly identified, follow up studies using knockout mice demonstrated that BACE-1 was necessary and sufficient for most neuronal Abeta generation. Despite the importance of BACE-1 as a drug target, development has been slow due to the incomplete understanding of its function and regulation and the difficulties in developing a brain penetrant drug that can specifically block its large catalytic pocket. This review summarizes the biological properties of BACE-1 and attempts to use phylogenetic perspectives to understand its function. The article also addresses the challenges in discovering a selective drug-like molecule targeting novel mechanisms of BACE-1 regulation.
Collapse
Affiliation(s)
| | | | | | | | - Kumar Sambamurti
- Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
7
|
Vergés M. Retromer: multipurpose sorting and specialization in polarized transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:153-98. [PMID: 19081543 DOI: 10.1016/s1937-6448(08)01204-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Retromer is an evolutionary conserved protein complex required for endosome-to-Golgi retrieval of lysosomal hydrolases' receptors. A dimer of two sorting nexins-typically, SNX1 and/or SNX2-deforms the membrane and thus cooperates with retromer to ensure cargo sorting. Research in various model organisms indicates that retromer participates in sorting of additional molecules whose proper transport has important repercussions in development and disease. The role of retromer as well as SNXs in endosomal protein (re)cycling and protein targeting to specialized plasma membrane domains in polarized cells adds further complexity and has implications in growth control, the establishment of developmental patterns, cell adhesion, and migration. This chapter will discuss the functions of retromer described in various model systems and will focus on relevant aspects in polarized transport.
Collapse
Affiliation(s)
- Marcel Vergés
- Laboratory of Epithelial Cell Biology, Centro de Investigación Príncipe Felipe, C/E.P. Avda. Autopista del Saler, Valencia, Spain
| |
Collapse
|
8
|
Icking A, Amaddii M, Ruonala M, Höning S, Tikkanen R. Polarized Transport of Alzheimer Amyloid Precursor Protein Is Mediated by Adaptor Protein Complex AP1-1B. Traffic 2006; 8:285-96. [PMID: 17319802 DOI: 10.1111/j.1600-0854.2006.00526.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer amyloid precursor protein (APP) is the precursor for the Abeta peptide involved in pathogenesis of Alzheimer's disease. The soluble ectodomain fragment of APP (sAPP) functions as a growth factor for epithelial cells, suggesting an important function for APP outside neuronal tissue. Previous studies have shown that in polarized epithelial cells, APP is targeted to the basolateral domain. Tyr653 within the cytoplasmic tail of APP mediates the basolateral targeting of APP, but the sorting machinery that binds to this residue has largely remained unknown. In this study, we analyzed the role of adaptor complexes in the polarized sorting of APP. We show that the medium subunit mu1B of the epithelia-specific adaptor protein (AP)-1B binds onto the cytoplasmic tail of APP in a Tyr653-dependent way. Moreover, ectopic expression of mu1B in cells lacking AP-1B resulted in correction of apical missorting of wild-type but not Tyr653Ala APP. Basolateral secretion of sAPP was found to be independent of Tyr653. We propose a model for polarized targeting of APP according to which sorting of APP to basolateral domain is dependent on binding of AP-1B on Tyr653 in basolateral endosomes. This model is in accordance with the current understanding of sorting mechanisms mediating polarized targeting of membrane proteins.
Collapse
Affiliation(s)
- Ann Icking
- Institute of Biochemistry II and Cluster of Excellence 'Macromolecular Complexes', University Clinic of Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
9
|
Froestl B, Steiner B, Müller WE. Enhancement of proteolytic processing of the β-amyloid precursor protein by hyperforin. Biochem Pharmacol 2003; 66:2177-84. [PMID: 14609742 DOI: 10.1016/j.bcp.2003.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We studied the effect of hyperforin, a component of St. John's wort (Hypericum perforatum) extracts, on the processing of the amyloid precursor protein (APP) in rat pheochromocytoma PC12 cells, stably transfected with human wildtype APP. We observed transiently increased release of secretory APP fragments upon hyperforin treatment. Unique features, like a strong reduction of intracellular APP and the time course of soluble APP release, distinguished the effects of hyperforin from those of alkalizing agents and phorbol esters, well known activators of secretory processing of APP. Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), a protonophore, induced an almost identical decrease in intracellular pH in PC12 cells as does hyperforin. Despite this, FCCP induced a less pronounced release of soluble APP fragments and only slightly reduced intracellular APP levels. These results suggest that hyperforin is an activator of secretory processing of APP with a novel mechanism of action not solely dependent on its effects on intracellular pH.
