1
|
Jacobs RQ, Schneider DA. Transcription elongation mechanisms of RNA polymerases I, II, and III and their therapeutic implications. J Biol Chem 2024; 300:105737. [PMID: 38336292 PMCID: PMC10907179 DOI: 10.1016/j.jbc.2024.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Transcription is a tightly regulated, complex, and essential cellular process in all living organisms. Transcription is comprised of three steps, transcription initiation, elongation, and termination. The distinct transcription initiation and termination mechanisms of eukaryotic RNA polymerases I, II, and III (Pols I, II, and III) have long been appreciated. Recent methodological advances have empowered high-resolution investigations of the Pols' transcription elongation mechanisms. Here, we review the kinetic similarities and differences in the individual steps of Pol I-, II-, and III-catalyzed transcription elongation, including NTP binding, bond formation, pyrophosphate release, and translocation. This review serves as an important summation of Saccharomyces cerevisiae (yeast) Pol I, II, and III kinetic investigations which reveal that transcription elongation by the Pols is governed by distinct mechanisms. Further, these studies illustrate how basic, biochemical investigations of the Pols can empower the development of chemotherapeutic compounds.
Collapse
Affiliation(s)
- Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
2
|
Evers M, Song J, Shriwas P, Greenbaum HS, Chen X. From Transcriptomics, Metabolomics to Functional Studies: Extracellular ATP Induces TGF-β-Like Epithelial Mesenchymal Transition in Lung Cancer Cells. Front Oncol 2022; 12:912065. [PMID: 35847855 PMCID: PMC9282887 DOI: 10.3389/fonc.2022.912065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/25/2022] [Indexed: 12/02/2022] Open
Abstract
We and others previously showed that extracellular ATP (eATP) is implicated in epithelial mesenchymal transition (EMT). However, the mechanisms by which eATP induces EMT and ATP’s relationship to TGF-β, a well-known EMT inducer, are largely unclear. Also, eATP-induced EMT has never been studied at transcriptomic and metabolomics levels. Based on our previous studies, we hypothesized that eATP acts as a specific inducer and regulator of EMT at all levels in cancer cells. RNAseq and metabolomics analyses were performed on human non-small cell lung cancer (NSCLC) A549 cells treated with either eATP or TGF-β. Bio-functional assays, such as invasion, intracellular ATP, cell proliferation, cytoskeleton remodeling, and others were conducted in NSCLC A549 and H1299 cells to validate changes observed from RNAseq and metabolomics studies. In the RNAseq study, eATP significantly enriched expressions of genes involved in EMT similarly to TGF-β after 2 and 6 hours of treatment. Samples treated with eATP for 2 hours share 131 upregulated EMT genes with those of TGF-β treated samples, and 42 genes at 6 hours treatment. Eleven genes, with known or unknown functions in EMT, are significantly upregulated by both inducers at both time points, have been identified. BLOC1S6, one of the 11 genes, was selected for further study. eATP induced numerous EMT-related changes in metabolic pathways, including cytoskeleton rearrangement, glycolysis, glutaminolysis, ROS, and individual metabolic changes similar to those induced by TGF-β. Functional bioassays verified the findings from RNAseq and metabolomics that eATP EMT-like changes in A549 and H1299 cells similarly to TGF-β. BLOC1S6 was found to be implicated in EMT. In these studies, eATP-induced EMT, at all levels examined, is similar but non-identical to that induced by TGF-β, and functions in such a way that exogenous addition of TGF-β is unnecessary for the induction. The study of BLOC1S6 further verified its potential roles in EMT and the RNAseq analysis results. All these strongly indicate that eATP is a multi-functional and multi-locational inducer and regulator of EMT, changing our thinking on how EMT is induced and regulated and pointing to new directions for inhibiting EMT in cancer.
Collapse
Affiliation(s)
- Maria Evers
- Honors Tutorial College, Ohio University, Athens, OH, United States
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Jingwen Song
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- The Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- The Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Pratik Shriwas
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- The Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Harrison S. Greenbaum
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Xiaozhuo Chen
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- The Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- The Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, The Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- *Correspondence: Xiaozhuo Chen,
| |
Collapse
|
3
|
Sampathi S, Acharya P, Zhao Y, Wang J, Stengel KR, Liu Q, Savona MR, Hiebert SW. The CDK7 inhibitor THZ1 alters RNA polymerase dynamics at the 5' and 3' ends of genes. Nucleic Acids Res 2019; 47:3921-3936. [PMID: 30805632 PMCID: PMC6486546 DOI: 10.1093/nar/gkz127] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/22/2019] [Indexed: 01/01/2023] Open
Abstract
The t(8;21) is one of the most frequent chromosomal translocations associated with acute myeloid leukemia (AML). We found that t(8;21) AML were extremely sensitive to THZ1, which triggered apoptosis after only 4 h. We used precision nuclear run-on transcription sequencing (PROseq) to define the global effects of THZ1 and other CDK inhibitors on RNA polymerase II dynamics. Inhibition of CDK7 using THZ1 caused wide-spread loss of promoter-proximal paused RNA polymerase. This loss of 5′ pausing was associated with accumulation of polymerases in the body of a large number of genes. However, there were modest effects on genes regulated by ‘super-enhancers’. At the 3′ ends of genes, treatment with THZ1 suppressed RNA polymerase ‘read through’ at the end of the last exon, which resembled a phenotype associated with a mutant RNA polymerase with slower elongation rates. Consistent with this hypothesis, polyA site-sequencing (PolyA-seq) did not detect differences in poly A sites after THZ1 treatment. PROseq analysis after short treatments with THZ1 suggested that these 3′ effects were due to altered CDK7 activity at the 5′ end of long genes, and were likely to be due to slower rates of elongation.
Collapse
Affiliation(s)
- Shilpa Sampathi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pankaj Acharya
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yue Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristy R Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael R Savona
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37027.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37027
| |
Collapse
|
4
|
TFIIE orchestrates the recruitment of the TFIIH kinase module at promoter before release during transcription. Nat Commun 2019; 10:2084. [PMID: 31064989 PMCID: PMC6504876 DOI: 10.1038/s41467-019-10131-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/18/2019] [Indexed: 11/08/2022] Open
Abstract
In eukaryotes, the general transcription factors TFIIE and TFIIH assemble at the transcription start site with RNA Polymerase II. However, the mechanism by which these transcription factors incorporate the preinitiation complex and coordinate their action during RNA polymerase II transcription remains elusive. Here we show that the TFIIEα and TFIIEβ subunits anchor the TFIIH kinase module (CAK) within the preinitiation complex. In addition, we show that while RNA polymerase II phosphorylation and DNA opening occur, CAK and TFIIEα are released from the promoter. This dissociation is impeded by either ATP-γS or CDK7 inhibitor THZ1, but still occurs when XPB activity is abrogated. Finally, we show that the Core-TFIIH and TFIIEβ are subsequently removed, while elongation factors such as DSIF are recruited. Remarkably, these early transcriptional events are affected by TFIIE and TFIIH mutations associated with the developmental disorder, trichothiodystrophy. The general transcription factors TFIIE and TFIIH assemble at the transcription start site with RNA Polymerase II. Here the authors provide evidence that the TFIIEα and TFIIEβ subunits anchor the TFIIH kinase module within the preinitiation complex before their release during transcription.