Collapse
Affiliation(s)
- Bettina Froestl
- Department of Pharmacology, Biocenter, University of Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt, Germany
| | | | | |
Collapse
|
10
|
Abstract
The amyloid precursor protein (APP) gene and its protein products have multiple functions in the central nervous system and fulfil criteria as neuractive peptides: presence, release and identity of action. There is increased understanding of the role of secretases (proteases) in the metabolism of APP and the production of its peptide fragments. The APP gene and its products have physiological roles in synaptic action, development of the brain, and in the response to stress and injury. These functions reveal the strategic importance of APP in the workings of the brain and point to its evolutionary significance.
Collapse
Affiliation(s)
- P K Panegyres
- Department of Neuropathology, Royal Perth Hospital, Western Australia.
| |
Collapse
|
11
|
Creemers JW, Ines Dominguez D, Plets E, Serneels L, Taylor NA, Multhaup G, Craessaerts K, Annaert W, De Strooper B. Processing of beta-secretase by furin and other members of the proprotein convertase family. J Biol Chem 2001; 276:4211-7. [PMID: 11071887 DOI: 10.1074/jbc.m006947200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid peptide is the main constituent of the amyloid plaques in brain of Alzheimer's disease patients. This peptide is generated from the amyloid precursor protein by two consecutive cleavages. Cleavage at the N terminus is performed by the recently discovered beta-secretase (Bace). This aspartyl protease contains a propeptide that has to be removed to obtain mature Bace. Furin and other members of the furin family of prohormone convertases are involved in this process. Surprisingly, beta-secretase activity, neither at the classical Asp(1) position nor at the Glu(11) position of amyloid precursor protein, seems to be controlled by this maturation step. Furthermore, we show that Glu(11) cleavage is a function of the expression level of Bace, that it depends on the membrane anchorage of Bace, and that Asp(1) cleavage can be followed by Glu(11) cleavage. Our data suggest that pro-Bace could be active as a beta-secretase in the early biosynthetic compartments of the cell and could be involved in the generation of the intracellular pool of the amyloid peptide. We conclude that modulation of the conversion of pro-Bace to mature Bace is not a relevant drug target to treat Alzheimer's disease.
Collapse
Affiliation(s)
- J W Creemers
- Center for Human Genetics, Molecular Oncology and Neuronal Cell Biology Laboratories, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Annaert W, De Strooper B. Neuronal models to study amyloid precursor protein expression and processing in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:53-62. [PMID: 10899431 DOI: 10.1016/s0925-4439(00)00032-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- W Annaert
- Neuronal Cell Biology and Gene Transfer Laboratory, Centre for Human Genetics, Flanders Interuniversitary Institute for Biotechnology, Gasthuisberg, KU Leuven, Belgium
| | | |
Collapse
|
13
|
De Strooper B, Annaert W. Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 2000; 113 ( Pt 11):1857-70. [PMID: 10806097 DOI: 10.1242/jcs.113.11.1857] [Citation(s) in RCA: 395] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent research has identified some key players involved in the proteolytic processing of amyloid precursor protein (APP) to amyloid beta-peptide, the principal component of the amyloid plaques in Alzheimer patients. Interesting parallels exists with the proteolysis of other proteins involved in cell differentiation, cholesterol homeostasis and stress responses. Since the cytoplasmic domain of APP is anchored to a complex protein network that might function in axonal elongation, dendritic arborisation and neuronal cell migration, the proteolysis of APP might be critically involved in intracellular signalling events.
Collapse
Affiliation(s)
- B De Strooper
- Center for Human Genetics, Flanders interuniversitary institute for Biotechnology and K. U. Leuven, Belgium. bart.destrooper@med. kuleuven.ac.be
| | | |
Collapse
|
14
|
Markaryan A, Morozova I, Lee BS, Kaplan A. Atypical processing of amyloid precursor fusion protein by proteolytic activity in Pichia pastoris. Biochem Biophys Res Commun 1999; 262:263-8. [PMID: 10448103 DOI: 10.1006/bbrc.1999.1139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secretases catalyze the production of important proteolytic products of the amyloid precursor protein. We expressed a fusion protein that contained horseradish peroxidase, fragment 590-695 of amyloid precursor protein, and c-myc and polyhistidine tags in Pichia pastoris. It secreted a 50-kDa N-terminal fragment; a 15-kDa C-terminal fragment accumulated in cells. The N-terminal fragment exhibited peroxidase activity and reacted with antibodies specific for peptides within the sequences -2 to 15 and 21-37 of beta-amyloid peptide. The C-terminal fragment reacted with antibodies that recognize the sequences 649-664 and 676-695 of amyloid precursor protein and the C-terminal c-myc tag. To locate the cut site, the C-terminal fragment was metabolically labeled with either [(35)S]Met or [(3)H]Lys and radiosequenced. A major component, derived from a cleavage at Gly(25)-Ser(26) of beta-amyloid, was detected. Results suggest a predominant atypical cleavage, like that observed in Down Syndrome fibroblasts, occurs between the alpha- and gamma-sites.
Collapse
Affiliation(s)
- A Markaryan
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
15
|
Zheng P, Eastman J, Vande Pol S, Pimplikar SW. PAT1, a microtubule-interacting protein, recognizes the basolateral sorting signal of amyloid precursor protein. Proc Natl Acad Sci U S A 1998; 95:14745-50. [PMID: 9843960 PMCID: PMC24520 DOI: 10.1073/pnas.95.25.14745] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In epithelial cells, sorting of membrane proteins to the basolateral surface depends on the presence of a basolateral sorting signal (BaSS) in their cytoplasmic domain. Amyloid precursor protein (APP), a basolateral protein implicated in the pathogenesis of Alzheimer's disease, contains a tyrosine-based BaSS, and mutation of the tyrosine residue results in nonpolarized transport of APP. Here we report identification of a protein, termed PAT1 (protein interacting with APP tail 1), that interacts with the APP-BaSS but binds poorly when the critical tyrosine is mutated and does not bind the tyrosine-based endocytic signal of APP. PAT1 shows homology to kinesin light chain, which is a component of the plus-end directed microtubule-based motor involved in transporting membrane proteins to the basolateral surface. PAT1, a cytoplasmic protein, associates with membranes, cofractionates with APP-containing vesicles, and binds microtubules in a nucleotide-sensitive manner. Cotransfection of PAT1 with a reporter protein shows that PAT1 is functionally linked with intracellular transport of APP. We propose that PAT1 is involved in the translocation of APP along microtubules toward the cell surface.