Collapse
|
5
|
Tomko EJ, Galburt EA. Single-molecule approach for studying RNAP II transcription initiation using magnetic tweezers. Methods 2019; 159-160:35-44. [PMID: 30898685 DOI: 10.1016/j.ymeth.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 11/19/2022] Open
Abstract
The initiation of transcription underlies the ability of cells to modulate genome expression as a function of both internal and external signals and the core process of initiation has features that are shared across all domains of life. Specifically, initiation can be sub-divided into promoter recognition, promoter opening, and promoter escape. However, the molecular players and mechanisms used are significantly different in Eukaryotes and Bacteria. In particular, bacterial initiation requires only the formation of RNA polymerase (RNAP) holoenzyme and proceeds as a series of spontaneous conformational changes while eukaryotic initiation requires the formation of the 31-subunit pre-initiation complex (PIC) and often requires ATP hydrolysis by the Ssl2/XPB subunit of the general transcription factor TFIIH. Our mechanistic view of this process in Eukaryotes has recently been improved through a combination of structural and single-molecule approaches which are providing a detailed picture of the structural dynamics that lead to the production of an elongation competent RNAP II and thus, an RNA transcript. Here we provide the methodological details of our single-molecule magnetic tweezers studies of transcription initiation using purified factors from Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Eric J Tomko
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Eric A Galburt
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, United States.
| |
Collapse
|
6
|
Kolesnikova O, Radu L, Poterszman A. TFIIH: A multi-subunit complex at the cross-roads of transcription and DNA repair. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 115:21-67. [PMID: 30798933 DOI: 10.1016/bs.apcsb.2019.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcription factor IIH (TFIIH) is a multiprotein complex involved in both eukaryotic transcription and DNA repair, revealing a tight connection between these two processes. Composed of 10 subunits, it can be resolved into a 7-subunits core complex with the XPB translocase and the XPD helicase, and the 3-subunits kinase complex CAK, which also exists as a free complex with a distinct function. Initially identified as basal transcription factor, TFIIH also participates in transcription regulation and plays a key role in nucleotide excision repair (NER) for opening DNA at damaged sites, lesion verification and recruitment of additional repair factors. Our understanding of TFIIH function in eukaryotic cells has greatly benefited from studies of the genetic rare diseases xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD), that are not only characterized by cancer and aging predispositions but also by neurological and developmental defects. Although much remains unknown about TFIIH function, significant progresses have been done regarding the structure of the complex, the functions of its catalytic subunits and the multiple roles of the regulatory core-TFIIH subunits. This review provides a non-exhaustive survey of key discoveries on the structure and function of this pivotal factor, which can be considered as a promising target for therapeutic strategies.
Collapse
Affiliation(s)
- Olga Kolesnikova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Laura Radu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
7
|
|
8
|
Rimel JK, Taatjes DJ. The essential and multifunctional TFIIH complex. Protein Sci 2018; 27:1018-1037. [PMID: 29664212 PMCID: PMC5980561 DOI: 10.1002/pro.3424] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
TFIIH is a 10‐subunit complex that regulates RNA polymerase II (pol II) transcription but also serves other important biological roles. Although much remains unknown about TFIIH function in eukaryotic cells, much progress has been made even in just the past few years, due in part to technological advances (e.g. cryoEM and single molecule methods) and the development of chemical inhibitors of TFIIH enzymes. This review focuses on the major cellular roles for TFIIH, with an emphasis on TFIIH function as a regulator of pol II transcription. We describe the structure of TFIIH and its roles in pol II initiation, promoter‐proximal pausing, elongation, and termination. We also discuss cellular roles for TFIIH beyond transcription (e.g. DNA repair, cell cycle regulation) and summarize small molecule inhibitors of TFIIH and diseases associated with defects in TFIIH structure and function.
Collapse
Affiliation(s)
- Jenna K Rimel
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, 80303
| | - Dylan J Taatjes
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, 80303
| |
Collapse
|
9
|
TFIIH generates a six-base-pair open complex during RNAP II transcription initiation and start-site scanning. Nat Struct Mol Biol 2017; 24:1139-1145. [PMID: 29106413 PMCID: PMC5741190 DOI: 10.1038/nsmb.3500] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/09/2017] [Indexed: 12/23/2022]
Abstract
Eukaryotic mRNA transcription initiation is directed by the formation of the megaDalton-sized pre-initiation complex (PIC). After PIC formation, double-stranded DNA is unwound to form a single-stranded DNA bubble and the template strand is loaded into the polymerase active site. DNA opening is catalyzed by Ssl2(XPB), the dsDNA translocase subunit of the basal transcription factor TFIIH. In yeast, transcription initiation proceeds through a scanning phase where downstream DNA is searched for optimal start-sites. Here, to test models for initial DNA opening and start-site scanning, we measure the DNA bubble sizes generated by Saccharomyces cerevisiae PICs in real time using single-molecule magnetic tweezers. We show that ATP hydrolysis by Ssl2 opens a 6 base-pair (bp) bubble that grows to 13 bp in the presence of NTPs. These observations support a two-step model wherein ATP-dependent Ssl2 translocation leads to a 6 bp open complex which RNA polymerase II expands via NTP-dependent RNA transcription.
Collapse
|
10
|
Fishburn J, Galburt E, Hahn S. Transcription Start Site Scanning and the Requirement for ATP during Transcription Initiation by RNA Polymerase II. J Biol Chem 2016; 291:13040-7. [PMID: 27129284 DOI: 10.1074/jbc.m116.724583] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Indexed: 01/13/2023] Open
Abstract
Saccharomyces cerevisiae RNA polymerase (Pol) II locates transcription start sites (TSS) at TATA-containing promoters by scanning sequences downstream from the site of preinitiation complex formation, a process that involves the translocation of downstream promoter DNA toward Pol II. To investigate a potential role of yeast Pol II transcription in TSS scanning, HIS4 promoter derivatives were generated that limited transcripts in the 30-bp scanned region to two nucleotides in length. Although we found that TSS scanning does not require RNA synthesis, our results revealed that transcription in the purified yeast basal system is largely ATP-independent despite a requirement for the TFIIH DNA translocase subunit Ssl2. This result is rationalized by our finding that, although they are poorer substrates, UTP and GTP can also be utilized by Ssl2. ATPγS is a strong inhibitor of rNTP-fueled translocation, and high concentrations of ATPγS make transcription completely dependent on added dATP. Limiting Pol II function with low ATP concentrations shifted the TSS position downstream. Combined with prior work, our results show that Pol II transcription plays an important role in TSS selection but is not required for the scanning reaction.
Collapse
Affiliation(s)
- James Fishburn
- From the Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 and
| | - Eric Galburt
- the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Steven Hahn
- From the Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 and
| |
Collapse
|
11
|
Fazal FM, Meng CA, Murakami K, Kornberg RD, Block SM. Real-time observation of the initiation of RNA polymerase II transcription. Nature 2015; 525:274-7. [PMID: 26331540 PMCID: PMC4624315 DOI: 10.1038/nature14882] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/03/2015] [Indexed: 01/22/2023]
Abstract
Biochemical and structural studies have shown that the initiation of RNA polymerase II (pol II) transcription proceeds in the following stages: assembly of pol II with general transcription factors (GTFs) and promoter DNA in a “closed” preinitiation complex (PIC)1,2; unwinding about 15 bp of the promoter DNA to form an “open” complex3,4; scanning downstream to a transcription start site; synthesis of a short transcript, believed to be about 10 nucleotides; and promoter escape. We have assembled a 32-protein, 1.5 megadalton PIC5 derived from Saccharomyces cerevisiae and observed subsequent initiation processes in real time with optical tweezers6. Contrary to expectation, scanning driven by transcription factor IIH (TFIIH)7-12 entailed the rapid opening of an extended bubble, averaging 85 bp, accompanied by the synthesis of a transcript up to the entire length of the extended bubble, followed by promoter escape. PICs that failed to achieve promoter escape nevertheless formed open complexes and extended bubbles, which collapsed back to closed or open complexes, resulting in repeated futile scanning.
Collapse
Affiliation(s)
- Furqan M Fazal
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Cong A Meng
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Kenji Murakami
- Department of Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Steven M Block
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA.,Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
12
|
Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation. Proc Natl Acad Sci U S A 2015; 112:3961-6. [PMID: 25775526 DOI: 10.1073/pnas.1417709112] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Formation of the RNA polymerase II (Pol II) open complex (OC) requires DNA unwinding mediated by the transcription factor TFIIH helicase-related subunit XPB/Ssl2. Because XPB/Ssl2 binds DNA downstream from the location of DNA unwinding, it cannot function using a conventional helicase mechanism. Here we show that yeast TFIIH contains an Ssl2-dependent double-stranded DNA translocase activity. Ssl2 tracks along one DNA strand in the 5' → 3' direction, implying it uses the nontemplate promoter strand to reel downstream DNA into the Pol II cleft, creating torsional strain and leading to DNA unwinding. Analysis of the Ssl2 and DNA-dependent ATPase activity of TFIIH suggests that Ssl2 has a processivity of approximately one DNA turn, consistent with the length of DNA unwound during transcription initiation. Our results can explain why maintaining the OC requires continuous ATP hydrolysis and the function of TFIIH in promoter escape. Our results also suggest that XPB/Ssl2 uses this translocase mechanism during DNA repair rather than physically wedging open damaged DNA.
Collapse
|
13
|
Hilario E, Li Y, Nobumori Y, Liu X, Fan L. Structure of the C-terminal half of human XPB helicase and the impact of the disease-causing mutation XP11BE. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:237-46. [PMID: 23385459 DOI: 10.1107/s0907444912045040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/30/2012] [Indexed: 01/26/2023]
Abstract
XPB is a DNA-dependent helicase and a subunit of the TFIIH complex required for both transcription and DNA repair. XPB contains four domains: an N-terminal domain, two conserved helicase domains (HD1 and HD2) and a C-terminal extension. The C-terminal extension is important for DNA repair since the phosphorylation of Ser751 inhibits 5'-incision by ERCC1-XPF endonuclease. A disease-causing frameshift mutation (XP11BE) that changes the last 42 amino acids of XPB causes manifestations including impaired DNA repair and deficient transcription. Here, the crystal structure of the C-terminal half of XPB (residues 494-782) is reported at 1.8 Å resolution. The structure contained the conserved XPB HD2 and a C-terminal extension which shares structural similarity with RIG-I, leading to a structural model of the XPF-XPB-DNA complex for 5' incision during DNA repair. A mutation mimicking the XP11BE mutation produced the much less soluble mutant XPBm(494-781). Western blotting results confirmed that the intracellular levels of XPB and other TFIIH subunits in XP11BE patient cells were much lower than those from the healthy parents. Together, these results indicate that the XP11BE mutation not only divests the XPF-interaction motif, impairing DNA repair, but also reduces XPB solubility, leading to a lower intracellular level of TFIIH and deficient transcription.
Collapse
Affiliation(s)
- Eduardo Hilario
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
14
|
Murakami K, Calero G, Brown CR, Liu X, Davis RE, Boeger H, Kornberg RD. Formation and fate of a complete 31-protein RNA polymerase II transcription preinitiation complex. J Biol Chem 2013; 288:6325-32. [PMID: 23303183 DOI: 10.1074/jbc.m112.433623] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Whereas individual RNA polymerase II (pol II)-general transcription factor (GTF) complexes are unstable, an assembly of pol II with six GTFs and promoter DNA could be isolated in abundant homogeneous form. The resulting complete pol II transcription preinitiation complex (PIC) contained equimolar amounts of all 31 protein components. An intermediate in assembly, consisting of four GTFs and promoter DNA, could be isolated and supplemented with the remaining components for formation of the PIC. Nuclease digestion and psoralen cross-linking mapped the PIC between positions -70 and -9, centered on the TATA box. Addition of ATP to the PIC resulted in quantitative conversion to an open complex, which retained all 31 proteins, contrary to expectation from previous studies. Addition of the remaining NTPs resulted in run-off transcription, with an efficiency that was promoter-dependent and was as great as 17.5% with the promoters tested.
Collapse
Affiliation(s)
- Kenji Murakami
- Department of Structural Biology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The transcription initiation factor TFIIH is a remarkable protein complex that has a fundamental role in the transcription of protein-coding genes as well as during the DNA nucleotide excision repair pathway. The detailed understanding of how TFIIH functions to coordinate these two processes is also providing an explanation for the phenotypes observed in patients who bear mutations in some of the TFIIH subunits. In this way, studies of TFIIH have revealed tight molecular connections between transcription and DNA repair and have helped to define the concept of 'transcription diseases'.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UdS, BP 163, 67404 Illkirch Cedex, C. U., Strasbourg, France.
| | | |
Collapse
|
16
|
Lin JJ, Carey M. In vitro transcription and immobilized template analysis of preinitiation complexes. ACTA ACUST UNITED AC 2012; Chapter 12:Unit 12.14.. [PMID: 22237857 DOI: 10.1002/0471142727.mb1214s97] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the study of gene regulation, it is often necessary to employ functional assays that investigate the action or mechanism of specific promoters or enhancer-binding factors and their role in transcription by RNA polymerase II. Although many assays measure the transcription of a gene under the control of an endogenous or model activator in vivo, it is often useful to recreate transcription in vitro in order to study specific regulatory mechanisms. In this unit, protocols are presented that will allow the investigator to perform in vitro transcription using preinitiation complexes assembled from cellular extracts on either naked DNA or chromatin templates.
Collapse
Affiliation(s)
- Justin J Lin
- University of California, Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
17
|
Čabart P, Luse DS. Inactivated RNA polymerase II open complexes can be reactivated with TFIIE. J Biol Chem 2011; 287:961-7. [PMID: 22119917 DOI: 10.1074/jbc.m111.297572] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcript initiation by RNA polymerase II (pol II) requires a helicase within TFIIH to generate the unpaired template strand. However, pol II preinitiation complexes (PICs) lose the ability to synthesize RNA very rapidly upon exposure to ATP alone in the absence of other NTPs. This inactivation is not caused by the TFIIH kinase activity, the loss of transcription factors or pol II from the PIC, or the collapse of the initially formed transcription bubble. TFIIE is necessary for PIC formation, but TFIIE is not retained as a stable component in PICs prepared by our protocol. Nevertheless, activity can be at least partially restored to ATP-treated PICs by the readdition of TFIIE. PICs formed on premelted (bubble) templates require TFIIH for effective transcript elongation to +20. Incubation of bubble template PICs with ATP caused reduced yields of 20-mers, but this effect was partially reversed by the addition of TFIIE. Our results suggest that once the open complex is formed, TFIIH decays into an inactive configuration in the absence of nucleotides for transcription. Although TFIIE does not play a role in transcript initiation itself, inactivation resulting from ATP preincubation can be reversed by a remodeling process mediated by TFIIE. Finally, we have also uncovered a major role for TFIIF in the earliest stages of transcript elongation that is unique to bubble templates.
Collapse
Affiliation(s)
- Pavel Čabart
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
18
|
Architecture of the yeast RNA polymerase II open complex and regulation of activity by TFIIF. Mol Cell Biol 2011; 32:12-25. [PMID: 22025674 DOI: 10.1128/mcb.06242-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the function and architecture of the open complex state of RNA polymerase II (Pol II), Saccharomyces cerevisiae minimal open complexes were assembled by using a series of heteroduplex HIS4 promoters, TATA binding protein (TBP), TFIIB, and Pol II. The yeast system demonstrates great flexibility in the position of active open complexes, spanning 30 to 80 bp downstream from TATA, consistent with the transcription start site scanning behavior of yeast Pol II. TFIIF unexpectedly modulates the activity of the open complexes, either repressing or stimulating initiation. The response to TFIIF was dependent on the sequence of the template strand within the single-stranded bubble. Mutations in the TFIIB reader and linker region, which were inactive on duplex DNA, were suppressed by the heteroduplex templates, showing that a major function of the TFIIB reader and linker is in the initiation or stabilization of single-stranded DNA. Probing of the architecture of the minimal open complexes with TFIIB-FeBABE [TFIIB-p-bromoacetamidobenzyl-EDTA-iron(III)] derivatives showed that the TFIIB core domain is surprisingly positioned away from Pol II, and the addition of TFIIF repositions the TFIIB core domain to the Pol II wall domain. Together, our results show an unexpected architecture of minimal open complexes and the regulation of activity by TFIIF and the TFIIB core domain.
Collapse
|
19
|
Aygün O, Xu X, Liu Y, Takahashi H, Kong SE, Conaway RC, Conaway JW, Svejstrup JQ. Direct inhibition of RNA polymerase II transcription by RECQL5. J Biol Chem 2009; 284:23197-203. [PMID: 19570979 PMCID: PMC2749093 DOI: 10.1074/jbc.m109.015750] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA helicases of the RECQ family are important for maintaining genome integrity, from bacteria to humans. Although progress has been made in understanding the biochemical role of some human RECQ helicases, that of RECQL5 remains elusive. We recently reported that RECQL5 interacts with RNA polymerase II (RNAPII), pointing to a role for the protein in transcription. Here, we show that RECQL5 inhibits both initiation and elongation in transcription assays reconstituted with highly purified general transcription factors and RNAPII. Such inhibition is not observed with the related, much more active RECQL1 helicase or with a version of RECQL5 that has normal helicase activity but is impaired in its ability to interact with RNAPII. Indeed, RECQL5 helicase activity is not required for inhibition. We discuss our findings in light of the fact that RECQ5−/− mice have elevated levels of DNA recombination and a higher incidence of cancer.