Collapse
Affiliation(s)
- P Zheng
- Institute of Pathology and Cell Biology Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4943, USA
| | | | | | | |
Collapse
|
16
|
Roush DL, Gottardi CJ, Naim HY, Roth MG, Caplan MJ. Tyrosine-based membrane protein sorting signals are differentially interpreted by polarized Madin-Darby canine kidney and LLC-PK1 epithelial cells. J Biol Chem 1998; 273:26862-9. [PMID: 9756932 DOI: 10.1074/jbc.273.41.26862] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine-dependent sequence motifs are implicated in sorting membrane proteins to the basolateral domain of Madin-Darby canine kidney (MDCK) cells. We find that these motifs are interpreted differentially in various polarized epithelial cell types. The H, K-ATPase beta subunit, which contains a tyrosine-based motif in its cytoplasmic tail, was expressed in MDCK and LLC-PK1 cells. This protein was restricted to the basolateral membrane in MDCK cells, but was localized to the apical membrane in LLC-PK1 cells. Similarly, HA-Y543, a construct in which a tyrosine-based motif was introduced into the cytoplasmic tail of influenza hemagglutinin, was sorted to the basolateral membrane of MDCK cells and retained at the apical membrane of LLC-PK1 cells. A chimera in which the cytoplasmic tail of the H,K-ATPase beta subunit protein was replaced with the analogous region of the Na,K-ATPase beta subunit polypeptide was localized to both surface domains of MDCK cells. Mutation of tyrosine-20 of the H,K-ATPase beta subunit cytoplasmic sequence to an alanine was sufficient to disrupt basolateral localization of this polypeptide. In contrast, these constructs all remain localized to the apical membrane in LLC-PK1 cells. The FcRII-B2 protein bears a di-leucine motif and is found at the basolateral membrane of both MDCK and LLC-PK1 cells. These results demonstrate that polarized epithelia are able to discriminate between different classes of specifically defined membrane protein sorting signals.
Collapse
Affiliation(s)
- D L Roush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
The plasma membrane of neurons can be divided into two domains, the soma-dendritic and the axonal. These domains perform different functions: the dendritic surface receives and processes information while the axonal surface is specialized for the rapid transmission of electrical impulses. This functional specialization is generated by sorting and anchoring mechanisms that guarantee the correct delivery and retention of specific membrane proteins. Our understanding of neuronal membrane protein sorting is primarily based on studies of protein overexpression in cultured neurons. These studies revealed that newly synthesized membrane proteins are segregated in the Golgi apparatus in the cell body from where they are transported to the axonal or dendritic surface. Such segregation presumably depends on sorting motifs in the proteins' primary structure. They appear to be located in the cytoplasmic tail for dendritic proteins and in the transmembrane-ectodomain for axonal proteins. Recent studies on neurotransmitter segregation suggest that anchoring in the correct subdomain of the plasma membrane also requires cytoplasmic tail information for binding to the cytoskeleton either directly or by linker proteins. Both mechanisms, sorting and retention, gradually mature during neural development. Young neurons appear to develop initial polarity by other mechanisms, presumably analogous to the mechanisms used by migrating cells.
Collapse
Affiliation(s)
- F Bradke
- Cell Biology Programme, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117-Heidelberg, Germany.
| | | |
Collapse
|
18
|
Tomita S, Kirino Y, Suzuki T. Cleavage of Alzheimer's amyloid precursor protein (APP) by secretases occurs after O-glycosylation of APP in the protein secretory pathway. Identification of intracellular compartments in which APP cleavage occurs without using toxic agents that interfere with protein metabolism. J Biol Chem 1998; 273:6277-84. [PMID: 9497354 DOI: 10.1074/jbc.273.11.6277] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Amyloid peptide (Abeta) is a principal component of parenchymal amyloid deposits in Alzheimer's disease. Abeta is derived from amyloid precursor protein (APP) by proteolytic cleavage. APP is subject to N- and O-glycosylation and potential tyrosine sulfation, following protein synthesis, and is then thought to be cleaved in an intracellular secretory pathway after or during these post-translational modifications. Studies utilizing agents that affect a series of steps in the protein secretory pathway have identified the possible intracellular sites of APP cleavage and Abeta generation within the protein secretory pathway. In the present study, using cells with normal protein metabolism, but expressing mutant APP with defective O-glycosylation, we demonstrated that the majority of APP cleavage by alpha-, beta-, and gamma-secretases occurs after O-glycosylation. Cells expressing the mutant APP noticeably decreased the generation of the intracellular APP carboxyl-terminal fragment (alphaAPPCOOH), a product of alpha-secretase, and both Abeta40 and Abeta42 in medium, a product of beta- and gamma-secretases. Furthermore, we found that the cells accumulate the mutant APP in intracellular reticular compartments such as the endoplasmic reticulum. Agents that could ambiguously affect the function of specific intracellular organelles and that may be toxic were not used. The present results indicate that APP is cleaved by alpha-, beta-, and gamma-secretases in step(s) during the transport of APP through Golgi complex, where O-glycosylation occurs, or in compartments subsequent to trans-Golgi of the APP secretory pathway.