Collapse
Affiliation(s)
- Ozan Aygün
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK, London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Okuda M, Tanaka A, Satoh M, Mizuta S, Takazawa M, Ohkuma Y, Nishimura Y. Structural insight into the TFIIE-TFIIH interaction: TFIIE and p53 share the binding region on TFIIH. EMBO J 2008; 27:1161-71. [PMID: 18354501 PMCID: PMC2275666 DOI: 10.1038/emboj.2008.47] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/21/2008] [Indexed: 11/09/2022] Open
Abstract
RNA polymerase II and general transcription factors (GTFs) assemble on a promoter to form a transcription preinitiation complex (PIC). Among the GTFs, TFIIE recruits TFIIH to complete the PIC formation and regulates enzymatic activities of TFIIH. However, the mode of binding between TFIIE and TFIIH is poorly understood. Here, we demonstrate the specific binding of the C-terminal acidic domain (AC-D) of the human TFIIEα subunit to the pleckstrin homology domain (PH-D) of the human TFIIH p62 subunit and describe the solution structures of the free and PH-D-bound forms of AC-D. Although the flexible N-terminal acidic tail from AC-D wraps around PH-D, the core domain of AC-D also interacts with PH-D. AC-D employs an entirely novel binding mode, which differs from the amphipathic helix method used by many transcriptional activators. So the binding surface between PH-D and AC-D is much broader than the specific binding surface between PH-D and the p53 acidic fragments. From our in vitro studies, we demonstrate that this interaction could be a switch to replace p53 with TFIIE on TFIIH in transcription.
Collapse
Affiliation(s)
- Masahiko Okuda
- Laboratory of Structural Biology, Graduate School of Supramolecular Biology, Yokohama City University, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Kang BG, Shin JH, Yi JK, Kang HC, Lee JJ, Heo HS, Chae JH, Shin I, Kim CG. Corepressor MMTR/DMAP1 is involved in both histone deacetylase 1- and TFIIH-mediated transcriptional repression. Mol Cell Biol 2007; 27:3578-88. [PMID: 17371848 PMCID: PMC1899998 DOI: 10.1128/mcb.01808-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A transcription corepressor, MAT1-mediated transcriptional repressor (MMTR), was found in mouse embryonic stem cell lines. MMTR orthologs (DMAP1) are found in a wide variety of life forms from yeasts to humans. MMTR down-regulation in differentiating mouse embryonic stem cells in vitro resulted in activation of many unrelated genes, suggesting its role as a general transcriptional repressor. In luciferase reporter assays, the transcriptional repression activity resided at amino acids 221 to 468. Histone deacetylase 1 (HDAC1) interacts with MMTR both in vitro and in vivo and also interacts with MMTR in the nucleus. Interestingly, MMTR activity was only partially rescued by competition with dominant-negative HDAC1(H141A) or by treatment with an HDAC inhibitor, trichostatin A (TSA). To identify the protein responsible for HDAC1-independent MMTR activity, we performed a yeast two-hybrid screen with the full-length MMTR coding sequence as bait and found MAT1. MAT1 is an assembly/targeting factor for cyclin-dependent kinase-activating kinase which constitutes a subcomplex of TFIIH. The coiled-coil domain in the middle of MAT1 was confirmed to interact with the C-terminal half of MMTR, and the MMTR-mediated transcriptional repression activity was completely restored by MAT1 in the presence of TSA. Moreover, intact MMTR was required to inhibit phosphorylation of the C-terminal domain in the RNA polymerase II largest subunit by TFIIH kinase in vitro. Taken together, these data strongly suggest that MMTR is part of the basic cellular machinery for a wide range of transcriptional regulation via interaction with TFIIH and HDAC.
Collapse
Affiliation(s)
- Bong Gu Kang
- Department of Life Science, College of Natural Sciences, Hanyang University, Haengdang 17, Sungdong-gu, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Itoh Y, Unzai S, Sato M, Nagadoi A, Okuda M, Nishimura Y, Akashi S. Investigation of molecular size of transcription factor TFIIE in solution. Proteins 2006; 61:633-41. [PMID: 16184598 DOI: 10.1002/prot.20647] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human general transcription factor IIE (TFIIE), a component of a transcription preinitiation complex associated with RNA polymerase II, was characterized by size-exclusion chromatography, mass spectrometry, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS). Recombinant human TFIIE was purified to homogeneity and shown to contain equimolar amounts of TFIIEalpha (50 kDa) and TFIIEbeta (35 kDa) by SDS-PAGE. In the analysis of size-exclusion chromatography of the purified sample, as already reported, TFIIE was shown to be a 170-kDa alpha(2)beta(2) heterotetramer. However, by using electrospray ionization mass spectrometry the purified sample gave the molecular mass of 84,152 +/- 5, indicating that TFIIE is an alphabeta heterodimer but not a heterotetramer. Analytical ultracentrifugation experiment of TFIIE provided that only a single component with the molecular mass of ca. 80,000 existed in solution, also suggesting an alphabeta heterodimer. In addition, its extraordinarily rod-like molecular shape was confirmed by SAXS. It is likely that the rod-like molecular shape of TFIIE has misled larger molecular size in size-exclusion chromatography, which was calibrated by globular proteins. It is demonstrated that TFIIE exists as a heterodimer under our present conditions in solution, although two molecules of heterodimer might be required for the formation of the preinitiation complex with RNA polymerase II for starting the transcription process.
Collapse
Affiliation(s)
- Yoshiyuki Itoh
- Graduate School of Integrated Science, Yokohama City University, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Okuda M, Tanaka A, Hanaoka F, Ohkuma Y, Nishimura Y. Structural insights into the asymmetric effects of zinc-ligand cysteine mutations in the novel zinc ribbon domain of human TFIIEalpha for transcription. J Biochem 2006; 138:443-9. [PMID: 16272138 DOI: 10.1093/jb/mvi138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The large subunit of TFIIE (TFIIEalpha) has a highly conserved zinc ribbon domain, which is essential for transcription. Recently, we determined the solution structure of this domain to be that of a novel zinc finger motif [Okuda et al. (2004) J. Biol. Chem. 279, 51395-51403]. On examination of the functions of four cysteine mutants of TFIIEalpha, in which each of four zinc-liganded cysteines was replaced by alanine, we found an interesting functional asymmetry; on a supercoiled template, the two C-terminal mutants did not show any transcriptional activity, however, the two N-terminal mutants retained about 20% activity. Furthermore, these two pairs of mutants showed distinct binding abilities as to several general transcription factors. To obtain structural insights into the asymmetry, here we have analyzed the structures of the four cysteine mutants of the zinc ribbon domain by CD and NMR. All four mutants possessed a characteristic partially folded structure coordinating with a zinc atom, despite the imperfect set of cysteine-ligands. However, they equilibrated with several structures including the random coil structure. Unexpectedly, the two N-terminal mutants mainly equilibrated with the random coil structure, while the two C-terminal ones mainly equilibrated with folded structures. The characteristic structure formation of each mutant was reversible, which totally depended on the zinc binding.
Collapse
Affiliation(s)
- Masahiko Okuda
- International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | |
Collapse
|
24
|
Pal M, Ponticelli AS, Luse DS. The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. Mol Cell 2005; 19:101-10. [PMID: 15989968 DOI: 10.1016/j.molcel.2005.05.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Revised: 04/20/2005] [Accepted: 05/19/2005] [Indexed: 11/27/2022]
Abstract
We have studied promoter clearance at a series of RNA polymerase II promoters with varying spacing of the TATA box and start site. We find that regardless of promoter spacing, the upstream edge of the transcription bubble forms 20 bp from TATA. The bubble expands downstream until 18 bases are unwound and the RNA is at least 7 nt long, at which point the upstream approximately 8 bases of the bubble abruptly reanneal (bubble collapse). If either bubble size or transcript length is insufficient, bubble collapse cannot occur. Bubble collapse coincides with the end of the requirement for the TFIIH helicase for efficient transcript elongation. We also provide evidence that bubble collapse suppresses pausing at +7 to +9 caused by the presence of the B finger segment of TFIIB within the complex. Our results indicate that bubble collapse defines the RNA polymerase II promoter clearance transition.
Collapse
Affiliation(s)
- Mahadeb Pal
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
25
|
Castaño E, Flores RD, Zapata LCR. An easy approach for the purification of native TFIIH. ACTA ACUST UNITED AC 2005; 62:207-13. [PMID: 15733580 DOI: 10.1016/j.jbbm.2004.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 11/03/2004] [Accepted: 11/25/2004] [Indexed: 11/16/2022]
Abstract
Transcriptional regulation depends on the appropriate set of positive and negative regulating signals in order to provide the correct gene expression. In vitro studies in eukaryotic gene expression over the last few years have provided a wealth of information about new factors involved in the regulation of genes. However, the dissection of this mechanism requires the addition of well-characterized general transcription factors; with the exception of TFIID and TFIIH, all others can easily be expressed in a recombinant form. Here we provide a simple methodology to obtain partially purified transcriptionally active TFIIH free from other general transcription factors and active in transcription.
Collapse
Affiliation(s)
- Enrique Castaño
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México.
| | | | | |
Collapse
|
26
|
Okuda M, Tanaka A, Arai Y, Satoh M, Okamura H, Nagadoi A, Hanaoka F, Ohkuma Y, Nishimura Y. A novel zinc finger structure in the large subunit of human general transcription factor TFIIE. J Biol Chem 2004; 279:51395-403. [PMID: 15385556 DOI: 10.1074/jbc.m404722200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zinc finger domain in the large subunit of TFIIE (TFIIEalpha) is phylogenetically conserved and is essential for transcription. Here, we determined the solution structure of this domain by using NMR. It consisted of one alpha-helix and five beta-strands, showing novel features distinct from previously determined zinc-binding structures. We created point mutants of TFIIEalpha in this domain and examined their binding abilities to other general transcription factors as well as their transcription activities. Four Zn(2+)-ligand mutants, in which each of cysteine residues at positions 129, 132, 154, and 157 was replaced by alanine, possessed no transcription activities on a linearized template, whereas, on a supercoiled template, interesting functional asymmetry was observed: although the C-terminal two mutants abolished transcription activity (<5%), the N-terminal two mutants retained about 20% activities. The N-terminal two mutants bound stronger to the small subunit of TFIIF than the wild type and the C-terminal two mutants were impaired in their binding abilities to the XPB subunits of TFIIH. These suggest that the structural integrity of the zinc finger domain is essential for the TFIIE function, particularly in the transition from the transcription initiation to elongation and the conformational tuning of this domain for appropriate positioning of TFIIF, TFIIH, and polymerase II would be needed depending on the situation and timing.
Collapse
Affiliation(s)
- Masahiko Okuda
- Graduate School of Integrated Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Choi WS, Lin YC, Gralla JD. The Schizosaccharomyces pombe open promoter bubble: mammalian-like arrangement and properties. J Mol Biol 2004; 340:981-9. [PMID: 15236961 DOI: 10.1016/j.jmb.2004.04.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 04/23/2004] [Accepted: 04/23/2004] [Indexed: 10/26/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is often used as a genetic system to model processes that apply to higher cells. Here S.pombe was used to study promoter DNA opening and transcription initiation by RNA polymerase II. The melted region within the adh promoter is about 20 bp in size and has the start site near its center. This arrangement is similar to that at the AdML promoter but different from that in Saccharomyces cerevisiae. Although expression of human TFIIB shifts the start site to the nearby human position, it does not change the location of the bubble. The start site shift is directed by the C terminus of human TFIIB, in contrast to expectations from S.cerevisiae. The creation of the bubble requires the ATPase motifs of XPB. Overall, the data show that promoter melting and initiation in fission yeast is much more similar to humans than to budding yeast.
Collapse
Affiliation(s)
- Wai S Choi
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, P.O. Box 951569, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
28
|
Cai Z, Liang TJ, Luo G. Effects of mutations of the initiation nucleotides on hepatitis C virus RNA replication in the cell. J Virol 2004; 78:3633-43. [PMID: 15016884 PMCID: PMC371060 DOI: 10.1128/jvi.78.7.3633-3643.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 12/12/2003] [Indexed: 11/20/2022] Open
Abstract
Replication of nearly all RNA viruses depends on a virus-encoded RNA-dependent RNA polymerase (RdRp). Our earlier work found that purified recombinant hepatitis C virus (HCV) RdRp (NS5B) was able to initiate RNA synthesis de novo by using purine (A and G) but not pyrimidine (C and U) nucleotides (G. Luo et al., J. Virol. 74:851-863, 2000). For most human RNA viruses, the initiation nucleotides of both positive- and negative-strand RNAs were found to be either an adenylate (A) or guanylate (G). To determine the nucleotide used for initiation and control of HCV RNA replication, a genetic mutagenesis analysis of the nucleotides at the very 5' and 3' ends of HCV RNAs was performed by using a cell-based HCV replicon replication system. Either a G or an A at the 5' end of HCV genomic RNA was able to efficiently induce cell colony formation, whereas a nucleotide C at the 5' end dramatically reduced the efficiency of cell colony formation. Likewise, the 3'-end nucleotide U-to-C mutation did not significantly affect the efficiency of cell colony formation. In contrast, a U-to-G mutation at the 3' end caused a remarkable decrease in cell colony formation, and a U-to-A mutation resulted in a complete abolition of cell colony formation. Sequence analysis of the HCV replicon RNAs recovered from G418-resistant Huh7 cells revealed several interesting findings. First, the 5'-end nucleotide G of the replicon RNA was changed to an A upon multiple rounds of replication. Second, the nucleotide A at the 5' end was stably maintained among all replicon RNAs isolated from Huh7 cells transfected with an RNA with a 5'-end A. Third, initiation of HCV RNA replication with a CTP resulted in a >10-fold reduction in the levels of HCV RNAs, suggesting that initiation of RNA replication with CTP was very inefficient. Fourth, the 3'-end nucleotide U-to-C and -G mutations were all reverted back to a wild-type nucleotide U. In addition, extra U and UU residues were identified at the 3' ends of revertants recovered from Huh7 cells transfected with an RNA with a nucleotide G at the 3' end. We also determined the 5'-end nucleotide of positive-strand RNA of some clinical HCV isolates. Either G or A was identified at the 5' end of HCV RNA genome depending on the specific HCV isolate. Collectively, these findings demonstrate that replication of positive-strand HCV RNA was preferentially initiated with purine nucleotides (ATP and GTP), whereas the negative-strand HCV RNA replication is invariably initiated with an ATP.
Collapse
Affiliation(s)
- Zhaohui Cai
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
29
|
Moon WJ, Apostol JA, McBride AJ, Shukla LI, Dvir A, Burton ZF. Efficient production of recombinant human transcription factor IIE. Protein Expr Purif 2004; 34:317-23. [PMID: 15003267 DOI: 10.1016/j.pep.2003.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2003] [Revised: 12/10/2003] [Indexed: 11/17/2022]
Abstract
Transcription factor IIE (TFIIE) is a general initiation and promoter escape factor for RNA polymerase II composed of p56 (TFIIE-alpha) and p34 (TFIIE-beta) subunits. Our laboratories experienced difficulty producing adequate quantities of recombinant human TFIIE-alpha for in vitro studies using available clones. We therefore re-engineered the TFIIE subunit production vectors and tested various Escherichia coli host strains to optimize expression. We report a much-improved system for production of pure, soluble, and active TFIIE complex for in vitro studies.
Collapse
Affiliation(s)
- Woo J Moon
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824-1319, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wang X, Spangler L, Dvir A. Promoter escape by RNA polymerase II. Downstream promoter DNA is required during multiple steps of early transcription. J Biol Chem 2003; 278:10250-6. [PMID: 12527757 DOI: 10.1074/jbc.m210848200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent evidence, obtained in a reconstituted RNA polymerase II transcription system, indicated that the promoter escape stage of transcription requires template DNA located downstream of the elongating polymerase. In the absence of downstream DNA, very early elongation complexes are unable to synthesize transcripts longer than approximately 10-14 nucleotides. In contrast, once transcripts longer than approximately 15 nucleotides have been synthesized, an extended region of downstream DNA is no longer required (Dvir, A., Tan, S., Conaway, J. W., and Conaway, R. C. (1997) J. Biol. Chem. 272, 28175-28178). In this work, we sought to define precisely when, during the synthesis of the first 10-15 phosphodiester bonds, downstream DNA is required. We report that, for complete promoter escape, downstream DNA extending to position 40/42 is required. The polymerase can be forced to arrest at several points prior to the completion of promoter escape by removing downstream DNA proximally to positions 40/42. The positions at which the polymerase arrests appear to be determined by the length of available downstream DNA, with arrest occurring at a relatively fixed position of approximately 28 nucleotides to the distal end of the template. A similar requirement is observed for transcription initiation, i.e. the formation of the first phosphodiester bond of nascent transcripts. In addition, we show that the requirement for a downstream region is independent of downstream DNA sequence, suggesting that the requirement reflects a general mechanism. Taken together, our results indicate (i) that downstream DNA is required continuously through the synthesis of the first 14-15 phosphodiester bonds of nascent transcripts, and (ii) that a major conformational change in the transcription complex likely occurs only after the completion of promoter escape.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309, USA
| | | | | |
Collapse
|
31
|
Hoogstraten D, Nigg AL, Heath H, Mullenders LHF, van Driel R, Hoeijmakers JHJ, Vermeulen W, Houtsmuller AB. Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol Cell 2002; 10:1163-74. [PMID: 12453423 DOI: 10.1016/s1097-2765(02)00709-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The transcription/repair factor TFIIH operates as a DNA helix opener in RNA polymerase II (RNAP2) transcription and nucleotide excision repair. To study TFIIH in vivo, we generated cell lines expressing functional GFP-tagged TFIIH. TFIIH was homogeneously distributed throughout the nucleus with nucleolar accumulations. We provide in vivo evidence for involvement of TFIIH in RNA polymerase I (RNAP1) transcription. Photobleaching revealed that TFIIH moves freely and gets engaged in RNAP1 and RNAP2 transcription for approximately 25 and approximately 6 s, respectively. TFIIH readily switches between transcription and repair sites (where it is immobilized for approximately 4 min) without large-scale alterations in composition. Our findings support a model of diffusion and random collision of individual components that permits a quick and versatile response to changing conditions.