Collapse
Affiliation(s)
- S Tomita
- Laboratory of Neurobiophysics, School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
19
|
Kisilevsky R, Fraser PE. A beta amyloidogenesis: unique, or variation on a systemic theme? Crit Rev Biochem Mol Biol 1998; 32:361-404. [PMID: 9383610 DOI: 10.3109/10409239709082674] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For more than a century amyloid was considered to be an interesting, unique, but inconsequential pathologic entity that rarely caused significant clinical problems. We now recognize that amyloid is not one entity. In vivo it is a uniform organization of a disease, or process, specific protein co-deposited with a set of common structural components. Amyloid has been implicated in the pathogenesis of diseases affecting millions of patients. These range from Alzheimer's disease, adult-onset diabetes, consequences of prolonged renal dialysis, to the historically recognized systemic forms associated with inflammation and plasma cell disturbances. Strong evidence is emerging that even when deposited in local organ sites significant physiologic effects may ensue. With emphasis on A beta amyloid, we review the present definition, classification, and general in vivo pathogenetic events believed to be involved in the deposition of amyloids. This encompasses the need for an adequate amyloid precursor protein pool, whether precursor proteolysis is required prior to deposition, amyloidogenic amino acid sequences, fibrillogenic nucleating particles, and an in vivo microenvironment conducive to fibrillogenesis. The latter includes several components that seem to be part of all amyloids. The role these common components may play in amyloid accumulation, why amyloids tend to be associated with basement membranes, and how one may use these findings for anti-amyloid therapeutic strategies is also examined.
Collapse
Affiliation(s)
- R Kisilevsky
- Department of Pathology, Queen's University, Kingston, Ontario Canada
| | | |
Collapse
|
20
|
Lai A, Gibson A, Hopkins CR, Trowbridge IS. Signal-dependent trafficking of beta-amyloid precursor protein-transferrin receptor chimeras in madin-darby canine kidney cells. J Biol Chem 1998; 273:3732-9. [PMID: 9452505 DOI: 10.1074/jbc.273.6.3732] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have investigated the intracellular trafficking of a chimeric molecule consisting of the cytoplasmic domain of the beta-amyloid precursor protein (APP) and the transmembrane region and external domain of the human transferrin receptor (TR) in Madin-Darby canine kidney cells. Newly synthesized APP-TR chimeras are selectively targeted to the basolateral surface by a tyrosine-dependent sorting signal in the APP cytoplasmic tail. APP-TR chimeras are then rapidly internalized from the basolateral surface and a significant fraction ( approximately 20-30%) are degraded. Morphological studies show that APP-TR chimeras internalized from the basolateral surface are found in tubulo-vesicular endosomal elements, internal membranes of multivesicular bodies, and lysosomes. APP-TR chimeras are also found in 60-nm diameter vesicles previously shown to selectively deliver wild-type TR to the basolateral surface; this result is consistent with the fact that 90% of internalized chimeras that are not degraded are selectively recycled back to the basolateral surface. APP-TR chimeras internalized from the apical surface are selectively transcytosed to the basolateral surface underscoring the importance of basolateral sorting in the endocytic pathway for maintaining the polarized phenotype. Tyr-653, an important element of the YTSI internalization signal in the APP cytoplasmic domain, is required for basolateral sorting in the biosynthetic and endocytic pathways. However, the structural features for basolateral sorting differ from those required for internalization.