Collapse
Affiliation(s)
- Deborah Hoogstraten
- Department of Cell Biology and Genetics, Medical Genetics Center, CBG, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Quinn PG. Mechanisms of basal and kinase-inducible transcription activation by CREB. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:269-305. [PMID: 12206454 DOI: 10.1016/s0079-6603(02)72072-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The cAMP response element (CRE)-binding protein (CREB) stimulates basal transcription of CRE-containing genes and mediates induction of transcription upon phosphorylation by protein kinases. The basal activity of CREB maps to a carboxy-terminal constitutive activation domain (CAD), whereas phosphorylation and inducibility map to a central, kinase-inducible domain (KID). The CAD interacts with and recruits the promoter recognition factor TFIID through an interaction with a specific TATA-binding-protein-associated factor (TAF), dTAFII110/ hTAFII135. Interaction between the TAF and the CAD is mediated by a central cluster of hydrophobic amino acids, mutation of which disrupts TAF binding, polymerase recruitment, and transcription activation. Assessment of the contributions of the CAD and KID to recruitment of the polymerase complex versus enhancement of subsequent reaction steps (isomerization, promoter clearance, and reinitiation) showed that the CAD and P-KID act in a concerted mechanism to stimulate transcription. The CAD, but not the KID, mediated recruitment of a complex containing components of a transcription initiation complex, including pol II, IIB, and IID. However, the CAD was relatively ineffective in stimulating subsequent steps in the reaction mechanism. In contrast, phosphorylation of the KID in CREB effectively stimulated isomerization of the recruited polymerase complex and multiple-round transcription. A model for the activation of transcription by phosphorylated CREB is proposed, in which the polymerase is recruited by interaction of the CAD with TFIID and the recruited polymerase is activated further by phosphorylation of the KID in CREB.
Collapse
Affiliation(s)
- Patrick G Quinn
- Department of Cellular and Molecular Physiology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| |
Collapse
|
33
|
Abstract
Transcription of protein-coding genes is one of the most fundamental processes that underlies all life and is a primary mechanism of biological regulation. In eukaryotic cells, transcription depends on the formation of a complex at the promoter region of the gene that minimally includes RNA polymerase II and several auxiliary proteins known as the general transcription factors. Transcription initiation follows at the promoter site given the availability of nucleoside triphosphates and ATP. Soon after the polymerase begins the synthesis of the nascent mRNA chain, it enters a critical stage, referred to as promoter escape, that is characterized by physical and functional instability of the transcription complex. These include formation of abortive transcripts, strong dependence on ATP cofactor, the general transcription factor TFIIH and downstream template. These criteria are no longer in effect when the nascent RNA reaches a length of 14-15 nucleotides. Towards the end of promoter escape, disruption or adjustment of protein-protein and protein-DNA interactions, including the release of some of the general transcription factors from the early transcription complex is to be expected, allowing the transition to the elongation stage of transcription. In this review, we examine the experimental evidence that defines promoter escape as a distinct stage in transcription, and point out areas where critical information is missing.
Collapse
MESH Headings
- HeLa Cells
- Humans
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/physiology
- RNA Polymerase II/chemistry
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/metabolism
- Sarcosine/analogs & derivatives
- Sarcosine/pharmacology
- Transcription Factor TFIIH
- Transcription Factors, General/chemistry
- Transcription Factors, General/metabolism
- Transcription Factors, TFII/genetics
- Transcription Factors, TFII/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Arik Dvir
- Department of Biological Sciences, Oakland University, Rochester, MI 48309-4401, USA.
| |
Collapse
|
34
|
Spangler L, Wang X, Conaway JW, Conaway RC, Dvir A. TFIIH action in transcription initiation and promoter escape requires distinct regions of downstream promoter DNA. Proc Natl Acad Sci U S A 2001; 98:5544-9. [PMID: 11331764 PMCID: PMC33249 DOI: 10.1073/pnas.101004498] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2001] [Indexed: 11/18/2022] Open
Abstract
TFIIH is a multifunctional RNA polymerase II general initiation factor that includes two DNA helicases encoded by the Xeroderma pigmentosum complementation group B (XPB) and D (XPD) genes and a cyclin-dependent protein kinase encoded by the CDK7 gene. Previous studies have shown that the TFIIH XPB DNA helicase plays critical roles not only in transcription initiation, where it catalyzes ATP-dependent formation of the open complex, but also in efficient promoter escape, where it suppresses arrest of very early RNA polymerase II elongation intermediates. In this report, we present evidence that ATP-dependent TFIIH action in transcription initiation and promoter escape requires distinct regions of the DNA template; these regions are well separated from the promoter region unwound by the XPB DNA helicase and extend, respectively, approximately 23-39 and approximately 39-50 bp downstream from the transcriptional start site. Taken together, our findings bring to light a role for promoter DNA in TFIIH action and are consistent with the model that TFIIH translocates along promoter DNA ahead of the RNA polymerase II elongation complex until polymerase has escaped the promoter.
Collapse
Affiliation(s)
- L Spangler
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | | | | | | | | |
Collapse
|
35
|
Orlicky SM, Tran PT, Sayre MH, Edwards AM. Dissociable Rpb4-Rpb7 subassembly of rna polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation. J Biol Chem 2001; 276:10097-102. [PMID: 11087726 DOI: 10.1074/jbc.m003165200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rpb4 and Rpb7 subunits of yeast RNA polymerase II form a heterodimeric complex essential for promoter-directed transcription initiation in a reconstituted system. Results of template competition experiments indicate that the Rpb4-Rpb7 complex is not required for stable recruitment of polymerase to active preinitiation complexes, suggesting that Rpb4-Rpb7 mediates an essential step subsequent to promoter binding. Sequence and structure-based alignments revealed a possible OB-fold single-strand nucleic acid-binding motif in Rpb7. Purified Rpb4-Rpb7 complex exhibited both single-strand DNA- and RNA-binding activities, and a small deletion in the putative OB-fold nucleic acid-binding surface of Rpb7 abolished binding activity without affecting the stability of the Rpb4-Rpb7 complex or its ability to associate with polymerase. The same mutation destroyed the transcription activity of the Rpb4-Rpb7 complex. A separate deletion elsewhere in the OB-fold motif of Rpb7 also blocked transcription but did not affect nucleic acid binding, suggesting that the OB-fold of Rpb7 mediates both DNA-protein and protein-protein interactions required for productive initiation.
Collapse
Affiliation(s)
- S M Orlicky
- Banting and Best Department of Medical Research and Department of Medical Genetics and Microbiology, C. H. Best Institute, University of Toronto, Ontario M5G 1L6, Canada
| | | | | | | |
Collapse
|
36
|
Yamamoto S, Watanabe Y, van der Spek PJ, Watanabe T, Fujimoto H, Hanaoka F, Ohkuma Y. Studies of nematode TFIIE function reveal a link between Ser-5 phosphorylation of RNA polymerase II and the transition from transcription initiation to elongation. Mol Cell Biol 2001; 21:1-15. [PMID: 11113176 PMCID: PMC86563 DOI: 10.1128/mcb.21.1.1-15.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIIE plays important roles in transcription initiation and in the transition to elongation. However, little is known about its function during these steps. Here we demonstrate for the first time that TFIIH-mediated phosphorylation of RNA polymerase II (Pol II) is essential for the transition to elongation. This phosphorylation occurs at serine position 5 (Ser-5) of the carboxy-terminal domain (CTD) heptapeptide sequence of the largest subunit of Pol II. In a human in vitro transcription system with a supercoiled template, this process was studied using a human TFIIE (hTFIIE) homolog from Caenorhabditis elegans (ceTFIIEalpha and ceTFIIEbeta). ceTFIIEbeta could partially replace hTFIIEbeta, whereas ceTFIIEalpha could not replace hTFIIEalpha. We present the studies of TFIIE binding to general transcription factors and the effects of subunit substitution on CTD phosphorylation. As a result, ceTFIIEalpha did not bind tightly to hTFIIEbeta, and ceTFIIEbeta showed a similar profile for binding to its human counterpart and supported an intermediate level of CTD phosphorylation. Using antibodies against phosphorylated serine at either Ser-2 or Ser-5 of the CTD, we found that ceTFIIEbeta induced Ser-5 phosphorylation very little but induced Ser-2 phosphorylation normally, in contrast to wild-type hTFIIE, which induced phosphorylation at both Ser-2 and Ser-5. In transcription transition assays using a linear template, ceTFIIEbeta was markedly defective in its ability to support the transition to elongation. These observations provide evidence of TFIIE involvement in the transition and suggest that Ser-5 phosphorylation is essential for Pol II to be in the processive elongation form.
Collapse
Affiliation(s)
- S Yamamoto
- Institute for Molecular and Cellular Biology, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The HIV-1 Tat protein is an RNA-binding transcriptional transactivator. Recent findings suggest that Tat associates with a cellular kinase that phosphorylates the carboxyl-terminal domain of the largest subunit of RNA polymerase II. Here we review, in brief, the role of Tat-associated kinase in Tat-activated transcription. We discuss evidence that suggests involvement of TFIIH and/or P-TEFb.
Collapse
Affiliation(s)
- K T Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
38
|
Abstract
The elongation stage of eukaryotic mRNA synthesis can be regulated by transcription factors that interact directly with the RNA polymerase II (pol II) elongation complex and by activities that modulate the structure of its chromatin template. Recent studies have revealed new elongation factors and have implicated the general initiation factors TFIIE, TFIIF and TFIIH, as well as the C-terminal domain (CTD) of the largest subunit of pol II, in elongation. The recently reported high-resolution crystal structure of RNA polymerase II, which provides insight into the architecture of the elongation complex, marks a new era of investigation into transcription elongation.
Collapse
Affiliation(s)
- J W Conaway
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | | | | | |
Collapse
|
39
|
Steinke JW, Kopytek SJ, Peterson DO. Discrete promoter elements affect specific properties of RNA polymerase II transcription complexes. Nucleic Acids Res 2000; 28:2726-35. [PMID: 10908329 PMCID: PMC102648 DOI: 10.1093/nar/28.14.2726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The frequency of transcription initiation at specific RNA polymerase II promoters is, in many cases, related to the ability of the promoter to recruit the transcription machinery to a specific site. However, there may also be functional differences in the properties of assembled transcription complexes that are promoter-specific or regulator-dependent and affect their activity. Transcription complexes formed on variants of the adenovirus major late (AdML) promoter were found to differ in several ways. Mutations in the initiator element increased the sarkosyl sensitivity of the rate of elongation and decreased the rate of early steps in initiation as revealed by a sarkosyl challenge assay that exploited the resistance of RNA synthesis to high concentrations of sarkosyl after formation of one or two phospho-diester bonds. Similar, but clearly distinct, effects were also observed after deletion of the binding site for upstream stimulatory factor from the AdML promoter. In contrast, deletion of binding sites for nuclear factor 1 and Oct-1, as well as mutations in the recognition sequence for initiation site binding protein, were without apparent effect on transcription complexes on templates containing the mouse mammary tumor virus promoter.
Collapse
Affiliation(s)
- J W Steinke
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | | | |
Collapse
|
40
|
Okuda M, Watanabe Y, Okamura H, Hanaoka F, Ohkuma Y, Nishimura Y. Structure of the central core domain of TFIIEbeta with a novel double-stranded DNA-binding surface. EMBO J 2000; 19:1346-56. [PMID: 10716934 PMCID: PMC305675 DOI: 10.1093/emboj/19.6.1346] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human general transcription factor TFIIE consists of two subunits, TFIIEalpha and TFIIEbeta. Recently, TFIIEbeta has been found to bind to the region where the promoter starts to open to be single-stranded upon transcription initiation by RNA polymerase II. Here, the central core domain of human TFIIEbeta (TFIIEbetac) has been identified by a limited proteolysis. This solution structure has been determined by NMR. It consists of three helices with a beta hairpin at the C-terminus, resembling the winged helix proteins. However, TFIIEbetac shows a novel double-stranded DNA-binding activity where the DNA-binding surface locates on the opposite side to the previously reported winged helix motif by forming a positively charged furrow. A model will be proposed that TFIIE stabilizes the preinitiation complex by binding not only to the general transcription factors together with RNA polymerase II but also to the promoter DNA, where double-stranded DNA starts to open to be single-stranded upon activation of the preinitiation complex.
Collapse
Affiliation(s)
- M Okuda
- Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, USA
| | | | | | | | | | | |
Collapse
|
41
|
Winkler GS, Araújo SJ, Fiedler U, Vermeulen W, Coin F, Egly JM, Hoeijmakers JH, Wood RD, Timmers HT, Weeda G. TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair. J Biol Chem 2000; 275:4258-66. [PMID: 10660593 DOI: 10.1074/jbc.275.6.4258] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIIH is a multisubunit protein complex involved in RNA polymerase II transcription and nucleotide excision repair, which removes a wide variety of DNA lesions including UV-induced photoproducts. Mutations in the DNA-dependent ATPase/helicase subunits of TFIIH, XPB and XPD, are associated with three inherited syndromes as follows: xeroderma pigmentosum with or without Cockayne syndrome and trichothiodystrophy. By using epitope-tagged XPD we purified mammalian TFIIH carrying a wild type or an active-site mutant XPD subunit. Contrary to XPB, XPD helicase activity was dispensable for in vitro transcription, catalytic formation of trinucleotide transcripts, and promoter opening. Moreover, in contrast to XPB, microinjection of mutant XPD cDNA did not interfere with in vivo transcription. These data show directly that XPD activity is not required for transcription. However, during DNA repair, neither 5' nor 3' incisions in defined positions around a DNA adduct were detected in the presence of TFIIH containing inactive XPD, although substantial damage-dependent DNA synthesis was induced by the presence of mutant XPD both in cells and cell extracts. The aberrant damage-dependent DNA synthesis caused by the mutant XPD does not lead to effective repair, consistent with the discrepancy between repair synthesis and survival in cells from a number of XP-D patients.
Collapse
Affiliation(s)
- G S Winkler
- Department of Cell Biology and Genetics, Medical Genetics Center, Erasmus University Rotterdam, P. O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bradsher J, Coin F, Egly JM. Distinct roles for the helicases of TFIIH in transcript initiation and promoter escape. J Biol Chem 2000; 275:2532-8. [PMID: 10644710 DOI: 10.1074/jbc.275.4.2532] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To provide an explanation of some clinical features observed within rare xeroderma pigmentosum (XP) patients and to further define the role of XPB, XPD, and cdk7, the three enzymatic subunits of TFIIH, in the transcription reaction, we have examined two defined enzymatic steps: phosphodiester bond formation and promoter escape. We provide evidence that the XPB helicase plays a dominant role in initiation, whereas the XPD helicase plays a minor contributing role in this step. The cyclin-activating kinase subcomplex of TFIIH improves the efficiency of initiation, but this involves only the structural contributions of cyclin-activating kinase rather than enzymatic activity. We demonstrate that XPB patient-derived mutants in TFIIH suffer from defects in initiation. Moreover, mutant analysis shows that in addition to its crucial role in initiation, the XPB helicase plays a critical enzymatic role in the promoter escape, whereas XPD plays an important structural role in the promoter escape process. Finally, using patient-derived mutations in TFIIH, we demonstrate deficiencies in promoter escape for both mutants of the class that suffer from combined xeroderma pigmentosum/Cockayne's syndrome.