Collapse
Affiliation(s)
- A Lai
- Department of Cancer Biology, The Salk Institute, San Diego, California 92186-5800, USA
| | | | | | | |
Collapse
|
21
|
De Strooper B, Beullens M, Contreras B, Levesque L, Craessaerts K, Cordell B, Moechars D, Bollen M, Fraser P, George-Hyslop PS, Van Leuven F. Phosphorylation, subcellular localization, and membrane orientation of the Alzheimer's disease-associated presenilins. J Biol Chem 1997; 272:3590-8. [PMID: 9013610 DOI: 10.1074/jbc.272.6.3590] [Citation(s) in RCA: 235] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Presenilins 1 and 2 are unglycosylated proteins with apparent molecular mass of 45 and 50 kDa, respectively, in transfected COS-1 and Chinese hamster ovary cells. They colocalize with proteins from the endoplasmic reticulum and the Golgi apparatus in transfected and untransfected cells. In COS-1 cells low amounts of intact endogeneous presenilin 1 migrating at 45 kDa are detected together with relative larger amounts of presenilin 1 fragments migrating between 18 and 30 kDa. The presenilins have a strong tendency to form aggregates (mass of 100-250 kDa) in SDS-polyacrylamide gel electrophoresis, which can be partially resolved when denatured by SDS at 37 degrees C instead of 95 degrees C. Sulfation, glycosaminoglycan modification, or acylation of the presenilins was not observed, but both proteins are posttranslationally phosphorylated on serine residues. The mutations Ala-246 --> Glu or Cys-410 --> Tyr that cause Alzheimer's disease do not interfere with the biosynthesis or phosphorylation of presenilin 1. Finally, using low concentrations of digitonin to selectively permeabilize the cell membrane but not the endoplasmic reticulum membrane, it is demonstrated that the two major hydrophilic domains of presenilin 1 are oriented to the cytoplasm. The current investigation documents the posttranslational modifications and subcellular localization of the presenilins and indicates that postulated interactions with amyloid precursor protein metabolism should occur in the early compartments of the biosynthetic pathway.
Collapse
|
22
|
Arvan P, Kim PS, Kuliawat R, Prabakaran D, Muresan Z, Yoo SE, Abu Hossain S. Intracellular protein transport to the thyrocyte plasma membrane: potential implications for thyroid physiology. Thyroid 1997; 7:89-105. [PMID: 9086577 DOI: 10.1089/thy.1997.7.89] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We present a snapshot of developments in epithelial biology that may prove helpful in understanding cellular aspects of the machinery designed for the synthesis of thyroid hormones on the thyroglobulin precursor. The functional unit of the thyroid gland is the follicle, delimited by a monolayer of thyrocytes. Like the cells of most simple epithelia, thyrocytes exhibit specialization of the cell surface that confronts two different extracellular environments-apical and basolateral, which are separated by tight junctions. Specifically, the basolateral domain faces the interstitium/bloodstream, while the apical domain is in contact with the lumen that is the primary target for newly synthesized thyroglobulin secretion and also serves as a storage depot for previously secreted protein. Thyrocytes use their polarity in several important ways, such as for maintaining basolaterally located iodide uptake and T4 deiodination, as well apically located iodide efflux and iodination machinery. The mechanisms by which this organization is established, fall in large part under the more general cell biological problem of intracellular sorting and trafficking of different proteins en route to the cell surface. Nearly all exportable proteins begin their biological life after synthesis in an intracellular compartment known as the endoplasmic reticulum (ER), upon which different degrees of difficulty may be encountered during nascent polypeptide folding and initial export to the Golgi complex. In these initial stages, ER molecular chaperones can assist in monitoring protein folding and export while themselves remaining as resident proteins of the thyroid ER. After export from the ER, most subsequent sorting for protein delivery to apical or basolateral surfaces of thyrocytes occurs within another specialized intracellular compartment known as the trans-Golgi network. Targeting information encoded in secretory proteins and plasma membrane proteins can be exposed or buried at different stages along the export pathway, which is likely to account for sorting and specific delivery of different newly-synthesized proteins. Defects in either burying or exposing these structural signals, and consequent abnormalities in protein transport, may contribute to different thyroid pathologies.
Collapse
Affiliation(s)
- P Arvan
- Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|