Collapse
Affiliation(s)
- J Bradsher
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, B.P.163, 67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | | |
Collapse
|
43
|
Yan Q, Moreland RJ, Conaway JW, Conaway RC. Dual roles for transcription factor IIF in promoter escape by RNA polymerase II. J Biol Chem 1999; 274:35668-75. [PMID: 10585446 DOI: 10.1074/jbc.274.50.35668] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor (TF) IIF is a multifunctional RNA polymerase II transcription factor that has well established roles in both transcription initiation, where it functions as a component of the preinitiation complex and is required for formation of the open complex and synthesis of the first phosphodiester bond of nascent transcripts, and in transcription elongation, where it is capable of interacting directly with the ternary elongation complex and stimulating the rate of transcription. In this report, we present evidence that TFIIF is also required for efficient promoter escape by RNA polymerase II. Our findings argue that TFIIF performs dual roles in this process. We observe (i) that TFIIF suppresses the frequency of abortive transcription by very early RNA polymerase II elongation intermediates by increasing their processivity and (ii) that TFIIF cooperates with TFIIH to prevent premature arrest of early elongation intermediates. In addition, our findings argue that two TFIIF functional domains mediate TFIIF action in promoter escape. First, we observe that a TFIIF mutant selectively lacking elongation activity supports TFIIH action in promoter escape, but is defective in suppressing the frequency of abortive transcription by very early RNA polymerase II elongation intermediates. Second, a TFIIF mutant selectively lacking initiation activity is more active than wild type TFIIF in increasing the processivity of very early elongation intermediates, but is defective in supporting TFIIH action in promoter escape. Taken together, our findings bring to light a function for TFIIF in promoter escape and support a role for TFIIF elongation activity in this process.
Collapse
Affiliation(s)
- Q Yan
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
44
|
Yan M, Gralla JD. The use of ATP and initiating nucleotides during postrecruitment steps at the activated adenovirus E4 promoter. J Biol Chem 1999; 274:34819-24. [PMID: 10574953 DOI: 10.1074/jbc.274.49.34819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Permanganate probing has been used to follow the progress and ATP dependence of promoter opening during activated adenovirus E4 initiation and clearance. Using templates designed to restrict synthesis to defined positions, formation of a 3-nucleotide-long RNA was found to be sufficient to trigger expansion of the initial transcription bubble. This occurred by a discrete transition that expanded the downstream limit of melting from position 1 to 15. Subsequent clearance of the bubble from the promoter region also occurred without detectable intermediates. Thus, initial opening, extension, and the clearance of the promoter bubble appear to occur as discrete, unique transitions. The apparent K(m) values for these three steps were determined to be near 5, 9, and 50 microM, respectively. Comparison of these values with ATPase activities within known transcription factors raises the possibility that different activities could be responsible for each step.
Collapse
Affiliation(s)
- M Yan
- Department of Chemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
45
|
Moreland RJ, Tirode F, Yan Q, Conaway JW, Egly JM, Conaway RC. A role for the TFIIH XPB DNA helicase in promoter escape by RNA polymerase II. J Biol Chem 1999; 274:22127-30. [PMID: 10428772 DOI: 10.1074/jbc.274.32.22127] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIIH is an RNA polymerase II transcription factor that performs ATP-dependent functions in both transcription initiation, where it catalyzes formation of the open complex, and in promoter escape, where it suppresses arrest of the early elongation complex at promoter-proximal sites. TFIIH possesses three known ATP-dependent activities: a 3' --> 5' DNA helicase catalyzed by its XPB subunit, a 5' --> 3' DNA helicase catalyzed by its XPD subunit, and a carboxyl-terminal domain (CTD) kinase activity catalyzed by its CDK7 subunit. In this report, we exploit TFIIH mutants to investigate the contributions of TFIIH DNA helicase and CTD kinase activities to efficient promoter escape by RNA polymerase II in a minimal transcription system reconstituted with purified polymerase and general initiation factors. Our findings argue that the TFIIH XPB DNA helicase is primarily responsible for preventing premature arrest of early elongation intermediates during exit of polymerase from the promoter.
Collapse
Affiliation(s)
- R J Moreland
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | |
Collapse
|
46
|
Hethke C, Bergerat A, Hausner W, Forterre P, Thomm M. Cell-free transcription at 95 degrees: thermostability of transcriptional components and DNA topology requirements of Pyrococcus transcription. Genetics 1999; 152:1325-33. [PMID: 10430563 PMCID: PMC1460703 DOI: 10.1093/genetics/152.4.1325] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cell-free transcription of archaeal promoters is mediated by two archaeal transcription factors, aTBP and TFB, which are orthologues of the eukaryotic transcription factors TBP and TFIIB. Using the cell-free transcription system described for the hyperthermophilic Archaeon Pyrococcus furiosus by Hethke et al., the temperature limits and template topology requirements of archaeal transcription were investigated. aTBP activity was not affected after incubation for 1 hr at 100 degrees. In contrast, the half-life of RNA polymerase activity was 23 min and that of TFB activity was 3 min. The half-life of a 328-nt RNA product was 10 min at 100 degrees. Best stability of RNA was observed at pH 6, at 400 mm K-glutamate in the absence of Mg(2+) ions. Physiological concentrations of K-glutamate were found to stabilize protein components in addition, indicating that salt is an important extrinsic factor contributing to thermostability. Both RNA and proteins were stabilized by the osmolyte betaine at a concentration of 1 m. The highest activity for RNA synthesis at 95 degrees was obtained in the presence of 1 m betaine and 400 mm K-glutamate. Positively supercoiled DNA, which was found to exist in Pyrococcus cells, can be transcribed in vitro both at 70 degrees and 90 degrees. However, negatively supercoiled DNA was the preferred template at all temperatures tested. Analyses of transcripts from plasmid topoisomers harboring the glutamate dehydrogenase promoter and of transcription reactions conducted in the presence of reverse gyrase indicate that positive supercoiling of DNA inhibits transcription from this promoter.
Collapse
MESH Headings
- Archaeal Proteins/metabolism
- Cell-Free System
- DNA Topoisomerases, Type I
- DNA Topoisomerases, Type II/metabolism
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA-Directed RNA Polymerases/metabolism
- Gene Expression Regulation, Archaeal
- Half-Life
- Hot Temperature
- Nucleic Acid Conformation
- Protein Denaturation
- Pyrococcus furiosus/genetics
- Pyrococcus furiosus/physiology
- RNA, Archaeal/biosynthesis
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- C Hethke
- Institut für Allgemeine Mikrobiologie, Universität Kiel, D-24118 Kiel, Germany
| | | | | | | | | |
Collapse
|
47
|
Reinberg D, Orphanides G, Ebright R, Akoulitchev S, Carcamo J, Cho H, Cortes P, Drapkin R, Flores O, Ha I, Inostroza JA, Kim S, Kim TK, Kumar P, Lagrange T, LeRoy G, Lu H, Ma DM, Maldonado E, Merino A, Mermelstein F, Olave I, Sheldon M, Shiekhattar R, Zawel L. The RNA polymerase II general transcription factors: past, present, and future. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:83-103. [PMID: 10384273 DOI: 10.1101/sqb.1998.63.83] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- D Reinberg
- Howard Hughes Medical Institute, Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 0885, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hahn S. Activation and the role of reinitiation in the control of transcription by RNA polymerase II. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:181-8. [PMID: 10384282 DOI: 10.1101/sqb.1998.63.181] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- S Hahn
- Howard Hughes Medical Institute, Seattle, Washington, USA
| |
Collapse
|
49
|
Conaway JW, Dvir A, Moreland RJ, Yan Q, Elmendorf BJ, Tan S, Conaway RC. Mechanism of promoter escape by RNA polymerase II. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:357-64. [PMID: 10384300 DOI: 10.1101/sqb.1998.63.357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J W Conaway
- Howard Hughes Medical Institute, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Liu Y, Suñé C, Garcia-Blanco MA. Human immunodeficiency virus type 1 Tat-dependent activation of an arrested RNA polymerase II elongation complex. Virology 1999; 255:337-46. [PMID: 10069959 DOI: 10.1006/viro.1998.9585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Tat protein is a transcriptional activator that is essential for efficient viral gene expression and replication. Tat increases the level of full-length transcripts from the HIV-1 promoter by dramatically enhancing the elongation efficiency of the RNA polymerase II complexes assembled on this promoter. Tat could potentially activate the transcription machinery during initiation, elongation, or both. We used an immobilized HIV-1 promoter template with a reversible lac repressor (LacR) elongation block inserted downstream to dissect the stages in transcription affected by Tat. Transcription complexes assembled in the absence of Tat and blocked by LacR cannot be activated by incubation with Tat alone. These complexes can, however, be activated if Tat is added in combination with cellular factors. In this system, Tat also promoted the assembly of preinitiation complexes capable of elongating efficiently, suggesting that Tat can associate with transcription complex at an early stage. These data indicate that Tat can activate elongation of RNA polymerase by modifying an already elongating transcription complex. The data also suggest the possibility that Tat can interact with initiation complexes.
Collapse
Affiliation(s)
- Y Liu
- Levine Science Research Center, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | | | |
Collapse
|